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1. On convex, cone-interior processes.

In economic theory, the.production technology is repre-
sented either by production (multi-) functions, or by production
sets. The analysis of production functions with corresponding
cost functions has received a considerable impulse from studies
by Shephard (1953) and Uzawa (1964). The results are generalized
to production multifunctions or correspondences by Shephard
(1970). The relation between the input—-output structure in a
special linear program and its dual structure is studied by
Ruys (1972). The set approach in production theory is intro-
duced by Koopmans (1951) and elaborated by Debreu (1959).

It is possible, however, to derive (production) multi-
functions from a (production) set, and vice versa. The theory
of multifunctions derived from a convex cone is developed by
Rockafellar (1967 and 1970). Such a multifunction is called a
convex process and is a generalization of a linear transfor-
mation. This idea is extended by Rockafellar (1972) to the
concept of a polyhedral convex process, which can be applied
on a linear production technology. Both the inverse and the dual
or cost structure follow from properties of the polyhedral
convex processes.

In this paper, (which is based on the pioneering work of
Rockafellar) a generalization of a polyhedral convex process
is designed and called a convex cone-interior process. It is
well known that the graph of linear transformation is equal to
a certain subspace, and the graph of a polyhedral convex process
is by definition equal to a convex cone; in the case of a
convex cone-interior process, the graph is equal to a convex
set which contains and is contained in a (convex) cone. The
difference between the last two concepts is, firstly, the fact
that in a convex, cone-interior process the behavior in a finite
neighbourhood of the origin need not to coincide with the be-

o The author is indebted to Prof. Rockafellar and Dr. Weddepohl
for their remarks and suggestions.



havior of the process in the infinite, and secondly, the fact
that a convex cone-interior process may be strictly convex.
This last fact will cause, however, some troubles in boundary
cases.

A subclass of convex, cone-interior process is of special
interest in production theory: the case in which the recession
cone is equal to an orthant, and the process is point-starred.
In this case the space is bipartitioned into a space of inputs
and a space of outputs in a production process.

Another bipartition can be made if both-'private and public

goods are present in the economy. The operations on and the
properties of convex, cone—interior processes allow for a
bipartition in commodities with the characteristics of public

or private goods.

The theory of convex, cone-interior processes can also be applied
in consumption theory, if the space is bipartitioned in a

commodity space and a (one or even n-dimensional) utility space.

o 3 m n . .
A convex, cone-interior process T:R > R , is said to be

a multifunction (or correspondence), whose graph

6(t) = {(y,x)|x € T(y)} ¢ ™"

is a closed, convex and unbounded set, which. contains the
origin on its boundary.

Equivalently may be required that G(T) is a closed and convex
set, which contains a cone with vertex zero and which is
contained in a closed halfspace with zero on its boundary. The
graph, therefore, has a convex cone closure and a non-empty
interior cone. One may say that the process is characterized
on the infinite by the interior-cone and near the origin by
the cone-closure of the graph. If both cones coincide, the
process reduces to a closed, convex (cone) process defined by

Rockafellar (1970), requiring that the graph is a convex cone



containing the origin. A subclass of the class of convex (cone)
processes is formed by the convex polyhedral processes. These
processes again contain the set of the linear transformations
(or processes) as a subclass.

A proper convex, cone-interior process is said to be a

convex, cone interior process whose graph does not contain
lines (has zero lineality) and contains an interior-cone with
a nonempty interior. The graph being a halfspace (and the pro-

cess being a linear transformation) is herewith excluded.

/
i /ﬂ/ &

L T(x) —]

Fig.1 Fig.2
Examples of convex, cone-interior processes

It is evident that on some closed, convex, unbounded set
in Rncontaining the origin as boundary point, at least as many
cone-interior processes may be defined, as there are bipartitions
of the Rn-space. Given some process, however, the graph is
determined unambiguously. Other processes are generated by in-
verse and polarity operations to be defined. New processes are
also generated by operations, such as addition, on different
processes. To derive some properties of cone-interior processes,
it is necessary to define the following operations on convex

cone-interior processes:



inverse process

scalar multi-

plication

addition

inverse addition

conjunction
disjunction

multiplication

dual addition

dual inverse

addition

The last two operations on processes,

cone-interior

:Rn

defined by 2V exys = {y|lx € T(y»)}.

the inverse of a convex,

; =1
T:R" - R™ is the process T 5 Rm,

OT)(y): = AT(y) = {Ax|x € T(y)}, for

a positive scalar )\

(T, + T ()t = T (¥) + T,(9);

(T) % T = VAT G 0T |yyry,myds

(T, A Ty)(y): T,(y) N Ty(y);

(T, v T = VT (3T, ) |y +y,=yds

(T,T,)(2): = T,IT ()] =U{T, () |y € T,(2)};

(T, % T (y):

= O, T, () N2y Tz(y)lax],\z 20 : A+, =1)
(r, ¥ 1,)()e =

= {1, (y) N Ty AN, 2 0% %, 2 0:h A =1

and y = X .9, = Xzyz}

are based on the so called

dual addition of two sets X, and X, in Rn, defined by:
+ +
: = U al =
X, S %, MUK 207, Ay 200, AR, 1}
+
= = = (S
{x Ax, )\lex1 € X, %, X, Xl > 0 3
+
Ay 20, AI+X2 = 1}
)
= L=
{x] P x2|xI X], X, € XZ}

+
(The notation A > 0O means that AX is taken to be 0+X, the

recession cone,

rather than {0} when A = 0.

+
A set 0 X is said

+
to be a recession cone of X if X + A (0 X) = X, for A > 0).




With the exception of inverse and dual addition, these
operations are defined by Rockafellar (1972) for convex

polyhedral processes. Examples are given in fig. 3 and 4.

-I-l‘[]'Fn T

A - T1
/ == T1 # T2
y
Fig. 3. Addition (+) and Fig. 4. Conjuntion (A and
inverse addition(#) disjunction (v)

The economic relevance of these definitions may be deduced from
the interpretation of T as a production process with input y.

Suppose inputs are public goods for both processes T] and T2

(i.e. inputs can be used by both processes at the same time
in their full extent);
if the output are private goods, then addition of processes is

required (e.g. action time in hours as input, two furnaces Ti

and T amount of calories per hour as output); if the outputs

2’
are produced by complementary processes, then conjunction is

required (e.g. time as input, furnace T, and distribution system

1
T2’ temperature as output).



Suppose inputs are private goods for both processes (1-es Ethe
quantity of input used by process T] is lost for process Tz);

if the outputs are also private goods, then disjunction is re-
levant (e.g. the quantity of labor as input, a labor-intensive
technique T] and a capital intensive technique T,, both having

the same commodity as output);

if the outputs are complementary, then inverse addition is necessafy
(e.g. labor as input in the fuel industry T] and car industryl

T with transported ton-miles as output) ..

2’

These examples are purposely constraint to two dimensions.
One well known more dimensional composed process is the set of
feasible solutions in a programming problem, which may be thought
generated by conjunction of a number of constraints T, given
a set of resources y. Relevant properties for the choice of
operation on production processes are: the inputs being either
public (giving no sense to substitution), or private (implying
substitution) and the processes being either substitutes (im-—
plying addition of outputs), or complements (implying intersec—
tion of outputs).:

Before analyzing the properties of the operations just

defined, some properties of convex, cone-interior processes are
derived. The following closures and openings of a process will

be usefull:

m 0 & 5
If T:R + R 1s a convex, cone-lnterior process, then:

the star closure of T is said to be the procéss

Ts(y)== {x € Rn|x = Az, for some 0 <X <1, z € T(y), y € Dom T};

the aureole closure of T is said to be the process

T k¥)om (%€ Rnlx = Az, for some A > 1, z € T(y), y € Dom 3 45

the cone closure of T is said to be the process

Tc(y)== {x € Rn[(y,x) € Cone G(T), for y € Dom T};

the cone opening of T is said to be the process
To(y)~= {x € T(y)|(y,x) € Conint G(T), for y € Dom T}; where

the cone closure of the Graph T is said to be the set;



Cone G(T):= {(y,x)](y,x) = (Aw,Az), for some A\ 20, (w,z) € G(T)};

the interior cone of the Graph T is said to be the set
Conint G(T):= {(y,x)|(y,Ax) € G(T), for all A > o}.

T
X ’rzfrT X
Ts .
/T /i
‘4”’ /
4 ¥
Fig.5 The star closure T.(y) Fig.6. The aureole closure T4ly)
X /]
T T
Fal
T ~
. y T i il i
| I I
Il 1]
TC TO
|

Fig.7 The cone closure Tcly) Fig.8 The cone-opening T,ly)



A process T is called point-starred if T = i S and is called

point—-aureoled if T = Ta' Both processes are of considerable

interest as they have a unique orientation on the whole domain
of definition. A process T is said to be max-oriented if ie is
possible to maximize the absolute value of an objective function
over any image of T on Dom T \ {0}. A process T is called min-
oriented if it is possible to minimize the absolute value of an
objective function over any image of T on Dom T \ {0} to a non-
zero value. .

It is evident that T is max—-oriented, if T is point-star-
red, and that T is min-oriented if T is ;oint—aureoled. If T 18
both max- and min-oriented, then T is point-compact (see fige 5
or 6). If T is max-oriented on a subset of Dom T and min-oriented
on another subset (see fig. 7 or 8), then T is partly max-,

partly min-oriented.

. 5 2 m n
Theorem 1. Properties of convex, cone-interior processes,T:R > R
-1 _n ‘o . ;
s T tR™ = R is a convex, cone 1lnterior process, such that
] =1
Dom T = Range T, and Range T = Dom T.
2 T is concave on Dom T, i.e.

XT(YI) * (I—X)T(yz) c T()\y1 + (I-X)yz), for y,»¥, € Dom T

and 0 < P

3. T is point-convex, 1 o (S
T(y) is a convex set for all y € Dom T.

4. T 1s Boint—closed, i.e. T(y) is a closed set for all
y € Dom T.

Sie T is continuous, i.e.

2 ; : =1 g . 1

T is an upper hemi-continuous (T (A) is closed in Range T 5
. =1 " .

for each closed set A in Dom T ),and T is lower hemi-con-

; =1 ; g = 3
tinuous (T (A) is open in Range T ], for each open set A 1in

=1

Dom T ).



6. G(To) = Conint G(T) is the recession cone of G(T), i.e.

G(T) =+ XG(TO) = G(I)y for A_% O

7 x TO(O) is the recession cone for all T(y), y € Dom T.

Proof:

{(rooly e 1701 = ((yax)] € T(N} = 6(T).

(]
—~
=]
~
I

2 Choose X, (S T(y]) and x2

convex combination of (y],xl) and (yz,xz) belongs to G(T):

€ T(yz). As G(T) is convex, any

(>\y1+(1->\)y2, )\x1+(l->\)x2) € G(T).
Therefore (Xx]+(1—X)x2) € T(Xy1+(l—X)y2), or XT(yl) +
(I—X)T(yz) c T(Ay]+(l—A)y2), for 00 2 A < 1.

5. Upper hemi continuity follows from convexity and closedness
of G(T). The image T—I(A) is therefore convex if A is convex,
and with any limit point in A can be associated a limit point
in T_l(A), as T_] is also point closed. If A contains all
. P . v =1 = 2
its limit points in Dom T , then also T (A) relative to
Range T_l.

Lower hemi continuity follows from convexity and closedness

of G(T). Choose any Yo = T_](xo), for X, € A:=
{x € Dom T-]‘Ix—xol % 6}. &s T_] is concave there exists an

open neighbourhood of y , which is a convex combination of

the set T"(xo) with T '(x), for arbitrary x € A, which is
contained in T_I(A):
NGy )i= T '(x) + (1A)T '(x)|x € A and 0 £A < 1} C
(17 Ox +(190)x) [x € A and 0 £ A < 1} = 171 (a).
6. As 0 € G(T), the interior cone is.equal to the recession
cone or asymptotic cone of G(T), which is by definition the

set {(w,z)l(y+kw, x+kz) € G(T), for all X > 0, Cy,x) € BTy} a

7. The graph of the process To(y), the cone opening of T(y), is



by definition equal to the interior cone of G(T). As T0 is
a convex cone process, TO(O) is either a cone, or {0}. In the
first case To(y) indicates in which T(y) is unbounded; in

the second case T(y) is bounded in all directions.

In order to analyse some properties of operations on pro-
cesses, it is necessary to realize that it is generally not true
that the sum of two closed sets is closed and that the projection
of a closed set is closed (see Rockafellar 1970).

I1f, however, the union of the recession-.cones of two closed sets
is a pointed cone, then the sum of the two sets is also closed.
This restriction on the graphs of the processes is quite plausi-
ble, as it implies i.a. that the sum of two processes does not
result in a degenerate process, whose graph is a halfspace or
the full space.

The second closedness problem is prevented if one requires
that the projection of the graph on a subspace is closed. This
is always the case if the recession cone does not contain an axis
of the projected subspace, or if the graph is a polyheder. The
problem arises only if there exists a translate of TO(O) or

T-;(O) which is asymptotically supporting the graph (see fig. 9)

/{TJ(O)*{G}

i xﬂf’ﬁﬂﬂ T

proj. G(T) § d —T(y)

A\

Rm
\5\ 7,10) ¢ 6(T,)

Fig.9 A process Tly) asymptotic parallel to R™



An asymptotic support of a closed convex set X is a hyperplane

L, which is the boundary of a halfspace containing X, such that
any open neighbourhood of L does intersect the interior of X.

The process T(y) is called asymptotic parallel to Rm, if there

does exist an asymptotic support of the Graph T parallel to
some nonzero subspace of R™.
The projection of Graph T into R™ is closed, if and only if
T(y) is not asymptotic parallel to R™. It is evident that if
T-;(O) = {0},0or if T—;(O) M ThE G(To) # §, then T(y) is not
asymptotic parallel to R".

If G(T) is a polyhedral cone and T a convex polyhédral
process, none of these closedness problem arises, as the sum
of two closed polyhedral sets is always closed and the image

of a closed polyhedral set under a projection is also closed.

Theorem 2 Properties of operations on convex, coneinterior

processes.

The class of convex, cone-interior processes is closed
under the operations of addition, inverse addition, conjunction,
disjunction, scalar multiplication and multiplication, under

the following conditions for the respective operationms.

1. addition : [ Cone G(T]) + Cone G(Tz)] is a pointed cone,
and neither TI(Y)’ nor T2(y) is asymptotic
parallel to R™®, for y € Dom T, N Dom T,.

1 2
2. inverse : [ Cone G(T]) + Cone G(TZ)] is a pointed cone,
addition and neither T—:(x), nor T—;(x) is asymptotic

n

parallel to R, for x € Range T, M Range T

1 2:"

3. conjunction : Comint G(T,) N Conint G(T,) # 0.

4, disjunction : [ Cone G(T]) U Cone C(Tz)] is a pointed cone.

s . y =l .
5. multipli- : neither T], nor T , 1s asymptotic parallel

cation to Rm for y € Range Tl M Dom T2.



Proof:

1.

G(T1+T2) may be construceted as follows from G(T]) and G(Tz).

The sets Kl and Kz in R™ x R™ x R" are defined by:

K {(yliosx])l(yl’xl) € G(T])}

]:
K,: = {(O,yz,x2)|(y2,x2) € G(Tl)}

Both sets are closed, convex, unbounded and contain the
origin on their boundary. As [ Conint K] U Conint K2] =

[ Cone K, + Cone Kl]’ which is a poigted cone, the sum

1

K] + K2 is also closed, convex, unbounded and containing the

origin on its boundary. The same is true for the intersection
of K| + K, with the subspace {(y],yz,w)ly] = yz}. As neither
Tl(y), nor T2(y) is asymptotic parallel to Rm, the same
properties are valid for its image under the projection
m n

R™ x R™ x R™ > R™ x R This image is equal to:

{(y,x)|x = x.  + X

|+ %y @UFE) € BT, ), (Fox,) € €1(1,)]

= {€y,)|x = T (y) + T,(y)} = G(T +T,).

An analogous reasoning is followed to construct G(T] # T2) =
{rax)ly =y, + y,, a(y,,x) € G(T|), (y,,%) € G(T,)} from
G(Tl) and G(TZ)'

In this case, the sets K1 and KZ in R™ x R™ x R"™ are defined
by:
K2 o= {(y,;» x5 O]y, ,x)) € 6(T)}
| €
Kot = {(y,ys 0, %) [(y,,x%,) € G(T ).
= N
G(TI ~ T2) G(T]) G(T2).

GUT, ¥ T,y = G(Tl) U G(TZ) = G(T]) + G(T2).

G(TZT]) may be constructed from G(Tl) and G(TZ) by forming

the sets K] and K2 in R2 X Rm x Rm X Rn:

K

2= Ly, %, 0, 0)[(y,x,) € G(T}

100, 0, x5 2)[(x,,2) € 6(T,)}

29



The intersection of K] * K2 with the subspace {y,x],xz,z)lx1
xz} is a closed, convex, unbounded set, containing the

origin on its boundary. Given the conditions, this is also

true for its image under the projection Rl x R = B® = g™+
RQ x R". This image is equal to:
{triz)|z € T,(x) = x € 1,(3)}
= Craph U {Tz(x)|x € Tl(y)} = G(TZTI)'
Theorem 3. Properties of the inverse operation on processes.

The class of convex cone-interior processes is closed
and reflexive under the inverse operation. The inverse operation

obeys the laws:
1o (T 1,0 Nex) =1 x) % TR0
: I ~2 2 2

; -1 -1
2. (T T (%)

(]
=
~

»
~

-1
* T 2(X),

3. @ty e = 1T 0 A T

bt e = 1T o v T o

The inverse operation reverses the orientation of a process.

Proof:

6(T) = 61 'y = ¢l (x™H 7}

oo+ = 6(1+T,) = (7,0 |x € T, (3) + T,(3))

U {(y,x)|x X] + xzs (Y,X,) € G(Tl)y (Y,XZ) € G(TZ)} o

_] =
Xp * %y YET () 0T (x,)) =

v {(Y9x)|x 1 2

c(r': B T_;)(x).



2 An analogous argument is valid.

3. G(T, A T,) ' = 6(T, AT, =G(T) N G(T,) = G(T_:) A G(T-;) -
= -1
G(T w T 2)

4. 6T, v T, = G(T)) U G(T,) £ G(IT]) VG, = 6T v T ).

It may be noticed that the rationale to call the operation
# inverse addition, can be found in the first and second law.
Inverse addition and dual addition of sets are closely related,

as is shown in the following:

Theorem 4. Related operations on sets, resp. processes.

With two sets X, and X, in Rn, two processes T, and T,

from Rl into R" are related and defined by:

T,(A) = XX, T,(}):= AX,. Then
(2, * T,001) = =, & X3
(2, % T = X ? x,3
(T, A TR = X N Xy

(T] v Tz)(l) Conv (X, U X



2. Dual processes of convex, cone interior processes.

On convex, cone-interior processes, a duality operation
can be defined which is closely related with the following
duality operation on sets.

The upper dual set X: of a set X in R" is said to be the set:

Xt: = {p € Rn*lpx > 1, for all x € X}.

The lower dual set Xf of a set X in R" is said to be the set:

*
Xf: = {p € R"¥|px £ I, for all x € Kl

Some properties of this duality or polarity operation which
are relevant in this context are mentioned here. The proof
and the properties in a more general context can be found in

Weddepohl (1972.

Theorem 5. Properties of the duality operation on sets.

If X and Y are closed, convex, unbounded sets, containing

the origin on their boundary, then:
> *' #
1. X =X_and X_ = 0@;

* . i »
2. X 1is a closed, convex, unbounded set, containing the
origin on its boundary;

*
3. x* = x

4, if X is a cone, then X = Xo, where

x%: = {p]|px < 10, for all x € Xlj3



* * *
75 (X+Y) =X QY ;

* * *
8. (XQY) = X #®=Y 3

* * * )
9. (xUg) = X MmN Yy 3

* * *
10 (XNY) = Conv (X U Y ).

Based on the polarity operation above, the following
adjoint correspondence for convex processes can be obtained.
m n 3 5
Let T:R + R be any convex, cone-interior process.

*  _n* ., : s
The upper dual process T, :R = R 1s gaid to be the multi=

function:

*
T, Cp)ne {q]|qy > px=1, for all x € T(y), for all y}.

* n* o . 5 :
The lower dual process T_:R #* R is said to be the multi-

function:
Tf(p) = {q|qy < px#l, for all = € T(y), for all y}.

Theorem 6.1 below shows that the difference
between both processes is only caused by signs. It still has
sense to make such a distinction, because the upper duality
operation is best suited for max-oriented processes (or max-
oriented restrictions of such processes) and the lower duality

operation is apt for min-oriented (restrictions of) processes.
This may be checked from fig. 10. It also generalizes now the

adjoint of a linear operator. The following properties are

easily checked:



Theorem 6, Properties of the duality operation on processes.

If T is any convex, cone-interior process, then:

[}

1.Ti ) = fal(-a.p) € [6(D] V= ~1¥(-p);
¥ (p) = {al(a,-p) € [6(T] V= -T*(-p);

* * .
2 Both T+ and T_ are convex, cone-interior processes;

3. (T2, = TN = %
PURNC S T ¢ I W
= a™h;

*
5, Ty(pdey 2°p.TCy)-13
. *
T_(p).y £ pP.-T(y)+l.
If T is any convex, polyhedral process, then:
*
1. T, (p).y 2 P.T(y);
*
T_(p).y £ p.T(y);

If T is any linear transformation, then:

1. T:(p)-y =X ey = p.T(Y).



T [G(mr

\

’l' Ty .

Tly)

T+

Fig.10 Duality operations related with T

From properties (6.3) and (6.4 follows that
both the inverse operation and the duality operation are

orientation-reversing.



It may be noticed again that the definition of a convex,
polyhedral process and its adjoint processes are given by
Rockafellar (1972).

The economic interpretation of the above dual process is
based, of course, on the interpretation of the process T. If T
is a production process, which assigns a set of output-quantities
to an input-quantity y, then T*(p) assigns a set of input-prices
q to a given price of the output, p. The set of input-prices are
such that the firm can at most make a profit equal teo 1, if an
input-price is choosen from f*(p). From the properties can be
derived that if the technology is linear and the production set
a polyhedral cone, then profit can at most be equal to zero. (This
is a familiar result in economic theory.) If "the market'" offers
an input-price in the interior of'; (p), then profit will be less
than | for a cone-interior process; if the market price does not
belong to T*(p),then profit will be greater than 1.

But in the case that the input-prices are known, it is more
efficient to compute the inverse dual process, T*—l(q), which
assigns a set of output-prices feasible for the technology if

profit should not exceed 1.

The above interpretation of a cone-interior process as a
production process with input y and output X, makes sense if the
process is max-oriented or point-starred. If the process is
partly max-oriented, partly min-oriented (see fig. 10), then
the interpretation should be reversed for the min-oriented part:
y becomes output and x becomes input. This is the reason for the
boundedness of the price-sets in the dual process, which will

not arise in a point-starred process (see fig. 11).

The other interpretations given above, viz. public goods
versus private goods, may be translated on a similar way in the
dual or valuation space. Also the operations defined above can

be translated, as is shown in the following theorem.



Theorem 7. Properties of operations on dual processes.

IE T, and T2 are convex, cone-interior processes, such
that the operations mentioned generatea convex, cone-interior

process, then:

* *
. T, E T, sk A
* * *
2. AT, + T,) = 7 ¥ o -
* *g * :
3. (T, ¥ T, = T, Ta
4 v 1.)% = 1¥A ¥,
8 (T, 2 - i 27
* * *
5 (T3 5 Tyd = T, v o
k. * *
. T, TS) = Py Byl
7. QTN = 1*O0 p), for A > 0

Proof ; *)

=" *
I. 6(T;) € G(T,) == G(T)™ 2 G(T,)
*
s G{T, ) 26,
2; G(TT 3 T;) = G[U{TT(p]) n T;(PZ)IP = p, g Pz}

+

= {esadla Apr, 2 07 0,1, P=A P =X ,P,, 97q,%q,,

nyv

The orientation signs are omitted both in the statements and
in the proofs, as they don't matter and may be substituted
according to the desired orientation. Only in this proof is
therefore supposed to be valid the equality G(T*)=[G(T)]*,
to simplify the argumentation.

*)



DyEy ¥y S Ba BpEpteaTy § 10 Wilmpaayd © BT 000,

V(x,,y,) € G(Tz(yz))}

() |px *X ja v, & X, Px,*A,a v, £ Xy, for anmy

Ayshy 207, A #x, =1, for all (x;,¥,) € 6(T,(y,)),

(x,,y,) € G(T,(y,)}

{(p,a) |p(x *+x,)+aqy £ 1, for y=y,=y,, x, € T, (y),

x, € T,(y,))

*
{x,9) | € T ,(3)+7,(3)}

* .
Gl (T +T,) 13

* 0k _ ' ks - *
¥ T GLU{x T (p) AZTZ(p)lXI’AZ

IV
o
h
>
&
]
=
n

€
{(P,Q)“]le*‘ly] : )\l’ >\2PX2"’CIY2 : }\2’ V(X],Yl) G(Tl)

(X,5¥,) € G(T,))}

{(p ) [px+a(y *+y,) S 1, vx € T (y)) N T,(y,)}

{(p,q) | px+ay

A

1, x€T(y)# Tz(y)}

Gl (T, # T,)"]
G(T] A T;) - G(T:) n G(T;)
- terhH* v ea@H™* - ro(r) Va1’
=oT, v P o
Analogously.

The set G(T]Tz) may be constructed form G(Tle) by forming

the following convex sets in RQ x R® x R™ x Rr":



K.:={k, = (xz,y,,0,0)l(x,y,) € G(T )}
(= .
(0,0,y,,2) | (v,,2) € 6(1,)};
R :={(X,y],y2,z)|yl=y2}.
The set (KI + KZ) NKis projected on Rg x R" to give G(Tle).

E*:={P,ql ;qz,r)]ql=q2}-

- * '
The set (K] + K2)* B> is projected on RR x Rn* to give
* .
G(TZT]) g
K = {k* := (P,q,,49,,r) | px+q, y+q 0+r0 < 1,Vk, € K i
1 1 rSpEEge 1 2 = ? 1 =13
* *
= = (= 2
By = [k, (p,ql,qz,r)Ip0+q,0+q2y2+rz < 1L,Vk, € K,};
* 9 * * *_ * + . *
K K, {x —A]kl—kikzlkl,xz 207k +k; l,k]k] 3 P
Vv € (= =
k, Kl,k2k2 < 1,Vk, Kz}
= {klk*k < A Tk, < X, VK. € € S B
B g = ek By T R,.VE, ByaPky Rgaddywia B 0 5
\]+X2= 1}

(= (=
((psa;s9,,7) [Px+q,y+q,y,+rz < 1,vk, K, ¥k, € K,}

* 3 2 * m* . *
The set K, projected on R X R gives G(T ); the set K
! m* n* Do il
projected on R x R gives G(T;); the set (K1 ¢ KZ) N
5 * g
projected on R x R" gives G(TTT;).
*

9 *
L * % *
As (K] + KZ) Kl K2, both graphs G(TZTI) and G(TITZ)

*
2
K
are equal.

The polarity operation T* introduced above is completely
defined in the dual spaces: the process T* from R™* into R™
Other polarity operations can be defined, which apply the
duality operation on each image set of a process. These polarity

operations are therefore called point-duality operations, and

may be applied on any multifunction.
Let T:R"™ - R" any multifunction or process.

; 5 % m . :
The upper polar multifunction [T]+ : RT > R"¥ s said to

be the multifunction defined by:

[T(y)]i = {p|px > 1; for a1l x € T(y)}.



’ " * m n* . 2
The lower polar multifunction [T]_ ¢ R =+ R is said to

be the multifunction defined by:
*
[T, = {plpx < 1, for all x € T(y)}.

The difference between both polar processes 1is more
than a question of signs, as in the case for the dual processes
T* and T*

4, an g

Also the properties deviate much from the original process:
the polar process of a convex, cone-interior process need not
to have convex graph, for example (see fig. 11 and 12). A
relation between both duality concepts is derived in (7.5) and

(8.5

The various processes defined here are related, as is

shown in the following diagram:

™ (q)

Rm

N\

Rn

[T-‘I(X)]*

The relation between both diagonal processes can be assessed if
; z *
one takes the inverse of one, e.g. of [T(y)] . Then both

[T(p)1*!

R by (if the lower polar is choosen):

and [T*(p)] are defined from a subspace in Rn* into



=l

[T(p)]” {ylp.TCy) < 1};

[t* (p1*

{ylT* ).y < 1},

Both processes are shown in fig. 12; their graphs have there the

boundary in common.

Finally, some special convex, cone-interior processes T
will be defined, which are important in economics, and some
3

properties derived.

A process T:Y > X is said to be quasi-homothetic, if for each

nonzero Y y2 € Y, there exist a positive scalar p§ such that
T(y,) =1 T(y,).

A process T:Y » X is said to be homothetic, if for each A > 0

there exists a y > 0, such that for any nonzero y € Y

T(Ay) - w TCEYs

(This implies that Dom T is an orthant).

A process T:Y » X is callea positively homogeneous of degree
ky AF for all A > 0, TRy) = AkT(y), for any nonzero y € Y.

A process T:Y - X is called starred, if T is point-starred
and Dom T is an orthant.

A process T:Y » X is called aureoled, if T is point-aureoled,

and Range T is an orthant.

If a positively homogeneous process T of degree k < 1,
resp. k > 1, has a closed and convex graph, it is a starred,
resp. aureoled, convex cone-interior process. Some properties

of starred and aureoled processes are derived below.



Theorem 8. Properties of a starred, convex, cone-interior

EI‘OCGSS.

1. T(y) € T(Ay) € AT(y); for X% 2 1.

2. T_(0) € T(y).

C
k8 (Tl # TZ)E(T1 A TZ)S(Tl 3 Tz)_(T1 + Tz).
4, T—](x) is aureoled.
*
5 T (p) is aureoled.

- *
6. TXp) = (17 (p¥DT,-
Préof.

1. As T is point starred (T=Ts)’ 0 € T(y) for all y € Y; as
Dom T is a cone, the set {(y,O)]y € Y} belongs to the
recession cone G(To) of G(T)s
Choose any (y,x) € G(T); then (y,x) + M {5:0) € G{T); fox
A 20, or (A\y,x) € G(T), for A > 1.

Secondly, choose an x € T(Ay), for some A > 1 and y € Y.

This set is defined, as Y is a cone. (Ay,x) € G(T),

(0,0) € G(T), and by convexity of G(T) any convex combi-

nation such as (y,x/\A) € G(T). It follows that x € AT(y).

4, Choose any (y,x) € G(T); for any A > 1, (Ay,x) € G(T) by
(1). Therefore Ay € T_](x), for X > 1, implying that T—l(x)
is point-aureoled, and because Dom T = Range T_], also

aureoled.

5. As Y is an orthant, y € Y =-y € Y. Therefore, if q € T:(p)
and A 2 1, (Aq)y 2 qy 2 px-1, implying that (Agq) € T:(p).
Also q € T_(p) and A > I imply (Aq)y £ qy £ px+l, or
(Aq) € Tf(p). Thus T*(p) is point-aureoled, and as
{q[qy < p0+ 1, for y € Y} is an orthant, T*(p) is aureoled.



[T-]({P}j)lt = {y|l1(y) N {p}j # (i)}ic =
= {ylax€T(y):px 2 1}, =:7_ =

{alqy 2 1, yy € Y};

This set is equal to {q|qy 2 px~1,V x € T(y),V y} = T:(p),
for each p, as both conditions are equivalent. .
Assume the last condition is not met and that there exists
a ;, such that for some x € Ty) 5 q§ < p;—], for a given
p: IEf alse ; € Y and p; > 1; then a.contradiction follows.
Tt p; < 1, then ; € Y implies that dx € T(;) such that

p; 2 1. As T(;) is point-starred, q§ < p;—l < p;—l, which
also contradicts qy 2 1.

Assume that the first condition is not met, and

3; = ;:q§ < 1. For a given p, and for any q. As ; € ¥,
Ix:px > 1.

LE g € T:(p), then 0 < px-1 < qy < 1, implying that q has
a finite value and Tf(p) is not aureoled, which contradicts

a property of Tj(p).

Tiy) ’ G,
y q

[T*(p)l} 7
‘mﬁj T:(p)_ﬂ

[Tiyl*

Fig:11 A starred process T(y) and its dual process Tip)



x P
Tly)
y q
G(Tn*
p P
[T(y)ls
[ = _T:(P)
= =
- /S
I d 1

Fig12 An aureoled process Tly) and its dual process TZ(p)

Property (8.6) was established by Ruys (1972) for the
much simpler case of a linear technology defined by a regular
matrix in the context of a linear programming problem. The
property gives an indication how the concepts of a dual set,
a polar process and a dual process are related.

Analogous arguments can be given to show the following

properties of aureoled sets.



Theorem 9. Properties of an aureoled, convex cone-interior

process T:Y > X.

.. T(y) 2 T(Ay) 2 AT(y), for A > 1 and Ay € Y.
2. TO(O) 3 T(y)-

3, (T] # Tz)_D_(T] v T2)_D_(Tl A T2)2(T] + Tz)..
b s T_l(x) is starred.

* .
5 T ¢p) is starred.

6. T*p) = (1 'dpd”.

Finally, it may be stressed that time can be introduced
in this theory through the multiplication operation. Analogous
to the linear theory, eigenvalues may be defined, to analyze

dynamic properties. This has to be done, yet.

M.v.d.B
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