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ABSTRACT

First deterministic simulation models are compared with random
simulation models and real-life experiments. In deterministic simulation
no mathematical statistics is needed in the experimental design and in the
Least Squares curve fitting to the resulting data. Further analysis be-
comes possible if certain statistical models are specified for the fitting
errors. Kleijnen (1987) proposed normally identically and indepently dis-
tributed errors. Sacks et al. (1989 a, b) proposed dependent errors with a
specific correlation structure. Needs for further research are indicated.

1. INTRODUCTION

The unique characteristic of a deterministic simulation model is
that its responses y are fixed, given its set of input variables X-
{xl, ..xj, .
.,xk}. Hence we get:

var (y~X) - 0. (1)

This characteristic distinguishes these models from random simulation
models and real-life experiments. Random simulation models use pseudomran-
dom numbers; so different seeds produces different y values, in general.
In the analyses of these models we treat the pseudorandom numbers as if



-z-

they were truly random numbers, which are distributed uniformly and inde-
pendently. Hence we view the response y as a random variable with variance

var(Y~X) - g(X). Í2)

Some authors assume that var(y~X) is independent of X, so var(y~X) reduces
to a constant 2(say) a. We, however, prefer to assume that the variance
depends on the combination of input values or x. -{x. ..,x. .,x,1 11.. lj,.. lk}.
So if we select an n x k experimental design matrix D, then each design
"point" i has its own variance 6i. We can estimate this variance through
replication (that is, we feed the simulation model with different random
numbers). See Kleijnen (1987).

Risk Analysis is an interesting combination of deterministic
simulation models and Monte Carlo sampling. Dynamic models may be determi-
nistic. Examples are financial models (which have become popular since
spreadsheet software has become widespread) and ecological models. These
models, however, depend on a number of inputs which are unknown. Therefore
the user specifies a(prior) distribution of possible values: that user
may select a distribution type (normal, uniform, etc.). The computer sam-
ples values from that distribution, and generates output values, which are
summarized in an output distribution. Also see Iman and Helton (1988).

In real Zife experiments repeated observations of the same system
generate different responses y, because the system operates in a noisy
environment; that is, the environment is not fully controlled and it per-
turbes the system.

We emphasize that a random simulation model is not completely
different from a deterministic simulation model: every time we feed the
random model with the same input combination xi and the same pseudorandom
number seed, we get the same response. We "solved" this problem by assu-
ming that the pseudorandom number generator produces truly random num-
bers, and that the seed selection does not affect the distribution of
these numbers.
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If we feed a given deterministic simulation model with the input
combination xi, it always generates the same response (say) yi. So a de-
terministic simulation model provides a perfectly controlled world. Is
mathematical statistics still relevant in such an "ideal" world? In sec-
tion 2 we shall first show that basic ideas of the statistical theory of
experimental design (originated by Fisher) still applies. The resulting
simulation observations can be analyzed through Least Squares curve fit-
ting and "eyeballing" of the results. Further analysis, however, requires
statistical assumptions. In section 3 we shall present the statistical
model proposed in Kleijnen (198~): the errors are normally, independently
and identically distributed. Sacks, Schiller and Welch (1989) replaced the
independence assumption by a stochastic process assumption; henceforth we
shall refer to that article as Sacks et al. (1989a). In section 4 we shall
sketch future research needs.

2. DESIGN AND ANALYSIS WITHOUT STATISTICS

Zn deterministic simulation models we should still apply the sta-
tistical theory of experimental design to select the input combinations.
For example, it is obviously not smart to change two inputs (say) xl and
x2 simultaneously in the experiment. And changing one factor at a time
does not allow the detection of any interactions among inputs. We also
point out that many Response Surface designs have been derived under the
assumption that noise can be neglected so that only bias is to be mini-
mized; see Kleijnen (198~, p. 314) and Sacks, Welch, Mitchell and Wynn
(1989, p. 420); the latter reference is abbreviated to Sacks et al.
(1989b) further on.

In the analysis, however, we may use mathematical curve fitting
and "eye balling" instead of statistical analysis (that analysis includes
regression analysis and Analysis of Variance or ANOVA). So we may apply
the mathematical criterion of Least Squares to fit a metamodel to the
simulation data; those data consist of {xi, yi} with i-1,...,n. To vali-
date the resulting "calibrated" metamodel we can use mathematical criteria
such as the multiple correlation coefficient R2. We can also predict the
response for a new input combination xntl, and "eyeball" the relative
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prediction error Yntl,yntl where yn}1 is the value predicted by the meta-
model and yn}1 is the response of the simulation model for the new input
combination. A refinement is "cross validation": we delete combination i,
fit the metamodel to the remaining simulation data {X-i, y-i}; predict the
deleted respvnse through y-i; and "eyeball" the relative prediction error

y-i,yi' this procedure we repeat for i- 1,...,n. An example is Kleijnen
and Standridge (i988) who discuss a deterministic simulation of Flexible
Manufacturing Systems (FMS).

Once we have validated the model as a whole, we can study the
individual Least Squares coefficients gj (j-1,...,k). In order to deter-
mine which factors are most important, we may sort the coefficients ~,

jprovided we have standardized the factors; see Bettonvil and Kleijnen
(1989). If, however, we wish to identify coeffcients that are so small
that they actually reflect "noise", then we need mathematical statistics;
see the next section.

We can also use the regression model to predict the simulation
responses at input values not contained in the simulation data {X, y}.
(In the validation we predicted responses for the "old" input X.) Usually
we interpolate, not extrapolate, because the simulation data are based on
an experimental design that includes extremal values: the "experimental
area" covers the "area of interest". The predictors are

ny2 - x2 g, (3)

where X2 corresponds with the set of new input values (and ~ is still the
Least Squares estimator). These predictors are computed faster than the
simulation responses y2 - h(X2), where h(.) denotes the simulation model.
For example, in a study of the Rotterdam container harbor we answered ad
hoc management questions through the metamodel; in the beginning we were
not completely sure that this approach was adequate, so we checked the
predictions by running the expensive (random) simulation model overnight;
see Kleijnen, Van den Burg and Van der Ham (1978).
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To quantify the uncertainty of these predictions we must specify a
statistical model for the fitting errors e: (3) yields

var(y2) - X2 cov(~) X2 , (4)

where

cov(~) - ( X'X)-1X' cov(e)X(X'X)-1 . (5)

In the next section we shall discuss statistical models for e, which also
specify cov (e) in (5).

Note that Sachs et al. (1989a) introduced a more complicated pre-
dictor that has the nice property that at the observed input combinations
the predictor equals the observed response: y(X) - y(X). In random simula-
tion we do not expect such an equality, since the observed responses have
zero probability of being observed again (when new seeds are employed). In
random simulation we test whether E[y(X)] - E[(y(X)]; see Kleijnen (1990).

3. STATISTICAL ERROR MODELS

Kleijnen (i987, pp. 163-164) discusses why a statistical error
model may be appropriate in deterministic simulation: "Since infinitely
many combinations of simulation parameters.... are possible, there are
infinitely many errors e. The population of these errors has a specific
variance, denoted by o2.... Now we sample the simulation parameters.... We
may perform this sampling randomly or more or less systematically.... in
the metamodelling of deterministic simulation we may model the independent
variables as random variables. Consequently, the regression parameter
estimator g being a function of x... becomes random, and so does y... so
that e - y- y is random too ..."

Note that "random design" were elaborately discussed in Technome-
trics, back in 1959. In these designs the input combinations are sampled
by flipping a coin so P(xij-1) - 0.5 and P(xij- -1) - 0.5; see Kleijnen
(1987, pp. 321-323).
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Sacks et al. (1989a, pp. 41-47) model the fitting errors "as a
realization of a stochastic process in which the covariance structure of
[e] relates to the smoothness of the response". Sacks et al. (1989a, p.
42) further assume that e is Gaussian with zero expectation. They assume
that if two design points are further apart along one of the k axes, then
the covariance of the two fitting errors decreases exponentially. Their
procedure is computationally complex; it uses a supercomputer.

So Kleijnen (1987) proposes the same margínal distribution as
Sacks et al. (1989a) assume. Kleijnen implicitly assumes independent er-
rors, whereas Sacks et al. postulate a stationary stochastic process with
a particular covariance function. For simplicity's sake we may prefer to
stick to the model with independent errors that underlies Ordinary Least
Squares (OLS(. Sacks et al.'s model seems more realistic, if the response
surface is smooth. For, suppose the error is positive for some x. in thei
k-dimensional space. Suppose further that we wish to interpolate for x, ti
e, which is a point "close" to the point xi. Then y(xite), the response
predicted by OLS, tends to underestimate the true response y(xite). Sacks
et al., procedure does not have that unattractive characteristic; unfortu-
nately they must assume a specific covariance function; moreover, their
computations for that function are formidable.

A less fundamental discussion of statistical errors in determinis-
tic simulation can be found in Olivi (1984) and Olivi and Pike (1981).
Tiiey distinguish two groups of independent variables, namely controlled
variables that are supposed to be of major importance, and uncontrolled
variables of minor importance. They sample the minor variables, which
results in experimental error. Similarly Owen, Koehler and Sharifzadeh
(1989) consider "the response as a function of the most important inputs,
possibly with some noise due to the other inputs".

4. FUTURE RESEARCH

In the tradition of Popper a scientific model should be refutable.
Therefore we should develop tests that allows us to reject the hypothesis
that the fitting errors have a specific distribution; in this case we
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assume either independent normal errors or normal errors with a specific
covariance structure. Also see Kleijnen (1987, pp. 178-179) and Sachs et
al. (1989b. p. 417).

The stochastic process specification introduced by Sachs et al.
(1989a) looks promising. Practitioners will probably apply this approach,
once the conceptual and computational details have been worked out. The
"classical" regression analysis and experimental design (based on indepen-
dent errors) have already been applied to many simulation experiments, as
is documented in Kleijnen (1987, p. 241).

In practice, simulation models often have many inputs. For ex-
ample, Bettonvil (1990) investigates a deterministic ecological model with
281 inputs. Het assumes "white" noise: normally identically and indepen-
dently distributed errors. Sachs et a1. (1989a,b) limited their approach
to small problems with, for example, six inputs. The computational burden
of problems with many inputs seems formidable.

We emphasize that metamodels have two goals: prediction and expla-
nation. For prediction purposes the metamodel is a black box; the only
question is: does the black box predict "well"? Explanation means that the
user gets insight into the behavior of the underlying simulation model.
For example, Kleijnen and Standridge (1988, p. 261) report that the final
metamodel (after the original metamodel was rejected) explained the beha-
vior of the underlying Flexible Manufacturing System: "Statistical tech-
niques... reduce the drawbacks of an empirical technique like simulation,
i.e.,... the regression metamodel... helped the authors to better under-
stand how an FMS works?". Sachs et al. (1989a,b) concentrate on predic-
tion.

In summary, the statistical analysis of deterministic simulation
data is controversial. Sachs et al. (1989b, p.435) state: "In earlier
drafts we did attempt to discuss these philosophical matters [Bayesian and
frequentist views] more fully, but we gave up due to differences among the
authors!" Note that we did not discuss the Bayesian viewpoint at all;
Sachs et al. (1989b) do.
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