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ABSTRACT

In this paper we deal with the nonlinear complementarity problem

on the product space S of several unit simplices. To find a solution

a variable dimension algorithm developed by van der Laan and Talman

for proper labellings is adapted. This generalization deals with unproper

labellings to utilize the complementarity conditions in the problem. In

this way the algorithm combines lower dimensional movements on the boun-

dary of S because of the complementarity, and in the interior because of

the structure of the algorithm.

Computational results confirm the usefulness of the algorithm.
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1. Introduction

Given ntl closed subsets C1,...,Cn}1 of the n-dimensional unit
n ntl ntl

simplex S-{x E R} IEi-1xi - 1} we consider the problem of fin-
i

dinq an x~ in Sn such that for all i either x~ - 0 or x~ E C,. In thei i
following this problem will be called the Intersection Probem (IP). This

problem arises quite naturally in different fields such as nonlinear pro-

gramming and economics. For instance, given a continuous function z from

Sn into Rn}1 satifying xTZ(x) - 0 for all x E Sn, the Nonlinear Comple-
n ~ nmentarity Problem (NLCP) on S consists in finding a point x in S such

~ ~ ~
that z(x )5 0. Such a solution x is complementary to z(x ), that is
~ ~

x.z,(x )- 0 for i- i,...,ntl. A function z satisfying these conditions
i i

is the exess demand function of an exchange economy with ntl commodities,

in which case S11 is the price space. Defining

C, -{x E Snlz,(x~) ? 0} i- 1,...,ntli i

we have that a solution to the NLCP corresponds to a solution to the IP.
~ ~

Both problems are equivalent to finding a Brouwer fixed point f(x )- x

of a continuous function f from Sn into Sn.

Many simplicial algorithms have been introduced to find a Brouwer fixed

point (e. g. , Scarf [ 8] , Eaves [ 1], Kuhn and MacKinnon [ 3~, Liithi [ 6] ,

and van der Laan and Talman [4]). These algorithms are based on a subdi-

vision of Sn into n-dimensional simplices (n-simplices) and on a label-
n ntl

ling assigning to each point of S an integer in the set I -

{1,...,ntl}. A simplex of the subdivision is said to be completely label-

led if its ntl vertices jointly bear all labels in In}1. The labelling

is constructed in such a way that a completely labelled simplex yields an

approximate solution. To ensure both the existence of such a completely

labelled simplex and the finite convergence of the algorithm to such

a simplex, an additional boundary condition, called properness, is impo-

sed on the labelling. A labelling is said to be (Scarf-)proper if each
n

point x-(xl,...xntl) on the boundary of S carries a label i for which

x. - 0. An example of a labelling R used to solve the IP is
i

(1.1) k(x) - min{ilx E Ci, i- 1,..., ntl}.
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To ensure that they carry proper and unique labels, points in the boun-
dary can be labelled according to

(1.2) R(x) - min{ilxi - 0 and xitl(mod ntl) ~ ~}-

Notice that the labels on the boundary are artificial in that they bear
no relation to the sets C.. Simplicial algorithms use the informationi
provided by the labelling to generate a path of adjacent simplices ter-
minating at a completely labelled simplex.

The approximation generally improves by decreasing the grid size
(or mesh) of the simplicial subdivision. If an approximation is found to
be insufficient the subdivision is refined to get a better approximate
solution. If after a refinement the algorithm can be restarted at or
close to the previously found approximate solution, the algorithm ís said
to be a restart method. We distinguish two types of restart methods.

The restart method due to Kuhn and MacKinnon introduces an addi-
tional dimension by embedding Sn into the set Snx[0,1]. The latter set
is subdívided into (nti)-simplices with vertices either on the "real"
level Snx{0} or on the "artificial" level SIlx{1}. Verices on the real level
are labelled according to (1.1) and (1.2) whereas vertices on the level
n

S V{1}are artificially labelled so as to enable the restart and to ensure
the finite convergence of the algorithm. The path of simplices generated
by the algorithm and leading to a completely labelled simplex
level consists of adjacent (nfl)-simplices in the
whose common facets bear In}1 as label set.

Van der Laan and Talman have introduced a

subdivision

second type

on the real

of Snx[0,1]

of restart
method. It avoids the introduction of an additional dimension and the em-
bedding of Sn into Snx[0,1]. Instead it generates a path of adjacent sim-
plices of varying dimension. This path starts at an arbitrary grid point
representing a 0-simplex and terminates with a completely labelled n-
simplex. The attractiveness of this type of restart method lies in the
fact that movements with simplices in Sn of varying dimension is typi-
cally faster then movements with (ntl)-simplices in Snx[0,1].

Luthi [6] avoids the artificial labelling on the boundary of Sn
and uses the labelling rule (1.1) also on the boundary of Sn. This label-
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ling is not necessarily proper so that the existence of a completely la-

belled n-simplex is no longer guaranteed. However, Luthi observed that

when all vertices of a simplicial subdivision of Sn are labelled accor-

ding to (1.1), lower dimensional simplices on the boundary of Sn yield

an approximate solution if they satisfy the so-called completeness condi-

tion. A t-simplex a(0 S t 5 n) is called complete if for each index

i E Int1 either one of the vertices of a carries label i or the t-simplex

lies on the boundary x, - 0. For the NLCP or IP, solutions often lie on
i

the boundary of Sn. If this is the case,.a complete simplex on the boun-

dary of Sn generaliy yields a more accurate approximate solution than the

completely labelled n-simplex generated by an algorithm using a proper

labelling. To find a complete simplex Luthi gave a first type restart al-

gorithm for the case of a general labelling on Sn. His method allows for
n

lower dimensional movements on the boundary of S x[0,1]. As mentioned be-

fore, such a lower dimensional movement is typically faster than a move-

ment with full-dimensional simplices.

In this paper we are concerned with the existence of solutions

to problems on the product space S- Sn1x...xSnN of N unit simplices
N n,fl

Snl. For example, given a continuous function z: S~ R. R ~ , x-~ z(x)~-1
-[zi(x), z2(x),...,zN(x)] verifying xjzj(x) - 0 for j- 1,..,N and

for all x-[x1,x2,...,xN] E S, the NLCP on S consists in finding a so-

lution x~ in S, i.e., a point x~ such that z(x~) ~ 0. This problem arises

e.g., when computing noncooperative equilibria in game theory. Unless

the equilibrium strategies are completely mixed an equilibrium point lies

on the boundary of the strategy space. Defining the closed sets

C.k -{x E Slz.k(x) - max zih(x)}, k- 1,...,n., j-1,...,N, where z,k(x)
J J (~ h) J J

~
is the k-th component of z,(x), x is a solution to the NLCP if and only

J
if for at least one j, x~ E C, or x~ - 0 for all k- 1,...,n., i.e. if~k ~k 7
~

x is a solution to the IP on S.

In van der Laan and Talman [5] a second type restart algorithm

was developed to find an approximate solution of the NLCP on S by using

a proper labelling which assigns to each point of S a pair of integers

in I-{(j,k),Ik - 1,...,n,fl, j- 1,...,N}. In a simplicial subdivision
J

of S, the alqorithm searches for a simplex whose vertices carry the la-
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bels (j,l),...,(j,n,) for at least one j.
J

In this paper we extend thisalgorithm on S for the case of a ge-
neral labelling on S. To do so, the extension of the property of comple-
teness is required, defined earlier for simplices in Sn. The algorithm
proves constructively the existence of a complete simplex in S. When the
labelling is induced by the sets C.h, then the existence of a solution

J
to the IP follows from taking a sequence of simplicial subdivisions with
mesh tending to zero. A corollary of the simplicial version of this
result is the generalized Scarf lemma on Srl due

to Freund [2~. When applied to the special case S- Sn, the algorithm
combines the advantages of the original van der Laan and Talman algorithm
for proper labellings on Sn with the advantage of Luthi's method. Lower
dimensional movements can now occur both on the boundary and in the inte-
rior of Sn. Both factors favorably influence the efficiency of the al-
gorithm on Sn. A first type restart algorithm on S with labels out of the
set I, however, does not exist.

At the end of the paper, we discuss the introduction of vector
labellings in the algorithm. As is well known, vector labels yield more
accurate approximate solutions than scalar labels. We conclude with re-
sults showing that our algorithm for general labellíngs performs very
well. These numerical results seem to substantiate the case for the eli-
mination of artificial labels on the boundaries of Sn or of S.

The paper is organized as follows. The van der Laan and Talman
algorithm on Sn for a proper labelling is reviewed in section 2. In sec-
tion 3 combinatorial results for a general labelling on S are given.
These results are proved constructively in section 4, by giving an ex-
tension of ~an der Laan and Talman's algorithm on S for proper labellings.
The end of section 4 discusses the implementation of vector labelling and
some examples and computational results are presented in section 5.

2. The van der Laan and Talman algorithm for proper labellings on Sn.

In this section we review the algorithm of van der Laan and Tal-
man for finding a completely labelled simplex in a simplicial subdi-
vision of Sn which is properly labelled. The algorithm first subdivides
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Sn into n-simplices according to the Q triangulation with grid size d-1

where d is a positive integer. The grid points of this triangulation form

the set { ny E S ly - m~d,m integer}. The matrix Q is given by

1 -1 0 . . . 0

0 1 0

Q -Cq(1),.-.,q(nti~ -

0 0 . -1

An n-simplex of this triangulation (or simplicial subdivision) is the
convex hull of ntl grid points in Sn~ yl ~yntl verifying yitl -

ylfq(n.)~d, i- 1,...,n, for a permutation n-(nl,.,,,~nfl) of Zntl
1 1 nt1Notice that since y- y }q(t[n}1)~d an n-simplex has nfl different

1
representations in terms of leading vertex, y, and a permutation of
ntl

I ,r[.

A t-simplex, 0 5 t ~ n, in a simplicial subdivision is the con-

vex hull of ttl vertices of an n-simplex in the subdivision. We use the
1 ttl 1 ttl

notation T(y ,..,y ) for a t-simplex T having vertices y,...,y .

A(t-1)-simplex a, obtained by deleting one vertex of a t-simplex, i, is
1 i-1 itl ttl

called a facet of T. In particular, the facet Q(y ,...,y ,y ,...,y )

of the simplex r(yl~ Iyttl) is called the facet of T opposite vertex yl.

To compute a completely labelled simplex the van der Laan and
n

Talman algorithm partitions S into relatively open regions Á(T) defined

by

A(T) -{Y E Sn~Y - v t j~ T ajq(j) , aj ~ 0}

where v is an arbitrary grid point in which the algorithm starts and
ntl

where T is a subset of Z of cardinality at most n(ITISn). A(T) denotes
0

the closure of A(T). The regions A(T) are illustrated in Figure 1. Ob-
0

serve that A(~) - A(~) -{v} and that A(T) may be empty if the initial
n

point v lies on the boundary of S.
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x3 - 0

a. v lies in the interior of S2

x3 ~ 0

b. v lies on the boundary of SZ

CA({2})-A({2,3})-~~

Figure 1.

A nonemty region A(T) is a t-dimensional convex compact subset
of Sn with t- ITI. The Q triangulation subdivides each nonempty A(T) in-
to t-simplices. Each such t-simplex is uniquely characterized by a non-
negative integer vector a-(al ""'antl) verifying a. - 0 for j~ T

Jand by a permutation n of T. Such a simplex is denoted a(a,n), Th~~ tt)
vertices of the t-simplex 6(a,n) in A(T) are

i E(2.1) Y- ~ t j E T ajq(j)~d for i- 1,

i-1
- Y tq(ni-1),d - 2,...,tf1.
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Each n-simplex a in Sn lies in a unique region A(T). Hence even
if cr has nt1 different representations in terms of a leading vertex and a
permutation of Intl, its representation in terms of a permutation n of
a set T (I T~) - n) and a nonnegative integer vector a verifying a. - 0

J
for j~ T is unique.

An important property of our simplicial subdivision of each re-

gion A(T) is that any facet of at-simplex in A(T) is the facet of at most

one other t-simplex in A(T) (t -ITI). Two t-simplices in A(T) sharing a

common facet are called adjacent. Let us identify the t-simplex á in A(T)

sharing the facet T opposite vertex yl in the t-simplex a(1 5 i ~ ttl).

Denote by y the vertex opposite facet T in a. It should be clear from

(2.1) that the only possibility for y is given by

(2.2) Y- yttltq(nl),d if i- 1,

i-1
- Y tq(ni)~d 2~ 1~ t~

1- Y -q(nt)~d i - ttl.

The expression of the characteristics a and n of the simplex a- a(a,rz)

in terms of the characteristics a and n of the adjacent simplex Q-

a(a,n) is easily decuced from (2.2) and appears in Table 1.

a - (al,...~antl)

2,...,t

ttl

- ahtl for h- n 1

- ah otherwise

ah - ah for h- 1,...,nt1

- ai1-1 for h - nt

- ah otherwise

n - (nl,...,nt)

(n2, --,nt.nl)

(~i... 'ni-2'ri'~i-1' ' 'nt)

(nt.nl,....nt-1)

Table 1.
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ObsEtve that a lies in A(T) if and only i~ y~ 0 and a? 0. I~ either
y~ 0 or a~ 0 then facet t lies on the boundary of A(T) and there is no
t-simplex in A(T) adjacent with o through facet T.

Now consider a proper labelling of Sn verifying (1.2). Let t
again denote the cardinality of T. A(t-1)-simplex is called T-complete
if its t vertices jointly bear all labels in T. Any t-simplex a in A(T)

has at most two T-complete facets. Any facet of a lies in at most one other
t-simplex in A(T), which if it exists, ~an be found by applying the rules
of Table 1. If the facet of a lies on the boundary of A(T) then the facet
belongs to a unique t-simplex in A(T) and Table 1 does not determine an
adjacent simplex. The t-simplex in A(T) having T-complete facets there-
fore form chains of adjacent t-simplices with common T-complete facets.
Every chain is either a loop or has two terminal simplices. A terminal
simplex a- a(a,n) (i) is (TU{k})-complete for some k~ T or (ii) has a
T-complete facet in the boundary of A(T).

We consider these cases in turn.
(i) If t- n o is completely labelled. If t ~ n then U is a

facet of a unique (tfl)-simplex 6- Q(a,n) in A(TU{k}) with

n-(nl,...,nt,k). a is a terminal simplex in a chain of
(ttl)-simplices in A(TU{k}) having common (TU{k})-complete

facets.

(ii) It can be shown that properness condition (1.2) implies that
if T is a T-complete facet on the boundary of A(T) then T
lies in A(T `{k}) with k- nt. If t~ 1, then T is a ter-

minal (t-1)-simplex in a chain of (t-1)-simplices in
A(T `{k}) having common (T`{k})-complete facets. If t- 1,

then T`{k} -~ ana rt-{v}. Notice that T-{2,(v)} for

this case to occur.
Except for the terminal simplex {v} each terminal simplex either

is completely labelled or uniquely determines a terminal simplex of a
new chain. Chains can thus be linked yielding loops or paths with two
terminal simplices.
Exeept for the terminal simplex {v} each terminal simplex of such a path
of linked chains is completely labelled. There thus is a unique path
which has the intial point v as terminal simplex. The van der Laan and
Talman algorithm follows this path to its other terminal simplex which
will be completely labelled. The algorithm is illustrated in Figure 2.
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v2 2
3 1

3 1 1
1

3
Figure 2. 0x3

3. Complete simplices on S.

Tlie algorithm given in the previous section searches for a com-

pletely labelled simplex in a simplicial subdivision of Sn which is pro-

perly labelled. The lemma of Scarf says that such a completely labelled

simplex exists. This lemma was generalized by Freund [2], who states

that in a generally labelled simplicial subdivision of Sn there is a

complete simplex, that is a t-simplex a such that for all i E Intl eit-
n n n

her a lies in the facet S. -{x E S Ix. - 0} of S or one of its ver-
i i

tices has label i. N n.
In this section we deal with generaï labeilings on S- jl~ S ~.- 1

Firstly, we give a generalization of the above mentioned Freund's lemma.

This lemma will be proved constructively in the next section. Secondly

we prove the existence of a solution to the IP on S by taking a sequence

of simplicial subdivisions with mesh tending the zero. Finally we consi-
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der the accuracy of an approximate solution to the IP as a solution to
the NLCP.

To recall some notation, a point x E S is denoted by
n

x-(x1,...,xN), where x, E S~, j- 1,...,N. The k-th element of x.
J ]

is denoted by x, , k- 1,...,n.tl, Further S, will be the( j,h)-th~k ~ ~h
boundary of S, that is Sjh -{x E Slxjh - 0}. Finally, I is the set of
pairs of integers {(j,h)Ih - 1,...,n,tl, j- 1,...,N}.

]
A general labelling on S is a function k: S~ I. A labelling

function Q on S is proper if R verifies

(3.1) R.(x) - lexicomin {(j,h)Ixjh - 0 and x jhtl(mod n,ti)~ 0}
]

for all x E bd S. Now, let G be a simplicial subdivision of S and let
1 ttlT(y,...,y ) be a t-dimensional simplex of G.

Then L(T) -{~, (yl) ~ ~Q (yttl) } will be the labelset of T and

I(T) -{(j,h) E Ilx.h - 0 for all x E z} is called the index set of T,J
i.e. (j,h) E I(T) implies that -r ~ S,h.

J

Definition 3.1. A t-simplex T of a subdivision G of S is complete if
there is a j E IN such that {(j,l),...,(j,n,fl)}~L(T)uI(r).

]

Definition 3.1 states that T is a complete simplex if there is
n.tl

a j E IN with for all h EI ~, at least one of the vertices of T car-
ries label (j,h) or r~S.h.

]
If r is complete for some j E IN, we say that T is j-complete. Observe
that when N- 1 a complete simplex in the sense of definition 3.1 is a
complete simplex of a triangulat}on of Sn. Moreover, when R is proper wen.t
must have that for each h E i~ ,(j,h) is a label of at least one of
the vertices of r. In case that k is proper in the sense of Sperner, i.e.
Q(x) E{(j,h)Ix ~ S,h} when x E bd S, van der Laan and Talman [5] haveJ
shown that there is a j E IN for which there is a complete simplex. In
the next section we adapt their algorithm to prove lemma 3.2.

Lemma 3.2. (Generalized Simplicial Scarf lemma on S).
Given a general labelling R: S-~ I and a triangulation G of S, there



- 11 -

is at least one complete simplex.

The lemma is illustrated in figure 3, in which the 2-simplices al and o2,

1-simplices T1,T2,T3
and r4 and the 0-simplices {a} and {b} are complete.

x21-0

x12-u
(1,1

b

T3

a V 2,1)

T4

a 1 il a2

T2
(2,2)

(1,1) xll-0

x22-0

Figure 3. Generalized Simplicial Scarf lemma on S for N-2, n1-n2-2.

Some features should be observed. Firstly, a2 is 2-complete be-

cause T1 is 2-complete. The label of the vertex of a2 opposite T1 does

not matter. The same holds for al. Also T3 and T4 are complete because

{a} is 1-complete. Observe however, that r4 is not 2-complete, although

{b} is 2-complete. The simplex T2 is 2-complete because

L(22) -{(2,1), (2,2)}. Moreover I(z~) -{(2,2)}. Therefore TZ remains

2-complete, even when the label of the vertex of t2 opposite {b} should

be changed. So, the feature of a complete simplex may differ. In parti-

cular, it is possible that a j-complete simplex contains lower-dimensional

h-complete faces with h not necessarily equal to j.
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Lemma 3.2. enables us to prove the next theorem, which states the exis-
tence of a solution to the Intersection Problem on S.

Theorem 3.3. (Generalized Intersection Theorem).
Let C- iCjh, h- 1,...,njtl, j- I,...,N} be a collection of (maybe
empty) closed subsets of S which cover 5, i.e. S- u C . Then there is

j jh,h
an x in S and an index j E IN such that for all h E I

~ ~
x E Cjh or x jh - 0.

Proof. The proof follows from lemma 3.2, by taking a limit argument.
Firstly, let {Gk, k- 0,1,2,.,.} be a sequence of triangulations with
mesh Gk going to zero, when k goes to infinity. A triangulation which
can be refined arbitrarily will be given in the next section. Now, any
point x E S is labelled by an element out of the set {(j,h) E Ilx E C.h}.

J
By lemma 2.4, each Gk has at least one complete simplex, say ak. Since
k goes to infinity, there is a j E IN for which there is an infinite
subsequence of j-complete simplices. Since S is compact, this subsequence

~has an infinite subsequence converging to a point x E S.
~

Now suppose that fc,r some (j,h), x,h ~ 0. Then, for each j-complete sim-
7 ~

plex Qk of the subsequence converging to x with k sufficiently large,
xjh ~ 0 for any x E ak. Hence ak must have a vertex w with 2(w) -(j,h),

implying that w E Cjh. Since the sets Cjh are closed this implies that
n,tl~

x E Cjh. Hence , for all h E I 7 , x~h E Cjh or x~h - 0,
j

0
n tl

Now, let z be a continuous function from S-y J[N- R 7 verifyingJ-1
xTZ,(x) - 0 for all j-1,...,N. Then theorem 3.3 implies that there isJ J
a point x~ E S such that z(x~) ~ 0, Let C,h be defined by

J

C. -{x E Slz. (x) - max z, (x)}.
7h 7h i~k ik

~Then theorem 3.3. guarantees that there is an x and an index j such that
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~ ~
for all h- 1,...,n,f1, x, E C or x - 0. By definition of the sets

J Jh jh jh
this implies

zjh(x~) ? zik(x~) for all (i,k) E I

n tl
~` J ~ ~ 0, since x~TZ. (x~ )- 0.and hence zjh(x )- 0 for all h E I with xjh

J J
Clearly this implies zik(x~) 5 0 for all (i,k) E I. Since xizi(x) - 0 for

all i E IN and all x E S, we obtain zik(x~) - 0 for all (i,k) with xik ~ 0.

The next lemma gives bounds for the accuracy of an approximate
~ ~

solution to the IP as a solution to the NLCP find x such that z(x ) 5 0.

Lemma 3.4. For some given positive e let mesh G be so small that

Izjh(x)-zjh(y)I ~ e for all (j,h) E I, when x and y lie in the same sim p-
1 ttl

lex of G. Then, for any x in a complete simplex Q(y ,...,y ) of G holds

z. (x) ~ 2 E for all (j,h) E I.
Jh

(3.1)

Proof. Since 6(yl, .~yttl) is complete thereis an index j such that for
n.tl

all h E I J , x,h - 0 for all x E o or c1 has a vertex, say yJ'h,with
J

Q(yJ'h) -(j,h). Now, suppose that there is an x in 6 with zik(x) ~ 2E
n tl

for some (i,k) E I. Then, for all h E I J with xjh ~ 0, x E int a,

we must have zik(yJ'h) ? e since x and yJ'h both lie in a. Since

k(yj.tl) -(j,h), we must have zjh(yJnhtl~ zik(yJ~h)~
Therefore z,~YJ'h) ~ e for all h E I J with x,h ~ 0, x E int o. Hence

J J
z, (x) ~ 0 for all these (j,h), so that xTZ, (x) ~ 0, contradicting
Jh j J
xTZ,'- 0. This proves the lemma.

j J

a

By taking the mesh of the triangulation small enough, (3,1) holds

for arbitrarily small e. Therefore, a complete simplex yields an approx-

imate solution to the NLCP with respect to z.
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4. An algorithm for general labellings on S.

The algorithm in section 2 is extended in van der Laan and
Talman [5] to find a complete simplex in a triangulation of S for proper
labellings in the sense of Sperner. In this section we extend the algo-
rithm for general labellings on S. It should be observed, however, that
a complete simplex of S for a general labelling can be found by the ori-
ginal algorithm when it is applied on S, where

N n n n.tl n,tl
S- IIj-1 S J and S J-{x E R J IEh~l ~-1, xh ?-dj} with dj the grid

n
size of the triangulation of S J. Extending the labelling on S to a(Scarf)
proper labelling on S, the original algorithm for a Scarf proper labelling
(see section 2 for the case N- 1) finds a complete simplex in S. Since
the labelling is proper, f r such a complete simplex a there is a jn .t~
such that for all h E I J , a has a vertex which carries label (j,h).
However, the intersection of a with S is a complete simplex T in S in

n tl
the sense of definition 3.1., that is there is a j with for all h EI J.

T has a vertex with label (j,h) or xjh - 0 for all x E T. Clearly, for
all (j,h) being a label of a vertex of a outsíde S, x.h - 0 for all

J
x E a n S- T. So, for general labellings a complete simplex can be found
by applying the orginal algorithm on S. In this section we adapt the ori-
ginal algorithm on S to find a complete simplex without using the exten-
sion from S to S. Since the NLCP often has a solution on bd S, the new
algorithm may avoid many replacement steps outside S.

To motivate our adaption of the original algorithm, we first
consider the case N- i, n- nl - 2. Let us consider the labelling
R(y) - j for all y E SZ ( 1 ~ j 5 3). The unique complete simplex for
labellinq is the 0-simplex {e(j)} where e(j) denotes the j-th unit vector,
It seems therefore appropriate to extend A({j}) to a 1-dimensional piece-
wise linear simplicial path, A({j}), going from the starting point v to
vertex e(j). The extended regions A({j}) are illustrated in Figure 4.
The regions A({i,j}), i~ j, coincide with the original regions A({i,j})
Now consider an arbitrary labelling. The extended algorithm proceeds in
the regions A({i,j}) as the original algorithm operates on the regions
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A(ii,j}). A chain of simplices in A({i,j}) having common facets with
2

labels i and j leads either to a completely labelled simplex in S or

to a facet with labels i an j on the boundary of A({i,j}). In the lat-

ter case the algorithm continues in a lower dimensional region,

A({i}) or A({j}), or a complete 1-simplex is found lying in the facet

{x E Snlxh - 0, h~ i,J}, etc.

Figure 4 illustrates the alqorithm for this lower dimensional case.

e(3)

x2 - 0 x - 0
1

3

3 3

e(1)

A(1)
x3 - 0

A(2)

e(2)

Figure 4.



- 16 -

For general dimension of Sn the region A(T), ~TI ~ n, is de-

fined as follows:

(4-1) A(T) - u B(T,U)

IUUTI ~ n

UnI' - ~

with B(T,U) - A(TUU)n{x E Snlx. - 0 for j E U}.
J

Since a nonempty A(TUU) is ~TuUI-dimensional and convex and

since B(T,U) is obtained by intersecting A(TUU) with the boundary x. - 0
J

for j E U, each nonempty B(T,U) is ITI-dimensional and convex. Each

nonempty A(T) thus consists of a union of ITI-dimensional convex pieces.

The regions A(T) are illustrated in Figure 5 for the case n- 3.

The Q triangulation subdivides each nonempty reqion B(T,U) into
t-dimensional simplices (t - ITI). To describe these simplices precisely,

we introduce the notation p(h) for the fist index of the sequence

(h-1, h-2,...,l,ntl,...,h) not in U. Recall that B(T,U) is defined only
for sets T and U verifying TnU -~ and ITUUI~ n. A simplex in B(T,U) can
be characterized by a quadruple T, U, a, n where a E Rntl is a non-
negative integer vector verifying a. - 0 for j~ TuU and where

J
rz-(nl,...,nt) is a permutation of T. Such a simplex will then be deno-
ted a(T U a n). Its vertices

1 ttl n,,, y,...,y are grid poínts in S verifying:

1(4.2) i) Y- ~ t j E TuU ajq(~)~d.

ii) itl iy - y t r(n.)~d for i- 1,...,ti
J,

where r(j) - L q(h)h - p(j)tl(mod nti)

iii) U cii E Intllyl - p} ~ TuU.i

Conversely, any ttl grid points yl, ..,yttl in Sn verifying
statements (4.2) for subsets T and U of Intl such that ITUUI~ n and
TnU -~, for a nonnegative integer vector a E

Rntl
and for a permutation

n of T are the vertices of a simplex of the Q triangulation lying in
B(T,U). Conditions (i) and (ii) ensure that 1 ttly ,...,y are the vertices



e(3)

e(1)

~
~

Ái{1,4})

Figure 5.
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of a simplex of the Q triangulation lying in A(TUU). To show that the

simplex also líes in B(T,U) observe that the vector r(j), defined in (ii),

has exactly two non-zero coordinates, namely rj(j) - 1 and rp(j)(j) --1.

The indices of all coordinates between p(j) and j are in U. Condition
n

(iii) then identifies U as the indices of the facets of S,
{x E S Ix. - 0} for i E U, containing a(T,U,a, n).

1
This simplex therefore lies in B(T,U).



- 19 -

The new algorithm operates in the regions A(T) as the original

algorithm operates in the regions A(T). Therefore consider the chains

of t-simplices in B(T,U) having common T-complete facets (t - ITI).

Every chain which is not a loop has two terminal simplices. Such a ter-

minal simplex eith~- is complete (and yields an approximate solution) or

leads to a unique chain in a different region B(T',U')~A(T') with

~T'~ - ITI t 1, ITI or ITI-1. The chains of simplices can thus be linked

into variable dimension simplicial loops and paths with two terminal

simplices.
The 0-simplex {v} is the only terminal simplex which may not be

complete. The algorithm starts at the 0-simplex {v} and follows the sim-

plicial path of linked chains having the 0-simplex {v} as a terminal

simplex to its other terminal simplex. The latter simplex is complete.

Wo now turn to the general case 5- RNSn7. So, we have to givej-1
a triangulation of S. As in [5] (see also [9]) we use a triangulation

which depends on the starting pointv, which must be a grid point. First

define regions A(T). Then each region A(T), T~I, is triangulated such

that the union of all simplices yields a triangulation of S. So, 1et

d-(d ,...,dN) be a vector of N positive numbers such that d-1 is an
1 7

integer, j- 1,...,N. We call d the grid size vector of the triangulation.
0

Then the set G of grid points of the triangulation is the set of vectors

x in S such that xjh is a nonnegative multiple of dj, h- 1,..., j tl,

j- 1,...,N. One of these points, to be denoted v, will be the starting

point of the algorithm. Further, Q is redefined as the block diagonal

matrix

Q -

0

. 0

with Q, the (n.tl) x(n.}1) matrix as given in section 2. In the follo-
7 7 J

wing, for h- 1,...,njtl, the (Ei-i(nitl)th)-th column of Q is denoted

by q(j,h), i.e., q(j,h) - e(j,h) -e(j,h-1(mod(njtl))), where e(j,h) is the

(~i-1(ni}1)th)-th unit column, h- 1,...,njfl, j- 1,...,N.
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A subset T~I is called fe~isible if for all j E IN, at least

one index (j,h) E I is not in T. Clearly T is feasible if and only if

the rank of the matrix consisting of the column vectors g(j,h), (j,h) E T

is equal to the cardinality ITI of T. Now S is partitioned in cones with

apex v defined by

0
A(T) -{x E Slx - ~}(j,h) E T ajhq(j,h), ajh ~ U}

for all feasible T~I. As in section 2 each non empty region A(T) with0
A(T) the closure of A(T) is subdivided into ~TI-dimensional simplices

1 ttla(a,n) with vertices y,...,y (t - IT~) in S given by

(4.3) yl - v
t(j,h~ E T a h Dq(j,h), a. nonneg. integer

j J,h

yitl - yi t Dq(ni), i - 1,.. ,t,

where (nl,...,nt) is a permutation of the elements of T and D is the

diagonal matrix with (j,h)-th diagonal element equal to d,,
J

h - 1,...,njtl, j - 1,...,N.
Let G(T) be the collection of all the Iml-simplices Q(a,n) in A(T). Then
G- uTG(T) yields a triangulation of S, satisfying that for T'~T, G(T')
is induced by G(T) in the sense that each simplex of G(T') is the inter-
section of A(T') and at least one simplex in A(T) (see [9, chapter 6]).
As for the case N- 1, we extend the regions A(T) to the regions A(T)
by A(T) - UB (T, U) with

B(T,U) - A(TUU)n{x E S~x,h - 0 for all (j,h) E U},
J

where the union is taken over all U such that TnU -~ and TuU is feasible.
The set A(T) consists of a union of IT~-dimensional convex pieces B(T,U).
Each nonempty B(T,U) is triangulated by G in ITI-simplices. To describe
the simplices of this triangulation, let p(j,h) -(j,b(j,h)) be the
first index of the sequence ((j,h-1),(j,h-2),...,(j,l),(j,n,tl),...,(j,h))

J
not in U and let s(j,h) represent the sequence ((j,b(j,h)tl),...,(j,njtl),
(j,l),...,(j,h)) if b(j,h) ~ h and the sequence ((j,b(j,h)tl),...,(j,h))
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if not, (j,h) E I. Then a t-simplex in B(T,U) is characterized by a
n tl

quadruple (T,U,a,n) with a in II,R ~ a nonnegative integer vector veri-
J

fying a h- 0 when (j,h) ~ TuU and rz a permutation of the t elements
7~

of T. The vertices of a(T,U,a,rz) are grid points of S satisfying

i)
1

Y - v }(j~h) E Iaj,hDq(7,h)

ii) yitl - yi } Dr(n,) for i- 1,...,ti

where r(j,h) -(J,k) E s(j,h)q(j.k)

1 ~ T u Uiii) U e{(j.h) E IIYj h- U} ~

where in ii) the sum is over all values (j,k) in the sequence s(j,h).

For each feasible TUU the t-simplices in B(T,U) with T-complete facets

form,chains of adjacent t-simplices with common T-complete facets. Each

chain in a B(T,U) which is not a loop has two terminal simplices. Each

terminal simplex is either complete or the starting simplex o(v) or

yields a terminal simplex in a different B(T',U'). More precisely, the

following possibilities for a terminal simplex a(T,U,a,n) in B(T,U) can

occur.

i) a is (TU{(j,h)})-complete for some (j,h) ~ T. Then

a) (j,h) ~ U implies that a is either complete or a facet of a ter-

minal simplex a in B(TU{(j,h)},U);

b) (j,h) E U implies that a is a facet of a terminal simplex a in

B (TU{ (j ,h) },U`{ (j ,h) }) .

ii) a has a T-complete facet T in the boundary of B(T,U). Then with i

the index of the vertex of 6 opposite T

a) i- 1 implies T is either complete or a facet of a terminal t-

simplex Q in B(T,UU{p(nl)});

b) 2 ~ i ~ t implies r is a terminal simplex in B(T`{p(rzi)},

Uu{p(rzi) }) ;

c) i- ttl and y ~ 0 implies T is either a terminal simplex in
rzt
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B(T`{rt}, U) or for some (j,h) E U, r is a facet of a terminal
simplex in B(T,U`{(j,h)}) (see step 3c below);

1d) i- ttl and y - 0 implies that T is a terminal simplex inn t

B(T~{nt},Uu{nt}).

Moreover, a(v) is the facet of only one terminal simplex a of a chain.
The representation of Q in terms of the new T, U, a and n can be easily
obtained from the quadruple (T,U,a,n) of a.
Therefore, the simplices in A(T) with T-complete facets for varying T
form chains of adjacent simplices of varying dimension when linked toget-
her. Each ohain which is not a loop has exactly two terminal simplices.
Just one terminal simplex is the simplex a(v) whereas all other termi-
nal simplices are complete so that there is one chain of simplices which
links a(v) with a complete simplex. The steps of the algorithm to follow
this chain are as follows, where P(j) -{(j,l), ..,(j,njtl)}, j E IN.

Recall that p(j,h) -(j,b(j,h)), for all (j,h) E I.

Step 0. [Initialization].

Set T- ~, U- {(j,h) E Ilv. - 0}, a- 0, n-~ and y- v.~,h

Step 1. [COmputation of label of incoming vertex].
Compute R(y). Let R(y) be equal to (j,h). Proceed to one of the
following subcases.

(a) R(y) ~ TuU. If ~(TUU) r,p(j) I- n. , then a(T,U,a,n) is j-
J

complete; stop.

If not, set i- ttl and go to step 2.

(b) k(-) E T. Deternline the vertex 1Y y of a(T,U,a,n) verifying
R,(yl) - R(y) and yl ~ y. Go to step 3.

(c) k(y) E U. Identify the first element, say (j,k) in the se-
quence ((j,hfl),...,(j,njtl),(j,l),...,(j,h)) not belonging
to U. If (j,k) ~ T, then set i- tti. If (j,k) E T let i be
the index such that n. -(j,k). Proceed to step 2.i
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Step 2. [Increase in number of elements of T with possible decrease in

number of elements of U].

Set T - Tu{Q(y)},

U- U if 2(y) ~ U,

- U`{ R, (Y) } 2(Y) E U,

rz-(rzl,...,rzt, Q(y)) if i- ttl,

-(rz ,...,rz. , Q(y), rz,...,rz ) 1 5 i ~ t.
1 i-1 i t

Let y- yl t Dr (rz ,)(-
Yitl) . Set T- T, U- U, rz-~, and re-

i
turn to step 1.

i
Step 3. [Replacement of y in o(T,U,a,n)].

As long as the conditions below are not verified, a and n are

updated as in Table 2. Let y be the new vertex of a(T,U,a,n).

Set a- a, n- rz, and return to step 1.

The exceptions to the above rule are:
ttl

(a) i- 1 and yp(rz )- 0[Increase in number of elements of U].

Let rzlbe equallto (j,h). Set U- Uu{p(rzl)}. If I(TUU)nP(j)I

- n, then a(T,U,a,rz) is complete; stop. If not then the
~ - - ttl

updates a and t[ are computed as in Table 2, while y- y .

Set U- U, a- a, rz- rz, and return to step 1.

(b) 2 5 i ~ t and yp (~ )- 0. Go to step 4.
i

(c) i- ttl and aj,Q - 0, where nt -(j,h) and R- b(j,h)tl(mod

njt 1). Go to step 4 if yl - 0. If yl ~ 0, let (j,k) be the

index of the last zero element in thetsequence

(aj,h,~(J,h') E s(p(rzt))). If (j,k) - rzt go to step 4.

If (j,k) ~ nt go to step 5.

Step 4. [Decrease in the number of elements of T with possible decrease

in the number of elements of U].

Set T - T`{rzi-1}
U - Uu{rzi-i}

- U

if yl - 0
ii-1

if y ~ 0,
rzl-1

rz - (rz ,....rz. ,n.,...,n )1 i-2 i t
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Let yl be the vertex in a(T,U,a,n) such that R(yl) - rzi-1~
Set T- T, U- U, n- rz and i- i, and return to step 3.

Step 5. [Decrease in the number of elements of U].

Set U - U`{j,k},

i
1

2,....11

tf 1

a. ,- a. ,-1 for (j,h') E s(j,h)
~,h ~,h

- a. , otherwise~,h

rz - (nt,nl,....rzt-1).

Let y- yl-Dr(nl)(- yl). Set U- U, a- a, rz- rz, and return to
step 1.

a

a.~ - a~ tl (j',h) E s(n )~ ,h j ,h 1

a - a

aj',h

- a,',h otherwise
J

- a.~ -1~ ,h

- a.,~ ,h

(j',h) E s(rzt)

otherwise

rz

(n2, . ,nt,nl)

(rz ..,rz ,n.,n ,n ..,n )1'~ i-2 i i-1 itl " t

Table 2. Replacement step when the vertex yl of a(T,U,a,t[) has to be
replaced (T and U do not change).

The algorithm just described shows that lemma 3.2 is true for the triang-
ulation given above. Recall that this triangulation was obtained by
first triangulating each nonempty B(T,U) in ITI-simplices. However, any
triangulation of S induces a triangulation of the B(T,U)'s when the
starting point is chosen as one of the vertices of S. Doing so, chains
of T-complete simplices can be linked together for varying T, with one
chain leading from one of the vertices of S to a complete simplex. This
gives a constructive proof of lemma 3.2 for any triangulation of S.

To approximate solutions of the NLCP on S the algorithm descri-
bed above can also be applied for vector labelling. Then a point x in S
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receives the vector label 4(x) - z(x)te instead of an integer label cor-

responding to the index with the largest z-value (see sectionl). Here e

denotes the E.(n,tl)-vector of ones.
~ ~ 1 kf 1

We call a k-simplex a(y ,..,y ), with k- t or t-1, T-complete if the

system of linear equations

ktl
E ~iR(yl) } ( j,h) ~ Tuj,he(j,h) - e

i-1

~ ~
has a nonnegative solution ai, i- 1,...,ktl,Uj~h (j,h) ~ T. A complete

~~ 0 then (j,h) E U clearly yields an approximate so-simplex, i.e. u .~,h

lution EiÀiyl~E aj to the NLCP. In general a T-complete t~gym~lex O hds

a line-segment of solutions with two endpoints. At an endpoint either

one of the ?~.'s is zero so that the facet opposite the corresponding ver-
i

tex is also T-complete or one of the u. 's(j,h) ~ T, is zero which im-
~,h ~

plies that a is also Tu{(j,h)}-complete for some (j,h) ~ T. Therefore,

the T-complete t-simplices in A(T) for varying T again induce chains of

adjacent simplices with common T-complete facets of variable dimension.

Exactly one chain has a(v) as one of its endpoints wheras all other

endpoints are complete simplices. The path which leads from a(v) to a

complete simplex can be followed by alternating replacementsteps as des-

cribed for the integer labelling algorithm above and linear programming

steps in the system above to determine that either a vertex has to be

replaced or the label set T should be extended with a new label. When

for some (j,h) E T, a T-complete facet lies in A(T`{ (j,k)}), the unit vec-

tor column e(j,k) is reintroduced into the system of linear equations
and the alqorithm continues as for integer labelling in A(T`{(j,k)}).

5. Applications and numerical results.

In this section we discuss two applications of the intersection

theorems on Sn and S respectively. First, consider the quadratic program-
ming problem with quadratic (and linear) constraints (QPQC) defined by

(S,1) min{Qntl(x)IQi(x) - 0, i- 1,...,n, x E p}
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where each Q(x), i- 1,...,n is a quadratic convex function on Rm and
i m

where P is a nonempty polyhedral in R(see Phan-Huy-Hoa [7J). Then, let

x(u) be the solution of the quadratic programming problem

min{nÉl uiQi(x)Ix E P}
i-1

where u~E Sn. Suppose that x is a continuous function on Sn. Finally,

define the sets C., i-1,...,nt1, byi

r,Ci -{u E S ~Qi(x(u)) - max~Q~(x)) ? 0} i-1,...,n

and

Cntl - {u E Sn~Qi(x(u)) ~ 0, i-1,...,n}.

Then each nonempty C1 is a closed subset of Sn and according to theorem

3.3 there is a u in Sn such that for each i E Intl either u. - 0 or
i

u belongs to C..i
Clearly, if untl is positive then x(u) solves problem (S.1). When there

is a y in P such that Qi(y) ~ 0, i- 1,...,n, it can be shown that untl
must be positive. To apply the algorithm of section 4 we assign to

u E Sn in case of integer labelling a label according to (1.1) and in

case of vector labelling the label R(u) - z(u)te, where

z(u) - (Q1(x(u)).-..,Qn(x(u)).~)T.

Although uTZ(u) is not always equal to zero, a complete simplex is

still an approximate solution to problem (5.1). A function z' which

satisfies uTZ'(u) - 0 for all u in Sn is the following one:

n
z'(u) - (unt1Q1(x(u)).-.-~untlQn(x(u)), - i~luiQi(x(u))).

However this function seems to be less natural than the function z,
although z' induces an NLCP on Sn. Both the integer and vector label-

ling version of the algorithm described in section 4 are applied to the
three QPQC problems given in [7]. Table 3 gives the cumulative number of
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fur.ction evaluations and lincar programning steps (in case of vector

labelling) to obtain a complete simplex in a triangulation of Sn with

grid size 5.10-4. The initial grid size is 5.10-1. At each restart the

grid size is refined with a factor 10. The restarting point is the grid

point closest to the barycenter in case of integer labelling and to the

approximate solution E~~yl~E~~ in case of vector labelling found in the
i i

prevíous stage. It should be observed that the results are much better
than in [7).

The second application concerns the computation of equilibrium

strategy vectors of a noncooperative N person game. Let n.tl be the num-
J

ber of strategies of player j, j-1,...,N, and let J denote the product
n.tl

of index sets I J ~ j-1,...,N. A vector k-(kl,...,kn) in J will denote

the (pure) strategy vector in which player j plays his k.-th pure strate-
J

gy, j-1,...,N. Furthermore, for k E J, let a.(k) be the loss to player
J

j if strategy k is played, j-1,...,N.
N

We assume that for each k in J and j in I, a,(k) is positive. The set
n. J

S J can be considered as the (mixed) strategy space for player j, j E IN,
so that

N
S - 11j-1

is the strategy space of the noncooperative game, i.e. if x E S, then

x.h denotes the probability that player j uses his h-th pure strategy,
J N

h-1,...,n.t1, j E I .
J
The expected loss pJ(x) to player j if strategy x in S is play-

ed is given by

N

pJ (x) - k É JaJ (k) i~lxik ~
i

and the marginal loss to player j if he plays his h-th pure strategy

and the other players stick on strategy x is given by

J (x) - ~ aJ ( k) Íi x. -~ k E J i-1 ik.i
k.-h i~j

J
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Observe that for each x in S

nj~l
(5.2) p~(x) - r1 E xjh ~(x) j-1,.--.N.

h-1

A point x in S is an equilibrium strategy vector of the game if for each
player j

pJ (X) C m,? (X) h-1,...,n,t1.
7

Let for (j,h) E I the sets C.h be defined by
J

Cjh - {x E S~P~(x)-mh(x) - (i~g~E I {pl(x)-ml(x)}}.
9

Then each Cjh is closed and the union over all C,h cover S, so that ac-
J ~

cording to the generalized intersection theorem there is an x in S andn.tl
an index j E IN such that for all h E I ~

x~ E Cjh or x~h - 0.

~Because of (5.2) such a point x must be an equilibrium strategy vector.
Both the integer and vector labelling algorithm described in section 4
has been applied to three different noncooperative N-person game. In
case of integer labelling a point x receives as label the index (j,h) if
(j,h) is the first (lexicographic) index for which x belongs to C,h.

JFor vector labelling a point x in S receives the label
k(x) - z(x) t e, where

zjh (x) - p~ (x) -mh (x) h - 1, . . . ,njtl; j E IN.

In Table 4 the cumulative number of function evaluations and linear
programming steps are given to obtain an approximate solution with
max z,k(x) ~ 10-10. At each restart the grid size is refined with a
~,k ~
factor two. Game 2 has also been solved in van der Laan and Talman [7].
Observe that the results given in Table 4 are much better.
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OPQC problems

IL

problem n d FE LP FE

1 2 5.10-1 4 5 4

5.10-2 7 7 6

5.10-3 10 9 8
5.10-4 15 11 11

2 2 5.10-1 5 5 5

5.10-2 7 11 11

5.10-3 11 13 13

5.10-4 18 15 16

3 4 5.10-1 2 2 2

5.10-2 4 5 5

5.10-3 7 7 7

5.10-4 13 9 10

Table 3. Cumulative number of Function Evaluations (FE) and Linear Pro-

gramming (LP) steps, for Integer Labelling (IL) and Vector

Labellinq (VL). For the data see [7].

Noncooperative games.

IL VL

Game N n.fl
7

FE LP FE

1 3 2 377 206 205

2 3 3 269 33 34

3 4 2 165 117 127

Table 4. Cumulative number of Function Evaluations and Linear Program-

ming steps to obtain an approximate solution with
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max zjk ~ 10-10, N is the number of players, njtl the number
j,k

of strategies of each player. The data are given in the appen-
dix.
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Appendix. Data noncooperative games.

Game 1: N- 3, n.}1 - 2, j- 1,2,3. The number in the (j,k)-th row and
7

the (ik ,ik )-th column denotes the loss for player j when he plays his
1 2

k-th pure strategy and player kh, h- 1,2 plays his ik -th pure strategy
h

with kl,k2~ j ordered such that kl ~ k2.

(1,1) (1,2) (2,1) (2,2)

1
8

2 8 5
8 2 2

4 2 2 1
2 6 1 3

4 1 4 2
8 8 2 1

Game 2: N - 3, n..}1 - 3, j- 1,2,3.
]

~(1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)

2 3 4 2 3 3 4 1 5
1 1 4 3 4 1 6 8 2
4 7 2 4 5 5 3 6 4

5 6 7 4 8 9 3 5 1
1 1 3 3 2 1 2 2 4
2 3 6 S 3 6 7 5 8

1 3 5 1 6 2 1 2 4
2 6 5 3 3 7 8 5 5
5 2 2 4 6 5 8 1 3
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Game 3: N- 4, n.fl - 2, j- 1,...,4. The number in the (j,k)-th row
J

and the (i i,i )-th column denotes the loss for player j when he
kl' k2 k3

plays strategy k and player kh, h- 1,"L,3 plays ik with kl,k2,k3 ~ j

ordered such that kl ~ k2 ~k3.

~ (1,1 1) ( 1,1,2) ( 1,2,1) ( 1,2,~') (2,1,1) ( 2,1,2) ( 2,2,1) (2,2,2)

3 3 4 2 3 3 4 1

4 1 4 3 1 1 6 8

4 6 2 4 S 3 3 6

S 2 7 4 8 6 3 5

1 6 3 3 3 3 1 2

2 2 6 S 4 6 3 5

6 3 5 1 3 2 3 2

2 6 5 3 4 7 1 5
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