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THE ROLE OF STATISTICAL METHODOLOGY IN SIr1ULATION

by Jack P.C. KLEZJNEN
Department of Business and
Economics
Katholieke Hogeschool
5000 LE Tilburg
Netherlands

ABSTRACT

Statistical methods relevant to both digital and
hybrid simulation are presented, using a minimum of formulas.
A strategic issue is the ad hoc character of simulation.
Statistical methods are surveyed which help to generalize
and interpret simulation output data. Moreover statistical
tools can show which system variants should be simulated,
in order to obtain an understanding of the simulated system
configurations. For Monte Carlo simulations some tactical
problems are discussed: runlength and variance reduction.

More specifically, the ad hoc character of simula-
tion is mitigated by a formal metamodel (auxiliary model),
for which familiar regression analysis is used. The meta-
model may include interactions among factors in the simula-
tion experiment, and can be tested for its adequacy. Selecting
the values of the input variables is the domain of experi-
mental design. An example demonstrates that seven factors
can be examined in only sixteen rather than 2~-128 runs.
Situations with, say, a thousand factors require special
screening designs. Requirements for "optimal" designs are
briefly discussed.

In stochastic simulation two tactical problems
exist: Variance reduction can be achieved through special
techniques such as common random numbers, antithetic variates,
control variates (regression sampling), importance sampling
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(virtual measures). The variance of the simulation output
is further affected by the simulation runlength, which leads
to questions such as: are we really interer~ted in steady-
state behavior, how can we compute a confidence interval for
the simulation output, how should we initialize the run, etc.

The survey includes 47 reference„ many just recent-
ly published, and provides references to a number of practi-
cal applications of statistical methods.
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1. STRATEGIC PROBLED4S IN SIMULATION

At this conference both digital and hybrid simula-
tion are covered. We hope that the present paper is relevant
to the two simulation areas, though we shall emphasize
digital simulation, especially discrete-event simulation. In
practice, simulation is a method very fi~equently used to
study complex systemsl). However, a major practical drawback
of simulation is its ad hoc character: After spending much
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mental effort and computer time to develop, program and
run a computer simulation - strictly speaking - the resuits
are valid only for the specific parameter values and struc-
tural relationships of the executed simulation program.
Changing a parameter or relationship means that the simula-
tion program has to be run again. Nevertheless, such changes
are necessary to answer "what if" questions, or to find
optimal system configurations, or - not to be forgotten -
to establish the sensitivity of the conclusions to specific
model assumptions.

Even after a great many simulation runs have been
performed, it is difficult to obtain a general understanding
of how the simulated system works: During the constructicn
of the simulation model and its program much knowledge about
the details of specific system components is acquired. How-
ever, insight into the behavior of the total system requires
execution of the simulation program. These computer runs
yield a mass of data but this mass may turn into a mess.
Hence the output data should be summarized by a limited num-
ber of ineasures such as averages, peaks, and correlation co-
efficients (or spectra). In this way the various system con-
figurations (system variants) are characterized by a few
"statistics". Remain the problems of how to determine whether
system variants show significantly different outputs, how
to discern "patterns" in output changes as system configu-
rations change, and so on.

In this paper we shall present a statistical metho-
dology for generalizing the results of simulation experi-.
ments. Because of the survey character of our paper we shall
avoid the use of mathematical-statistical formulas as much
as possible. As we shall see, the accuracy of the resulting
generalizations (metamodels) can be made explicit. b4oreover,
we shall present a systematic and efficient methodology for
the exploration of the great many systems that can be simu-
lated. In Kleijnen (1977) we further described how this me-
thodology fits in the sequence of inental modeling - formal
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modeling - computer programming - program running - system

understanding - optimization - implementation. Before we pro-

ceed to the formal presentation of our methodology, we in-

troduce a different problem area in simulation.

2. TACTICAL PROBLEMS IN STOCHASTIC SIMULATION

In Appendix 1 we survey several types of simulation

for those readers who do not feel fam-liar with terms such

as discrete-event, stochastic, difference-equation models,
etc. Besides the "strategic" problems in simulation models

of any type, there are some nagging "tact~.cal" issues, if

the simulation is of the Monte Carlo typ~, i.e., when the

program contains stochastic variables genPrated by means

of pseudo-random numbers. Even if we concentrate on a single

system configuration with all parameters fixed, we have to
decide on the simulation run length. Once we terminate the

run, we wish to know the output's accuracy, specified by a
statistical confidence interval. The 3etermination of this

accuracy may be complicated by serial coirelations (auto-
correlations) among successive simulation observations so
that simple statístical methods are misleading. However,

as we shall see, the majority of practical, non-academic
simulation experiments can be analyzed without sophisticated

statistical analysis techniq~ies. The reason is that most
practical studies do not concern long run, steady-state
behavior.

Even with modern high-speed digital computers,

Monte Carlo simulation may require runs of such lengths that
computing time becomes a bottleneck. We might then try to

apply special statistical techniques to reduce the variabili-
ty of the output, and hence the required runlength. This

is the area of Variance Reduction Techniques (VRT's), also
known as Monte Carlo Techniques, to be d~.scussed in section

6.
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3. FORMAL METAMODELS: REGRESSION ANALYSIS

A real-life system can be modeled by means of a
simulation model. The relationship between the inputs and
outputs of the simulation program (model) can in turn be mo-
deled by a metamodel or auxiliary model, to meet the strate-
gic demands mentioned in section 1. Several types of ineta-
models are surveyed in Kleijnen (1977): common sense graphi-
cal approach, tables with two or three factors, explicit
formal metamodels such as the Meisel 8 Collins (1973) piece-
wise linear approximations. In this paper, however, we con-
centrate on linear regression metamodels. The common-sense
graphical approach is related to the regression aoproach, as
follows.We may change one factor,say x;observe the resulting
output y; repeat this procedure a number of times; plot the
(x, y) combinations; fit a curve by hand; and conclude
whether x has an important effect on y. The regression
approach formalizes this hand-fitting by applying the least
squares algorithm. It extends the procedure into multiple
dimensions. It further systematizes the various steps, in-
cluding tests for the importance (significance) of factors
together with their interactions, and tests for the adequa-
cy of the fitted regression metamodel. Linear regression
analysis has the great advantage of being a familiar tech-
nique for most scientists: Regression models have been
extensively applied to interpret and generalize experimental
results in agriculture, chemistry, engineering, psychology,
etc., where these models are also known as Analysis of
Variance (ANOVA).Regression metamodels in simulation have
been advocated by a few other authors. For instance, Week
8 Fryer (1977) estimated "main" effects and "interactions"
in their job shop simulation study (effects to be defined
more precisely below). In their study regression models
are further utilized to answer "inverse" questions, i.e.,
which input values yield fixed, desired output values; see
also Kleijnen 8~ Rens (1978), Kleijnen et al. (1978), Koons 8~
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Perlic (1977) and Sherden (1976). The need for some kind

of inetamodel to assist the more detailed model (simulation,
mathematical programming model) has been emphasized by several

more authors: Blanning (1974, 1975), Geoffrion (1976), Pegels
(1976, p 205).

Note that the variables in a model may be partitioned

into decision and environmental variables (factors). Decision
(control) variables are under the control of management. En-
vironmental variables are not under management control but
do influence the outputs (responses, criteria). In the long
run some environmental variables may become controllable,
for instance, arrival rates may be influenced by sales pro-
motion. The criterion variables are either satisfied or
optimized by a correct selection of the decision variables.
The sensitivity of this choice to the assumed environmental
factors, must also be investigated.

Let x denote a factor influencinq the outputs of
the real-world system. The factor may be qualitative or quan-
titative, continuous or discrete. In Kleijnen (1975, p. 300)
it is shown how we can represent a qualitative factor by
several dummy variables assuming only the values zero or one.
We shall concentrate on qualitative factors (besides quanti-
tative factors) which are studied for oaly two "levels" or
"values". Then this qualitative factor can be represented
by a single dummy variable x with the values -1 and tl; see
Table 1 below. The response (output) of the real-world system
is a time-series. We shall concentrate on a single response
variable; for multiple outputs we apply our procedure to each
variable separately. In order to compare system configurations,
we characterize a whole time path by eíther a single measure
or a few measures: average, standard deviation, correlation
coefficients (spectra), slope of a fitted linear trend, peak,
etc. Let yR denote such a measure, characterizing a time path
of the real-world system. Hence the response variable yR is
a function of the factors x:
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yR - fl(xl,x2,...,xm) (3.1)

The real system is approximated by a simulation model, where
Y is a function of k factors xj (j-1,...,k), plus a vector
of random numbers r. (Vectors and matrices are denoted by
-.; stochastic variables are underlined.) Hence the simulation
output y can be represented as

y - f2(xl,x2,...,xk.r) (3.2)

where k is much smaller than the unknown m in eq. (3.1), and
r symbolizes the joint effect of all factors x in eq. (3.1)
not explicitly represented in eq. (3.2). The simulation model
is specified by a computer program denoted by the function
f2. This model may be approximated in turn by a metamode]
(within a specific experimental area E; see below). We pro-
pose a metamodel that is linear in its parameters S. This
linearity does not mean that the metamodel is línear in its
variables x; see eq. (3.5) below. Before we proceed to
various specific metamodels we observe that the metamodel~
approach also applies when no sampling is used so that r
in eq. (3.2) vanishes; see Appendix 1 for the various simula-
tion types.

The simplest metamodel to express the effects of
the k factors would be:

Yi - BO } Slxil }... t Bk xik } ei (i-1,...,N) (3.3)

where in simulation run i(observation i) factor j has the
value xij (j-1,...,k) and eirepresents the noise (disturbance,
error) in the metamodel which is assumed to have zero ex-
pectation. Such a simple metamodel implies that a change
in xj has a constant effect on the expected response, ~(y):

3[ ~ (y) ]
3x. -Bj ( j-1,...,k)

J
(3.4)
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E(y)

(al ~- 0: no interaction

(b) ~i~2 ~0: cornplimentary

E(y~ t

fcl ~3i2 c 0: substitution ~ x2

FIG. 1 Interactions
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A more general metamodel postulates that the effect of factor
j also depends on the values of the other factors j' (j'~ j).
This can be formalized as in eq. (3.5) where for illustration
purposes we take k- 3:

yi - a~ t(alxil f g2xi2 t a3xi3) t

} (al2xilx12 } al3xilx13 } a23xi2xi3) t ei

(i-1,...,N) (3.5)

Here the parameters (coefficients) a12, a13 and a23 denote
interactions between the factors 1 and 2, 1 and 3, and 2 and
3 respectively. A graphical illustration of interaction in
the case of two factors (k-2), is shown in FIG. 1. In case
(a) of FIG. 1 the curves are parallel, i.e., the effect of
x2 on ~(y) does not depend on the level of xl. Zn case (b)
the interaction coefficient S12 is positive. Hence the two
factors are complimentary, i.e., as x2 increases the increase
in ~(y) is stimulated when the increase of x2 is accompanied
by an increase in xl. In case (c) the marginal output of x2
is much smaller when more of xl is available which can be
substituted for x2.2) The need to consider interactions among
factors when analyzing simulation results, has been empha-
sized by Koons 8 Perlic (1977) in their case-study of a steel
plant.

If all factors are quantitive, continuous variables,
then we add "purely quadratic" effects ajj to eq. (3.5). This
yields

3 2 3
yi - a~ f E ajxij f E E~ajj,xijxij, t

J-1 J~J

3
t E ajjxi~ t ei (3.6)

1
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which represents the Taylor series er.pansion of eq. (3.2),
cut off after the second-degree terms. For an application
of eq. (3.6) we refer to Koons 8~ Perlic (1977, p.7). We
feel that in practice it is rare that all factors are quan-
titative, so that we shall concentrate on the metamodel with
k main effects ~j, k(k-1)~2 two-factor ir.teractions ~jj,
and the general (overall) mean g0. In symbols:

k k-1 k
yi - Bo t,Elsjxij t j cj~sjj~xijxlj~ t?i

(i-1,...,N) (3.7)

We start by assuming a metamode~,.such as eq. (3.7),
but next we test statistically whether this assumption was
realistic: Two statistical tests can be used:
(1) Generate some new observations Y using the simulation
model. Use the familiar Student t-statistic to compare these
observations y to the predicted value y based on the re-
gression metamodel which was estimated from the old obser-
vations.3)
(2) A so-called lack-of-fit F-statistic can be computed
which compares the "mean residual sum of squares" to the
"pure error".
For details on both approaches we refer to Kleijnen et
al. (1978).

If the assumed metamodel turas out to be unreaso-

nable, we have several alternatives:
(1) Make the metamodel more complicated by adding terms such

as three-factor interactions. If y' is a shorthand notation

for y in eq. (3.5), then we may expand (3.5) to

Yi - Yi } ~123xilxi2xi3 (3.8)
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The intuitive interpretation of three-factor interactions
is difficult. Moreover these interactions mean additional
parameters. Hence we prefer the next alternative.
(2) Look for transformations of x. For instance, if Y de-
notes waiting time, and xl and x2 denote mean arrival and
service rate, then the transformation x' - xl~x2 implies that
the original metamodel

Y- SO t glxl t~Zx2 f e

is replaced by a new metamodel:

Y - Yp } Ylx~ } e~

(3.9)

(3.10)

We strongly recommended to look for such transformations,
from the very beginning of the study: The transformation
can be based on the relevant theory, for instance, queuing
analysis in the above example. A popular transformation in
econometrics is x' - log x, y' - log y, so that the para-
meters ~ represent elasticity coefficients. A more com-
plicated example is provided by Yen 8~ Pierskalla (1977). A
simple transformation is also utilized in the case study by
Kleijnen et al. (1978).
(3) Reduce the experimental area E. This option limits the
generality of our conclusions. However, if the only purpose
of the metamodel is to find the optimum x-values, then a
small area E can be used, a metamodel fitted, and the direc-
tion of better x-values determined. See Montgomery 8 Betten-
court (1977) for details on this so-called Response Surface
Methodology (RSM). For a bibliography we also refer to
Kleijnen (1975).

Note that, after we have used the metamodel to meet
tze demands of sensitivity analysis, optimization, and so
c::, -tie can return to the original simulation model to study
the s.s-em behavior in detail, e.g., to study its dynamics.
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The parameters B in the above e~3uations can be
estimated and tested for their significance, using the fa-
miliar technique of regression analysis, applying either
Ordinary or Generalized Least Squares; see e.q. Draper 8
Smith (1966). Least Squares is also summ.arízed in Rleijnen
et al. (1978).

5. EXPERIMENTAL DESIGN

As we mentioned in section 1 pa.rameters, variables,
and structural relationships in the simulation model are
changed in order to perform sensitivity analysis, answer
what-if questions, do optimalization studies, etc. "Infinite-
ly" many system configurations (system ~~ariants or briefly

systems) may be of potential interest. Even with modern fast
computers simulating all system variants is out of the
question. The problem of selecting a lim~.ted number of sys-
tem variants for actual simulation evaluation can be solved
by means of statistical methods known as experimental de-
si n methodology. Experimental design theory has been de-
veloped since the 1920's and has been widely applied to ex-
periments in agriculture, chemistry, etc. Unfortunately,
its application to the management and social sciences is
still in its infancy. The reason is that in sociotechnical
systems the scientific design of exporiments is difficult
and expensive (disruption of the organization). However,
in a simulation model of such a social system, the experi-
mental factors are completely under the scientist's control,
so that experimental design methods become relevant. Let
us consider some simple examples.

If we study the effects of just a few factors, say
three, then we may start by letting each factor assume only
two "values" or "levels" denoted by x- tl and x--1 res-
pectively, and evaluating the responses at all combinations,
i.e., at 23 - 8 combinations. (Remember that one factor com-
bination specifies one system varíant to be simulated.) But,
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if we are willing to assume that the "first order" model of
eq. (3.3) ís adequate, then we need to estimate only four
effects, namely B~, S1, g2 and B3. Before reading on, the
reader is challenged to specify his own selection of the
x-combinations: Next he may compare his selection to Table 1.
This table is constructed using a"trick" developed in ex-
perimental design theory: The last column x3 is obtained by
multiplying the corresponding elements in the xl and x2
columns. Such tricks certainly become necessary as the num-
ber of factors increses, since in that case the number of
combinations N grows dramatically. For instance, for seven
factors we have N- 27 - 128. Table 2 displays a design for
seven factors4): If we assume a first order model, then anly
the first eight combinations need to be evaluated, in order to
estimate SQ, S1, ...,g7. If we leave open the possibility that
such a metamodel is inadequate, then the next eight combi-
nations should also be evaluated. The first eight combinations
form a so-called 27-4 fractional factorial design of "resolu-
tion III". The sixteen combinations together form a 27-3
fractional factorial of "resolution IV", and can give us an
idea of the importance of interactions besides main effects;
see Kleijnen (1975) for more details. Observe that a design
matrix such as Table 1 also specifies the cross-products
xlx2, xlx3 and x2x3 in eq. (3.5).

The above phase of the investigation may be preceded
by a ip lot or scréening phase. In the latter stage a great
many, say a hundred or a thousand factors may be conceived of,
but hopefully only relatively few are really important. De-
tecting these important factors can be based on special ex.-
perimental designs: group-screening, random designs, etc.
Random designs (randomly selected factor combinations) were
applied in a water-resource simulation; Maass et al. (1962).
Group-screening 5) was utilized in the simulation of computer
systems - see Schatzoff 8~ Tillman (1975) - but applications
of this class of designs are extremely rare. Nevertheless we
imagir.e that it is quite common to have simulation models



Table 1
Experimental Design for Three Factors

Combination xl x2 x3 (- xlx2)

1 tl fl tl
2 -1 fl -1
3 fl -1 -1
4 -1 -1 fl

Table 2
Experimental Design for SevPn Factors

Combination xl x2 x3 x4 xs x6 x~

1 - - - t t t -
2 t - - - - t t
3 - t - - t - f
4 t f - t - - -
5 - - t t - - t
6 t - f - ~ - -
7 - t t - - f -
8

-----------
t

---
f t t t t t

9
---

t
------

t
------
t

------
-

------
-

------
-

-------------
t

10 - t t t t -' -
11 t - t f - t -

12 - - f - f f f
13 t t - - t t -
14 - f - f - f f
15 f - - t t - t
16 - - - - - - -
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with a great many parameters and variables, which could
benefit from group-screening designs. Several types of screening
designs are evaluated in Kleijnen (1975 b).

Let us briefly evaluate the designs derived in the
statistical design literature. The traditional, "common sense"
approach is to change one factor at a time: ceteris paribus
approach. We proposed to change several factors simultaneous-
ly; see Tables 1 and 2. Such factorial designs (full or
fractional) are more efficient, i.e., they yield more accurate
estimators of the factor effects,and they provide estimates
of possible interactions among factors. Some problems, however,
remain: Specific designs such as 2k-p designs, and the c.on-
comittant regression analysis yield "optimal" results only
under certain statistical assumptions such as constant va-
riances. How robust are these optimality properties and
what are the alternatives? Ad hoc optimal designs specified
by computer, generalized least squares, robust estimation
procedures, etc. are surveyed in Kleijnen et al. (1977).
Designs such as in Tables 1 and 2 may be evaluated agaínst
the following requirements:
(1) A small number of runs N: Obviously, to estimate q para-
meters it is necessary that N~ q. However, N may be much
smaller than 2k, for instance, in Table 2 N- 16 whereas
27 - 128.
(2) Maximum statistical accuracy, given the number of runs:
If the classical statistical assumptions hold, then the
accuracy requirement is satisfied by choosing an orthogonal
design; otherwise the selection of the design matrix poses
a problem not yet solved. Note that Tables 1 and 2 do yield
orthogonal columns.
(3) Providing a measure for the adequacy of the fitted meta-
model: If N~ q then a lack-of-fit F-statistic exists. If
besides the N observations we have one or more runs, not
used in the estimation of the parameters, then "validation"
of the model is possible, using a t-test.
(4) Desirable "confounding" (bias, alias pattern): If not
all factor effects can be estimated from N runs only, the
main effects should be biased by high order effects (say,
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three-factor interactions), not by other :nain effects. The

designs derived by experimental design theory immediately

show how effects are biased by other effects.
(5) Flexibility of the design: Unfortunately, in many
standard designs the number of runs N is restricted to a
power of two (2k-p designs) or a multiple of four. Fortunate-

ly, it remains possible to start with only a small number
of runs, to test the results, and to pro~eed to a larger
design that yields more detailed estimates, so-called se-
quentialized designs; see Kleijnen (1475, pp. 344-345, 367-
370) .
(6) Numerical inaccuracy caused by an ill-conditioned matrix

X: An orthogonal matrix X eliminates such problems. When
using normalized variables (between -1 and fl) we should
not forget to translate the estimated effects back into the
original effects; see Kleijnen et al. (1978).

Note that, if the assumed metamodel turns out to
be completely misleading, then the "optimal" properties of
the experimental design break down. For instance, if the
interaction between the factors 1 and 2 in Table 1 is ac-
tually important then we cannot estimate the main effect
of factor 3 since it is completely confounded with that
interaction. To reduce the possibility of such events,
preliminary experimentation and analysi5 is necessary; see
also Kleijnen (1975, pp. 391-393) and Kleijnen et al.
(1978).

In conclusion, the literature on experimental
design is overwhelming, and still growi.ng: As a sample we
mention the recent textbook Daniel (1y76). In Kleijnen (1975,
pp. 287-450) we have given a select.ion from the vast litera-
ture, tailored to the needs of the simulation practitione.r:
The focus is on simple designs such as 2k-p designs, exclu-
ding sophisticated designs such as "partially balanced in-
complete block designs". Excluded are techniques not needed
in simulation, e.g., randomization and blocking are needed
in case of incomplete control over the experiments as in
areas outside simulation.
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5. SUMMARY OF STRATEGIC PROBLEM

Formal metamodels are a useful technic~ue for geiiera-
lizing and interpreting simulation output. An important as-
pect of this interpretation is the concept of factor inter-
action. Efficient exploration of the simulation space re-
quires an experimental design. Work on statistical designs
is abundant but unfamiliar to the majority of simulation
practitioners. Our experience is that the necessary sta-
tistical techniques can be learned without too many problems.
Observe, however, that these techniques alone cannot solve
the problem for the scientist: The models and hypotheses
to be evaluated by the statistical techniques, have to be
provided by management or by other, non-statistical spe-
cialists. The use of the techniques leaves much freedom:
freedom of interpretation, choice of significance levels a,
etc. Hence an automated application of techniques is im-
possible. Moreover, all statistical techniques are based
on certain statistical assumptions such as constant va-
riances, which are not satisfied in practice. It remains a
challenge to develop more general and robust techniques.
In the mean time, the practioner must use hís judgement
in the selection and use of his statistical tools. Neverthe-
less we feel that these tools result in a more efficient
exploration of the experimental area, and in a better idea
of both the limitations and the generalizations of the
simulation experiment. In this way, one important drawback
of simulation is mitigated, namely its ad hoc character. For
an elaborated case study using a variety of statistical
techniques, we refer to Kleijnen et al. (1978).

6. TACTICAL PROBLEMS IN STOCHASTIC SIMULATION: VARIANCE

REDUCTIO.~

In the following sections we shall focus on pro-
blems arising when simulating one specific system configu-
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ration, i.e., a sin le factor combination. The problems we
shall discuss arise in stochastic simulation models only:
runlength determination in relation to estimation of the
variances of the simulation response, an3 reduction of that
variance through special statistical techniques, so-called
Variance Reduction Techniques (VRT's).

Though we devoted a doctoral dissertation to the
issue of VRT's - see Kleijnen (1975, pp. 105-285) - over
the years we have grown very pessimistic as to the practi-

cality of such techniques. Note that computer time can be
saved (and variance reduced through additional runs) by

other devices than VRT's, e.g., more efficient random number

generation, faster sampling procedures, better software. In
Kleijnen (1975, pp. 105-285) we discussed six VRT's in

detail including some applications, and provided references

to many more techniques. Four VRT's will be briefly dis-
cussed in the present paper.

( 1) Common random numbers

A system configuration may be simulated using the
same random number seed as in the other system variants, so

that systems are compared "under the same circumstances".
This is the only VRT often applied by practitioners. Kleijnen

(1975) discussed the practical complication of synchronizing
random number streams per type of stochastic process. A
complication overlooked by most practitioners, is that the
analysis of the simulation results gets more difficult when

the outputs become dependent, e.g., ordinary least squares
assumes independent responses y. The following VRT is

(nearly) as simple as the use of the same random numbers,
but does not complicate the analysis.

(2) Antithetic variates

Suppose the first run of a specific system confi-
guration is generated from the random number stream r0, rl,
r2,... and yields the result yl. Then the "antithetic" run
is generated from the complements 1-r0, 1-rl, 1-r2,... and
yields y2. The idea is, that when yl happens to undershoot



- 19 -

its expected value, then y2 is expected to overshnot that
value.(Example: In run 1 most r's happen to be small, so
that service times are short, and waiting times are short.
In run 2 most r's are large, etc.) Statistically speaking,
Y1 and Y2 are conjectured to be negatively correlated, so
that the variances of their average decreases. The statis-
tical analysis remains simple since it can be based on the
n~2 averages of the antithetic pairs (yl' y2) (y3' y4)' ""
(yn-1' yn)- Kleijnen (1975a) discussed the surprising fact
that it is not necessarily optimal to combine antithetic
variates and common random numbers when comparing two system
variants. Recently Schruben 8 Marjolin (1977) investigated
the joint application of these two VRT's when investigating
N system variants in an experimental design. They found that
applying either common random numbers only, or a specific
combination6) of common and antithetic random numbers, re-
duced the estimated variance by 80B compared to independent
random number streams.

(3) Control variates or regression sampling
During a simulation run we may keep track of the

average value uof the input variable, say, interarrival time.
Note that the expected value u is known, since we sample
the input from a known distribution function. If we wish
to estimate, say, average waiting time n for a specific ave-
rage input value y, then we may correct our estimate via
the regression model

yi - BO t S1 . xi t ui (i-1,...,n) (6.1)

where Yi is the average waiting time of run i, xi is the
average interarrival time (x - y) of run i, u is an error
term, and the S's are regression coefficients. Hence

L - s0 } sl - u

- Y t gl (y - x) (6.2)
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where y is the "crude" average response of the n simulation

responses yi, which is corrected by th2 "control variable"

x. We found a variance reduction factor of 3.84 in a case

study, a telephone exchange simulation; however, the

estimator (6.2) does involve some statistical complications

as shown in Hopmans 8~ Kleijnen (1977).

(4) Importance sampling and virtual measures
There is one class of systems that might benefit

very much from variance reduction, viz., systems where we

are interested in "rare events" such as "excessive" waiting
times, inventory stockouts, etc. During most of the simula-

tion run nothing of interest happens. A VRT especially re-
levant for such systems seems importance sampling (IS), and

a closely related technique known as "virtual measures".
These techniques sample more frequently that part of the time
path during which rare events tend to occur more frequently

(and correct for that oversampling). In a recent case stu-
dy we applied this i.dea to a telephone-exchange simulation

studying blocking probabilities (all lines occupied). Un-
fortunately, the practical results were very disappointing;

see Hopmans 8~ Kleijnen (1978).

7. TACTICAL PROBLEMS: RUNLENGTH

Under the heading "runlength" we shall discuss a
set of related questions such as:
- How long to continue the simulation run?
- How to start the run (initialization)?
- How often to replicate (repeat) the run with different

random number seeds?
- How accurate is the estimated response (confidence inter-

vals)?
An important remark to start with, is that in practical, as
opposed to academic, simulations these questions can often
be answered using only elementary statistical techniques,
such as t-statistics.
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In practice simulation models are usually
terminating, i.e., the simulation run is stopped when a
specific event occurs. Simple examples are:
(1) In studying maintenance policies the simulation run may
end when the equipment (say, a computer) braaks down. A new
run starts with a"perfect" piece of equipment.
(2) A queuing (waiting-line) system such as a bank or hospi-
tal clinique, is closed at 5 P.M. (critical event). The new
run corresponds with a new day, starting in the "empty"
state.
(3) A corporate simulation model can be utilized to examine a
policy's effect on profit over the next three months (planning
horizon). The simulation run of three months is repeated
for different policies (what-if), starting each run from
the most recent "situation" (system state). Note that cor-
porate models are often non-stochastic.
(4) Queuing systems that never close down are, e.g., a te-
lephone exchange and a highway crossing. Such systems may
be simulated to see whether the system configuration can
handle peak traffic. As soon as the rush hour is over (cri-
tical event, defined fuzzily), the simulation run is ter-
minated. A next run starts from a pre-rush-hour situation.
The same or different random numbers (see section 6 on
variance reduction) may be utilized in that next run, to
study the sensitivity to the starting conditions (and
to the random number seed). Example 4 seems to be the most
problematic example, and may merit additional research.

In the above examples there is no interest in
steady-state responses: Steady-state (stationary, equilibri-
um, long-run) behavior means that the distribution function
(probability law) does not change over time. In the above
examples, however, start-up and end effects are part of the
relevant output. Each simulation run yields a single obser-
vation on the output, say, the average waiting time or the
total profit.(The relevance of transient behavior is also em-
phasized in Eox (1978) andLam 8~ Pedersen ( 1977) .) If the sinn~lation
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is stochastic, more accurate estimates can be obtained by
repeating (replicating) the run with different random num-
bers (possibly antithetic, see section u). The statistical
analysis is straightforward for terminat~-ng systems. For ex-

ample, if y.i denotes average waiting time in run i(i-1,...,n),
then its standard deviation(standard error) is estimated by

n
s - { E (yi - y)2~(n-1)}~
-y i-1

(7.1)

A confidence interval for the expected ~alue n can be based

on the Student t-statistic:

P{n `- Y f tn-1 ' sy~~n} - 1-a (7.2)

For an application we refer to Kleijnen (1978) where Chapter
IX concerns a simulation experiment with an IBM management
game, used to study the financial benefits of accurate in-
formation.

If the confidence interval in (7.2) turns out to
be too long, we may increase the accuracy of the average
simulation output Y by generating additional runs. The total

number of runs for a fixed length c of the confidence inter-
val, should be

n - {tn-l,c}2 . sy (7.3)

7
For additional comments ) on such a se3uential approach we
refer to Kleijnen (1975).

In the simulation literature most attention is fo-
cussed on steady-state behavior. Such behavior is primarily
of academic interest: Simulation is used by many academics
in the study of analytic models such as queuing models; see
the examples in Ignall et al. (1978). ~ransient behavior of
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such m~dels is difficult to analyse - Kotiah(1978) , Liittschwayer 8~
Ames(1975) - so that irost academic studies concentrate on stsedy-state(li-
miting) behavior.Simulations with the (practical:) aim of
assisting such theoretical studies, are confronted with
serious problems: Should the simulation be continued or
should replicated runs be used? Replicated runs yield inde-
pendent observations (on, say, steady-state average waiting
time) but each run creates an initialization problem
(transient behavior). A single prolonged run consists of
many dependent individual responses: autocorrelation or
serial correlation problem. For instance, if customer i
has to wait "very" long ( longer than average) then the next
customer probably has to wait longer too (positive corre-
lation). Elementary statistical techniques assuming indepen-
dence, are misleading in that case. The variance of the
average of the continued run i,,~ based on m autocorrelated
individual observations w is given by:

m
var(w) - {lf2 E (1 - m)pj}aW~m

- j-1
(7.4)

where pj is the autocorrelation between wt and wt}j, and
aW is the variance of an individual observation w. If the
w's were independent (pj - 0), then the variance of their
average would reduce to the familiar expression aW~m. So
the autocorrelation p inflates the variance of the average,
and should not be ignored. Several approaches are possible.

(1) Repeated runs
As mentioned above, replicated runs result in in-

dependent observations so that the analysis becomes simple.
However, each run is confronted with the initialization
problem. References on this approach and its alternatives
will be given below.
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(2) Prolonged run with (nearly) indepen3ent subruns of
fixed length

Assume that the serial correlation among the in-
dividual observations decreases as the observations are
farther apart. Divide the total run (ustially after removing

the initial phase as in approach 1 aÁOVe), into subruns of
fixed length. Though the first "few" observations of a
subrun still depend on the last "few" observations of the
preceding subrun, the subrun averages will be independent,
practically speeking, provided the subrun length is "long
enough".Therefore a subrun length may be selected intuiti-
vely; the autocorrelation among subrun a~erages be tested
(through the estimated autocorrelation coefficient of lag 1
or through von Neumann's ratio); if the autocorrelation is
too high (empirical threshold) then the subrun length is
increased, etc. A recent paper~ on this approach is Law 8
Carson (1977). In practice, approach 2 is often followed,
but with the subrun length being selected purely intuitively.
Relying on intuition alone seems dangerous: Analytical re-
sults for simple queuing systems demonstrate that for heavy
traffic individual observations remain correlated over
surprisingly long lags. On the other side, overestimating
the autocorrelation means that the subruns are too long,
so that too few subruns remain.8)
(3) Prolonged run without subrun distinction, but with
estimated individual autocorrelation s

Eq. (7.4) displayed the effects of the autocorre-
lation coefficients pj (j-1,2,...) arnong the individual ob-
servations. In the sixties Fishman and Riviat, at that time
with the RAND Corporation, published several reports in
which the variance of the average simulation output was
based on the estimation of those coefficients pj (or their
Fourier transformations: spectral analysis). For a recent
discussion we refer to Clark (1977). In practice this approach
has never been popular: cumbersome estimation of the p's;
difficult selection of m(the number of p's to be incorporàted).
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(4) Prolonged run with truly independent subruns based on
the renewal property

Both Iglehart and Fishman have pioneered the appli-
ca tion of the renewal or regenerative property shv~an by many si-
mulated systems. Consider a queuing system that has become
empty. Then the next history (timepath) is independent of
the past history: Consequently, the total run can be divided
into subruns, each subrun starting as soon as the system
has become empty. In contrast to the subruns of fixed ler~gth
(approach 2) the new subrun definition creates subruns of
stochastic lengths: when does the system return to the
empty state? These subruns are exactly independent: The
estimation of the total run's average involves some statis-
tical complications: ratio estimators for poiht estimation,
jackknifing for confidence intervals, etc. Estimating
quantiles9) such as the 90~-point, involves some more pro-
blems; see Seila (1978) and also Coppus et al. (1977). Per-
centiles (e.g., the probability of queue-sizes exceeding
the waiting room capacity) are studied by Fishman 8~ Moore
(1977) . However, it is our experience (with graduate students in
management science and econometrics) that these statistical
complications are easily overcome. In general, any Markov
system shows the renewal property. However, practical
problems remain: The renewal state may occur so infrequently
that too few subruns result; see Hopmans 8~ Kleijnen (1978)
for an example. Approximative renewal states may then be
formulated; see Gunther (1975). A recent textbook on the
renewal approach is Crane 8 Lemoine (1978); see also
Fishman (1978). Since we feel that this is an important
technique for the exact analysis of steady-state (academic)
simulations, we mention some more applications: Lavenberg
8 Slutz (1975) and Schwetman 8 Bruell (1976). A case study
(a simple time sharing system) comparing this approach to
replicated runs (approach 1) is provided by Sargent (197'I).
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The initialization problem was ;nentioned several
times in the present section. Remember that this problem
exists primarily in steady-state, academic simulations. An
example of initialization in a practical simulation for
planning purposes, is provided by Jain (1975, p. 85): "at
the start of a simulation the model represents the actual
state of the machine shop." Note further that in the renewal
approach to steady-state simulations, there is no start-up
problem: observations can be collected immediately when the
simulation starts in the renewal state (e.g. the empty
state). In the other three approaches the transient phase
does pose a problem: Usually initial observations are thrown
away though this is not necessarily opt~mal. Recently
Wilson 8~ Pritsker (1977) investigated a variety of heuristics,
and concluded that it seems best to start the simulation
run in the most likely stationary state, and to retain all
observations (transient and steady-stat~).

8. MISCELLANEOUS STATISTICAL PROBLEMS

In the above sections we cor.centrated on those
statistical problems we thought to be most relevant in
the analysis and design of simulation experiments. In the
present section we briefly discuss some remaining issues.

(1) Multivariate responses
In practice a number of criteria and measures are of interest,

e.g., in a queuing situation we may be interested in both
waiting time and server utilizatior., maesured by their
means and their 908 quantiles, etc. Though sophisticated
statistical tools exist (e.g. Multivariate Analysis of Va-
riance or MANOVA), it is practical to use univariate tech-
niques and to account for the multivariate character by the
choice of an appropriate error rate (Bonferroni inequality);
see Kleijnen (1975) for more details.
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(2) Multiple comparison and ranking procedures
In the first few sections we discussed situations

where a number of factors define a great many system variants
of potential interest. Relevant techniques are regression
analysis and experimental design. A different situation
exists, when there are only a few system variants, say, 10,
or in general k. These systems may correspond
to different queuing disciplines, etc. Multiple con~~arison pro-
cedures (MCP) are suited to situations with k systems (or
populations in statistical jargon) and a fixed number of
simulation runs (observations) per system. MCP give exact
statistical results (controlled a errors) when comparing
k(k-1)~2 systems with each other, when selecting a subset
containing the "best" system (say, highest mean response),
etc. Multiple ranking or selection procedures (MRP) have
been developed for situations where the number of runs is
not fixed, but has to be determined such that the best
system can be selected with a prespecified probability of
correct selection. Both MCP and MRP are discussed at length
in Kleijnen (1975); a recent publication is Dudewicz (1977).
At present simulation practitioners have shown little in-
terest in these procedures; the only references we are
aware of are Lin (1975) and Vicéns 8 Schaake (1972).
(3) Statistical input: random numbers, etc.

We have investigated the statistical analysis of
the simulation output. On the input side we have the tradi-
tional problems of random number generation (multiplicative
and shift back generators) and sampling from distributions
(including multivariate distributions). References can be
found in Kleijnen (1975).
(4) Model validation

Checking whether the model's output conforms with
the real world observations can be based on a variety of
statistical techniques: t-tests, goodness-of-fit tests, re-
gression analysis, etc. However, this issue involves many
more aspects than just statistics; see, e.g., Zeigler (1976).
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9. CONCLUSION

Simulation means experimentation, albeit experi-
mentation using a mathematical model in~tead of the real
world. Any experiment requires a sound design. Without
such a design even the most sophisticated analysis fails,
e.g., if the factors 1 and 2 are changed simultaneously,
their separate effects cannot be estimated. Scientific de-
signs such as 2k-p factorials further make it possible to
explore the simulation space much more efficiently. The
statistical analysis, given the design, should extract as
much information from the experiment a~ is possible, e.g.,
estimate interactions. Such an analysis can be done syste-
matically by means of a formal metamodel, i.e., a re-
gression model. Moreover, such an analysis shows the limi-
tations of the conclusions. For instance, if the simulation
run is too short, so much stochastic noise may be present
that instead of an expensive simulation model, a toss of
the coin had better been used.

APPENDIX 1: SURVEY OF SIMULATION TYPES

We distinguish the following types of simulation;
see also Kleijnen (1976):
(1) Discrete-event models, e.g., queuing systems modeled
by a language such as GPSS .Nbst of the tïme these rcndels are in-
herently stochastic, i.e., without the probabilistíc charac-
ter of certain variables the queuing problems would disap-
pear (a scheduling problem would remain).
(2) Time-slicing models of discrete-event systems. It might
be convenient to model, say, a highway interchange, by
dividing the time-axis into time slices of equal length,
and checking which events, if any, occurred.
(3) Difference-equation models, e.q., national econometric
and corporate models. Decisions and data for such systems
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are of a periodic nature: quarterly, yearly, etc. Usually
these models are deterministic.
(4) Difference-equation models for differential er,uation
systems: Forrester's Industrial or System Dynamics using
DYNAMO, is a well-k nown example. Nearly always these models
are deterministic.
(5) Digital computer models (by means of difference equa-
tions) of continuous phenomena in science and technology:
the spontaneous model is formulated in differential equations
based on laws of nature known from physics etc. For various
reasons a digital computer may be preferred over an analogue~
hybrid computer in the solution of the model. Languages
such as CSMP and CSSM are used on the digital computer.
Note that it is rare that the opposite occurs: an ana-
logue computer (differential equation) used to solve diffe-
rence equation problems of types 1 through 4.

NOTES

1) In Operations Research, for instance, several surveys
have shown that simulation is a most popular technique
(together with linear programming and statistical tech-
niques such as regression analysis); see Ledbetter 8~
Cox (1977) for a recent survey and for additional re-
ferences.

2) Actually the curves in FIG. 1 are no straight lines
so that they represent more general formulations than
eq. (3.5).

3) These "new" observations might correspond to the "center"
of the design (x~ - 0 for all factors), in order to
check whether pure quadratic effects are zero.

4) In the first eight combinations we use 4- 12, 5- 13.
6- 23 and 7- 123. In the next eight combinations we switch
signs: xi,~ - -xi~ (i'-it1) (i-1,...,8).
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5) Suppose the individual factors are x~, x2,.., and we
know the signs of the S's, e.g., 61 ~ 0 and S2 ~ 0.
Then xl and x2 can be combined into a single group-
factor zl with main effect Y1 - B1 { S2(? 0). Hence
zl is tl (and -1 respectively) if all its component factors

are fl (and xl - x2 --1 respectivelyi. Execute

only two runs (instead of 22 - 4 runs):
Run 1: xl - -1 x2 - -1 -~ zl - -1

Run 2: xl - fl x2 - tl ~ z2 - fl

If responses do not differ significantly, we can conclude
that neither xl nor x2 are important, and eliminate xl
and x2 from further experimentation. In general, k indi-
vidual factors x can be combined intc g group-factors z
which can be tested in a 2g-p fractional factorial de-
sign; see Kleijnen (1975b).

6) Split the N design points in two orthogonal blocks, and
run one block with common random numbers, and the other
block with the antithetic numbers.

7) Notice that n in (7.2) is deterministic, whereas n is
stochastic in (7.3). NeverthelesS !7.3) gives satis-
factory results.

8) When the number of subruns is M, then the variance
of the estimated variance is 2 a4~M ao that the confi-
dence interval for the mean n beco~nes less stable (but
has the same expected length).

9) For the definition of quantiles and percentiles con-
sider P(x ~ y)- z. If z(0 ~ z ~ 1) is fixed to, say,
90~ then we have to estimate the "quantile" y. If we
fix y, then we have to estimate the "percentile" z.
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