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1. Introduction

In 1972 a representative sample of approximately 4000 men was drawn from the
Rotterdam male population aged 45-59. These men were invited to participate in
the so-called Kaunas Rotterdam Intervention Study (KRIS), a small-scale study
aimed at testing the feasibility of carrying out a double-blind randomized
drug intervention trial in the area of cardiovascular diseases in an open male
population, with special interest in operational and behavioral aspects. This
study was initiated by the World Health Organization and consisted of two
parallel studies simultaneously carried out in two different health care
systems: in Kaunas (Lithuanían SSR, USSR) and in Rotterdam (The Netherlands);
see Glasunow et al. (1982).
From September 1972 till the end of 1973, 3,365 Rotterdam men actually parti-
cipated in an initial screening examination which was the first of a number of
various selection stages for participants in order to become eventually elig-
ible for the intervention trial. Hence this initial screeníng examination is
the only extensive examination common for all 3,365 participants. At the time
of this examiniation a follow-up registration started by which each subject
was followed through the population registers of Rotterdam and other Dutch
municipalities, in order to register one of the following endpoints of follow-
up: emigration or death. In the latter case, the mortality causes were col-
lected from the Dutch Ministry of Health. A third possible endpoint of the
follow-up is study termination: March 1, 1982. This endpoint applies for a
subject if he was still alive at that time in the Netherlands.
The purpose of this paper is to analyze the relationship between a number of
covariables measured at the initial screening examination and the subsequent
incidence of death during the approximately 9 years of follow-up of the Rot-
terdam sample. The data is analyzed using two different models: the loglinear
survival model and the (less appropriate but often applied) logistic model.
For the loglinear survival model two estimation methods are used: a full
likelihood method which leans heavily on David and Moeschberger (1978) and the
well-known partial likelihood method of Cox (1972 and 1975).
In this paper only mortality from all causes is considered an endpoint. Subse-
quent papers will deal with several mortality causes, with special emphasis on
cardiovascular mortality and wíth using the results in a cost-effectiveness
model developed in Mulder and Hempenius (1982).
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2. Survival analysis

2.1. Introduction

The purpose of survival analysis is to analyze the dependency of a subject's
survival time probability on a number of explanatory variables. Survival time
is defined as the time elapsed since the start of follow-up (here the date of
the initial screening examination) till either the occurrence of a number of
mutually exclusive, independent and competing true "failure" causes (here
death and emigration) or the occurrence of independen[ termination of a sub-
ject's follow-up, so-called "censoring" (here the predetermined and fixed
censoring date of March 1, 1982, if a subject is still alive in the Nether-
lands at that time). One may, however, always dichotomize the causes of the
occurence of an endpoint by defining one "true" failure cause (the one of
interest), and grouping the other failure causes under the ceneored group.
This will indeed be done: mortality from all causes is the failure cause of
interest and emigration is treated as independent censoring.

2.2. The full likelihood function

The log likelihood function for the follow-up times of all subjects is derived
in the appendix:

t
(2.1) Rn L1 a E Rn~ai(ti)~ - E Jpiai(x)dx,

1E M iE H

where
ti : the follow-up time of subject i in years;
ai(t): the mortality rate of subject i as a function of time t;
M : the set of subjects who died;
H : the set of all subjects.
First only the simplifying assumption is made that the mortality rate ai(t) is
a constant in time: ai. Assuming 7~i to be a log-linear function of age ai and
a vector of covariables zi as measured in all subjects i at the initíal
screening examínation:

(2.2) ai - exp(~H f Baai f B'zi).
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the log likelihood function (2.1) boils down to

(2.3) Rn L1 a mB~ f sa E ai t g' E zi - exp(B~) E ti exp(Baai f g'zi),
1EM íEM iEH

where m equals the number of subjects died. This log likelihood has to be
maximized with respect to the coefficients SC, ga and S', with g' a row vector
of coefficients belonging to the covariables in z.
The above assumption for the mortality rate ai of constancy in time only
covers the cross-sectional information contained in the data and disregards
the longitudinal information which to a certain extent is also contained in
the datal). In order to extract also this longitudinal information one may go
about as follows. Partition the total follow-up time interval of a subject
into a number of subject-years and define a time variable t~ 0,1,2,... for,
respectively, the lat, 2nd, 3rd,... follow-up year of a subject2). Next model
the possible behavior of the zi-variables in time. This is done as follows.
The time dependency of ai(t) is defined as:

(2.4) ai(t) a exP{YC f Ya(ai t t) f Y`zi(t) f Ytt7

with Ya(ai f t) the effect of age and Ytt an autonomous trend term. The model
for zi(t) is assumed to be of the form:

(2.5) zi(t) - zi t bt f Czit

where again the zi are the initial measurements ~zi - zi(0)~, b is a column
vector and C a diagonal matrix. Substitute zi(t) into ai(t) and get:

(2.6) ai(t) - exp{YC f Yaai f Yt f Y'zi t Y~zit}

with Y~ Ya } Yt t Y'b and Y~ - Y'C.
The first hypothesis one might want to test is Y~ 3 0(i.e., C- 0, assuming
Y~ 0), meaning no interaction effects with time in zi(t). Another interesting

1) As mentioned in Section 1, only zi(0) is available for all subjecta. There-
fore zi(t) can be modelled in one way only. -

2) See also Holford (1976).
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hypothesis is y 3 ya (i.e., y'b ~- yt - 0), meaning that the combined pure time
effects of the covariables i n zi(t) plus the effect of an autonomous time
trend are zero. If one accepts both hypotheses one may write:

(2.7) ai(t) 3 exp{yC t ya(ai t t) t y'zi}.

Possibly, the (estimated) model ( 2.2) approximates this (estimated) model very
we11.3) which leads to an intereating point: the maximum likelihood estimation
procedure wíth model ( 2.7) requires an evaluation of the second summation term
of the log likelihood ( 2.1) over the set of subject-years4), which set is
approximately 9 times as large as the set H of subjects needed for the esti-
mation procedure with model ( 2.2). This maximization has been done by means of
the Newton-Raphson method using a selfwritten FORTRAN program.

2.3. Cox's partial likelihood function

The partial likelihood ís deríved by Cox (1972 and 1975) as:

(2.8) L2 ~ II {ai(ti)~ E ar(ti)}
iEM rEHi

with Hi the set of subjects r still surviving just before the mortality time
ti of subject 1 E M. The essence of this partial likelihood is the following
specification of the mortality rate as a function of age a, covariable vector
z and follow-up time t for subject i:

(2.9) ai(t) a a~(t)exp(daai t 6'zi),

implying that the partial likelihood (2.8) is only a function of the coeffi-
cient 6 and the row vector of coefficients d', leaving the purely time-depen-a
dent part a~(t) as arbitrary and irrelevant for the estimation of d and d'.a
It has to be noted that the values of the variables ai and zi in the model
(2.9) are those of one measurement point only (viz., the initial screening
examination) and that the longitudinal characteristics of the mortality rate

3) Note that this is purely an empirical matter.
4) See the appendix for the extension of (2.1) to subject-years.
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can only be investigated by the introduction of an interaction term zit in
(2.9).
The log partial likelihood without interaction terms follows from expressíons
(2.8) and (2.9):

(2.10) Jln L2 a da E ai f d' E zi - E Rn{ E exp(daar f d'zr)},
iEM iEM iEM n:Hi

whích has to be maximízed with respect to da and d'. For this purpose program
2L of the BMDP-package (1981) has been used.
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3. Logistic analysis

With logistíc analysis the probability of death within some specified time
period of follow-up of a subject, who participated in the initial screening
examination at the etart of this period, is specified as a logistic function
of a number of covariables meaeured at this examination. Logistic analysis,
however, does not utilize all the information contained in the data of a
prospective (incidence) study; see Green and Symons (1983). More specifically,
logistic analysis does not take the actual follow-up time into account, des-
pite its variation among subjects, and thus cannot properly deal with compe-
ting failure causes, although it is etill often recommended and applied for
prospective studies in epidemiology.5) It is appropriate for cross-sectional
(prevalence) studies, where no follow-up time is present.
The probability that a subject i with age ai and covariable vector zi dies
within some specified time period, is specified as a logistic function of ai
and zi:

1(3.1) Pr~death~ai, zi~ - {1 f exp(-~~ - ~aai - ~'zi)}-

where {G, ~a and row vector ~' are to be estimated. From [he logístic function
(3.1) the following log likelihood can be derived:

(3.2) Rn L3 m m{G t{a E ai t{' E zi - E Rn{1 t exp({p f~aai -F {'zi)}.
iEM iEM 1EH

This log likelihood has to be maximized with respect to {0, ~a and {'. For
this purpose program LR of the SMDP-package (1981) has been used.

5) This disadvantage of logistic analysis becomes of less importance as thefollow-up time interval becomes shorter and thus the number of mortality cases
becomes relatively smaller.
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4. The data

The covariables measured at the initial screening examination and chosen for
the mortality analyses are listed and defined in Table 1.6) Of the 3,365
participants, a number of 3,284 subjects had non-missing observations on all
of these covariables. Of these 3,284 aubjects, 342 died and 44 emigrated
during the follow-up time interval between the initial screening examination
and the censoríng date of 1 March 1982. Table 1 also gives the range, mean and
standard deviation for each covariable in the group of 3,284 subjects. The
correlation matrix of these covariables is given in Table 2, again for the
group of 3,284 subjects.
Besides the above covariables, the following two variables are also necessary
for survival analysis:
(i) the follow-up time, which is defined ín years and also given in Tables 1
and 2;
(11) a failure cause indicator, which is defined here as 0 for non-failure
(2,898 subjects), 1 for failure due to death (342 subjects) and 2 for failure
due to emigration (44 subjects).
As mentioned in Section 3, follow-up time is not used in logistic analysis. As
mentioned in Section 2.1, failure cause 1(death) is the failure cause of
interest and failure cause 2(emigration) is treated as censoring along with
"failure cause" 0 (non-failure).

6) Tables and figures may be found after the appendix.
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5. Results

5.1. Introduction

The major emphasis is on an application of the full likelihood approach for a
log-linear dependency model of the mortality rate, the results of which are
compared with those from Cox's partial likelihood approach and a logistic
model of the mortality probability. As a criterium helpful for these compari-
sons, but mainly used for covariable selection, the large-sample chi-square
likelihood ratio statistic is used. This statistic is defined as

(5.1)
XLR(v) - 2(Rn Lf - Rn Lr)

and is based on the ratio of the líkelihood Lf of the relevant full model to
the likelihood Lr of a restricted model. The number v of degrees of freedom is
the difference in the number of covariables between both models.

5.2. Full likelihood approach: constant rates

For computational simplicity use is made of model (2.2), i.e., with the morta-
lity rate assumed constant in time, in order to select the eventual set of
covariables relevant for total mortality. Subsequently it is checked in Sec-
tion 5.3 if the results with this selected and relevant set of covariables
remain similar when the computationally more complicated models (2.6) and
(2.7) are assumed, i.e., with also the longitudinal information included in
the mortality rate as described in Section 2.2.
The eventually selected set of covariables, with their estimated coefficients
(including estimated standard errors, correlations and t-ratio's) and the
likelihood ratio chi-square for including all covaríables listed ín addition
to the constant, are presented in Table 3. An interesting result is that a
model with a first as well as a second-order term for systolic blood pressure
and cholesterol performes significantly better than a model with either one of
these terms for both these covariables, despite the large collinearity between
these terms for each covariable. (The correlation coefficient is 0.99 for
systolic blood pressure as well as for cholesterol.) Including second order
terma in addition to the first order terms for systolic blood pressure and
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cholesterol gives a significant7) improvement of the likelihood:XLR(2) -
8.469; including first order terms in addition to the second order terms also
gives a significant improvement of XLR(2) a 7'217. Both these likelihood ratio
tests have been computed with a full model containing the 9 covariables listed
in Table 3. The first and second order terms for diastolic blood pressure,
when used instead of these terms for systolic blood pressure, do not produce
signifícant effects on the mortality rate.
Adding diabetes mellitus to the model containing the 9 covariables listed in
Table 3 does not give a signifícant improvement: 2XLR(1) a 0.969. Also no
significant improvement results from adding education, alcohol, Quetelet Index
and their quadratic terms to the model: 2XLR(6) a 3.31. With respect to smok-
ing, the binary variable " cigarette smoking" appears to be the only variable
of interest; addítionally includíng the number of cigarettes smoked does not
yield a significant improvement: 2XLR(1) s 0.003. Lately, it has been found by
Garrison et al. (1983) from the Framingham Heart Study data that "lean smo-
kers" demonstrate an excessive mortality risk. This hypothesis has been tested
here by adding the Quetelet Index, its quadratic term and the interaction of
both these terms with "cigaret[e smoking" to the model, yielding no signifí-

2cant improvement however: XLR(4) - 0.911. Finally, the interaction of age, as
measured at the initial screening, with the other 8 covariables listed in
Table 3 has been investigated by adding 8 interaction terms to the model,
which also does not yield a significant improvement: XLR(8) - 6.258. All five
likelihood ratio tests of this paragraph have been computed with a restricted
model containing the 9 covariables listed in Table 3.
In this section the covariables of Table 1 have been used to explain the
observed total death rate. Although these covariables have been selected for
their relevancy for explaining the death rate from cardiovascular diseases
(being approximately forty percent of the total death rate for males in the
age category 45-59) the set of covariables of Table 1 may also be regarded as
an indicator of the general health condition, with emphasis on the cardiovas-
cular part: ECG anomaly and angina pectoris condition. Not surprisingly this
part of the covariables also returns in the explanation of to[al death. If
other variables indicating a frequently occurring special high risk had been
present, these variables would also be significant in "explaining" the total

7) Significance levels (in the individual tests) of 5 percent have been usedthroughout.
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death rate. The presence of these variables (here ECG1, ECG2 and AP) evidently
allows for less biased estimation of the effects of the "true" more general
health indicators.

5.3. Full likelihood approach: variable rates

In models (2.6) and (2.7) follow-up time is included, together with the 9
covariables listed in Table 3, as the discrete variable t a 0, 1, 2, ...,
measuring the (tfl)-th follow-up year of a subject. The second term of the log
likelihood (2.1), where the summation is over subjects í E H, is therefore
evaluated over the set of subject-years, which set is approximately 9 times as
large as the set H of subjects. Of course, computing tíme increases almost
correspondingly.
In a first analysis the follow-up year t is simply added: this ís model (2.6)
without the interaction variables zit, with zi the vector of covariables of
Table 3, except AGE. This already produces a substantial improvement: XLR(1)a 21.762. In a second analysis also the interaction terms zit are added, so as
to test y~ 3 0 in model (2.6). No significant improvement results from adding
these 8 interaction terme: 2XLR(8) ~ 6.603, implying that the hypothe-
sis y~ - 0 in model (2.6) cannot be rejected.
Going back to the first analysis, one may now test the equality of the coeffi-
cients Ya for age ai and Y for follow-up year t, assuming y~ ~ O.The estimated
difference equals 0.00475 with a standard error of 0.0248 and thus is not
significantly different from zero. This implies that age ai and follow-up year
t can be combined ínto age in year t as in model (2.7), which is a simple and
appealing way to extract the longitudinal information contained in the dataset
at hand.
The results of the analysis wíth model (2.7) are presented in Table 4 in the
same way as in Table 3. The estimates in Table 4 are quíte similar to those in
Table 3, as they should according to the above tests. Table 5 and Figures 1
and 2 give an interpretation of the estimates in Table 4 in terms of the
mortality rate ratío. The minimum mortality points for systolic blood pressure
and plasma cholesterol content are estimated from Table 4 as 134.3 mm Hg and
as 207.5 mg~100 ml, respectively. It ie worth noting that these estimated
minimum mortality points are near the sample means of 138.1 mm Hg and 201.7
m1;~100 ml for systolic blood pressure and plasma cholesterol content,
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respectively; see Table 1. The estimatated standard errors8j for the minimum
mortality poínts are 13.25 and 5.67 for systolic blood pressure and plasma
cholesterol content, respectively.

5.4. Comparison with partial likelihood approach and loAistic reAression

In a first attempt to maximize the log partial likelihood (2.10) with the 9
covariables listed in Table 3, the computational procedure of program 2L
(proportional hazards model) of the BMDP-package (1981) did not converge to a
solution. However, after replacing the two dummy covariables ECG1 and ECG2 by
their sum, program 2L converged to a solution. The combination of ECG1 and
ECG2 in their sum is jus[ified by their insignificantly differing estimated
separate coefficients in Table 4.
In Table 6 the reaults of four analyses with ECG1 f ECG2 are presented to-
gether:
(i) full likelihood approach with model (2.2);
(ii) full likelihood approach with model (2.7);
(iii) partial likelihood approach;
(iv) logistic regression.
For an interpretation of the estimated coefficients in these four analyses it
has to be noted that in analyses (i) -(111) logarithms of rate ratios are
estimated and that in analysis (iv) logarithms of probability odds ratios are
estimated. The results from analyses (i) -(iii) thus are comparable, while
the estimated coefficients from analysis (iv) are in an absolute sense larger
than those from analyses (i) - (iii).
It is interesting to compare the chi-square likelihood ratio statistics for
including all 8 covariables in addition to the constant for these four analy-
ses. It appears that analysis (ii) yields a substantially higher chi-square
than the other analyses, which is caused by the fact that the explanatory
variable AGE in analysis (ii) not only represents the cross-sectional age
structure at the initial screening examination, but, AGE being the sum of
initial age and follow-up year t, it also respresents the effect of
(longitudinal) aging. It further appears that analyses (i), (111) and (iv)

8) Here and in Table 5 the estimated standard errors have been calculatedusing a theorem in Rao (1973, pp. 387-389) on the distribution of a functionof statistics. The functions concerned have an asymptotically normal distri-bution.
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yield approximately the same chi-square, where particularly the logistic
analysis (iv) merits some attention. As mentioned in Section 3 logistic
analysis does not utilize all the information from the data as the stochastic
mortality process is simply represented by a random binary outcome, whereas in
the other analyses this process is represented by the continuous random
variable time of death. Hence, one would expect, as in Green and Symons
(1983), the logistic analysis (iv) to yield a markedly lower chi-square than
analyses (i) and (iii) considering the long follow-up time interval of
approximately 9 years. The reason why apparently not much information is lost
by consideríng the stochastic mortality process only as a simple random binary
outcome is the relatively small number of mortality cases despite the long
follow-up interval.
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6. Discussion

In this paper two mathematical descriptions of the stochastic mortality pro-
cess are considered: a crude description in terms of probabilities of death
duríng specified time intervals of follow-up conditional upon being alive at
the start of these intervals and a more sophisticated description in terms of
mor[alíty rates a, with adt the probability of death during an infinitely
small time interval (t, tfdt), given alive at time t. When measuríng the
incidence of a relatively rare event, such as mortality observed in a cohort
over a small time interval, the distinction between a rate and a probability
may aeem somewhat academic. However, a description in terms of rates is mathe-
matically much more convenient as a rate is directly related to the probabíli-
ty density function of the continuous random variable time of death. This
facilitates the generalization in varíoua directions, such as longer follow-up
intervals where death becomes a much less rare event and the presence of
competing risks, when the total death rate is the sum of a number of cause
specific death rates. When using probabilities of binary outcomes in these
more general circumstances one may run into problems, since the information
provided by only a binary mortality outcome, gives too crude a description of
the mortality process.
Another interesting point to discuss is the dependency specification. In this
paper an exponential dependency model is chosen for rates, see expressions
(2.2) and (2.9), and a logistic dependency model is chosen for probabilities,
see expression (3.1). The reasons for these choices are epidemiological tra-
dition and computational simplicity. As to tradition: coefficients of the
exponential dependency model represent logarithms of rate ratios and the
coefficients of the logistic dependency model represent logarithms of proba-
bility odds ratios, both ratios being well-known measures of association in
epidemiology. As to computational simplicity: an exponential function is
always positive, as a rate should be, and a logistic function ís always in the
interval (0,1), as a probability should be, without the need to make any
restrictions on the coefficients in both dependency models. It has to be
mentioned, however, that no clear biologícal mechanísm leads to these depen-
dency models and that the mortality process is looked at in an isolated way.
Recent developments in this area (Woodbury et al. 1977, 1979 and 1981) consi-
der the total life trajectory of a longitudinally followed cohort in the
presence of the simultaneous processes of aging and mortality selection. An
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analytically elegant and tractable way derived by Woodbury et al. is to assume
that (i) the covariables obey an autoregressive structure in surviving sub-
jects of the cohort (the aging process), and (ii) the mortality rate depends
quadratically on the covariables (a convexly shaped mortality selection pro-
cess). These assumptione then comply with a multivariate normal distribution
of the covariables in the surviving cohort, with the attractive property that
the time-behaviour of the mean vector and covaríance matrix as well as the
unconditíonal survival function can be analytically expressed into the parame-
ters of the aging process and the mortality selection process. This facili-
tates the possibility of making future projections of the total life trajec-
tory of a cohort. However, the maximum likelihood procedure for estimating the
quadratic dependency model for the mortality rate is computationally more
complicated as constraints on the parameters of this quadratíc dependency
model need to be made in order to guarantee the positiveness of the mortality
rate. The empirícal results in this paper confirm the convexly shaped relat-
ionship as postulated by Woodbury et al. between the mortality rate and the
contínuous explanatory covariables systolic blood pressure and plasma choles-
terol, although here as a quadratic function in the exponent, for ease of
estimation. Of course, one should be careful when interpreting the increasing
mortality rate associated with decreasing systolic blood pressure or plasma
cholesterol in terms of cause and effect.
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Appendix on the log líkelihood (2 1)

Subject i of the total cohort H is followed during the time interval ~0, ti~.
The only type of censoring present is of Type I, i.e., the total follow-up
time ti of subject i is either predetermined or stochastíc and it is stochas-
tic only íf one of K failure causes produces time ti. Correspondingly, two
types of events are defined for each subject i E H:
(i) event Mp, occurring if the follow-up ends without failure at predetermined
time ti;
(11) event Mj (j - 1,...,K), occurring if the follow-up ends at stochastic
time ti, produced by failure cause j(j - 1,,,,,K),
The set H is partitioned into the sets M~, M1,,,,, MK, Each subject i E H
belongs to exactly one of these sets. This is also denoted by the zero-one
indicators d01' sli' "'' 6K3' which are defined as dji ~ 1 if i E Mj (j ~ 0
1, ..., K) and 6j1 ~ 0 otherwise. ~
The likelihood function L1 for subject i E H can now be written as:

K d,
(A.1) Li - ~Fi(ti)~ ~i jIIl ~aji(ti)F1(ti)~ Ji

where aji(ti) is the failure rate at time ti from failure cause j(j -
1,...,K) in subject i E H and Fi(ti) is the survival function at tíme t, of
subject i E H:

t K
(A.2) Fi(ti) ~ exp~- JC1{ E a(x)}dx~.j-1 ji

In expression (A.1) Fi(ti) denotes, for subject i E M~, the survival probabil-
ity for predetermined time ti and aji(ti)Fi(ti)dti denotes the probability of
failure from cause j at stochastic time ti for subject i E Mj (j - 1,...,K).
The likelihood function for all subjects in H is, because of independence:

K(A.3) L- II Li - II Fi(ti) II li a. (t )F (t ),
~H ~MC j-1 iEMj Ji i i i

This can be expressed into the rates ,1ji as follows:
K t

(A.4) L- II { II aji(ti) II exp~- fOiaji(x)dx~}~
jzl iEMj iEH



16

which follows from the survival function (A.2). This ímplies that Rn L is
additively separable with respect to the causes j s 1,...,K:

(A.5) Rn L- E{ E kn~aji(ti)~ - E f~iaji(x)dx}.
jzl 1EMj 1EH

A separate maximization for each failure cause j maximizes the log likelihood
(A.5). Suppressing the index j for a particular failure cause, one has from
the log likelihood (A.5):

t
(A.6) Rn L z E Rn~ai(ti)~ - E Jpiai(x)dx,

iH~1 iEH

which equals the log likelihood (2.1).
The extension to subject-years, assuming constancy of the failure rates aji in
each year of the follow-up interval, and with i now denoting subject-year i
and wi the length of subject-year i, is as follows:

K
(A.7) Rn L- E { E Rn a. - E w a, }

j-1 i~tj di iEFI' i di ~

with Mj and H' now sets of subject-years.
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Table 1. A selected number of variables measured in 3,284 subjects participating in the initial screening examination.

variable

systolic blood pressure
diastolic blood pressure
cholesterol
age
ECG anomaly 1

ECG anomaly 2

angina pectoris

cigarette smoking

number of cigarettes smoked

symbol definition

SBP
DBP
CH
AGE

ECG1

mm Hg
mm Hg
mg~100 ml plasma
years
~ 1 for Minnesota codes I-1,2
a 0 elsewhere

ECG2 a 1 for Minnesota codes I-3,
IV-1,2,3, V-1,2,3 or VII-1

a 0 elsewhere

min. max. mean stand. dev.

84 246 138.055 20.204
26 164 79.971 12.144
91 428 201.722 34.036
44 60 52.544 4.285
0 1 0.022 0.145

0 1 0.081 0.272

1 0.058 0.234AP s 1 for a positive Rose questionnaire 0
(Rose and Blackburn 1968)

~ 0 elsewhere
SMOK s 1 yes

a 0 no
CIG s 0 for none

z 1 for 1-9 cigarettes~day
- 2 for 10-19 cigarettes~day
a 3 for ~ 20 cigarettes~day

0 1 0.635 0.482

0 3 1.408 1.221



18

Table 1 (continued)

variable symbol definition min, max, mean stand. dev.
diabetes mellitus DM ~ 1 yes 0 1 0.018 0.132

- 0 no
alcohol use ALC ~ 1 for no use or less than once a month 1 3 1.865 0.653

~ 2 for regularly or daily a moderate
amount

a 3 for regularly or daily a large amount
Quetelet index QI weight~height2 (kg~m2) 16.7 47.9 25.514 3.002
education EDUC ordered categories from primary 1 9 3.383 2.621

education (1) to university (9)
follow-up time TIME years 0.022 9.455 8.464 1.565
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Table 2. Correlation matrix of variables listed in Table 1; each correlation coefficient computed froo 3~284 pairs.

SBP DBP CH AGE ECG1 ECG2 AP SMOK CIG DM ALC QI EDUC TIME

SBP 1.00
DBP 0.70 1.00
CH 0.09 0.08 1.00
AGE 0.14 0.04 -0.02 1.00
ECG1 0.02 0.01 0.05 0.07 1.00
ECG2 0.16 0.12 0.05 0.13 0.22 1.00
AP -0.00 -0.00 0.06 0.07 0.13 0.11 1.00
SMOK -0.09 -0.13 0.01 -0.05 -0.01 -0.04 -0.01 1.00
CIG -0.08 -0.14 0.02 -0.06 -0.02 -0.04 -0.04 0.88 1.00
DM 0.05 0.05 0.01 0.04 0.03 0.05 0.06 -0.02 -0.02 1.00
ALC 0.04 0.06 0.05 -0.04 -0.00 -0.00 -0.02 0.01 0.05 -0.02 1.00
QI 0.19 0.22 0.16 0.01 -0.02 0.07 -0.01 -0.16 -0.11 0.02 0.07 1.00
EDUC 0.02 0.06 0.03 -0.11 -0.00 0.00 -0.11 -0.24 -0.21 0.00 0.08 0.02 1.00
TIME -0.05 -0.04 -0.02 -0.11 -0.12 -0.14 -0.09 -0.05 -0.05 -0.03 -0.00 0.01 0.03 1.00
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Table 3. Maximum likelihood estimates (full likelihood approach) with model
(2.2) for the mortality rate and with 3,284 subjects.

variable est. coeff. est. SE est. coeff.~est. SE
0. constant -5.97821 1.76629 -3.385
1. SBP~10 -0.32186 0.18410 -1.748
2. SBP2~1000 0.11998 0.05983 2.005
3. CH~10 -0.17506 0.07692 -2,276
4. CH2~1000 0.04204 0.01683 2.498
5. AGE 0.09235 0.01334 6.923
6. SMOK 0.46515 0.12024 3.869
7. ECG1 0.72672 0.22765 3.192
8. ECG2 0.81527 0.14702 5.545
9. AP 0.73095 0.16460 4.441
XLR(9) - 173.574

correlation matrix of estimated coefficients
0 1 2 3 4 5 6 7 8 9

0 1.00
1 -0.78 1.00
2 0.77 -0.99 1.00
3 -0.44 -0.03 0.02 1.00
4 0.42 0.02 -0.01 -0.98 1.00
5 -0.40 0.02 -0.04 -0.03 0.05 1.00
6 -0.11 0.02 -0.01 0.03 -0.03 0.05 1.00
7 0.07 -0.04 0.04 -0.06 0.05 -0.01 0.00 1.00
8 0.03 0.04 -0.07 -0.02 0.01 -0.10 0.05 -0.28 1.00
9 -0.06 0.03 -0.03 0.10 -0.13 -0.04 0.02 -0.18 -0.09 1.00
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Table 4. Maximum likelihood estimates (full likelihood approach) with model
(2.7) for the mortality rate and with 29,398 subject-years.

variable est. coeff. est. SE est. coeff.~est. SE

0. constant -6.48486 1.74746 -3.711
1. SBP~10 -0.32722 0.18484 -1.770
2. SBP2~1000 0.12186 0.06008 2.028
3. CH~10 -0.17561 0.07629 -2.302
4. CH2~1000 0.04231 0.01666 2.540
5. AGE~ 0.09492 0.01140 8.326
6. SMOK 0.47293 0.12028 3.932
7. ECG1 0.74920 0.22702 3.300
8. ECG2 0.83022 0.14628 5.676
9. AP 0.74590 0.16402 4.548

~ age in year t

XLR(9) - 195.299

correlation matrix of estimated coefficients
0 1 2 3 4 5 6 7 8 9

0. 1.00
1. -0.79 1.00
2. 0.78 -0.99 1.00
3. -0.45 -0.03 0.02 1.00
4. 0.43 0.02 -0.01 -0.98 1.00
5. -0.38 0.02 -0.03 -0.03 0.04 1.00
6. -0.11 0.03 -0.02 0.03 -0.03 0.05 1.00
7. 0.06 -0.04 0.04 -0.05 0.05 0.00 0.00 1.00
8. 0.01 0.04 -0.07 -0.03 0.02 -0.07 0.05 -0.28 1.00
9. -0.07 0.04 -0.02 0.10 -0.13 -0.02 0.02 -0.17 -0.09 1.00
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Table 5. Effects of covariables on the mortality rate in terms of the rate
ratio (RR); interpretation of the estimates in Table 4.

variable est.RR est.SE~)

AGE (1 year increase) 1.10 0.013
SMOK 1.60 0.193
ECG1 2.12 0.480
ECG2 2.29 0.337
AP 2.11 0.346

For systolic blood pressure and cholesterol see Figures 1 and 2 reapectively.
~ See footnote 8.



Figure 1. Interpretation of the estimates in Table 4: the mortality rate ratio (RR) as a function of systolic bloodpressure ( SBP); the minimum mortality point is 134.3 mm Hg, where RR - 1.
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Figure 2. Interpretation of the estimates in Table 4: the mortality rate ratio (RR) as a func[ion of cholesterol (CH);the minimum mor[ality poin[ is 207.5 mg~100 ml plasma, where RR - 1.
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Table 6. Comparison of four analyses.

variable

constant

SBP~lU

SBP2~1000
CH~IU

CH2~1000
~

AGE
SMOK

ECG1 t ECG2
AP

XLR(8)

analysis (i)
full likelihood
with model (2.2)

coefficient (SE)

-5.9590 (1.76446)
-U,32471 (0.18376)
0.12117 (0.05966)

-0.17578 (0.07685)
0.04219 (0.01682)
O.U9251 (0.01333)
0.46439 (0.12020)
0.78514 (0.10542)
0.72681 (0.16408)

173.49

analysis (ii)
full likelihood
with model (2.7)

coefficient (SE)

-6.46784 (1.74575)
-0.32978 (0.18450)
0.12293 (0.05991)

-0.17619 (0.07625)
U.04242 (0.01665)
0.09503 (0.01139)
0.47223 (0.12024)
0.80273 (0.10495)
0.74228 (0.16354)

195.23

analysis (iii)
Cox's partial
likelihood

coefficient (SE)

-0.3329 (0.1849)
0.1242 (0.0601)

-0.1770 (0.0764)
0.0425 (0.0167)
0.0935 (0.0133)
0.4708 (0.1203)
0.8026 (0.1054)
0.7430 (0.1638)

177.55

analysis (iv)
logistic
regression

coefficient (SE)

-2.757 (2.131)
-0.441 (0.221)
0.163 (0.073)

-U.237 (0.106)
0.057 (0.024)
0.100 (0.015)
0.518 (0.131)
0.909 (0.130)
0.864 (0.193)

177.18
~ AGE - age in year t in analysis (ii); AGE - age at initial screening (t - 0) in other analyses;
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