Tilburg University

An upper and a lower bound for the distance of a manifold to a nearby point

 Paardekooper, M.H.C.Publication date:
1988

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Paardekooper, M. H. C. (1988). An upper and a lower bound for the distance of a manifold to a nearby point. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 321). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

AN UPPER AND A LOWER BOUND FOR THE DISTANCE OF A MANIFOLD TO A NEARBY POINT

M.H.C. Paardekooper

FEW 321

AN UPPER AND A LOWER BOUND FOR THE DISTANCE OF A MANIFOLD

TO A NEARBY POINT

M.H.C. Paardekooper

Department of Econometrics
Tilburg University
Tilburg, The Netherlands

This research is part of the VF-program "Econometrie van Micro-economische gedragsmodellen", which has been approved by the Netherlands Ministery of Education and Sciences.

ABSTRACT

A generalization for underdetermined systems of the wellknown Newton-Kantorovich theorem gives bounds for the distance of a point, say 0 , in Hilbert space X to a nearby manifold $S=\{x \in X \mid f(x)=0\}$. Here $f: X \rightarrow Y$ is a differentiable mapping such that $D f(0)$ is surjective; $f(0)$, Df together with right inverse $\mathrm{Df}(0)^{+}$satisfies typical Kantorovich-like conditions. Analysis in the normal space at 0 of $\widetilde{S}=\{x \in X \mid f(x)=f(0)\}$ gives an upperbound of $d(0, S)$. Furthermore the Kantorovich conditions effect S to be locally in a convex cone. The distance of 0 to that cone gives a lowerbound of $d(0, S)$.

The purpose of this paper is to derive bounds, both upper bounds as lower bounds, for the distance of a manifold to a nearby point.
The starting point and main tool in the construction of the bounds is the classical Newton-Kantorovich theorem.

THEOREM O.[2]. Let Y, Z be Banach spaces. Let $B(O, r)$ be an open ball in Banach space Z and let be $\varphi: B(0, r) \subset Z \rightarrow Y$ Frechet differentiable on $B(0, r)$ with

$$
\begin{equation*}
|D \varphi(x)-D \varphi(y)| \leqq L|x-y|, x, y \in B(0, r) \tag{1.1}
\end{equation*}
$$

Assume that $\mathrm{D} \varphi(0)^{-1} \in \mathscr{L}(Z, Y)$ exists,

$$
\left|D \varphi(0)^{-1}\right| \leqq \lambda^{-1} \cdot\left|D \varphi(0)^{-1} \varphi(0)\right|=\tilde{\gamma} \leqq \gamma, x:=L \gamma \lambda^{-1}<\frac{1}{2}
$$

and

$$
\begin{equation*}
M:=\lambda(1-\sqrt{1-2 k}) / L<r . \tag{1.2}
\end{equation*}
$$

Then the equation $\varphi(x)=0$ has a solution $z \in B(O, M) \subset Z$ and z is a unique zero of φ in $B\left(0, \rho_{1}\right) \subset Z$, where

$$
p_{1}=\lambda(1+\sqrt{1-2 x}) / L
$$

-

For the formulation of the distance problem in section two we consider the Hilbert spaces X and Y and we investigate $f: B(O, r) C X \rightarrow Y$, a Frechet differential mapping. We assume that
(i) $A:=D f(0) \in \mathscr{L}(X, Y)$ is surjective and $\mid A^{+} \| \leqq \lambda^{-1}$, where $A^{+} \in \mathscr{L}(X, Y)$ is the right inverse of A,
(ii) $|D f(x)-D f(y)| \leqq L|x-y|, x, y \in B(0, r)$,
(iii) $\left\|A^{+} f(0)\right\|=\tilde{\gamma} \leq \gamma$,
(iv) $x=L \gamma \lambda^{-1}<\frac{1}{2}$,
and
(v) $M:=\lambda(1-\sqrt{1-2 x}) / L<r$.

We use the following notation:

$$
\begin{equation*}
S=\{x \in B(0, r) \mid f(x)=0\} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{S}=\{x \in B(0, r) \mid f(x)=f(0)\} \tag{1.9}
\end{equation*}
$$

N_{1} denotes $\operatorname{Ker}(A)$ being the tangent space of \tilde{S} in 0 . Let be N_{2} the orthogonal complement of N_{1}.
Analysis in the normal space N_{2} at 0 of \widetilde{S} leads to an upperbound of $d(0, S)$, theorem 1. The Kantorovich condition (1.6) effects S to be locally in a convex cone. Theorem 2 gives the distance of 0 to that cone as a lower bound of d $(0, S)$.
This general approach leads to a manageable method to determine sharp error bounds for an approximate solution of an undetermined system.

THEOREM 1. The mapping $f: B(0, r) \subset X \rightarrow Y$ described in the introduction has a zero z in $B(0, M) \cap N_{2} ; z$ is the unique zero of $\varphi=f \mid N_{2}$ in $B\left(0, \rho_{1}\right) \cap N_{2}$ where

$$
\begin{equation*}
e_{1}=\lambda(1+\sqrt{1-2 x}) / L . \tag{2.1}
\end{equation*}
$$

PROOF. The surjectivity of A implies that the restriction $A \mid N_{2}$ is bijective. Its inverse is also continuous and equals the right inverse $A^{+}=A^{*}\left(A A^{*}\right)^{-1}$ of A [1].
Let be $\varphi=f \mid N_{2}$. This mapping $\varphi: N_{2} \cap \mathrm{~B}(\mathrm{O}, \mathrm{r}) \rightarrow \mathrm{Y}$ satisfies the conditions of the Newton-Kantorovich theorem 0 formulated above. Hence $\varphi(x)=0$ has a solution z in $B(0, M) \cap N_{2}$ and z is the unique zero of φ in $B\left(0, p_{1}\right) \cap N_{2}$.

LEMMA 1. For the zero z of $\varphi=f \mid N_{2}$ in $B(0, M) \cap N_{2}$ holds

$$
\begin{equation*}
\beta:=|z| \geqq P_{2}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{2}=\lambda(-1+\sqrt{1+2 \tilde{x})} / L, \tag{2.3}
\end{equation*}
$$

with $\tilde{x}=L \tilde{\gamma}^{-1}$.

PROOF. Since Df is Lipschitz continuous on $B(0, r)$ we have $|f(z)-f(0)-A z| \leqq$ $\frac{1}{2} L \beta^{2}$ and consequently [3]

$$
\tilde{\gamma}=\left|A^{+} f(0)\right|=\left|z+A^{+}(f(z)-f(0)-A z)\right| \leqq \beta+\frac{1}{2} L B^{2} \lambda^{-1},
$$

for $z=A^{+} A z$ as follows from $z \in R\left(A^{*}\right)$.
Hence the positive zero ρ_{2} of the quadratic function $t \rightarrow \frac{1}{2} L \lambda^{-1} t^{2}+t-\tilde{\gamma}$ is majorized by β. That proves (2.3).

REMARK. As a consequence of (1.7) we get $\beta<M<2 \gamma$. Hence

$$
\begin{equation*}
\mathrm{L} \beta<2 \mathrm{~L} \gamma<\lambda . \quad \text { o } \tag{2.4}
\end{equation*}
$$

In the sequel we use the rollowing notation

$$
\begin{align*}
& V=\{x \in X| | x \mid<\beta\}, P(x):=D f(x)\left|N_{1}, Q(x):=D f(x)\right| N_{2}, x \in V \tag{2.5}\\
& \alpha=\frac{L \beta}{\lambda-L \beta} \tag{2.6}
\end{align*}
$$

where, as above $\beta=|z|$.

LEMMA 2. $Q(x)$ is regular for $x \in V$ and

$$
\begin{equation*}
\left|Q(x)^{-1} P(x)\right| \leqq \alpha, \quad x \in V \tag{2.7}
\end{equation*}
$$

PROOF. Let be $x \in V$ and $y=y_{1}+y_{2}, y_{i} \in N_{i}$, $i=1$, 2. Then $D f(x) y=P(x) y_{1}+$ $Q(x) y_{2}$. Since $P(0)=0,|P x| \leq|D f(x)-D f(0)| \leqq L \beta, x \in V$. Similarly $|Q(x)-Q(0)| \leqq|D f(x)-D f(0)| \leqq L \beta, x \in V$. Since $Q(0)=D \varphi(0)$,

$$
\|(Q(x)-Q(0)) Q(0)^{-1} \mid \leqq L \beta \lambda^{-1}<1
$$

as follows from $\beta<M$ and (2.4). This implies that

$$
Q(x)=\left(I+(Q(x)-Q(0)) Q(0)^{-1}\right) Q(0)
$$

is invertible for each $x \in V$ and

$$
\left|Q(x)^{-1}\right| \leqq\left|Q(0)^{-1}\right|\left(1-L \beta \lambda^{-1}\right)^{-1} \leqq(\lambda-L \beta)^{-1} .
$$

Hence $\left|Q(x)^{-1} P(x)\right| \leqq L \beta(\lambda-L \beta)^{-1}=\alpha$.

For reasons of shortness we define

$$
\begin{equation*}
W=\left\{x=x_{1}+x_{2} \in X|\alpha| x_{1}\left|+\left|x_{2}\right|<\beta, x_{i} \in N_{i}, i=1,2\right\}\right. \tag{2.8}
\end{equation*}
$$

and with $w=w_{1}+w_{2} \in X, w_{i} \in N_{i}, i=1,2$

$$
K(w)=\left\{(1-\tau) w_{1}+x_{2}\left|\tau \in[0,1], x_{2} \in N_{2},\left|x_{2}-w_{2}\right| \leqq \alpha\right| w_{1} \mid \tau\right\}
$$

The lines along which the proof of theorem 2 will be given can be explained with a figure.

fig. 1. $w \in S \cap W \cap V$ contradicts $S \cap V \cap N_{2}=\varnothing$.
In lemma 3 we prove that $w \in W \cap V$ implies $K(W) \subset W \cap V$. In lemma 4 indirectly we prove that $w \in W \cap V$ implies $f(w) \neq 0$. So $S C V^{c} \cup W^{c}$ and $d(0, S) \geq d\left(0, W^{c}\right)$. In this manner we get $m:=d\left(0, W^{c}\right)$ as an upper bound for the distance of 0 to the manifold S.

LEMMA 3. If $w=w_{1}+w_{2} \in W \cap V$ then $K(w) \subset V \cap W$. PROOF. Let be $x=x_{1}+x_{2} \in K(w)$. Then there exist. $6, \tau \in[0,1]$ and a unit vector $v \in N_{2}$ such that $x_{1}=(1-\tau) w_{1}$ and $x_{2}=w_{2}+\varepsilon \alpha\left|w_{1}\right|$ iv. Thus $|x|^{2}=(1-\tau)^{2}\left|w_{1}\right|^{2}+\left|w_{2}+\epsilon \alpha\right| w_{1}|\tau v|^{2} \leqq(1-\tau)^{2}\left|w_{1}\right|^{2}+\left(\left|w_{2}\right|+\alpha \tau\left|w_{1}\right|\right)^{2}=g(\tau)$. Now $g(0)=|w|^{2}<\beta^{2}$ and $g(1)=\left(\left|w_{2}\right|+\alpha\left|w_{1}\right|\right)^{2}<\beta^{2}$ for $w \in V$ and $w \in W$ respectively. So $x \in V$.
Similarly we have $\alpha\left|x_{1}\right|+\left|x_{2}\right| \leqq \alpha\left|w_{1}\right|(1-(1-\varepsilon) \tau)+\left|w_{2}\right|<\beta$. Thus also $x \in W$.

LEMMA 4. The function f has no zero in $W \cap V$.
PROOF. Assume $w=w_{1}+w_{2} \in W \cap V_{1} w_{1} \in N_{1}, 1=1,2$ and $f(w)=0$. Define a function G as follows

$$
\left(\tau, x_{2}\right) \rightarrow G\left(\tau, x_{2}\right)=f\left((1-\tau) w_{1}+x_{2}\right), x_{2} \in N_{2},(1-\tau)^{2}\left|w_{1}\right|^{2}+\left|x_{2}\right|^{2}<r^{2} .
$$

Then $G\left(0, w_{2}\right)=0$ and the derivative $D_{2} G\left(0, w_{2}\right)$ of G in $\left(0, w_{2}\right)$ with respect to x_{2} equals $Q(w)$. By lemma two $Q(w)$ is regular. According to the implicit function theorem there exists a $\delta>0$ and a differentiable function $\psi:(-\delta, \delta) \rightarrow \mathrm{N}_{2} \cap \mathrm{~V}$ such that $\psi(0)=w_{2}$ and for $\tau \in(-\delta, \delta)$ holds

$$
G(\tau, \psi(\tau))=0, D_{\psi}(\tau)=-D_{2} G(\tau, \psi(\tau))^{-1} D_{1} G(\tau, \psi(\tau))
$$

where D_{1} and D_{2} denote differentiation with respect to τ and x_{2} respectively. Since

$$
D_{1} G\left(\tau, x_{2}\right)=-P\left((1-\tau) w_{1}+x_{2}\right) w_{1}, D_{2} G\left(\tau, x_{2}\right)=Q\left((1-\tau) w_{1}+x_{2}\right)
$$

we have
$|D \psi(\tau)| \leqq\left|Q\left((1-\tau) w_{1}+\psi(\tau)\right)^{-1} P\left((1-\tau) w_{1}+\psi(\tau)\right)\right|\left|w_{1}\right| \leqq \alpha\left|w_{1}\right| .|\tau|<\delta$,
as follows from lemma 2. Consequently

$$
\left|\psi(\tau)-w_{2}\right|=\left|\int_{0}^{\tau} D_{\psi}(\sigma) d \sigma\right| \leqq \alpha\left|w_{1}\right| \tau, 0<\tau<\delta .
$$

Hence $(1-\tau) w_{1}+\psi(\tau) \in K(w)$ if $\tau \in[0, \delta) \subset[0,1]$. If $\tau_{1}, \tau_{2} \in[0, \delta)$ then $\| \psi\left(\tau_{1}\right)-\psi\left(\tau_{2}\right)|\leqq \alpha| w_{1}| | \tau_{1}-\tau_{2} \mid$ which implies, by the Cauchy criterion, that $\tilde{w}=\lim _{\tau \uparrow \delta}\left((1-\tau) \omega_{1}+\psi(\tau)\right)$ exists in the closed $K(w)$ and thus $\tilde{w} \in V \cap W$ as follows from lemma 3. So the function ψ can be prolonged and extended until τ equals 1, i.e. $G(1, \psi(1))=0$. Thus $f(\psi(1)=0$. That means $\varphi(\psi(1))=0$, with $\psi(1) \in \vee \cap N_{2}$ and $\varphi=f \mid N_{2}$. This contradicts theorem 1. Hence $w \in W \cap V \operatorname{im-}$ plies $f(w) \neq 0$.

THEOREM 2. Let $f: B(0, r) \subset X \rightarrow Y$ satisfy the conditions given in the introduction and let be

$$
\begin{equation*}
g(\tau):=\tau(\lambda / L-\tau)\left(\tau^{2}+(\lambda / L-\tau)^{2}\right)^{-\frac{1}{2}} \quad, 0<\tau<\frac{\lambda}{L} . \tag{2.10}
\end{equation*}
$$

Then

$$
d(0, S) \leqq m:= \begin{cases}g(M) & , \frac{1}{4} \sqrt{3} \leqq x<\frac{1}{2} \text { and } \sqrt{1-2}+\frac{1}{2}(1-2 x) \leqq \tilde{x} \leqq x \tag{2.11}\\ g\left(\rho_{2}\right) & , 0<x<\frac{1}{2} \text { and } \tilde{x} \leqq \min \left\{x, \sqrt{1-2 x+\frac{1}{2}}(1-2 x)\right\}\end{cases}
$$

where M and P_{2} as given in (1.7) and (2.3) respectively.

PROOF. With simple computations we find

$$
d\left(0, W^{c}\right)=\beta\left(1+\alpha^{2}\right)^{-\frac{1}{2}}=g(\beta)<\beta,
$$

where α and β are given in (2.6) and (2.2) respectively. So

$$
d(0, S) \geqq d\left(0, W^{c} \cup V^{c}\right)=g(\beta)
$$

It is easy to see that $\tau=\frac{1}{2} \lambda / L$ is the axis of symmetry of the graph of g. The function g increases on ($\left.0, \frac{1}{2} \lambda / L\right]$ from 0 until its maximum $\frac{1}{4} \lambda \sqrt{2} / L$ and decreases on $\left[\frac{1}{2} \lambda / L, \lambda / L\right)$ to zero. Since $\rho_{2} \leqq \beta \leqq M$ as we know from theorem 1 and lemma 1 ,

$$
d(0, S) \geqq m:=\min \left\{g\left(e_{2}\right), g(M)\right\}
$$

The symmetry of g implies that

$$
\begin{equation*}
m=g(M) \Leftrightarrow M \geqq \frac{1}{2} \lambda / L \text { and } P_{2} \geqq \lambda / L-M \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
m=g\left(P_{2}\right) \Leftrightarrow M<\frac{1}{2} \lambda / L \text { or }\left(M \geqslant \frac{1}{2} \lambda / L \text { and } \rho_{2}<\lambda / L-M\right) \tag{2.13}
\end{equation*}
$$

With (1.7) we find $M \geqq \frac{1}{2} \lambda / L$ iff $x \geqq \frac{3}{8}$ and with (2.3) we get that $P_{2} \geqq \lambda / L-M$ iff $\sqrt{1-2 x}+\frac{1}{2}(1-2 x) \leqq \tilde{x} \leqq k$. Since $x \geq \sqrt{1-2 x}+\frac{1}{2}(1-x)$ for $x \geq \frac{1}{4} \sqrt{3}$, (2.11) can be concluded.

COROLLARY. If $\gamma=\tilde{\gamma}$, i.e. $\mathrm{x}=\tilde{\mathrm{x}}$, then

$$
m=d(0, S) \geqq \begin{cases}g(M) & , \frac{1}{4} \sqrt{3} \leqq x<\frac{1}{2} \tag{2.14}\\ g\left(\rho_{2}\right) & , x<\frac{1}{4} \sqrt{3}\end{cases}
$$

PROOF. The two conditions (2.12) and (2.14) lead to the two cases of (2.14) with the same means as in the theorem.
3. REFERENCES

1. Aubin, J.B.; Applied Functional Analysis, Wiley, New York, xv +423 pp., 1979.
2. Gragg, W.B. and R.A. Tapia; Optimal Error Bounds for the Newton-Kantorovich Theorem, SIAM J. Numer.Anal., 17, 1980, pp. 883-893.
3. Tapia, R.A.; Differentiation and Integration of Nonlinear Operators, in Nonlinear Functional Analysis and Applications, L.B. Rall, ed., Academic Press, New York, 1971, pp. 45-103.

IN 1987 REEDS VERSCHENEN

```
242 Gerard van den Berg
Nonstationarity in job search theory
```

243 Annie Cuyt, Brigitte Verdonk
Block-tridiagonal linear systems and branched continued fractions
244 J.C. de Vos, W. Vervaat
Local Times of Bernoulli Walk
245 Arie Kapteyn, Peter Kooreman, Rob Willemse Some methodological issues in the implementation of subjective poverty definitions

246 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel Sampling for Quality Inspection and Correction: AOQL Performance Criteria

247 D.B.J. Schouten
Algemene theorie van de internationale conjuncturele en strukturele afhankelijkheden

248 F.C. Bussemaker, W.H. Haemers, J.J. Seidel, E. Spence On ($\mathrm{v}, \mathrm{k}, \lambda$) graphs and designs with trivial automorphism group

249 Peter M. Kort
The Influence of a Stochastic Environment on the Firm's Optimal Dynamic Investment Policy

250 R.H.J.M. Gradus Preliminary version The reaction of the firm on governmental policy: a game-theoretical approach

251 J.G. de Gooijer, R.M.J. Heuts
Higher order moments of bilinear time series processes with symmetrically distributed errors

252 P.H. Stevers, P.A.M. Versteijne Evaluatie van marketing-activiteiten

253 H.P.A. Mulders, A.J. van Reeken DATAAL - een hulpmiddel voor onderhoud van gegevensverzamelingen

254 P. Kooreman, A. Kapteyn On the identifiability of household production functions with joint products: A comment

255 B. van Riel
Was er een profit-squeeze in de Nederlandse industrie?
256 R.P. Gilles
Economies with coalitional structures and core-like equilibrium concepts
257 P.H.M. Ruys, G. van der Laan Computation of an industrial equilibrium
258 W.H. Haemers, A.E. BrouwerAssociation schemes
259
G.J.M. van den Boom
Some modifications and applications of Rubinstein's perfect equili- brium model of bargaining
260 A.W.A. Boot, A.V. Thakor, G.F. Udell
Competition, Risk Neutrality and Loan Commitments
261
A.W.A. Boot, A.V. Thakor, G.F. UdellCollateral and Borrower Risk
262 A. Kapteyn, I. Woittiez
Preference Interdependence and Habit Formation in Family Labor Supply
263
B. BettonvilA formal description of discrete event dynamic systems includingperturbation analysis
264 Sylvester C.W. Eijffinger
A monthly model for the monetary policy in the Netherlands
265 F. van der Ploeg, A.J. de Zeeuw
Conflict over arms accumulation in market and command economies
266 F. van der Ploeg, A.J. de Zeeuw
Perfect equilibrium in a model of competitive arms accumulation
267 Aart de Zeeuw
Inflation and reputation: comment
268 A.J. de Zeeuw, F. van der Ploeg
Difference games and policy evaluation: a conceptual framework
269 Frederick van der Ploeg
Rationing in open economy and dynamic macroeconomics: a survey
270 G. van der Laan and A.J.J. Talman Computing economic equilibria by variable dimension algorithms: state of the art
271 C.A.J.M. Dirven and A.J.J. Talman A simplicial algorithm for finding equilibria in economies with linear production technologies
272 Th.E. Nijman and F.C. Palm
Consistent estimation of regression models with incompletely observed exogenous variables
273 Th.E. Nijman and F.C. Palm
Predictive accuracy gain from disaggregate sampling in arima - models

274 Raymond H.J.M. Gradus
The net present value of governmental policy: a possible way to find the Stackelberg solutions

275 Jack P.C. Kleijnen
A DSS for production planning: a case study including simulation and optimization

276 A.M.H. Gerards
A short proof of Tutte's characterization of totally unimodular matrices

277 Th. van de Klundert and F. van der Ploeg
Wage rigidity and capital mobility in an optimizing model of a small open economy

278 Peter M. Kort
The net present value in dynamic models of the firm
279 Th. van de Klundert
A Macroeconomic Two-Country Model with Price-Discriminating Monopolists

280 Arnoud Boot and Anjan V. Thakor Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

281 Arnoud Boot and Anjan V. Thakor
Appendix: "Dynamic equilibrium in a competitive credit market: intertemporal contracting as insurance against rationing

282 Arnoud Boot, Anjan V. Thakor and Gregory F. Udell
Credible commitments, contract enforcement problems and banks: intermediation as credibility assurance

283 Eduard Ponds
Wage bargaining and business cycles a Goodwin-Nash model
284 Prof.Dr. hab. Stefan Mynarski
The mechanism of restoring equilibrium and stability in polish market
285 P. Meulendijks
An exercise in welfare economics (II)
286 S. Jørgensen, P.M. Kort, G.J.C.Th. van Schijndel
Optimal investment, financing and dividends: a Stackelberg differential game
E. Nijssen, W. Reijnders

Privatisering en commercialisering; een oriëntatie ten aanzien van verzelfstandiging
C.B. Mulder

Inefficiency of automatically linking unemployment benefits to private sector wage rates
289 M.H.C. Paardekooper
A Quadratically convergent parallel Jacobi process for almost diagonal matrices with distinct eigenvalues
290 Pieter H.M. Ruys
Industries with private and public enterprises
291 J.J.A. Moors \& J.C. van Houwelingen
Estimation of linear models with inequality restrictions
292 Arthur van Soest, Peter Kooreman
Vakantiebestemming en -bestedingen
293 Rob Alessie, Raymond Gradus, Bertrand Melenberg The problem of not observing small expenditures in a consumer expenditure survey
294 F. Boekema, L. Oerlemans, A.J. Hendriks
Kansrijkheid en economische potentie: Top-down en bottom-up analyses
295 Rob Alessie, Bertrand Melenberg, Guglielmo Weber Consumption, Leisure and Earnings-Related Liquidity Constraints: A Note
296 Arthur van Soest, Peter Kooreman Estimation of the indirect translog demand system with binding nonnegativity constraints

297 Bert Bettonvil

Factor screening by sequential bifurcation
298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure
299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry
300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method
301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note
302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models
using cross sections, panels or both
303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative approach

304 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in
dilution series
305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteitsconcept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages
308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study
309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation
310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van materiële en immateriele factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment
312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp Does Morkmon Matter?

314 Th. van de Klundert Wage differentials and employment in a two-sector model with a dual labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen On Credible Optimal Tax Rate Policies

316 Christian B. Mulder
Wage moderating effects of corporatism Decentralized versus centralized wage setting in a union, firm, government context

317 Jörg Glombowski, Michael Kruger A short-period Goodwin growth cycle

318 Theo Nijman, Marno Verbeek, Arthur van Soest The optimal design of rotating panels in a simple analysis of variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne De toepassing en toekomst van public private partnership's bij de grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open Economy

Bibliotheek K. U. Brabant

17000010659291

