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~)l. Jn convex, cone-interior processes.

In economíc theory, the production technology ís repre-
sented either by production (multi-) functions, or by production
sets. The analysis of production functions with corresponding
cost functions has received a considerable impulse from studies
by Shephard (1953) and Uzawa (1964). The results are generalized
to production multifunctions or correspondences by Shephard
(1970). The relation between the input-output structure in a
special linear program and its dual structure is studied by
Ruys (1972). The set approach in production theory is intro-
duced by Koopmans (1951) and elaborated by Debreu (1959).

It is possible, however, to deríve (productíon) multi-
functions from a(production) set, and vice versa. The theory
of multifunctions derived from a convex cone is developed by
Rockafellar (1967 and 1970). Such a multifunction is called a
convex process and is a generalization of a linear transfor-
mation. Thís idea is extended by Rockafellar (1972) to the
concept of a polyhedral convex process, which can be applied
on a linear production technology. Both the inverse and the dual
or cost structure follow from properties of the polyhedral
convex processes.

In this paper, (which is based on the pioneering work of
Rockafellar) a generalization of a polyhedral convex process
is designed and called a convex cone-interior process. It is
well known that the graph of linear transformation is equal to
a certain subspace, and the graph of a polyhedral convex process
is by definition equal to a convex cone; in the case of a
convex cone-interior process, the graph is equal to a convex
set which contains and ís contained ín a(convex) cone. The
dífference between the last two concepts is, firstly, the fact
that in a convex, cone-interior process the behavior in a finite
neighbourhood of the origin need not to coincide with the be-

The author is indebted to Prof. Rockafellar and Dr. Weddepohl
for their remarks and suggestions.
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havior of the process in the ínfinite, and secondly, the fact

that a convex cone-interior process may be strictly convex.

This last fact will cause, however, some troubles in boundary

cases.
A subclass of convex, cone-interior process is of special

interest in productíon theory: the case in which the recession

cone is equal to an orthant, and the process is point-starred.

In this case the space is bipartitioned into a space of inputs

and a space of outputs in a production prdcess.

Another bipartition can be made if both'private and public

goods are present in the economy. The operations on and the

properties of convex, cone-interior processes allow for a

bipartition in commoditíes with the characteristics of public

or private goods.
The theory of convex, cone-interior processes can also be applied

in consumption theory, if the space is bipartitioned in a

commodity space and a(one or even n-dimensional) utility space.

A convéx, cone-interior process T:Rm -~ Rn, is said to be

a multifunction (or correspondence), whose graph

mtn
G(T) :z {(Y.x)Ix E T(Y)} C R

is a closed, convex and unbounded set, which.contains the

origin on íts boundary.

Equivalently may be required that G(T) is a closed and convex

set, which contains a cone with vertex zero and which ís

contained in a closed halfspace with zero on its boundary. The

graph, therefore, has a convex cone closure and a non-empty

interior cone. One may say that the process is characterized

on the infinite by the interior-cone and near the origin by

the cone-closure of the graph. If both cones coincide, the

process reduces to a closed, convex (cone) process defined by

Rockafellar (1970), requiring that the graph is a convex cone
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containing tne origin. A subclass of the class of convex (cone)
processes is formed by the convex polyhedral processes. These
processes again contain the set of the linear transformations
(or processes) as a subclass.

A proper convex, cone-interior process ís said to be a
convex, cone interior process whose graph does not contain
lines (has zero lineality) and contains an interior-cone with
a nonempty interior. The graph being a halfspace (and the pro-
cess being a línear transformation) is herewith excluded.

Fig.1

T(xl

Fig. 2
Examples of convex, cone-interior processes

It is evident that on some closed, convex, unbounded set
in Rncontaíning the origin as boundary point, at least as many
cone-interior processes may be defined, as there are bipartitions
of the Rn-space. Given some process, however, the graph is
determined unambiguously. Other processes are generated by in-
verse and polarity operations to be defined. New processes are
also generated by operations, such as.addition, on different
processes. To derive some properties of cone-interior processes,
it is necessary to define the following operations on convex
cone-interior processes:
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inverse process . the inverse of a convex, cone-interior

T:Rm i Rn is the process T-~:Rn ~ Rm,

defined by T-~(x): -{ylx E T(y)}.

scalar multi-
plication

addition

inverse addition

conjunction

disjunction

multiplication

dual addition

: (~T)(Y): - ~T(Y) z {~x~x E T(Y)}. for

a positive scalar a;

:(T~ t T2)(Y): - T~(Y) t T2(Y):

(T~ ~ T2)(Y): V {T~(.Y~) n TZ(YZ)IY~tY2-Y}:

(T~ ~ T2)(Y): - T~(Y) n TZ(Y):

(T~ v TZ)(Y): - U {T~(Y~)}T2(YZ)IY~fY2-Y}:

(TZT~)(z): - TzIT~(z)~-U{TZ(Y)~Y

(T~ ~ TZ)(Y): -

E T~(Z)};

- {~ ~T~ (Y) n ~Z TZ(Y)I3a ~,?~2 ? 0~ : ~ ~ta2-!}

dual inverse . . (T1 ~ T2)(y): -
addition -{T~ (Y~) n T2(YZ) ~3a ~? 0; a2 ? Ó:a ~ta 2-1

and y - ~ ~Y~ - ~zy2}

The last two operations on processes, are based on the so called

dual addition of two sets X~ and XZ in Rn, defíned by:

(The notation a

recession cone,

~ZXZI~~ ~ 0}, ~2 ? Ot, ~~taZ - 1}

a
~-~x~ -~xZ x~ E X~, xz E Xz, ~~ - 0,

~ p}~ ~~ta2 - 1}

o x2lx~ E X~, x2 E Xz}.

~ 0} means that ~X is taken to be 0}X, the
rather than {0} when a- 0.

tA set 0 X is said

to be a recession cone of X if X t~(0}X) - X, for ~~ 0).
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Llith the exception of inverse and dual addition, these
operations are defined by Rockafellar (1972) for convex
polyhedral processes. Examples are given in fig. 3 and 4.

x

Tr~~111~Í~ ~Tr~i~111TrT,.T2

,r~"~ ~!~
T~ ~f T~

Ti

Y

Fig. 3. Addition (.1 and Fig.4. Conjuntion (n) and
inverse additionl~) disjunction (v)

The economic relevance of these definitions may be deduced from
the interpretation of T as a production process with input y.
Suppose inputs are public goods for both processes T~ and T2
(i.e. inputs can be used by both processes at the same time
in their full extent);
if the output are private goods, then addition of processes is
required (e.g. actíon time in hours as input, two furnaces T~
and T2, amount of calories per hour as output); if the outputs
are produced by complementary processes, then conjunction is
required (e.g. time as input, furnace T~ and distribution system
T2, temperature as output).
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Suppose inputs are private goods for both processes (í.e. the

quantity of input used by process T~ is lost for process T2);

if the outputs are also private goods, then disjunction is re-

levant (e.g. the quantity of labor as ínput, a labor-intensive

technique T~ and a capital intensive technique T2, both having

the same commodíty as output);

if the outputs are complementary, then inverse addition is necessary

(e.g. labor as input in the fuel industry T~ and car industry
T2, with transported ton-miles as output).-

These examples are purposely constraint to two dimensions.

One well known r.more dimensional composed process is the set of

feasible solutions in a programming problem, whích may be thought

generated by conjunction of a number of constraints Ti, given

a set of resources y. Relevant properties for the choice of

operation on production processes are: the inputs being either

public (giving no sense to substitution), or private (implying

substitutíon) and the processes being either substitutes (im-

plying addition of outputs), or complements (implying intersec-

tion of outpu.ts).

Before analyzing the propertíes of the operations just

defined, some properties of convex, cone-interior processes are

derived. The following closures and openings of a process wíll

be usefull:

If T:Rm ~ Rn is a convex, cone-interior process, then:

the star closure of T is said to be the process

T(y);- {x E Rnlx -~z, for some 0 ~~ ~ 1. z E T(Y).s - - Y E Dom T} ;

the aureole closure of T is said to be the process

T(y):- {x E Rnlx - az, for some a? l, z E T(Y), Y E Dom T};
a -

the cone closure of T is said to be the process

T(Y):- {x E Rnl(Y,x) E Cone G(T), for y E Dom T};
c

the cone opening of T is said to be the process

To(y):- (x E T(y)I(y,x) E Conint G(T), for y E Dom T}; where

the cone closure of the Graph T is said to be the set;



-~-

Cone G(T):- {(Y.x)I(y,x) - (~w,az), for some a~ 0, (w,z) E G(T)};

the interior cone of the Graph T is said to be the set
Conint G(T):- {(y,x) I(ay,ax) E G(T), for all ~~ 0}.

Y

Fg.S The star closure Tsly)

Y

Fig.6. The aureole closure Ta(y)

Fig.7 The cone closure T~(y) Fig.9 The cone~pening To(y)
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A process T is called point-starred if T- Ts, and is called

point-aureoled if T- Ta. Both processes are of considerable

interest as they have a unique orientation on the whole domain

of definition. A process T is said to be max-oriented if it is

possible to maximize the absolute value of an objective function

over any ímage of T on Dom T`{0}. A process T is called min-

oriented if it ís possible to minimize the absolute value of an

objective function over any image of T on Dom T`{0} to a non-

zero value. .
It is evident that T is max-oriented, if T is point-star-

red, and that T is min-oriented íf T is point-aureoled. If T is

both max- and min-oriented, then T is point-compact (see fig. 5

or 6). If T is max-oriented on a subset of Dom T and min-oriented

on another subset (see fig. 7 or 8), then T is partly max-,

partly min-oriented.

Theorem 1 Propertíes of convex, cone-interior processes,T:Rm -~ Rn

]. T-~:Rn -; Rm is a convex, cone interior process, such that

Dom T-~ - Range T, and Range T-~ - Dom T.

2. T is concave on Dom T, i.e.

aT(Y~) t(1-a)T(yL) C T(ay~ t (1-~)YZ)~ for y~,Y2 E Dom T

and 0 ~~ ~ 1.

3. T is point-convex, í.e.
T(y) is a convex set for all y E Dom T.

4. T is point-closed, i.e. T(y) is a closed set for all

y E Dom T.

5. T is continuous, i.e.
-1 -1

T is an upper hemi-continuous (T (A) is closed in Range T,

for each closed set A in Dom T-~),and T is lower hemi-con-
-~ -~ for each open set A intinuous (T (A) is open in Range T,

Dom T-~).
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6. G(To) - Conint G(T) is tlie recession cone of G(T), i.e.

G(T) t aG(To) - G(T), for ~-~ 0.

7. To(0) is the recession cone for all T(y), y E Dom T.

Proof:

l. G(T-1) -{(Y.x)IY E T-1(x)} -{(Y~x)~ E T(Y)} - G(T).

2. Choose x] E T(y]) and x2 E T(y2). As G(T) ís convex, any
convex combination of (yl,x]) and ( y2,xZ) belongs to G(T):

(aylt(1-a)y2, ~,xlt(1-a)xZ) E G(T).

Therefore (~x~t(1-a)x2) E T(~ylt(1-a)yZ), or aT(y]) t

(1-~)T(YZ) C T(aylt(1-~)YZ)~ for 0 ~ a ~ 1.

5. Upper hemi contínuity follows from convexity and closedness
of G T The ima e T-~(). g (A) is therefore convex if A is convex,
and caith any limit point in A can be associated a limit point

-1 -1in T(A), as T is also point closed. If A contains all
its limit points in Dom T-~, then also T-1(A) relative to
Range T-1.

Lower hemi continuity follows from convexity and closedness
of G(T). Choose any y E T-1(x ), for x E A:-0 0 0
{x E Dom T-~Ilx-x I ~ d}. As T-~ is concave there exists an0
open neighbourhood of y, which is a convex combination of-1 -q
the set T(xo) with T(x), for arbitrary x E A, which is

contained in T-1(A):

N(yo):- {~T-1(xo) t(1-~)T-1(x)Ix E A and 0 ~ a ~ 1} C

{T-1(axot(1-a)x)Ix E A and 0 ~ a ~ 1} - T-1(A).

6. As 0 E G(T), the interior cone is.equal to the recession
cone or asymptotic cone of G(T), which is by definition the
set {(w.z)~(yt~w, xtaz) E G(T), for all ~~ 0, (Y,x) E G(T)}.

7. The graph of the process To(y), the cone opening of T(y), is



by definition equal to the interior cone of G(T). As To ís

a convex cone process, To(0) is either a cone, or {0}. In the

first case To(y) indicates in which T(y) is unbounded; in

the second case T(y) is bounded in all directions.

In order to analyse some properties of operations on pro-

cesses, it is necessary to realize that it is generally not true

that the sum of two closed sets is closed and that the projection

of a closed set is closed (see Rockafellar' ]970).

If, however, the union of the recession~cones of two closed sets

is a pointed cone, then the sum of the two sets is also closed.

This restriction on the graphs of the processes is quite plausi-

ble, as it implies i.a. that the sum of two processes does not

result in a degenerate process, whose graph is a halfspace or

the full space.

The second closedness problem is prevented if one requires

that the projection of the graph on a subspace is closed. Thís

is always the case if the recession cone does not contain an axis

of the projected subspace, or if the graph is a polyheder. The

problem arises only if there exists a translate of To(0) or
-1

T o(0) which is asymptotically supporting the graph (see fig. 9)

- ~Tà'lol~{a}

proj. GIT)

.

T(y)

ii Rm

Tá'(0) c G (Tol

Fig.9 A process Tly) asymptotic parallel to Rm



An asymptotic support of a closed convex set X is a hyperplane

L, which is the boundary of a halfspace contaíning X, such that

any open neighbourhood of L does intersect the interior of R.

The process T(y) is called asymptotic parallel to Rm, if there

does exist an asymptotíc support of the Graph T parallel to

some nonzero subspace of Rm.

The projection of Graph T into Rm is closed, if and only if

T(y) is not asymptotic parallel to Rm. It is evident that if

T-ó(0) -{0},or if T-ó(0) n Int G(To) ~~, then T(y) is not

asymptotic parallel to Rm.
If G(T) is a polyhedral cone and T a convex polyhedral

process, none of these closedness problem arises, as the sum

of two closed polyhedral sets is always closed and the image

of a closed polyhedral set under a projection is also closed.

Theorem 2 Properties of operations on convex, coneinterior

processes.

The class of convex, cone-interior processes is closed

under the operations of addition, inverse addition, conjunction,

disjunction, scalar multiplication and multiplication, under

the following conditions for the respective operations.

l. addition :[Cone G(T~) t Cone G(TZ)] is a pointed cone,

and neither T~(y), nor T2(y) is asymptotic

parallel to Rm, for y E Dom T~ n Dom T2.

2. inverse :[Cone G(T~) t Cone G(TZ)] is a pointed cone,

addition and neither T-~(x), nor T-2(x) is asymptotic

parallel to Rn, for x E Range T~ n Range T2.

3. conjunction . Conint G(T~) n Conint G(TZ) ~~.

4. disjunction :[Cone G(T~) U Cone G(TZ)] is a pointed cone.

5. multipli- : neither T~, nor T-2 is asymptotic parallel
cation to Rm for y E Range T~ r pom T2.
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Proof:

l. G(T~}T2) may be construceted as follows from G(T~) and G(TZ).

The sets K~ and KZ in Rm x Rm x Rn are defined by:

K~: - {(Y~.O,x~)I(Y~,x~) E G(T~)}

K2: - {(O,YZ.x2)I(Y2.xZ) E G(T~)}

Both sets are closed, convex, unbounded and contain the
origin on their boundary. As [Conínt K~ U Conint K2] C
[Cone K~ t Cone K~], which is a pointed cone, the sum

K~ t K2 is also closed, convex, unbounded and containing the
origin on its boundary. The same is true for the intersection
of K~ t KZ with the subspace {(y~,y2,w)Iy~ - y2}. As neither
T~(y), nor TZ(y) is asymptotic parallel to Rm, the same
properties are valid for its ímage under the projection

Rm X Rm x Rn ~ Rm X Rn. This image is equal to:

{(Y.x)Ix - x~ } x2. 3(Y.x) E G(T~). (Y.x2) E G(TZ)}

- {(Y.x)~x - T~(Y) t TZ(Y)} - G(T~tT2).

2. An analogous reasoning is followed to construct G(T~ ~ T2) -
{(Y~x)IY - Y~ t Y2. 3(Y~.x) E G(T~). (YZ.x) E G(TZ)} from
G(T~) and G(TZ).

In this case, the sets K~ and K2 in Rm x Rn X Rn are defined
by:

K~: -{(Y~. x~. 0)I(Y~.x~) E G(T~)}

Kz: -{(Y2~ 0. x2)I(Y2.xZ) E G(TZ)}.

3. G(T~ ~ TZ) - G(T~) n G(TZ).

4. G(T~ ~ T2) - G(T~) u G(T2) 3 G(T~) } G(TZ).

5. G(TZT~) may be constructed from G(T~) and G(TZ) by forming
the sets K~ and K2 in RQ x Rm X Rm x Rn.

K~: -{(Y. x~. 0, 0)I(Y.x~) E G(T~)}

K2: -{(0, 0, x2. z)I(xZ.z) E G(TZ)}
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ïhe intersection of K1 t KZ with the subspace {y,x1,x2,z)Ix1-
xz} is a closed, convex, unbounded set, containing the
origin on its boundary. Given the conditions, this is also
true for íts image under the projection RQ x Rm x Rm x Rn -~
RR x Rn. This image is equal to:

{(Y.z)~z E TZ(x) ~ x E T~(Y)}

- Craph u {T2(x)Ix E T1(Y)} - G(TZT1).

Theorem 3. Propertíes of the inverse operation on processes.

The class of convex cone-interior processes is closed
and reflexive under the inverse operation. The inverse operation
obeys the laws:

1. (T~tT2)-1(x) - T-~(x) ~k T-2(x)~

2. (T~~kTZ)-1(x) - T-~(x) t T-2(x)~

3. (T'nTZ)-1(x) - T-~(x) ~ T-2(x)~

4. (T1vT2)-1(x) - T-~(x) ~ T-2(x).

The inverse operation reverses the orientation of a process.

Proof:

G(T) - G(T-1) - G[
(T-1)-1]

I. G[(T~tTZ)-1] - G(T1}T2) -{(Y.x)~x E T~(Y) t TZ(Y)} -

u {(Y.x)~x

u {(Y.x)~x

x ~ t x2, (Y~x~) E G(T1), (Y,x2) E G(TZ)} -

x~ } x2' Y E T-1(xl) n T-2(x2)} -

G(T-~ ~ T-2)(x).



- 14 -

2. An analogous argument is valid.

3. G(T1 ~ T2)-1 - G(T1 ~ TZ) - G(T1) n G(T2) - G(T-~) r G(T-2) -

G(T-~ ~ T-2).

4. G(T1 v TZ)-1 - G(T1) U G(T2) - G(T-~) U G(T-2) - G(T-~~ T-2).

It may be noticed that the rationa-le to call the operation

~k inverse addition, can be found in the first and second law.

Inverse addition and dual addition of sets are closely related,

as is shown in the foliowing:

Theorem 4. Related operations on sets, resp. processes.

With two sets X1 and Xz in Rn, two processes T1 and TZ
from R} into Rn are related and defined by:
T 1(~ ):- ~ X1 , TZ (a ):- a X2. Then

(T1 t TZ)(1) - X1 t XZ~

(T1 ~k TZ)(1) - X1 ~ X2:

(T1 n Tz)(1) - X1 n X2;

(T1 v TZ)(1) a Conv (X1 U X2).
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2. Dual processes of convex, cone interior processes.

On convex, cone-interior processes, a dualíty operation
can be defined which is closely related with the following
duality operation on sets.
The ~per dual set Xt of a set X in Rn is said to be the set:

X}: -{p E Rn~lpx ~ l, for all x E X}.

The lower dual set X~ of a set X in Rn is said to be the set:

X~: -{P E Rn~IPx ~ 1, for all x E X}.

Some properties of thís duality or polarity operation which
are relevant in this context are mentioned here. The proof
and the properties in a more general context can be found in

Weddepohl (1972.

Theorem 5. Propertíes of the duality operation on sets.

If X and Y are closed, convex, unbounded sets, containing
the origin on their boundary, then:

~ ~ ~
l. X z X- and Xt - Q;

2. X~ is a closed, convex, unbounded set, containing the
origin on its boundary;

3. X~`~ - X

4. if X ís a cone, then X s Xo, where
Xo: L{p~px ~ 0, for all x E X};
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0 0 ~
5. X-(Cone X) C X;

~ ~
6. X C Y c~ X ~ Y;

~ ~ ~
7. (XtY) - X ~ Y ;

~ ~ ~
8. (X~Y) - X t Y ;

~ ~ ~
9. (XUY) - X n Y ;

~ ~ ~
]0. (XnY) - Conv (X U Y ).

Based on the polarity operation above, the following
adjoint correspondence for convex processes can be obtained.
Let T:Rm -~ Rn be any convex, cone-interíor process.
The upper dual process T}:Rn~ -r R~ is said to be the multí-
function:

~
T}(p):- {qlqy ~ px-1, for all x E T(y), for all y}.

The lower dual process T~:l~n~ -~ R~ is said to be the multi-
function.

T~(p) -{qlqy ~ pxtl, for all x E T(y), for all y}.

Theorem 6.1 below shows that the difference
between both processes is only caused by signs. It still has
sense to make such a distinction, because the upper duality
operation is best suited for max-oriented processes (or max-
oriented restrictions of such processes) and the lower duality
operation is apt for min-oriented (restrictions of) processes.
This may be checked from fíg. 10. It also generalizes now [he

adjoint of a linear operatór. The following properties are

easily checked:



Theorem 6, Properties of the duality operation on processes.

If T is any convex, cone-interior process, then:

1. Tt~P) -{ql C-4.P) E I G~T)) ~} --T~(-P):

T~iP) - {QI ~4.-P) E I G~T)~ ~} - -Tt(-P):

~ ~
2. Both T} and T- are convex, cone-interior processes;"

3. (T~)} - (T}) ~ - T:

4. (T})-1 - ~T-1)~~

~T~)-1 - ~T-I)}~

~
5. T}~P).y ~..p.T~Y)-~~

~
T ~P).y ~ p.TíY)}l.

If T is any convex, polyhedral process, then:

~
l. T}~P).y ~ p.TiY):

T~íP).y ~ p.T~Y):

If T is any linear transformation, then:

1. T}íP).y - T ~iP).y - P.T~Y).
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x

P

Fig.10 Duality operations related with T

Y

9

From properties (6.3) and (6.4 follows that

both the inverse operation and the duality operation are
oríentation-reversing.
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It may be noticed again that the definítion of a convex,

polyhedral process and its adjoint processes are given by

Rockafellar (1972).

The economic interpretation of the above dual process is

based, of course, on the interpretation of the process T. If T

is a production process, which assigns a set of output-quantitíes
~

to an input-quantity y, then T(p) assigns a set of input-prices

q to a given price of the output, p. The set of input-prices are

such that the firm can at most make a profit equal to 1, if an
~

input-price is choosen from T(p). From the properties can be

derived that if the technology ís linear and the production set

a polyhedral cone, then profit can at most be equal to zero. (This

is a familiar result in economic theory.) If "the market" offers
~t

an input-price in the interior of T(p), then profit will be less

than 1 for a cone-interior process; if the market price does not
~t

belong to T(p),then profit will be greater than 1.

But in the case that the input-prices are known, it is more
~-1

efficient to compute the inverse dual process, T (q), which

assigns a set of output-prices feasible for the technology if

profit should not exceed l.

The above interpretation of a cone-interior process as a

production process with input y and output x, makes sense if the

process is max-oriented or point-starred. If the process is

partly max-oriented, partly min-oriented (see fig. 10), then

the interpretation should be reversed for the min-oriented part:

y becomes output and x becomes input. Thís is the reason for the

boundedness of the price-sets in the dual process, which will

not arise in a point-starred process (see fig. ll).

The o[her interpretations given above, viz. public goods

versus private goods, may be translated on a similar way in the

dual or valuation space. Also the operations defined above can

be translated, as is shown in the following theorem.
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Theorem 7. Properties of operations on dual processes.

If T~ and TZ are convex, cone-interior processes, such
that the operatíons mentioned generatea convex, cone-interior
process, then:

1. T~ C TZ ~ T~ ~ TZ;

2. (T~ t TZ)~` - T~ ~ TZ;

3. (T~ ~k T2)~ - T~ ~ T2;

4. (T~ ~ TZ)~ - T~ ~ T2;

5. (T~ ~ TZ)~ - T~ ~ T2;

6. (TZ T~)~t - T~ T2;

7. (a.T(Y))~ - T~(a p). for a~

Proof: ~)

0

l. G(T~) C G(TZ) c~ G(T~)~ ~ G(TZ)~

`-~ G(T~) ~ G(TZ)

2. G(T~ ~ TZ) - G[u{T~(P~) n TZ(PZ)~F - P~ o PZ}

- {(P.q)~3 ~~.~Z ~ 0}:~~t~,2-~, p-~~p~-~2p2~ q-ql-q2~

~) The orientation signs are omitted both in the statements and
in the proofs, as they don't matter and may be substituted
according to the desired oríentation. Only in this proof is
therefore supposed to be valid the equality G(T~)-[G(T)]~,
to simplifv the argumentation.
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p~x~tq~y~ ~ 1, p2xZtq2y2 ~ l, d(x~,y~) E G(T~(Y~)),

d(x2~Y2) E GCTZ(YZ))}

-{(P.9)~Px~t~~9 Y~ ~~~. Pxzt~2Q YZ ~ az. for any

t
a~,a2 ? 0, a~}~2 - 1, for all ( x~.Y~) E G(T~(Y~))~

(x2,y2) E G(TZ(y2)}

-{(P~4)~P(x~txZ)t9Y ~ l, for y-y~-y2. x~ E T~(Y~)~

xZ E TZ(YZ)}

- {x.Y)~x E T~(Y)tT2(Y)}~t

- G[ (T~tT2)~] :

3. G(T~ o T~) - GIU{~ T~(P) ~~ T~`(P)I~ ~~ ~ G}~ ~1 2 1 1 2 2 1 2- ~}~ 2- 1} -

-{(P~4)~~~Px~t4Y~ ~ a~, azpxZt9Y2 ~~2. d(x~,y~) E G(T~)

(x2,Y2) E G(T2)}

-{(P.9)IPxt4(Y~tY2) ~ ~. dx E T~(Y~) ~ TZ(y2)}

-{(P~4)~Pxtqy ~ 1, x E T~(Y) ~ TZ(Y)}

- G[ (T~ ~ T2)~] :

4. G(T~~ T2) - G(T~) ~ G(TZ)

~
~[ G(T~)~ U G(T~)~]~ 3[ G(T~) U G(TZ)]

- G[ T~ ~ TZ)~] .

5. Analogously.

6. The set G(T~TZ) may be constructed form G(TZT~) by forming

the following convex sets in RQ x Rm x Rm x Rn:
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K~:-{k~ - (xz~Y~.0,0)I(x~Y~) E G(T~)}:

K2:-{kz - (O.~.YZ.z)I(YZ~z) E G(TZ)}:

K :-{(x~Y~.Y2.z)IY~-y2}.

The set (K~ t Kz) n K is projected on RR x Rn
-~
K :-{P.q~~qZ~r)I4~-qz}.

The set (K~
G(TZT~)~.

K~
1

K ~`
2
~K~

to give G(TZT~)

} KZ)~ n K~ is projected on RR~x Rn~ to give

~ .
{k~.- (P.q~~4Z.r)IPxt9~Ytq2~}r~ ~ 1,`d k~ E

{k2:- (P~4~.q2.r)Ip0}q~Otq2y2trz ~ 1,6k2 E
~

KZ - {k~-a~k~-?~Zk2I~~.~2 ? 0},a~ta2-l,k~k~
~k~ E K~,kZk2 ~ l,dk2 E K2} -

-{kIk k~ ~ a~,k k2 ~ a2,`~k~ E K~,HkZ

~ ~ t~ Z - ~}
E Kz,3a~,?~2 ? 0}.

-{(F~q~~42.r)IPxtq~Yt42YZtrz ~ I,Hk~ E K~,d kZ E KZ}

The set K~ projected on RR~ x Rm ~ ives G T~ ~g ( ~); the set KZ
projected on Rm~ x Rn~ gives G(TZ); the set (K~ ~ KZ) n K~
projected on RR~ x Rn~ gives G(T~T~`).,~ I 2
As (K~ t KZ)~- K~ ~ K~, both graphs G(TZT~) and G(T~TZ)~
are equal.

The polarity operatíon T~ introduced above is completely
defined in the dual spaces: the process T~` from Rn~ into Rm~.
Other polarity operations can be defined, which apply the
duality operation on each image set of a process. These polarity
operations are therefore called point-duality operations, and
may be applied on any multifunction.

Let T:Rm ~ Rn any multifunction or process.
The upper polar multifunction [ T] t. Rm -~ Rn~ is said to
be the multifunction defined by:

~

~
[T(y)~~ -{PIPx ? I, for all x E T(Y)}.
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~ m n~
The lower polar multifunction [T]- . R ; R is said to

be the multifunction defined by:

[T(y)]t -{PIPx ~ i, for all x E T(Y)},

The difference between both polar processes is more

than a question of signs, as in the case for the dual processes

T~ and T~`.t -
Also the properties deviate much from the original process:

the polar process of a convex, cone-interior process need not

to have convex graph, for example ( see fig. 11 and 12). A

relation between both duality concepts is derived in (7.5) and

(8.5).

The various processes defined here are related, as is

shown ín the following diagram:

The relation between both díagonal processes can be assessed if
~

one takes the ínverse of one, e.g. of [T(y)] . Then both

[ T(p)]~-1 and [ T~`(p)] are defined from a subspace in Rn~ into

Rm bv (if the lower polar is choosen):
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IT(P)]~-I - {yIP-T(Y) ~ 1};

~T~ (P)]~ - {YIT~(P).y ~ 1}.

Both processes are shown in fig. 12; their graphs have there the
boundary in common.

Finally, some special convex, cone-interior processes T
will be defined, which are ímportant in economics, and some
properties derived.
A process T:Y ~ X is said to be c~uasi-homothetic, if for each
nonzero y~, y2 E Y, there exist a positive scalar u such that

T(Y~) - u T(y2).

A process T:Y -~ X is said to be homothetic, if for each a~ 0
there exists a u~ 0, such that for any nonzero y E Y

T(~Y) - U T(Y).

(This implies that Dom T is an orthant).
A process T:Y ~ X is calle~i positively homogeneous of degree
k, if for all a~ 0, T(ay) - akT(y), for any nonzero y E Y.
A process T:Y ~ X is called starred, if T is point-starred
and Dom T is an orthant.
A process T:Y -~ X is called aureoled, if T is point-aureoled,
and Range T is an orthant.

If a positively homogeneous process T of degree k ~ 1,
resp. k~ 1, has a closed and convex graph, it is a starred,
resp. aureoled, convex cone-interior process. Some properties
of starred and aureoled processes are derived below.
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Theorem 8. Properties of a starred, convex, cone-interior
process.

l. T(y) C T(aY) C aT(Y), for ~~ 1.

2. T (0) C T(Y).o -

3. (T~ ~ T2)c(T~ n T2)~(T~ v T2)~(T~ t T2).

4. T-~(x) is aureoled.

~
5. T (p) is aureoled.

6. Tt(P) - (
T-1 ({p}})) }.

Proof.

l. As T is point starred (T-Ts), 0 E T(y) for all y E Y; as

Dom T is a cone, the set {(y,p)ly E y} belongs to the

recession cone G(To) of G(T).

Choose any (y,x) E G(T); then (y,x) t~(y,0) E G(T), for

~~ 0, or (ay,x) E G(T), for ~~ 1.

Secondly, choose an x E T(ay), for some ~ ? 1 and y E Y.

This set is defined, as Y is a cone. (~y,x) E G(T),

(0,0) E G(T), and by convexíty of G(T) any convex combi-
nation such as (y,x~a) E G(T). It follows that x E~T(y).

4. Choose any (y,x) E G(T); for any a~ 1, (~y,x) E G(T) by
-1 - -1

(1). Therefore ~y E T (x), for a~ 1, implying that T(x)

is point-aureoled, and because Dom-T - Range T-~, also

aureoled.

E y~- Y.. Therefore if E T}(p)5. As Y is an orthant, y y~ ~ q
~

and ~? 1, (~q)Y ~ qY ? Px-1, implying that (~q) E Tt(P).

Also q E T-(p) and a~ 1 imply (aq)y ~ qy ~ pxtl, or

(aq) E T~`(p). Thus T~(p) is point-aureoled, and as

{qlqy ~ p0 t 1, for y E Y} is an orthant, T~`(p) is aureoled.
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6. IT-1({P}~)1~ - {Y~T(Y) n {P}t ~ 0}} -

- {YI3XE T(Y):Px ? ~}~-:Yt -

' {qlqY ~ 1. dY E Y}:

This set is equal to {qlqy ~ px-l,d x E T(y),d y} - T}(p),
for each p, as both conditions are equivalent.
Assur.me the last condition is not met and that there exists
a y, such that for some x E T(y), qy ~ px-I, for a given
p. If also y E y and px ~ 1, then a'contradiction follows.
If px ~ l, then y E Y implies that 3x E T(y) such that
px ~ l. As T(y) is point-starred, qy ~ px-I ~ px-l, which
also contradicts qy ~ I.
Assume that the fírst condition is not met, and
~y E Y:qy ~ l. For a given p, and for any q. As y E Y,
~X:pX 1 ~.- ~

If q E T}(p), then 0 ~ px-1 ~ qy ~ l, implying that q has
a finite value and T}(p) is not aureoled, which contradicts
a property of T}(p).

T(y)

Y
IG (T )1,

T;(p)-

4

4

Fig.11 A starred process T(y) and its dual process T;Ip)



Y

P

(T"( yllt

~~
(T'Ip)1~

Y

Fig.12 An aureoled process T(y) and its dual process T'(p)

Q

9

Property (8.6) was established by Ruys (1972) for the

much simpler case of a linear technology defined by a regular

matrix in the context of a linear programmíng problem. The
property gives an indicatíon how the concepts of a dual set,

a polar process and a dual process are related.
Analogous arguments can be given to show the following

properties of aureoled sets.

T41p)



Theorem 9. Properties of an aureoled, convex cone-interior
process T:Y -y X.

1. T(y) ~ T(ay) ~~T(y), for a ~ 1 and ay E y,

2. To(0) ~ T(y).

3. (T1 dk TZ)~(T1 v TZ)~(T1 n Tz)~(T1 t TZ),

4. T-~(x) is starred.

~
S. T (p) is starred.

6. T~`(p) - I
T-1

({p}~))~.

Finally, it may be stressed that time can be introduced
in thís theory through the multiplication operation. Analogous
to the linear theory, eigenvalues may be defined, to analyze
dynamic properties. This has to be done, yet.

M.v.d.B
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