Tilburg University

Comparison of bias-reducing methods for estimating the parameter in dilution series

Strijbosch, L.W.G.; Does, R.J.M.M.

Publication date:
1988

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Strijbosch, L. W. G., \& Does, R. J. M. M. (1988). Comparison of bias-reducing methods for estimating the parameter in dilution series. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 304). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

COMPARISON OF BIAS-REDUCING METHODS FORESTIMATING THE PARAMETER IN DILUTIONSERIES

Leo W.G. Strijbosch
Ronald J.M.M. Does
R. 46
unc $510 . g 22$
FEW 304

COMPARISON OF BIAS-REDUCING METHODS FOR ESTIMATING THE PARAMETER IN DILUTION SERIES

Leo W.G. Strijbosch

Computer Applications Group, School of Economics and Business Tilburg University, P.O.Box 90153. 5000 LE Tilburg, The Netherlands

Ronald J.M.M. Does

Department of Medical Informatics and Statistics, University of Limburg, P.O.Box 616, 6200 MD

Mastricht. The Netherlands

ABSTRACT

Ten different estimators of the parameter in a limiting or serial dilution assay are compared. Eight of them are constructed to reduce the bias of the commonly used maximum likelihood estimator. Extensive Monte Carlo experiments using various designs, suggest that a particular jackknife version of the maximum likelihood estimator is preferred, provided that the design is not too small.

1. INTRODUCTION

Limiting and Serial Dilution Assays (LDA and SDA) are widely used in many areas, including public hygiene, bacteriology, biology and immunology; see Taswell (1987). In general these assays are primarily intended to estimate the relative frequency of a welldefined cell in a population of cells or the average number of organisms per unit volume of solution. In both LDA and SDA this
parameter is commonly estimated by using the "single-hit Poisson model" with quantal data yielded by samples taken from different dilutions. The assumptions underlying this model are well-known (see Finney (1978), Taswell (1981)) and will be described briefly, using the terminolology of LDA. A test preparation contains numerous cells of which an unknown proportion φ has a certain property, for example immuno-competency. From this test preparation, m different dilutions are prepared. Then, from dilution j, n_{j} replicate cultures are taken. The number of cells in the k-th replicate culture of dilution j is a Poisson distributed variable with mean x_{j}. A fraction φ of these cells has the intended property. A further assumption is that a positive response is obtained for a replicate culture, if and only if at least one cell of the specific type is present.

Statisticians can contribute to the execution of a LDA or a SDA in at least two ways. They can help the experimenter to construct an experimental design which will take advantage of existing a priori information. This hopefully precludes experimentation yielding useless data, and it enables adjusting the precision of an estimator. Furthermore they can advise on the statistical techniques to be used. In many applications of dilution analysis, the assays are very expensive and time consuming, while in some circumstances they are not repeatable either. In these cases it is of vital interest to carefully chose an experimental design and a statistical estimator minimizing bias and standard error. Recent research has been done on design problems (Loyer (1981), Taswell (1987) and Strijbosch et al. (1987)), and Monte Carlo studies have been made on the choice of the statistical procedure to be used (Salama et al. (1978), Loyer (1981), Taswell (1981), Strijbosch et al. (1987) and Does et al. (1988)). The results of these Monte Carlo studies cannot be compared properly because of the absence of generally accepted design methods: most authors used different experimental designs, when generating the simulation results. It is obvious that the statistical properties of the possible estimators
are dependent on the design used. If these properties do not hold over other possible designs it could easily occur, that one author finds that estimator 1 is better than estimator 2 while another author finds conflicting results.

This paper is organized as follows. Section 2 describes the experimental design, which has been used to compare different estimators. Section 3 discusses ten different estimators for the parameter in dilution series. The last two Sections are devoted to the Monte Carlo experiments and the results, respectively.

2. EXPERIMENTAL DESIGN

It is a very important issue, when comparing statistical estimators, to use a design which can be considered as a reference and a frame. The design method proposed by Strijbosch et al. (1987) seems to be a good candidate for use in general dilution assays and in Monte Carlo comparisons. First some notation will be introduced. Let the number of groups of replicate cultures be denoted by m, the (mean) number of cells tested in a replicate culture of group j by x_{j}, and the number of replicate cultures for group j by n_{j}, $j=1, \ldots, m$. Furthermore let φ denote the unknown frequency.

It is convenient to split the total design problem into two parts. Firstly, the design parameters m, and x_{1}, \ldots, x_{m} are determined; secondly, the numbers of replicate cultures n_{1}, \ldots, n_{m} are chosen such that the expected bias and the expected standard error of an estimator are within certain bounds. The efficacy of Strijbosch et al. (1987)'s method for determining the design parameters m and x_{1}, \ldots, x_{m} can be explained as follows. A researcher setting up a dilution assay, will in general have some prior information about the value of φ. It is natural to think of a lower bound φ_{1} and an upper bound φ_{2} for φ. He wants to plan his assay such that not too many fractions of negatively responding cultures are too close to either zero or one. There must be enough dilutions which yield fractions of negatively responding cultures, somewhere
in the middle between zero and one. This must be true for every value of φ which could be the true value according to the prior information of the experimenter, that is, for every φ satisfying φ_{1} $\leq^{\varphi} \leq^{\langle\varphi} 2_{2}$. We must be more specific in order to deduct design formulae from these general set-up considerations. If only fractions between certain values P_{1} and P_{2} are called sufficiently informative and if we want to have (on the average) d fractions between these values for each possible φ in the range $\left[\varphi_{1}, \varphi_{2}\right]$, then the design parameters m and x_{1}, \ldots, x_{m} can be chosen according the formulae (i) through (iv) in Strijbosch et al. (1987). The advantages of this design method are: it incorporates researcher's criteria, it has suitable properties, and it can be easily used in Monte Carlo experiments aimed at a meaningful comparison of statistical estimators.

The most interesting statistical estimators for which comparisons are made in the various studies mentioned before, will be compared in this study, namely the minimum chi-square method (MC), the maximum likelihood method (ML) (see Taswell (1981)), three jackknife versions (Jr, Jc, and Je) of the ML estimator (see Does et al. (1988)), two methods (S1 and S2) invented by Salama et al. (1978), and three bootstrap versions (Br, Bc, and Be) of the ML estimator. In the next Section these estimators will be described briefly.
3. STATISTICAL METHODS

3.1 Notation

In Section 2 we introduced the following notation: m equals the number of groups of replicate cultures, x_{j} equals the (mean) number of cells tested in a replicate culture of group j, n_{j} equals the number of replicate cultures for group $j, j=1, \ldots, m$, and φ denotes the unknown frequency. Then the data of the biometrical model can be represented as follows :

$$
\begin{equation*}
\left\{Y_{j k}\right\} \quad j=1, \ldots, m ; k=1, \ldots, n_{j} \tag{1}
\end{equation*}
$$

where $Y_{j k}$ are independent Bernoulli distributed variables, with $P\left(Y_{j k}=0\right)=1-P\left(Y_{j k}=1\right)=\exp \left(-\varphi X_{j}\right)$. A negative respons for a replicate culture is thus denoted by zero.

3.2 The Maximum Likelihood Method

From (1) it follows that the logarithm of the likelihood function $\mathrm{L}(\varphi)$ is given by

$$
\begin{equation*}
\operatorname{logL}(\varphi)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}}\left\{-\left(1-Y_{j k}\right) \varphi x_{j}+Y_{j k} \log \left(1-\exp \left(-\varphi x_{j}\right)\right)\right\} \tag{2}
\end{equation*}
$$

The ML estimator ($\hat{\varphi}_{M L}$) is the value of φ that maximizes (2). As is pointed out in Does et al. (1988), this estimator must be slightly adapted in order to obtain an estimator with finite bias. If all $Y_{j k}$ equal 1 (this event occurs with a small but positive probability), then the ML estimate equals infinity and hence $E\left(\hat{\varphi}_{M L}\right)=\infty$, thus leading to an infinite, rather than an asymptotically negligible bias. Does et al. (1988) proposed the following modification: whenever $Y_{j k}=1$ for $j=1, \ldots, m, k=1, \ldots, n_{j}$ replace one $Y_{j k}$, for example the most suitable such as Y_{11}, by 0 . It is shown that this simple modification suffices to reduce the bias from infinity to the desired order. This adaptation of $\hat{\varphi}_{M L}$ will be assumed throughout the paper.

Sufficiency implies that the relevant observations from a LDA consist of the independent binomial random variables R_{j} defined by $R_{j}=\sum_{k=1}^{n_{j}}\left(1-Y_{j k}\right)$. The vector $\left(R_{1}, \ldots, R_{m}\right)$ will be denoted by \underline{R}. Furthermore let $n_{j}-R_{j}$ be denoted by Q_{j} and $\left(Q_{1}, \ldots, Q_{m}\right)$ by \underline{Q}.

3.3 Three Jackknife Versions of the ML Estimator

In general the jackknife is defined as follows. Suppose a parameter Θ is estimated on the basis of the stochastic variables
X_{1}, \ldots, X_{N}. Consider an estimate $T_{N}=T_{N}\left(X_{1}, \ldots, X_{N}\right)$. Then the i-th jackknifed pseudo-value is defined as

$$
\begin{equation*}
T_{N i}^{J}=N T_{N}-(N-1) T_{N-1}\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{N}\right), i=1, \ldots, N \tag{3}
\end{equation*}
$$

The jackknife estimator $\mathrm{T}_{\mathrm{N}}^{\mathrm{J}}$ defined by

$$
\begin{equation*}
T_{N}^{J}=N^{-1} \sum_{i=1}^{N} T_{N i}^{J} \tag{4}
\end{equation*}
$$

reduces the bias in many cases (see Efron (1982)). In our case, the pseudo-values in (3) can be obtained in three different ways. When $n_{j}=n$ the biometrical model (1) is a matrix with columns that are independent, identically distributed (iid) random vectors. As jackknife estimates are in general determined from iid variables, the natural way to jackknife is to drop one column from (1) at a time (see Strijbosch et al. (1987), and Kleijnen et al. (1987)); this yields the jackknife estimate $\hat{\varphi}_{J c}$. The two other versions are noniid cases and are obtained by deleting one row at a time (yielding $\hat{\varphi}_{\mathrm{Jr}}$) or one element at a time (yielding $\hat{\varphi}_{\mathrm{Je}}$), respectively (see Does et al. (1988)). Note that these last two estimates can be obtained from R.

3.4 Three Bootstrap Versions of the ML Estimator

Analogous to the three jackknife versions there are three bootstrap versions $\hat{\varphi}_{\mathrm{Bc}}, \hat{\varphi}_{\mathrm{Br}}$, and $\hat{\varphi}_{\mathrm{Be}}$. Suppose again that $\mathrm{T}_{\mathrm{N}}=$ $T_{N}\left(X_{1}, \ldots, X_{N}\right)$ is an estimate of the parameter Θ. The ordinary bootstrap approach consists of drawing M random samples $\left(X_{1}^{i}, \ldots, X_{N}^{i}\right)_{i=1, \ldots, M}$ of size N from X_{1}, \ldots, X_{N} (see Efron (1982)). Such a sample is obtained by computer generated random sampling with replacement. Although there exist more elaborated bootstrap methods (see Davison et al. (1986)) the simple bootstrap will be used. The i-th bootstrapped pseudo-value is defined as

$$
\begin{equation*}
{ }_{T}^{B}=T_{N i}\left(X_{1}^{i}, \ldots, x_{N}^{i}\right), \quad i=1, \ldots, M \tag{5}
\end{equation*}
$$

The bootstrap estimator $\mathrm{T}_{\mathrm{N}}^{\mathrm{B}}$ defined by

$$
\begin{equation*}
T_{N}^{B}=M^{-1} \Sigma_{i=1}^{M} T_{N i}^{B} \tag{6}
\end{equation*}
$$

could potentially reduce the bias when estimating the parameter in LDA. As discussed in the previous subsection (§3.3), there are three different ways to define a set $\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{N}}\right)$ from the biometrical model (1), thus resulting in the bootstrap estimators $\hat{\varphi}_{\mathrm{Bc}}, \hat{\varphi}_{\mathrm{Br}}$ and $\hat{\varphi}_{\mathrm{Be}}$. As before the c-variant represents the iid-case, and is only applicable when all $n_{j}=n, j=1, \ldots$, .

3.5 Salama et al. (1978) Bias-Reducing Methods

Using Taylor expansions and implicit function theorems, Salama et al. (1978) showed the existence of functions $H\left(\underline{Q}, \hat{\varphi}_{M L}\right)$ such that the estimator $\hat{\varphi}_{S}$ defined by

$$
\begin{equation*}
\hat{\varphi}_{S}=\hat{\varphi}_{M L}-H\left(\underline{Q}, \hat{\varphi}_{M L}\right) \tag{7}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
E\left(\hat{\varphi}_{S}\right)=\varphi+\Sigma_{j=1}^{m} \theta\left(n_{j}^{-2}\right) \tag{8}
\end{equation*}
$$

thus removing the first order bias term. The following two alternatives for the function H are given (yielding the estimators $\hat{\varphi}_{\mathrm{S} 1}$ and $\hat{\varphi}_{S 2}$):

$$
\begin{equation*}
G_{1}\left(\underline{Q}, \hat{\varphi}_{M L}\right)=\frac{1}{2} \sum_{j=1}^{m}\left(\frac{\partial^{2} \hat{\varphi}_{M L}}{\partial Q_{j}^{2}}\right) n_{j} e^{-\hat{\varphi}_{M L} \mathbf{x}_{j}}\left(1-e^{-\hat{\varphi}_{M L} \mathbf{x}_{j}}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{2}\left(\underline{Q}, \hat{\varphi}_{M L}\right)=\frac{1}{2} \Sigma_{j=1}^{m}\left(\frac{\partial^{2} \hat{\varphi}_{M L}}{\partial Q_{j}^{2}}\right)_{\underline{u}} n_{j} e^{-\hat{\varphi}_{M L} \mathbf{x}_{j}}\left(1-e^{-\hat{\varphi}_{M L} \mathbf{x}_{j}}\right) \tag{10}
\end{equation*}
$$

The second order derivatives in the right-hand side of (10) are evaluated at \underline{u}, defined by $\underline{u}=E(\underline{Q})$. Unfortunately the formula given by Salama et al. (1978) for $\frac{\partial^{2} \hat{\varphi}_{M L}}{\partial Q_{j}^{2}}$ shows typing errors. The correct formula is :

$$
\begin{align*}
\frac{\partial^{2} \hat{\varphi}_{M L}}{\partial Q_{j}^{2}}= & \frac{F_{j}^{2}}{D^{3}}\left\{\sum_{i=1}^{m} Q_{i} e^{-\hat{\varphi}_{M L} x_{i}} F_{i}^{2}\left(x_{i}+2 F_{i} e^{-\hat{\varphi}_{M L} x_{i}}\right)\right\} \\
& -2 \frac{F_{j}^{3}}{D^{2}} e^{-\hat{\varphi}_{M L} x_{j}} \tag{11}
\end{align*}
$$

where F_{i} and D are defined by, respectively,

$$
\begin{equation*}
F_{i}=F_{i}\left(\hat{\varphi}_{M L}\right)=x_{i} /\left(1-e^{-\hat{\varphi}_{M L} x_{i}}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
D=D\left(\underline{Q}, \hat{\varphi}_{M L}\right)=\sum_{j=1}^{m} Q_{j} e^{-\hat{\varphi}_{M L} x_{j}} F_{j}^{2} \tag{13}
\end{equation*}
$$

Salama et al. (1978) used a special modification of the ML estimator, in case all Q_{j} equal $n_{j}, j=1, \ldots, m$. That modification is essentially the same as described earlier in the subsection of the ML method (§3.2).

3.6 The Minimum Chi-Square Method

The Minimum Chi-Square or MC estimator ($\hat{\varphi}_{\mathrm{MC}}$) is determined as the value of φ that minimizes

$$
\begin{equation*}
x^{2}(\varphi)=\sum_{j=1}^{m} \frac{\left(R_{j}-n_{j} \exp \left(-\varphi x_{j}\right)\right)^{2}}{\left(n_{j} \exp \left(-\varphi x_{j}\right)\left(1-\exp \left(-\varphi x_{j}\right)\right)\right.} \tag{14}
\end{equation*}
$$

Since the expected value of the MC estimator is infinite, $\hat{\varphi}_{M C}$ has been adapted in the same manner as $\hat{\varphi}_{M L}$ has; see §3.2.

4. MONTE CARLO EXPERIMENTS

An extended version of the simulation program described in Does et al. (1988) has been used for our Monte Carlo experiments. The modification consisted of the addition of the three bootstrap estimators, the two methods of Salama et al. (1978), and the MC
estimator. Much care has been taken to test the program. For example, the results of Salama et al. (1978) which have been based on the exact distributions of $\hat{\varphi}_{S 1}$ and $\hat{\varphi}_{S 2}$ could be reproduced quite satisfactorily in the simulations. In this paper the statistical estimators are compared for two different designs with three and two different values, respectively, for the number of replicates (n). Thus, using the design method described in Section 2, the following values of $\varphi_{1}, \varphi_{2}, P_{1}, P_{2}$ and d have been chosen : $\varphi_{1}=0.001$, $\varphi_{2}=0.01, P_{1}=0.15, P_{2}=0.70, d=2$ (yielding $m=4$) and $d=3$ (yielding $m=7$). For the case $d=2$ the simulation program has been executed with $\mathrm{n}=6,12$ and 18 and in the case $\mathrm{d}=3$, with $\mathrm{n}=6$ and 12 . Simulation results have been obtained for 19 equidistant values of φ within the interval $\left[\varphi_{1}, \varphi_{2}\right]$. The number of generated samples for each combination of $\varphi_{1}, \varphi_{2}, P_{1}, P_{2}, d, n$ and φ was 1,000 . The number of bootstrap samples (M) was 100.

The simulation program has been written in PASCAL and uses the NAG (Fortran) subroutines G05DZF and G05DYF for the generation of the Bernoulli variables $\left\{Y_{j k}\right\}$ and the bootstrap samples, respectively. The structure of the program will be described briefly for the case $d=2$. For each of the 19 values of φ, a matrix $\left\{y_{j k}\right\}, j=1, \ldots, 4 ; k=1, \ldots, 18$ is generated 1,000 times. These numbers are used twice : one time for $n=18$ and one time for either $n=6$ or $\mathrm{n}=12$. This concession has been made in order to curtail the required CPU-time. Depending on the value of n, the numbers r_{j} are determined by $r_{j}=n-\sum_{k} y_{j k}$, where $k=1, \ldots, 6$ for $n=6, k=7, \ldots, 18$ for $n=12$ and $k=1, \ldots, 18$ for $n=18$. Thus 1,000 datasets $\left(x_{j}, r_{j}, n\right)$, $j=1, \ldots, 4$ result for each combination of φ and n. For each dataset the program calculates, if possible, the weighted-mean estimate φ_{0} (see Taswell (1981)). When all $r_{j}=0$ or n, this estimate cannot be determined. In that case $\varphi_{0}=\left(\varphi_{1}+\varphi_{2}\right) / 2$ has been taken. φ_{0} served as an initial estimate for the iterative determination of $\hat{\varphi}_{M L}$. $\hat{\varphi}_{M L}$ served as an initial estimate for the determination of $\hat{\varphi}_{\text {MC }}$, the jackknife, and the bootstrap pseudo-estimates. Comparison of the
statistical estimators has been based on the mean relative bias (MRB) and the coefficient of variation (CV), defined as follows :

$$
\begin{equation*}
\text { MRB }=\varphi^{-1} \Sigma_{t=1}^{1,000}\left(\hat{\varphi}_{t}-\varphi\right) / 1,000 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
C V=\varphi^{-1}\left\{\sum_{t=1}^{1,000}\left(\hat{\varphi}_{t}-\varphi\right)^{2} / 1,000\right\}^{1 / 2} \tag{16}
\end{equation*}
$$

The simulations used 59 hours of CPU-time on a VAX 8700 computer.

5. RESULTS AND CONCLUSIONS

The uncorrected ML estimator exhibits a positive bias. Theoretically this is due to the fact that there is a positive probability that all dilutions will produce growth so that the ML estimate becomes infinite. In practice, when m and $n_{j}, j=1, \ldots, m$ are large enough, this situation will not occur, and Monte Carlo simulations reveal the positive bias in that case. Resampling plans such as the jackknife and the bootstrap are designed to reduce the bias (see Section 3). The Monte Carlo results in Strijbosch et al. (1987) showed that jackknifing in LDA reduces both the bias and the mean squared error of the estimator. Does et al. (1988) explained that there are three different ways of constructing a jackknife estimator in dilution analysis. It is made plausible that all three jackknife estimators reduce the bias by eliminating the first order bias term, and Monte Carlo simulations showed the relative properties of these estimators with respect to the ML estimator for various designs. The three bootstrap versions of the ML estimator can be obtained in a similar way. The two bias-reducing methods in Salama et al. (1978) eliminate the first-order bias term in a way different from jackknifing and bootstrapping, and therefore it is interesting to compare these estimators. From former results (see Strijbosch et al. (1987) and Fazekas de St. Groth (1982)) it is clear that the MC estimator is not attractive. Nevertheless this
method is also considered in the Monte Carlo comparisons, especially because of the curious and inconsistent behaviour of its bias and mean squared error.

In the Figures 1a through 5b not all methods are included, in order to prevent confusion resulting from too many curves. For each category only the "best" one is shown. Does et al. (1988) concluded that, among the three jackknife estimators, $\hat{\varphi}_{J e}$ is the best. The present results confirm this conclusion. Thus $\hat{\varphi}_{J r}$ and $\hat{\varphi}_{J c}$ are not shown in the Figures. Comparing the simulation results for the three bootstrap estimates, $\hat{\varphi}_{\mathrm{Br}}$ is obviously the best estimator. In general, the results tend to be such, that $\operatorname{MRB}\left(\hat{\varphi}_{\mathrm{Be}}\right) \sim 2^{*} \operatorname{MRB}\left(\hat{\varphi}_{\mathrm{ML}}\right)$ and $\operatorname{MRB}\left(\hat{\varphi}_{\mathrm{Br}}\right)<\operatorname{MRB}\left(\hat{\varphi}_{\mathrm{Bc}}\right) \leq \operatorname{MRB}\left(\hat{\varphi}_{\mathrm{Be}}\right)$. The coefficients of variation for the three bootstrap estimators are more comparable. Thus $\hat{\varphi}_{\mathrm{Bc}}$ and $\hat{\varphi}_{\mathrm{Be}}$ are not presented in the Figures. The estimates of Salama et al. (1978) have nearly equal MRB and CV. However, there might be a slight preference for $\hat{\varphi}_{S 2}$. Thus $\hat{\varphi}_{S 1}$ is not included in the Figures. When comparing the remaining five estimators in the Figures 1a through 5 b , it becomes clear that in general the estimators $\hat{\varphi}_{\mathrm{Je}}$ and $\hat{\varphi}_{\mathrm{S} 2}$ should be preferred. In small designs, however, the jackknife estimator has the undesired property of a strongly increasing CV for values of φ near φ_{2} which can be explained by the frequent occurrence of the situation that all $Y_{j k}$ equal 1 when calculating the pseudo-estimates (see Figure 1b). An attractive property of the jackknife is that it also yields the variance estimate used to determine proper confidence bounds for φ. A major disadvantage of the estimating methods of Salama et al. (1978) is the lack of an estimator for the variance.

Provided that an experimenter works with designs, which are not too small (the design of Figure 4 seems to be large enough), it is clear that the jackknife version of the ML estimator - obtained by leaving out one element at a time - is the statistical procedure of choice.

ACKNOWLEDGMENTS

The authors thank Jack Kleijnen for helpful suggestions.

BIBLIOGRAPHY

Davison, A.C., Hinkley, D.V. and Schechtman, E (1986). Efficient bootstrap simulation. Biometrika 73, 555-566.

Does, R.J.M.M., Strijbosch, L.W.G. and Albers, W. (1988). Using jackknife methods for estimating the parameter in dilution series. Medical Informatics and Statistics Report 13, University of Limburg, Maastricht. Submitted for publication.

Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Philadelphia: SIAM.

Fazekas de St. Groth, S. (1982). The evaluation of limiting dilution assays. Journal of Immunological Methods 49, R11-R23.

Finney, D.J. (1978). Statistical Method in Biological Assay . 3rd Edition, New York : Academic Press.

Kleijnen, J.P.C., Karremans, P.C.A., Oortwijn, W.K. and Van Groenendaal, W.J.H. (1987). Jackknifing estimated weighted least squares: JEWLS. Commun. Statist.-Theor. Meth. , 16(3), 747-764.

Loyer, M.W. (1981). Using a serial dilution experiment to estimate the density of organisms. Unpubiished PH. D. Thesis, Montana State University.

Salama, I.A., Koch, G.G. and Tolley, H.D. (1978). On the estimation of the most probable number in a serial dilution assay. Commun. Statist.-Theor. Meth. , A7(13), 1267-1281.

Strijbosch, L.W.G., Buurman, W.A., Does, R.J.M.M., Zinken, P.H. and Groenewegen, G. (1987). Limiting dilution assays : experimental design and statistical analysis. Journal of Immunological Methods 27, 133-140.

Taswell, C. (1981), Limiting dilution assays for the determination of immunocompetent cell frequencies I : data analysis. Journal of Immunology 126 , 1614-1619.

Taswell, C. (1987), Limiting dilution assays for the separation, characterization, and quantitation of biologically active particles and their clonal progeny. In Cell Separation : Methods
and Selected Applications 4. Pretlow, T.G. and Pretlow, T.P. (eds). 109-145, New York : Academic Press.

Figure 1a

$$
\varphi^{1=.001} \varphi^{2=.01} p 1=.15 \rho 2-.70 \mathrm{~d}=2 \mathrm{~m}=4 \mathrm{n}=6
$$

Figure 1b
$\varphi^{1=.001} \varphi^{2=.01} \quad 01=.15 \mathrm{p} 2=.70 \quad \mathrm{~d}=2 \mathrm{~m}=4 \mathrm{n}=6$

$$
\frac{\text { Figure 2a }}{\varphi^{1-.001} \varphi^{2-.01} \text { p1-.15 p2-.70 d-2 m-4 n-12 }}
$$

Figure 2b
$\varphi^{1=.001} \varphi^{2-.01} \mathrm{p}^{1-.} 15 \mathrm{p} 2-.70 \quad \mathrm{~d}-2 \mathrm{~m}=4 \mathrm{n}=12$

Figure 3a
$\varphi^{1=.} 001 \varphi^{2=.01}$ p1=. 15 p2- $.70 \quad \mathrm{~d}=2 \mathrm{~m}=4 \mathrm{n}=18$

Figure 3b
$\varphi^{1=.001} \varphi^{2=.01 \quad p 1=.15} \mathrm{p} 2=.70 \quad \mathrm{~d}=2 \mathrm{~m}=4 \mathrm{n}=18$

Figure 4 a
$\varphi^{1=.001} \varphi^{2-.01}$ p1-. 15 p2-. 70 d-3 ma7 $n=6$

Figure 4b
$\varphi^{1=.} 001 \quad \varphi^{2=.01} \mathrm{p} 1=.15 \mathrm{pL}=.70 \mathrm{~d}=3 \mathrm{~m}=7 \mathrm{n}=6$

Figure 5a
$\varphi^{1-.001} \varphi^{2-.01}$ p1-. 15 p2-. 70 d-3 m-7 n-12

Figure 5b
$\varphi^{1=.001} \varphi^{2-.01} 01=.15$ р2-. $70 \quad \mathrm{~d}=3 \mathrm{~m}=7 \mathrm{n}=12$

IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
    Nonstationarity in job search theory
243 Annie Cuyt, Brigitte Verdonk
Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
Local Times of Bernoulli Walk
245 Aric Kapteyn, Peter Kooreman, Rob Willemse
Some methodological issues in the implementation of subjective poverty definitions
```

246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for Quality Inspection and Correction: AOQL Performance Criteria

247 D.B.J. Schouten
Algemene theorie van de internationale conjuncturele en strukturele afhankelijkheden

248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence On ($\mathrm{v}, \mathrm{k}, \lambda$) graphs and designs with trivial automorphism group
249 Peter M. Kort
The Influence of a Stochastic Environment on the Firm's Optimal Dynamic Investment Policy

250 R.H.J.M. Gradus
Preliminary version
The reaction of the firm on governmental policy: a game-theoretical approach
251 J.G. de Gooijer, R.M.J. Heuts
Higher order moments of bilinear time series processes with symmetri-
cally distributed errors

252 P.H. Stevers, P.A.M. Versteijne
Evaluatie van marketing-activiteiten
253 H.P.A. Mulders, A.J. van Reeken
DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen
254 P. Kooreman, A. Kapteyn
On the identifiability of household production functions with joint products: A comment

```
255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?
```

256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium concepts

257 P.H.M. Ruys, G. van der Laan
Computation of an industrial equilibrium
258 W.H. Haemers, A.E. Brouwer
Association schemes
259 G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equilibrium model of bargaining

260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments
261 A.W.A. Boot, A.V. Thakor, G.F. Udell
Collateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply
263 B. Bettonvil
A formal description of discrete event dynamic systems including perturbation analysis

264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg Rationing in open economy and dynamic macroeconomics: a survey

270 G. van der Laan and A.J.J. Talman
Computing economic equilibria by variable dimension algorithms: state
of the art
271 C.A.J.M. Dirven and A.J.J. Talman
A simplicial algorithm for finding equilibria in economies with linear production technologies

272 Th. E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed
exogenous variables
273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models
274 Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions
275 Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization
276 A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices
277 Th. van de Klundert and F. van der Ploeg Wage rigidity and capital mobility in an optimizing model of a small open economy
278 Peter M. KortThe net present value in dynamic models of the firm
279 Th. van de Klundert
A Macroeconomic Two-Country Model with Price-Discriminating Monopo- lists
280 Arnoud Boot and Anjan V. Thakor Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
281 Arnoud Boot and Anjan V. Thakor
Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing
282 Arnoud Boot, Anjan V. Thakor and Gregory F. UdellCredible commitments, contract enforcement problems and banks:intermediation as credibility assurance
283 Eduard Ponds
Wage bargaining and business cycles a Goodwin-Nash model
284 Prof.Dr. hab. Stefan Mynarski
The mechanism of restoring equilibrium and stability in polish market
285 P. Meulendijks
An exercise in welfare economics (II)
286 S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel
Optimal investment, financing and dividends: a Stackelberg differen-tial game
287 E. Nijssen, W. Reijnders
Privatisering en commercialisering; een oriéntatie ten aanzien van verzelfstandiging
288 C.B. MulderInefficiency of automatically linking unemployment benefits to priva-te sector wage rates
289 M.H.C. PaardekooperA Quadratically convergent parallel Jacobi process for almost diago-nal matrices with distinct eigenvalues
290 Pieter H.M. Ruys
Industries with private and public enterprises
291 J.J.A. Moors \& J.C. van Houwelingen
Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter KooremanVakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg The problem of not observing small expenditures in a consumer expenditure survey
294 F. Boekema, L. Oerlemans, A.J. Hendriks Kansrijkheid en economische potentie: Top-down en bottom-up analyses
295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber Consumption, Leisure and Earnings-Related Liquidity Constraints: A Note
296 Arthur van Soest, Peter Kooreman Estimation of the indirect translog demand system with binding non- negativity constraints

IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil
Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models
using cross sections, panels or both
303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

