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ABSTRACT

A generalization for underdetermined systems of the wellknown Newton-Kantoro-
vich theorem gives bounds for the distance of a point, say O, in Hilbert space
X to a nearby manifold S = {x € X | f(x) = 0}. Here f: X > Y is a differen-
tiable mapping such that Df(0) is surjective; f(0), Df together with right
inverse Df(O)* satisfies typical Kantorovich-like conditions. Analysis in the
normal space at 0 of § = {x € X | f(x) = f(0)} gives an upperbound of d(0,S).
Furthermore the Kantorovich conditions effect S to be 1locally in a convex

cone. The distance of O to that cone gives a lowerbound of d(0,S).



1. INTRODUCTION

The purpose of this paper is to derive bounds, both upper bounds as lower
bounds, for the distance of a manifold to a nearby point.
The starting point and main tool in the construction of the bounds is the

classical Newton-Kantorovich theorem.

THEOREM 0.[2]. Let Y,Z be Banach spaces. Let B(O,r) be an open ball in Banach
space Z and let be p: B(O,r) C Z @ Y Frechet differentiable on B(O,r) with

IDp(x) - Dp(y)] ¢ L Ix - yl. x,y € B(O,r). (1.1)
Assume that D;’(O)_1 € L(z,Y) exists,

Ipe(0) " < A7, Iop(@) ! p(0)] = 7

[[aN

Yo K= LY X~ < &
and
M:= A(1-/1-2x)/L < r. {1.2)

Then the equation ¢(x) = O has a solution z € B(O,M) C Z and z is a unique

zero of @ in B(O.pl) C Z, where
@y = A(1+ /1-2x)/L a
For the formulation of the distance problem in section two we consider the

Hilbert spaces X and Y and we investigate f: B(O,r) C X 2 Y, a Frechet diffe-

rential mapping. We assume that

(i) A:= Df(0) € L(X,Y) is surjective and |A*| < A-l. where A* € L(X,Y) is
the right inverse of A,

(ii) |pf(x) - Df(y)] ¢ L Ix-yl, x,y € B(O,r), (1.4)

(iii) |a* £(0)] = ¥ < ¥, (1.5)

fiv} Raba X € i, (1.6)



and

(v) M:= A(1-/1-2x)/L < r.

We use the following notation:

n
"

and

(924
n

N1 denotes

{x € B(O,r)|f(x)

{x € B(O.r)lf(x)

Ker(A) being the

complement of N, .

1

(1.7)
= 0} (1.8)
= £(0)}. (1.9)

tangent space of S in 0. Let be N2 the orthogonal

Analysis in the normal space N2 at 0 of § leads to an upperbound of d(0,S),

theorem 1. The Kantorovich condition (1.6) effects S to be locally in a convex

cone. Theorem 2 gives

d(o,s).

the distance of O to that cone as a lower bound of

This general approach leads to a manageable method to determine sharp error

bounds for an approximate solution of an undetermined system.



2. BOUNDS FOR d(0,S)

THEOREM 1. The mapping f: B(O,r) C X > Y described in the introduction has a

zero z in B(O,M) n Nz; z is the unique zero of p = f|N2 in B(O,pl) fa) N2 where
oy = A1 + V/1-2x)/L. (2.1)

PROOF. The surjectivity of A implies that the restriction AIN2 is bijective.
-1
» -
Its inverse is also continuous and equals the right inverse AY = A (AA ) of

A [1].
Let be p = lez. This mapping @: N2 n B(O,r) @ Y satisfies the conditions of

the Newton-Kantorovich theorem O formulated above. Hence ¢(x) = 0 has a solu-

tion z in B(O,M) n N2 and z is the unique zero of ¢ in B(O.pl) N N2. D
LEMMA 1. For the zero z of @ = fIN2 in B(0,M) n N, holds

B:=lz| 2 e, . (2.2)
where

e, = A(-1 + /1+2X)/L, (2.3)

with ¥ = gL,

PROOF. Since Df is Lipschitz continuous on B(0,r) we have |f(z) - £(0) - Az| <
- B2 and consequently [3]

2=

¥ = 1a"c0)] = |z + A"(f(z) - £(0) - Az2)] < B+ # L BAL,

*
for z = A+Az as follows from z € R(A ).
Hence the positive zero 92 of the quadratic function t 2 3 L X-l t2 + t -7y is
majorized by B. That proves (2.3). o

REMARK. As a consequence of (1.7) we get B < M < 2 y. Hence

LB < 2Ly < A. o (2.4)



In the sequel we use the rollowing notation

<
"

A-L B’

where, as above B = |z].
LEMMA 2. Q(x) is regular for x € V and

|‘i2(l't)-1 P(x) ]| (w, nEV

{x € x||x] < B}, P(x):= nf(x)lnl. Q(x):= Df(x)lNz, x €V,

(2.5)

(2.6)

(2.7)

PROOF. Let be x € V and y = ¥y * ¥or ¥y € Ni' i =1,2. Then Df(x)y = P(x)y1 +

Q(x)y,. Since P(0) = O, Ipx|] < Ipf(x) - pf(0)] < LB, x € V. Similarly

la(x) - Q(0)] ¢ Ipf(x) - pf(0)] ¢ LB, x € V. Since Q(0) = Dp(0),
@) - a©) el ¢ <t

as follows from B < M and (2.4). This implies that
Q(x) = (I + (a(x) - @(0)) a(0) H)a(0)

is invertible for each x € V and

<1
la)™ 1 ¢ la@) ™! (1-Len™) ¢ -Lp 7L

Hence IQ(x)'1 Pix)] ¢ LBO-LE) ™Y = o,

For reasons of shortness we define

W= {x = Xt %, € X|x lel + |x2| < ﬁ,xi € Ni’ i=1,2}
and with w = wy ot w2 € X, w, € Ni' 1 =92
K(w) = {(1-1)w; + x,| T €[0,1], x, € N,, |x,-w,| ¢

o lel T}.

(2.8)

(2.9)

The lines along which the proof of theorem 2 will be given can be explained

with a figure.



fig. 1. w € SNnWnV contradicts S n \InN2 a2 &,

In lemma 3 we prove that w €WnV inplies K(w) CW AN V. In lemma 4 indirectly
we prove that w € W n V implies f(w) # 0. So S C v€ u W° and d(0,S) 3 d(0,4°).
In this manner we get m:= d(O,wc) as an upper bound for the distance of O to

the manifold S.
LEMMA 3. If w = w, ¢w2€HthhenK(w) CVNW.
PROOF. Let be x = x; + X, € K(w). Then there exist &, T € [0,1] and a unit
vector v € N, such that x, = (1-1)w, and x; = w, + € lel 1tv. Thus
2 2 2 2 2 2 2
le = (1-7) 'wll ¥ lwz i “"IVIIWI $ (_1'1) lwll ¥ (Iwz' * “1"‘1') = g(7).
2 2 2 2
Now g(0) = [w|€ < B and g(1) = (|V2| + alwll) ¢ p° for w € V and w € W res-
pectively. So x E V.
Similarly we have °‘|"1| + |x2| galwll(l.-(l-c)'t) + Iwzl < B. Thus also
x EW. o

LEMMA 4. The function f has no zero inwWwnV.

PROOF. Assume w = w, + W, EWNV, vy € Ni' i = 1,2 and f(w) = 0.
Define a function G as follows

(T.xy) G(T.x,) = £((1-T)wy4x5) o+ X, €N,, (1-1)2 |v::1|2 . Ixz,.|2 < .



Then G(O.wz) = 0 and the derivative DZG(O.wz) of G in (O,w2) with respect to
x, equals Q(w). By lemma two Q(w) is regular. According to the implicit func-
tion theorem there exists a §>0 and a differentiable function y:(-S,S)-)N2 nv
such that y(0) = v, and for T € (-§,§) holds

G(T.y (1)) = 0, Dy(1) = -D,G(T,¥ (1) D,G(r.¥(7))

where D1 and D2 denote differentiation with respect to T and x5 respectively.

Since

DlG(T,xz) = —P((l-r)wl‘xz)wl, DZG(T,xZ) = Q((l-T)w1+x2)

we have
[ov (O] ¢ 1 Qu(t-t)w; + (1) ™ P11y + v lwyl o lwgl, 2] < s,

as follows from lemma 2. Consequently
T
lv(v) = w,l = | [ y(o)dol ¢ o fwlz, 0 < x <5,
0

Hence (1-'t)w1 + y(t) € K(w) if v € [0,8) € [0,1]. If T T € [0,8) then
|y(11) - v(12)| o lel |11-12| which implies, by the Cauchy criterion, that

w = 1im((1-1)w1+v(1)) exists in the closed K(w) and thus w € V n W as follows
T8
from lemma 3. So the function y can be prolonged and extended until =< equals

1, i.e. G(1,y(1)) = O. Thus f(y(1) = 0. That means »(y(1)) = 0, with
v(l) EVn N2 and ¢ = f|N2. This contradicts theorem 1. Hence w E W N V im-
plies f(w) # O. o

THEOREM 2. Let f: B(O,r) C X 2 Y satisfy the conditions given in the introduc-
tion and let be

=3

g(1):= T(A/L-1) (t2+ (A\/L-1)%) N EETL D (2.10)

b

Then

g(M) .% V3 < x < % and /1-2 + #(1-2x) ¢ K <K
d(0,S) > m:= - N o (2.11)
g(e,) ,0 < x < % and x ¢ min{x,/1-2x+%(1-2x)}



where M and e, as given in (1.7) and (2.3) respectively.

PROOF. With simple computations we find

ok
a(0,w%) = p(1+a?) = g(B) < B,

where « and B are given in (2.6) and (2.2) respectively. So

d(0,s) > a(0,w° u V%) = g(p).

It is easy to see that Tt = } A\/L is the axis of symmetry of the graph of g.

The function g increases on (0, # A/L] from O until its maximum % A /E/L and

decreases on [# A/L, A/L) to zero. Since e, { B { M as we know from theorem 1

and lemma 1,
d(0,8) 2 m:= min{g(e,), g(M)} .

The symmetry of g implies that

m=g(M <M 2 ¥ ML and €5 2 AL -M (2.
and
m = g(p,) < M<%XLor (M) %)L and P, < A/L-M) (2.
With (1.7) we find M 2 # AL iff x 2 g and with (2.3) we get that s 2 A/L
iff /1-2x + % (1-2x) ¢ X ¢ k. Since x 2 /1-2x + #(1-x) for x 2 % /3: 12
can be concluded.
COROLLARY. If y = ¥, i.e. x = X, then
%]
gM) . § Y3<¢x<i
m = d(0,8) 2 1,f- (2.
gle,) . x <3 V3
PROOF. The two conditions (2.12) and (2.14) lead to the two cases of (2

with the same means as in the theorem.

12)

13)

- M
+11)

14)

.14)
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