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INTERPRETATION AND GENERALIZATION OF THE LEMKE-HOWSON ALGORITHM

Antoon VAN DEN ELZEN, Tilburg

Abstract

In this paper we present a game-theoretic interpretation of the
Lemke-Howson algorithm for computing a Nash equilibrium in a noncoope-
rative bi-matrix game. This also gives insight into the reason why that
algorithm cannot find certain Nash equilibria. Furthermore. from this
interpretation it is easy to derive an extended algorithm for computing
all Nash equilibria in a nondegenerated (2xn) bi-matrix game.

1. Introduction

The Lemke-Howson method (see (2)) is the standard method for
finding a Nash equilibrium in a noncooperative bi-matrix game. It finds
such an equilibrium by solving a related linear complementarity pro-
blem. This is done by making complementary pivoting steps in a system
of linear equations. The main drawback of the method is that it cannot
find certain positively indexed equilibria (see (3)). Furthermore, it
is not immediately clear how the method operates in terms of strategies
and payoffs.

In this paper we provide a game-theoretic interpretation of the
path generated by the Lemke-Howson procedure. We first rewrite their
algorithm into an equivalent procedure which directly operates on the
strategy space. Then we derive that the Lemke-Howson algorithm can be
interpreted as a strategy adjustment process, i.e., as a process which
reaches a Nash equilibrium through a sequence of adjustments of the
strategy vectors. Also it clarifies why that method might not find all
positively indexed equilibria. Finally, this equivalent algorithm leads

to an extended procedure with which we can find all Nash equilibria in
a(2Xn) bi-matrix game which is nondegenerated as defined in (2).

The organization of the paper is as follows. In Section 2 we
present the algorithm on the strategy space and discuss its features.
The extended algorithm is described in Section 3.
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2. Game-theoretic interpretation of the Lemke-Howson algorithm

A noncooperative bi-matrix game is a game with two players in
which the payoffs are represented in matrices. Formally, it is a tuple
(n1,n2,A,B), where nj, j- 1,2, denotes the number of pure strategies
of player j, whereas A and B are the (nlxn2)-payoff matrices of player
1 and 2 respectively. An element ajk in A(bjk in B) denotes the payoff
to player 1(2) if player 1 plays his j-th pure strategy while player 2
plays his k-th pure strategy. In the sequel (j,k) denotes action k of
player j. The strategy space of player j, j- 1,2, is the (nj-1)-dimen-

n .-1 n nj
sional unit simplex S J .- {x.ERtj~ E x k-1}, describing all possible

~ k-1 j nl-1 n2-1
mixed strategies of player j. Finally, S:- S x S is the stra-
tegy space of the game. A strategy vector x in S can be denoted as x-

n.-1
(xl,x2) with xj E S~ , j- 1,2. The standard equilibrium concept for
a noncooperative game is that of a Nash equilibrium (N.E.). A Nash
equilibrium strategy vector is a strategy vector x in S at which no
player can improve upon his situation by unilateral changes. Observe
that x1Ax2 (x1Bx2) is the payoff to player 1(2) at x. Thus, x is a

nl-1
N.E. if x1Ax2 - max{x1Ax2lx1 E S } and x1Bx2 - max{x1Bx2~x2 E
n -1

S 2 }.
The Lemke-Howson method (L-H) finds a N.E. by solving a related

nl'n2linear complementarity problem (LCP) on R} . More precisely, it
nl}n2 nl n2

searches for a y- (yl,y2) E Rt , yl E R} , y2 E R~ , s.t.

wl -el 0 -A yl
- } T

2

2 0, wiyl - 0, w2y2 - 0. (2.1)

The vectors ej, j- 1,2, are vectors of ones of appropriate length.
Without loss of generality it is assumed that A, B( 0 in (2.1). Now to
each solution of (2.1) corresponds a N.E. and visa versa. In parti-

cular, if y- (yl,y2) solves (2.1) then x- (xl,x2) with xj -
(eTy )-1 y., j- 1,2, is s N.E..

J J

w -e2 -B 0 y2
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Let us consider the Lemke-Howson method ( see also (4)). First
note that (2.1) is equivalent to the problem of finding a y- (yl,y2)
s.t.

Fjk(y) - min {yjk,wjk} - 0, k- 1,..,nj, j- 1,2. (2.2)

L-H starts at a specific vector y satisfying F11(y) 2 0 while Fjk(y) -
0, (j,k) ~(1,1). Starting from y, a piecewise linear path of vectors y
is generated for which also F11(y) 2 0 and Fjk(y) -n0, (j,k) ~(1,1).
This is continued till a y is reached at which F11(y) - 0. For the
starting point y holds that Y11 -(-bls)-1 (~ 0), with bls - maxjblj,

~d y2s -(-ars)-1 (~ 0), with ars - m~iais' whereas all other compo-
nents of y are zero. Observe that y solves (2.2) if r- 1. Otherwise,
L-H starts by increasing ylr from zero till a vector y is reached at
which w2k - 0, for some k~ s, or yll - 0. In the latter case y is a
solution, otherwise L-H continues by increasing y2k from zero. In gene-
ral , if yjk or wjk, (j,k) ~(1,1), becomes zero then the complementary
variable wjk (yjk) is increased from zero. The procedure stops with a
solution when yll becomes 0 or wll becomes 0.

The game-theoretic interpretation of L-H is not obvious because
nl}n2

it operates on Rt . To obtain an interpretation in terms of strate-
n tn

gies we define a payoff function z: S~ R 1 2 by

z(x) -(zl(x),z2(x)) with zl(x) - Ax2 and z2(x) - BTxl. (2.3)

Observe that zjk(x) denotes the payoff to player j if he plays his k-th
pure strategy while player i, i~ j, plays xi. Stated in these terms x
is a N.E. iff for all (j,k), xjk - 0 or zjk(x) - max~zj~(x). Further-

nl{n2more, we interprete each vector y in R; generated by L-H as corres-
Tn -1ponding to the vector x in S with xj -(e yj) .yj, j- 1,2. With ell

of this together we can view upon L-H as generating a piecewise linear

path of strategy vectors x in S, starting from v with vll - v2s - 1 and

vjk - 0, (j,k) ~(1,1),(2,s), for which the following conditions hold
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xll Z 0 and zll(x) s max~zl~(x)

xjk - 0 or zjk(x) - max~zj~(x) if (j,k) ~(1,1).

Thus, along the path all actions except (1,1) are in equilibrium, i.e.
they satisfy the conditions for a N.E.. More specifically, player 2 is
in equilibrium and therefore plays optimal given the strategy of player
1. Consequently, L-H moves along the best reply set of player 2. At the
start player 1 plays just his first strategy and player 2 plays his
best pure reply, being pure strategy s for which bis - max~bl~. The
best pure reply of player 1 against (2,s) is the pure strategy r for
which ars - max~a~s. In case r- 1 a N.E. is found, otherwise the pro-
bability of action (l,r) is initially increased from zero.

It is rather straightforward to derive from (2.4) an algorithm
n 4n

which operates the same as L-H but on S instead of R}1 2. Let us sub-
stitute (2.3) in (2.4) obtaining for the vectors x in S on the path

xik ~ 0 and Akx2 - max~A~x2, (l,k) E T1
xlk - 0 and Akx2 ( max~A~x2, (l,k) ~ T1

x2k ) 0 and Bkxl - max~B~xl, (2,k) E T2
x2k - 0 and Bkxl ( max~B~xl, (2,k) a T2,

(2.4)

(2.5)

where Tj denotes the set of strategies (j,k) for which zjk(x) -
max~zj~(x) while Ak (Bk) is the k-th row of A(BT). Next we introduce
slack variables for the inequalities at the right hand side of (2.5).
Then we obtain that the vectors x in S on the path have to satisfy the
system of linear equations given by

~(2,k)ET2x2kAk } ~(l,k)QTlulkel(k) - ~elel - 0

~(l,k)~1x1kBkT } x11Blr } ~(2'k)~2p2ke2(k) - ~2e2 - ~.
(2.6)

where xjk ~ 0, ~(l,k)ET,lxik } xll - 1, ~(2,k)E,I.2x2k - 1. ujk 2 0. Pj -
n,

maxkz.k(x), ej(k) is the k-th unit vector in R ~, j-1,2, and Ak (B~)
J
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the k-th column of A(BT). The final system is then obtained by substi-
tuting xll - 1-~k~lxlk ~d x2s - 1-~k~sx2k. At the start T1 -~,
T2 -{(2.s)}. H1 - zlr(~). R2 - z2s(~). and ujk - f~j - zjk(x).(3,k) ~
T, where T- T1 u T2. If the starting vector v is not a N.E. then since
ulr - 0, T1 becomes {(l,r)} and xlr enters (2.6). If along the path x.k

J
(ujk), (j,k) ~(1,1), becomes zero, then the complementary variable Kjk
(xjk) enters the system and T becomes T~{(j,k)} (T v{(j,k)}). The

algorithm stops if xll becomes 0 or H11 becomes 0. Thus, along the path

action (1,1) is played with positive probability while it is not an

optimal action for player 1, i.e., both xll ~d ~11 are greater than
zero. However, all other actions are only played with positive probabi-

lity if they are optimal for the relevant player, i.e. xjk ~ 0 iff

ujk - 0. If an action (j,k) ~(1,1) becomes optimal, i.e. ujk becomes

0, then the related probability xjk is increased from 0. On the other
hand, if a probability with which an optimal action (j,k) ~(1,1) is

played becomes zero, i.e. xjk becomes 0, then the corresponding action
is made non-optimal (Kjk is made positive). A N.E. is reached whenever

also action (1,1) gets into equilibrium.

Recall that L-H starts with player 1 playing his first pure
strategy whereas player 2 plays his best pure reply. Along the path
action (1,1) is the only action not in equilibrium. However, the role
of action (1,1) can be taken over by any action of any player. This
results in at most nltn2 different starting vectors, which might yield
different Nash equilibria. These equilibria always have a positive
index due to the features of a complementary pivoting algorithm.
Because the number of possible starting vectors is very limited, L-H
may fail to reach all positively indexed equilibria. In Shapley (3) an
example can be found. One way to solve this problem is the use of an
algorithm that can start from any vector. Such an algorithm has been
given by van den Elzen and Talman (1).

We conclude this section by illustrating L-H when projected on
the strategy space, i.e., we consider the algorithm operating on (2.6).
Let us consider the game (n1,n2,A,B) with nl - 2, n2 - 3, and

1 -2 5 2 4 3
A - f , B -

3 2 4~ 5 -2 1L
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Note that these matrices contain positive elements. To apply L-H we
first have to subtract a positive number from each element to make A,B
( 0. Our method can be applied directly to the original matrices. The
strategy space S- S1 x S2 has been drawn in Figure 2.1. The set ABCD
in the figure denotes the strategy vectors x at which zll(x) - z12(x).

It is easily verified that for such an x, x22 --1 t 2x~3. Above that
plane zll ~ z12 holds and below it zll ~ z12. The bold piecewise linear
curve connecting ((1,0),(0,1,0)) and ((0,1),(1,0,0)) denotes the best
reply set of player 2, i.e. the set {x E S~z2(xl,x2) - max z2(xl,y)}.

YThe game has three Nash equilibria, namely, xN -((0,1),(1,0,0)), x-

((4'4)'(0'5'5)) ~d x-((9'9)'(3'0,3)). The latter equilibrium is the
only one with a negative index. Now the algorithm related to (2.6)
starts at v-((1,0),(0,1,0)) at which player 1 plays (1,1) while pla-
yer 2 plays his best reply (2,2). The best reply of 1 against (2,2) is
(1,2), and hence x12 is increased till x12 -~. At that point also

((I,0),(I,0,0))
Figure 2.1. Illustration of the Lemke-Howson algorithm projected ~n the
strategy space.



(2,3) is optimal for player 2, and x~3 is increased from 0 till ~11
becomes zero. At that point the N.E. ((4,4),(0,5,5)) is reached. The
other possible starting vectors are ((0.1),(1,0,0)) which is a N.E.,
((1,0),(0,0,1)) from which ((4,4),(0,5,5)) is reached and
((0,1),(0,1,0)) from which the N.E. ((0,1),(1,0,0)) is reached.

3. Computing all Nash equilibria in a(2xn) bi-matrix game

In this section we argue that we can find all N.E, by a
straightforward adaptation of the algorithm operating on system (2.6)
in case one player has 2 strategies. The algorithm in Section 2 starts
with player 1 playing (1,1) while player 2 plays his best reply. Via a
piecewise linear path of vectors in G2, the best reply set of player 2,
a N.E. is reached. However, in case player 1 has two strategies, G2 it-
self is piecewise linear. It can be parametrized by x11 running from 1
to 0. So, let for 0 5 x11 5 1, G2(xll):-{x E S~x12 - 1- x11, x2 - arg
maxyz2(x1,y)}. Then the algorithm in Section 2 generates G2(x11) star-
ting from xll - 1 till a N.E. is found. Since the N.E. have to lie on
G2, we can find all of them by tracing G2(xll) from x11 - 1 to x11 - 0.
Hence we must extend the algorithm of Section 2 in such a way that it

n n
continues after having found a N.E. x at which x11 ~ 0. If the starting
vector v is a N.E. we continue by increasing xi2 from zero. By doing
so, action (1,2) fulfils the role of (1,1) and a N.E. is reached when
u12 becomes zero. In general, if u11 (~12) becomes zero while x11 ) 0
then a N.E. is reached and the algorithm continues by increasing g12
(u11) from zero. The extended algorithm stops if x11 becomes 0. Of
course, that point might be also a N.E..

For illustration again consider Figure 2.1. The algorithm
starts at ((1,0),(0,1,0)) and follows G2 till }til becomes zero at the
N.E. x- ((4,4),(0,5,5)). Then the algorithm continues by increasing

y,12 and it generates vectors x at which z11(x) ~ z12(x), i.e. it conti-
nues from x upwards from ABCD. In this way G2 is followed till the N.E.

4 ~ 1 2
x-((9'9)'(3'0,3)) is reached at which N12 - 0. Then the algorithm

n
continues by increasing ull. It now moves from x downwards from ABCD
and finally terminates at the third N.E. x~ -((0,1),(1,0,0)).
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