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MIIi,TIPLF, FAILURE RATES AND ORSERVATIONS OF TIME ~EPENTIENT COVARIARLF.S

(Part 1: Theory)

A.L. Hempenius and P.G.H. ~tulder

1. Introduction

In this paper a method is presented for analyzing, for censored failure
time data, the relation between: (1) failure rates of a number of mu-
tually exclusive and simultaneously acting (so-called "competing")
failure causes and (2) values of time dependent covariables, íncluding
possibly the covariable "time" itself. These covariables are supposedly
measured at predetermined time points.

Some examples from epidemiology, medicine, and economics are:
(i) The development over time of cardiovascular disease in an origi-

nally disease-free cohort of persons in relation to annual
values of blood pressure, cholesterol level, F,CG-anomalies,
smokinq, sex and ay;e, takinp, into acco~int the two other (compe-
tinR) failure causes: mortality from other causes and disease-
free withdrawal from the cohort.

(ii) The survival prognosis after operation on a certain type of
cancer, in the presence of various competing mortality causes
(including the given kind of cancer) of patients discharged from
hospital, in relation to varíous medical therapies, the time
eínce the operation, age, and sociodemographic characteristics.

(iii) The termination of the duration of unemployment, firstly of
course by finding a job and secondly by other causes, such as
transfer to some social security scheme (say a disability sche-
me), other than the unemployment scheme, or mortality. Possibly
time-dependent covariables are educational and~or professional
status, age, the duration of unemployment and the acquisition of
new skills. See, for example, Nickel (1979) and Lancaster and
Nickel (19Rf1) .

In Section 2 a review of the relevant theory of competing risks
is presented, as this theory may be used to describe the distributions



generating type and time of failure for a given "suhject". The para-
meters of these distributinns depend on the values of a nianber of expla-
natory variables characteristic for this subject. This dependency is
also modelled in Section 7. In Section 3 the likelihood function suita-
ble for estimating the relevant parameters of the model is presented.

~. F.lements of the theory of competing risksl)

2.1. Theoretical and ~bserved Failure Tímes

A given subject, free from any "failures" at time point zero, i s in the
course of time subject to K(mutually exclusive) simultaneously acting
or competing risks or failure causes. At some point in time, and by one
of the R failure causes, the subject considered actually experiences
"failure". This may be formalized as follows.

Let the observed random variable ( r.v.) X denote the time of
failure ( from one of the K. risk causes) and let the unobserved theoreti-
cal random variable X~ ~ ~(j s 1,...,K) be the time of failure if risk
j were the only risk present. Then X is equal to the smallest of these K
theoretical failure times X1,...,XK:

(2.1) X - min(X1~,,,~XK),

These theoretical failure times have a joint Atstrihution defined by the
so-called (supposedly continuous) jnint survival function S:

(?..?) S(xl,...,xp) - Pr(X1 ~ x1,...,~CK ~ xK).

The (observable) probability of still being failure-free at time
x(i.e. of surviving after time x) is a value of t}ie survival function
F(x) defined for the r.v. X of (2.1):

(2.3) F(x) - Pr(X ~ x).

1) See also David and Moeschberger (197R).
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As X exceeds each Xj, according to (2.1), F(x) may be expressed as
follows:

(2.4) F(x) - Pr(X1 ~ x,...,Xx ~ x)

- S(x,.. ,x).

The probability density function (p.d.f.) of X, f(x), thus is:

(2.5) f(x) ~ -dF(x)
dx

-dS(x,. .,x)
- dx.

The (observahle) probability of failure, at some time, from risk

cause j is denoted by nj (,j - 1,...,K):

(2.6) n j - Prfmin(X1,...,XK) - Xjl

with Enj - 1. From (2.Fi) it follows that nj may be expressed i n terms of
the joint distribution of the r.v.'s X1,...,XK. as specified by S in
(2.2).

The (conditional) probability fj(x)dx of failure in the interval
(x,x -~- dx) from risk cause j, given failure from cause j, is:

(2.7) f (x)dx - S(x,. .,x) - S(x,. .,x f dx,. .,x)
j ~j

so that the (conditional) p.d.f. of failure time given failure from
cause j, is:

-f.aX s(x1,...,xj,...,xK)lx - ... - x - x
(2.R) fj(x) - ---~ ----~ -1---- K .

1

The (unconditional) probability of failure in the interval. (x, x f dx)

from cause j thus is nj fj(x)dx.
The followinR relation between f(x), fj(x) and a j( j- 1,...,Y,)

follows from the above definitions:



K
(2.9) f(x) 3 E n) fj(x).

j-1

2.2. Failure rates

By means of F(x) and f(x) one defines the well-known failure rate func-
tion a(x) of X as follows:

(2.10) a(x) - f(x) - - ~x Rn F(x).
F(x)

The failure rate (function) defines the following probability: a(x)dx is
the (conditional) probability that a subject, failure-free at time x,
will experience failure in the intervai (x, x t dx), from any of the K
risk causes.

The marginal failure rate function for cause j(j - 1,...,K), in

the presence of all K risks, is denoted by aj(x) ,so that aj(x)dx is the

(conditional) probability of failure from risk cause j in the interval

(x, x f dx), for a subject failure-free at time x:

(2.11) a(x)dx - S(x,-~x) - S(xL...,x t dx,. .,x) .
1 S(x,...,x)

By letting dx approach (1, one has:

(2.12) aj(x) -
-~aX S(x1,...,x~,...,xK))x - ... ~ x - xj 1 - K

S(x,...,x)

From (2.R) and (2.12) the following relation follows:

(2.13) n j f i(x) - a j(x) F(x).

The probability of failure in the interval (x, x t dx) from cause j may
thus also be written as aj(x) F(x)dx.

The failure rate function a(x) of the observed failure time X
can be expressed in the failure rates a ~(x) :

K
(1.14) a(x) - E aj(x),

j-1



5

which follows from

(2.15) a(x) - f(x)~F(x)

a - [áx S(x,...,x)]IS(x,...,x) ~

and from (2.17.).
A special case of the margínal failure rate functíons a~(x):

(2.16) ~~(x) ~ c~ a(x) ( ] - 1,...,K)

defines the so-called proportional hazards model. In this model the
ratios of the a~ are independent of the time x. For the cj one can
easily prove:

(2.17) c~ ~ n j (J - 1,...,K).

From (2.13), (7.15), (2.16) and (2.17) it follows that in this case

(2.1A) fj(x) ~ f(x) (J - 1,...,K),

so that in the proportional hazard model (2.1h) all cause-specific
failure time distributions f~(x) are equal to the overall failure time
distribution f(x). Hence the pronortional hazards model implies indepen-
dency of time and cause of failure.

In contrast to ai(x) , which i.s defined in the presence of all
risks, a theoretical mar~;ínal failure rate function in the absence of
all other risks, r~(x), is defined anaiogous [o (2.10) as:

(2 19) r (x) ~

with p ( x) the p.d.f. of the unobserve~l r.v, X and P i ts decumulative
j ~ ~

distribution function.
If the r.v,'s X1,,,,,XK are independent r.v.'s, then
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(2.2~) aj(x) - rj(x) .

This may be proved directly from (2.12) and also as followa. The (condi-
tional) probability of failure from risk cause j(and not from other
causes) in the interval (x, x t dx), given survival (no failure) until
time x, is:

[P (x)dxl x n P (x)

(2.21) a j(x)dx - -
j i~ j 3

F(x)

pj(x)dx
- - .

Pj(x)

where use has been made of F(x) - Pr(X1 ~ x,...,XK ~ x) -

Pr(X1 ~ x) x... x Pr(XK ~ x) - P1(x) x .., x PK(x).

Result (7..2~) impltes that

K
(2.22) a (x) - E r j(x) ,

j-1

if the unobservable r.v.'s X1,...,XK are independent.
Some relevant probabilities can be expressed in terms of the

aj(x) and a(x) . For example, F(x) , the probabilíty of failure later
than x, is according to (2.1~):

x
(2.23) F(x) - exp[-J a(t)dt].

~

The so-called crude probability of failure (i .e. in the presence of all
risks) from cause j in the interval ( a,b), given survival until time
a, Qj(a,b), i s equal to

1 b b x
(2.24) Oj(a,b) - - J~rt . f.(x) dx - j a.(x) exp[-f a(t)dt] dx

F(a) a ~~ a ~ a
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as follows from (2.13) and (2.23).

2.3. Modelling the dependency of thE~ faí lnrc~ proress on thi~ ciivarta-

hles2)
---- - -----

In this suhsectton the covarinhles enter the failure process. As
will be seen in Section 3, the likelihood function may be expressed in
terms of F(x) and the aj(x) (j - 1,...,K), with F(x) the (overall)

survival function (2.3) and aj(x) the marginal failure rate function for
cause j, in the presence of all risks. As F(x) can be expressed in

the aj(x) , see (2.14) and (2.23), it thus is sufficient to describe the
dependency of the a,(x) (j - 1,...,K) on the covariables, which will be

J
assembled in the vector z. In the context of the competing rísk theory
of Section 2.2, which uses the the~~retical r.v.'s X1,...,XK, it is
natural to specify first the dependency of S(x1,...,xK z) on z and then
to derive the a,(x z) (j - t,...,K).

J
As directly modell.tng the ~lehendency nf the ~ j(x z) also seems

very natural, it wi1L Eírst he chPCke~l whether hoth ways, modelliny, the

dependency of the joint survival f~ntctton and modelling the marginal
failure rates, are equivalent ways. F~~r the most general survival func-
tion this is not the case:

(2.25) aj(x) -

a
-[aX. s(x1,...,xj,...,xK)lx - ... - x - x1 1 K

so that knowledge of the a,(x) F(x) does not allow for a solution of
J

S(x1,...,xK) . This is just an expression of the non-identifiability of
S from data on failure time and failure cause; see David and Moeschber-
ger (1978, Chapter 4) on this phenomenon. If the X1,...,XK are assumed
to be independent r.v.'s, then both ways are equivalent:

(2.26) a.(x) - r.(x) -J J
- d P.(x)

dX J

Pj(x)

2) See also Prentice, Kalbfleisch et.al.(1978).
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which for given aj(x) may be solved for P~(x) (j - 1,...,K) , specifying

S- P1 x... x PK .

F.vídently there are two convenient ways of introducing the
dependency on the covariables z. The first way is to make assumptions
about the ~j(xlz) (j 3 1,...,K), without assinning anything about the S-
function or even mentioning it. The second way is to assume
g~ pl x,,, x pK , i.e. independent r.v.'s X1,...,XK. and subsequently

also ass~e something about the marginal failure rates

-[d Pj(xlz) ~ dxj~Pj(xlz). For the resulting likelihood function these

two ways of íntroducing z are indifferent. As in the previous section

the theoretical r.v.'s X1,...,XK have been used to model the competing

risk problem, the second way is the consistent one, and will be used

here.

Assuming independent r.v.'s X1,...,Xk, the dependency will be
modelled as follows:

(2.27) a j(xIz) - exp(S~ z) a~j(x),

where the Bj (j - 1,...,K) are column vectors of cause specific regres-
sion coefficients and a~i(x) is the failure rate for gj - 0, i.e. in the
absence of any influence from the covariables z.

A special case of (2.27) is

Y
(2.25) a j(x Iz) - exp(B ~ z) e ~ a~(x),

in which case the marginal failure rates a~j are proportional to each
other. For a subject, with given z, the ratios of the a are independent

J



9

of x, which defines the proportíonai hazards mociel.3) The probabtlity-
n i that a subject with covariables ~ ever fails of cause j, then be-
comes:

a. exP(Y . f 9' z)
(2.29) n j~ J - J j

E ai E exP(Y i} B i z)
i-1 i-1

K K

which defines a logistic function in z.

3. The Likelihood Function

3.1. Introduction

In this section, the likelihood function, initially for a cohort of
subjects followed for some period of time, will be developed.
In Section 3.2, this is done for tlie case that failure rates and cova-
riables influencing the failure rates may change continuously with time.
In Section 3.3, this same case ís treated by means of Cox's partial
likelihood approach. Finally, in Section 3.4, the practical case of
faílure rates and covariables being constant within time intervals is
considered. Section 3.4 forms the core of this paper.

3.2. The likelihood for contínuously changing rates and covariables

Subject i of the failure-free cohort H is followed during the time
interval [r1, til. Ry "time" is meant follow-up or study time rather than
calendar time, so that although different subjects enter the follow-up
study at the same study time ~, the calendar times of entering the study
may be different. The only type of censoring present is of type I, i.e.,
the total follow-up time ti of subj~ct i is either predetermined or
stochastic and it is stochastic only if one of the K failure causes
produces time ti. Correspondingly, twi types of even[s are defined for
each subject i E H:

3) If several of the covariables are time dependent, so that z ~ z(x),
then a proportional hazards model requires all K cause specific
regression coefficients associated with such a tíme dependent
covariable to be the same.
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(1) event 14~, occurring if the follow-up ends wíthout failure at

predetermined time ti;

(ii) event Mj (j ~ 1,...,K), occurring if the follow-up ends at

stochastic time ti, produced by failure cause j(j - 1,...,K).

The set H ís partittoned intn the sets h(~, M1,...,MK. F.ach
subject i E H belongs to exactly one of these sets. This is also denoted

by the zero-one indicators á~i' ali'" ~'óKi' which are defined as

dji - 1 if i E Mj ( j ' ~.1,...,K) and as g i~ ~ otherwise.
j

The likelihood function I.i for subject i E H can now be written
as:

aCli K d ji(3.1) Li - ÍFi(ti)) n ~nji fji(ti)) ,
j-1

as foll.ows from (?.3) and (2.R). In (3.1) Fi(ti) denotes, for suhject i,

the survival probability for predetermined time ti and

nji fji(ti)dti ~ aji(ti)Fi(ti)dti denotes the probability of failure

from cause j at stochastic time ti, The likelihood function for all

subjects in H is, hecause of independence:

K
(3.2) L ~ II L - II F (t ) II II a , (t ) F (t ) .

iEH i iEMH i i j-1 iEpt j ~ i i i i

This can be expressed into the rates aji, as follows:

K ti
(3.3) L~ ii { n exp[- j a..(x)d:.) n a..(t )} ,

j-1 iEH H ~li
1EM1 3i i

which follows from ( ?.14) and (2.23). This i.mplies that R n L is additi-
vely separable with respect to the cau5es j- 1,...,K:

K t
(3.4) Rn L- E { E Rn ja .(t )) - E ji a..(x)dx} .

j-1 iEMj Ji i iEH ~ li
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A separate maximization for each failure cause j maximizes the log
likelihood (3.4).

By introducing the dependency model (2.27) for the aji , with
time dependent covariables zi(x), one introduces cause-specific coef-

ficienta Bj. Assuming knowledge of the zi(x), these sj can then be

estimated by maximizing (3.4) with respect to the gj. Of course, the-

aDj have to be specified. The a Dj need not be made dependent on the

sub.jects i, as this dependency is accnmplished by means of the (subject

dependent) vertor nf covariahles ~~.

Ln Si~rtinn 1.~i the a.tirmptlon nf knnwinF; tlrt' zi(x) fnnrttons ts
replaced by the assumption of knowing values of zi(x) at (predetermined)

points in time, say xl,x2,...,xp. Another, somewhat more "heroic",

assumption is to suppose that the aji depend on one measurement of

the zi(x), say at time xl. Of course, for some covariables this is

justified. For example, a subject's sex does not change that easily.

3.3. ~ox's partial likelihood approach

Aiit first, for more insight, it is instructive to use a partial likeli-
hood for estimating the sj. The partial likelihood approach considers
the complete likelihood as factored into parts which are relevant to the
estimation problem at hand and other parts; see ~ox (1972 and 1975) and
Prentice and Kalbfleisch (1979).

A partial líkelihood is found by conditioning on certain rele-

vant events. Suppose, there are mj f.ailures from cause j, assembled in

the set Mj (j ~ 1,...,K). The times of failure corresponding to these

failures are such that ~ ~ tl ~... ~ t .(For ease of notation, am
second index, indicating cause of failure,jis suppressed.) Denoting by

Hi the set of persons free from failure just before time ti (i ~

1,...,mj), the probability that suhject i fails from cause j at time ti,
conditional on the set H1, is

a ji(ti)
(3.5) Lji - L ajr(ti) '

rEHi

Introducing the dependency model (2.27), the log partial likelihood for

all subjects of Mj becomes:
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(3.6) Rn Lj(9 j) - E j Rn L ji(S ~)
i-1

m. m,
- S' E~ zi(ti) - E~ Rn [ E exp(B~ zr(ti))] .

j i-1 1-1 rEHi

The notation Rn Lj(Sj) stresses that (3.6) [and also (3.5)] only depends
on S, and not on a, This in contrast to the log likelihood (3.4).

1 ~j
The relation of (3.6) to (3.4) - actually its j-th sum - is,

that (3.6) may be considered as a special "maximized" case of (3.4); see

Areslow (1974). In order to show this, the total follow-up time is

divided into mj intervals (ti-1, ti] ( i - 1, ..., mj; t~ ~ H). Consi-

dering only failure cause j within interval (t1-1, ti] and considering

(not quite correctly) the "risk" set Hi as defined above, the log like-

lihood for each interval follows from (3.4) with only its j-th sum

considered. Constdering all the in[ervals, gives:

m m t
(~.7) Rn 1, a i: i Rn [1 (t )j - F.'j E Ji a (x)dx .

9 i~l ji i i-1 rEHi
ti-1

jr

Now, introduce the dependency (2.27) and consider the a~j as constant

within the intervals (ti-1, ti]. [Jriting these constants as exp(aji), -

(3.7) must then be maximized with respect to the aji and gj, The aji may

be solved from the first order conditions as:

( 3.R) exp(aji) - [(ti-ti-1) E exp(B ~ zr(ti))]-1 .
~`~i

Substituting (3.R) into (3.7) gives, apart from a constant, the log
partial likelihood (3.6).

~Jhen the number of subjects mj is large, giving rise to many

constants aji, this approach of using the log likelihood (3.6) for

estimating the Si and (3.R) for also estimating the a~j as a step func-

tion of time, may not be so efficie~it. Ay sufficiently parameterizíng

the functions aHj(x) and treating them as continuous functíons of time,

one may increase the efficiency of the ML estimates by using the log

likelihood (3.4). Two other arguments are in favour of the approach
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leading to (3.4). Firstly, this approach copes more easily with depen-

dency models other than (2.27). And, secondly, it copes more easily with

a subdivision of total follow-up time as determined, for instance, by

the measurement times of the covariahles, which is the suhject of the

next section.

3.4. Rates and covariables constant within time intervals

Although rates and covariables, when they change with time, in most
cases change continuously, there will be little or no harm in supposing
constancy in predetermined time intervals. This complies with the actual
practice of follow-up studies in which the total follow-up time is
divided into predetermined intervals, at the start of which a m4nber of
covariables is measured in subjects of the remaining failure-free co-
hort. This division of total follow-up time may be, and ideally is, done
in such a way as to practically ens~ire the above mentioned constancy
within intervals.
A reformulation of the log likelihood (3.4), incorporating the informa-

tíon from several observation points, requires double sums over subjects

and time intervals. A simpler notati~n is achieved in the following way.

The time intervals during which a given subject of the cohort is follo-

wed, are called subject-intervals. The set of subject-intervals for all

subjects of H is denoted by H'. It is assumed that the indexes i, deno-

ting subject-intervals for the same subject, form a set of consecutive

integers. A subject-interval i E H' is denoted by (ti, ti f wi], with

ti the starting point and wi the width of the interval. The widths of
subject-intervals are predetermined, possibly different, numbers deter~

mined by the observation points ti of. the covariables. Only if the
subject-interval considered is the last time interval for this subject
and if failure occurs by one of the K failure causes, then the interval
width is stochastic. Accordingly, the set H' is partitíoned as follows:

M~: the set of subject-intervals with wi predetermined;

P4~ (j - 1,...,K): the set of subject-intervals with wi the

stochastic time of failure, as measured from the start of the
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interval.

As an example, let there be three subjects, two observation

p~ints at times f1 and 1, two faílure causes and total follow-up interval

[~,2]. The set H' may be as follows: Intervals 1 and 2, being [~,1] and

(1,2], for failure-free subject 1, hence wl - w2 - 1(predetermined);

intervals 3 and 4, being [~,1] and (1, 1 f w4] for subject 2 failing

from, say, cause 1, hence w3 - 1(predetermined) and w4 is stochastic;

interval 5, heing [f1,w51 for subject 3 failing from, say, cause 2, hence

w5 is stochastic. The set rq~ then consists of the subject-intervals 1, 2

and 3, the set M~ of subject-interval 4 and the set ~1~ of snhject-intec~

val 5.

Assuming constancy of the failure rates aji, with index j deno-

ting cause j and index i subject-interval i, within the time-intervals

of the follow-up study, the log likelihood becomes:

K
(3.9) RnL- E{ E Rna - E w aj }.

j-1 iEM~ di iEH` i i

For the proof of (1.9) the same steps as the ones leading from (3.1) to

(3.4) may be followed. So, let the index i in (3.1) now represent a

subject-interval from H'. F~irther, let all probabilities (and rates) in

(3.1) now be conditional upon survival until the start of interval i.

Time is measured from the start of the intervals.

The likelihood for all subject-intervals i E H' then is the

product of the T,1, with the added motivatíon that for the same subject

the likelihoods Li of different tntervals may be multiplied because Li

specifies a likelihood conditional upon survival until the start of the

intervals. This leads to (3.4), with Mj and TI replaced by M~ and H',

respectively, and with the integral having lower bound ti and upper

bound ti t wi . Taking natural logarithms gives (3.9).

The log likelihood (3.9) is not unique: there are other assunp-
tions, than the one used in deriving it, that lead to this form. In the
above a cohort is followed in time and each subject of the cohort con-
tribu[es a number of intervals to H'. Ay, for example, following a
cohort of subjects initially of age forty one observes the development
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of the relevant covariables and rates over time (- age). One obtai.ns the
same log likelihood if one samples the subjects by age and measures the

relevant covariables just onr.e. F.ach person contributeN one tntcrval,

with its covariables, including possihly "aQe", to H'. I-mat matters are

the "information sets", the subject-intervals with their covariables and
their type of endpoint, characterized by one of the f.ailure causes or by

no failure. (~f course, as is well known, this does not necessarily mean

that the conclusions drawn within one context may be transplanted to
another context.)

Asstaning that to each suhject-interval i E H' there belongs a

value of zi, the vector of covariables measured at the start of this

ínterval for the relevant subject, t}ie rates aji, which are supposedly

constant within the íntervals, may be made dependent on zi by means of

the dependency model (2.~7). In the previous subsection it was concluded

that the time dependence of the a~j may he satisfactorily modelled by
sufficiently parameterizing the a~ as functions of time. This may be

1
accompliahed by inc.orporatinR "time" as one of the covariables in the r.i

vectors. T)oing this, the dependency model (2.27) for suhject-interval i

is reformulated as:

(3.10) a ji(zi) - exP(B j~ t s ~ zi) ,

where, moreover, one of the covariables has been explici[ly stated as
the constant 1.

Substituting (~.1~) into (1.9) gives:

K
(3.11) Rn T, ~ E {mjs j~ f}~ ~(i ~zi - exP(B j~) E wi exp(g', zi)}

j-1 iEMj iEH' ~

where mj is again the number of subjects failing from cause j. This
likelihood is to be maximized with respect to Sj~ and S~ , j- 1,...,K.

Details may he found in the appendix.
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APPENnIX

Maximizing the log likelihood (3.11).

The loq ltkelihood functton (3.11) has to be max{mized with

respect to the vectors of coefficients (SiH, Bj), for given mj, wi and

zi (j 1,...,K; i E H'). As the log likelihood function is separable

with respect to j, its maximization can be performed separately and

analogously for each failure
j in (BjH, B~), mj and M~ is

The ML-estimators

cause j(j - 1,...,K). Therefore, the index

suppressed in the following.

for (BH,S') follow from the

first order partial derivattves of (3.11) with

(A.la) aa~n 1- - m- R exp(Bp) - p.
n

(A.lb) aaB L- L zi - ás exp(6p) - H
iEwi ~

where

(A.2a) R~ E wi exp(S' zi) ,
íE H'

(A.2b) as - E zi wi exp(B' zi) .
iEH'

Solviiig exp(B~) from (A.la) as

(A.3a) exp(S~) - R

and substituting this into (A.lb) yields

(A.3b) 1 aR
Z-sas-"'

condition of zero

respect to (Sp,B') .

where



(A.4) z ~ m E zi
íEM'

The estimate Eor S f~llows from numerically solving (A.3b) to g, where-
after the estimate for S~ directly follows from (A.3a).

The estimated (asymptotic) covariance matrix of the ML-estima-

tors for (S ~, s' ) is

a2 Rn L a2 Rn L
- á~~ - as~ aa'

(A.5)

where

(A.Fi)

a-- aR ~ a` Rn i.
as~ as ááàs'L ' - ~

aszas, - E~ ziziwi exP(S' zi)
iEH

1 z'

m

Z i a2 x
á as as'

Hence, the estimated (co)variances are inversely proportional to m, and
systematically insensitive to the total number of subject-intervals
i E H' .

From (A.3b) it follows that the estimated S-vectors are systematically
insensitive to m and also to the total number of subject-intervals i E
H', while the estimated g~ directly varies with the ratio of these
numbers, see (A.3a).
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