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Abstract

In thís paper the influence of the shape of the lead time demand distri-

bution is studied for a specific inventory model whích is described in a

preceding paper by Heuts and van Lieshout [4]. This continuous review

inventory model uses as lead time demand distribution a Schmeiser -

Deutsch distribution (S-D distribution) [9]. In a previous paper [4] an

algorithm was given to solve the decision problem.

In the literature attention is given to the following problem: what in-
formation on the demand during the lead time is necessary and sufficient
to obtain "good" decisions. Using a(s,S) policy; Naddor [8] concluded
that the specific form of the lead time demand distribution is negligi-
ble, and that only its first two moments are essential. For a simple
(s,q) control system Fortuin [3] comes to the same conclusion. Bo[h
authors analysed the case with known lead times and with given demand
distributions from the class of two parameter distributions. So in fact
their results are obvious, as the lead time demand distributions resul-
ting from their suppositions are all nearly symmetric. We shall demon-
strate that the skewness of the lead time demand distribution in our
inventory model is also an important measure, which should be taken into
account, as the cost differences with regard to the case where thís
skewness measure is not used, can be considerable.

1. Introduction

In this paper we analyse an inventory model with stochastic lead time
demand under the following assumptions [4]:
a. The system is of the continuous review [ype.
b. The order quan[ity is not restricted.
c. The purchase cost b(q) is a continuously differentiable function of

the order quantity q.
d. The lead time demand distribution has distribution function F(z).
e. The expectation of the demand per unit of time is r.
f. The holding cost per unit inventory per unit of time is cl.
g. Unfilled demand during the lead time is backlogged. The shortage cost

per shortage unit per unit of time is c2.
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The criterion used is minimization of the average cost per unit ordered.

The cost function is:

xfy
(l.l) K(x,q) - (cl~(r.q)) P[ J(xty-z)f(z)dz] dy t

Q 0

(cz~(r.q)) ~ [ J (z-x-y)f(z)dz] dy f b(q)~q,
o x~-y

where:

f(z) : the densíty function of the demand during the lead time;
x : the reorder point expressed in terms of units of economic inven-

tory;
q : the order quantity;

b(q) : the ordering cost. We assume that b(q) - c~ t q.a(q), with a(q) a

twice differentiable function.

We model the density function of the lead tíme demand through the so-

called Schmeiser - Deutsch distribution [9], which is defined as fol-

1ows :

R - z (1-k )~R
(1.?) f(z) - 1 I 1 I 3 3,t c z c P~1t2 R3 R,2

where,

t- kl - R,z f,4R3~ P- kl f RZ(1-R4)R3;

R2, k3 ~ 0, 0 c R4 c 1, - m ~ kl ~ m.

This four-parameter type of distribution can take many different shapes,
including U-shapeness. Table I shows the relation between the shape of
the distribution and the parameters. On page 5 and 6 some figures repre-
senting S.D. density distribution, all with the same mean and variance
value of 9 are given.
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Table I: Different shapes for the S-D dístribution

R3 ~ 1 R3 - 1 R3 ~ 1

(bell-shaped) (U-shaped)

R4 ~ 0,5 skewed to the uniform skewed to the(
right distributions left

R4 - 0,5 symmetric
i

" " symmetric

R4 ~ 0,5 skewed to the " " skewed to the
left " " right

Further it can be shown [9] that R1 and RZ satisfy the following rela-
tions:

(1.3)

RZ
(2R3 t 1) (R3 ~ 1)2

(R3}1)2 {R42R3-~1 } (1-R4)2R3~-ll - (2R3t1) {(1-R4)R3-1-1-R4R3i-1}2

f(1-R4)R3f1 - R4R3tll
(1.4) R1 - V- R2 1 R i- 1 1'

3

with u and a2 as symbols for the expected value resp. variance for the
lead time demand.
These results will be used in section 2.
Apart from the many different shapes the use of the S-D distribution is
justified by the following interesting properties: The distribution
function, the inverse distribution function and the conditional expecta-
tíons, can be specified explicitly. Using gamma, Weibull or beta dístri-
bution, evaluation of the cost function, would require evaluation of
incomplete gamma or beta functions, which is troublesome (see e.g. Bur-
gin [1], Kottas and Lau [6], and Tadikamalla [10]. Reference [4] gives a



4

solution procedure for the model with cost functton K(x,q) given by

(l.l) and lead time demand distribution represented by the S-D distribir

tion. The optimisation method is a Newton-like algorithm.
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2. How important is the shape of the lead time demand distribution?

In several studíes on inventory problems it is stated that the optimal

decisions are strongly dependent on the mean and variance of the lead

time demand and not on the specific shape of the distribution. (see e.g.

Naddor [8] and Fortuin [3]). In this literature examples are constructed

for which the optimal decisions are compared with those from models with

the same mean and variance of the lead time demand but with different

shapes. In these articles thís comparison leads to neglible cost dif-

ferences. However, it is remarkable that only one or two parameter dis-

tributions are compared, which are completely determined by their mean

and variance. The examples in the article of Naddor [8] will be further

analysed, but now with a four-parameter Schmeiser-Deutsch distribution

for the lead time demand distribution. We will see that the optimal so-

lution may significantly depend on the shape of the distribution even if

the mean and variance are the same in two situations. In case of a S-D

distribution this can be achieved by using the formulas (1.3) and (1.4).

For a suitable comparison of the results, two transformations have to be

done.
Fírstly, as Naddor uses an (s, S) model and we use an (s, q) model, we
have to consider the following relation: q- S-s. Secondly, in the
article of Naddor the total costs per period are minimized, whereas in
our model cost per unit ordered is minimized. It can be shown that the
transformation of total cost per unit ordered to total cost per period
is as follows:

K1 - r K2, where

K1 - cost per period and K2 - cost per unit ordered.

In table II Naddor's, recalculculated results can be found and in table

III the results of our model for various types of S-D distributions can

be found. Both table II and III use the same fixed mean and variance.

The values of the parameters which are not listed in the tables are: c0

- 20, cl - 1, the service level is 90I resp. 99Y, the average demand per

period is 3, the variance of the demand per period ís 3, the lead time

is 3 periods.
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Table II: Naddor's recalculated results

distribution s~` q~ total cost
per period

c2-9

Poisson 10 12 13.26
Beta 10 12 13.31
Uniform 10 12 13.13
2-point 11 9 12.61

c2 - 99

Poisson 15 11 17.50
Beta 15 Ii 17.70
Uniform 15 10 16.81
2-point 15 9 14.50

Table III: Results for fixed mean and variance as in Naddor`s examples,

but with different shapes of the S-D distribution

parameters:

R3 R4

~
x

~q total cost

per period

c2-9

0.8 0.2 9.0 12.6 12.64
0.8 0.8 8.9 13.1 13.04
2.5 0.2 8.6 13.9 13.51
7.5 0.8 9.0 12.1 12.13

c2 - 99

0.8 0.2 12.3 11.4 14.66
0.8 0.8 13.1 11.5 15.64
2.5 0.2 14.4 11.9 17.27
2.5 0.8 11.1 11.1 13.23
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The results in table III clearly demonstrate that the value of the cost

function in the optimum is much more dependent on the shape of the dís-

tribution than table II suggests. That is not surprising as the probabi-

lity distributions which Naddor uses are more or less alíke when the

mean and varíance are fíxed. The probability distributions which Naddor

uses concern the demand per period. Table IV gives some information

ahout it.

Table IV: Central moments, skewness and kurtosis for the demand per

ep riod

ul u2 u3 u4 skewness kurtosis

Poísson 3 3 3,1177 29,7 0,6 3,3

Beta 3 3 4,1569 31,5 0,8 3,5

Uniform 3 3 0 16,2 0 1,8

As Naddor uses a lead time of 3 periods, the demand during the lead time

is the convolution of the demand per period. In the appendix a set of

formulas is derived for computing the first four moments of the lead

time demand given the first four moments of the demand per period and of

the lead time.
Table V gives some information about the lead time demand distributions.

Table V: Central moments, skewness and kurtosis for the demand during

the lead time

ul u2 u3 u4 skewness kurtosis

Poisson 9 9 9,3531 251,1 0,3464 3,10

Beta 9 9 12,4707 256,5 0,4619 3,17

Uniform 9 9 0 210,6 0 2,60



10

By using a S-D distribution as lead time demand distribution, with the

same mean and variance as the distributions in table V, and by varying

the shape parameters R3 and R4 as in table III, we are able to calculate

the skewness and kurtosis values for these situations (see table VI).

Table VI:Parameters, central moments, skewness and kurtosis for S-D

distributions representing lead time demand

R1 R2 R3 R4 ul u2 y3 u4 skewnes kurtosis

5,838 9,267 0,8 0,2 9 9 -8,33 154,83 -0,31 1,91

12,160 9,267 0,8 0,8 9 9 -116,6 605,86 -4,32 7,48

6,62 18,31 2,5 0,2 9 9 30,81 248,12 1,14 3,06

11,38 18,31 2,5 0,8 9 9 -30,81 248,14 -1,14 3,06

In Naddor's article the optimal decision variables s~ and S~ are derived
via discrete dynamic programming. In our model the decision variables
are assumed continuous as the S-D distribution is continuous.
To improve the comparability we have derived the optimal integer solu-

tions in our model. These solutions are given in table VII and its

consequences for the cost are calculated for the results in table III.
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Table VII: Integer solutions for the results in table III

parameters:

R3 ~4

x~ q~` total cost

per period

c2 - 9

0.8 0.2 9 13 12.65
0.8 0.8 9 13 13.04
2.5 0.2 9 14 13.53
2.5 0.8 9 12 12.13

c - 992

0.8 0.2 12 12 14.71
0.8 0.8 13 12 15.66
2.5 0.2 14 12 17.33
2.5 0.8 11 I1 13.25

To test the influence which the shape of the lead time demand distribu-

tion has on the cost, more detailed information is needed, concerning

the difference between on the one hand the cost of the optimal strategy,

and on the other hand, the cost of a strategy which is based solely on

the mean and variance of the lead time demand. For that purpose we shall

formulate a null strategy, which is defined as the optimal strategy

(x0, q0) in the case of a symmetric lead time demand distribution

(IC4 - 0.5) with a speciftc mean and variance.

So for every combination of inean and variance we have a null strategy.

In our simulation study we compare thís null strategy with the optimal

strategies for the following cases:

1) For a given cost structure the form of the lead time demand distri-

bution is varied by means of varying the distribution parameters

resulting from (1.3) and (1.4) given the mean and variance.

2) The cost structure is varied for the same cases. We measure the cost
parameters in units inventory cost per unit per unit of time. For

the analysis of the influence of the cost parameters on the above
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inventory control system see [5]. In that paper it is proved that

only the quotient of the order cost and the back sales cost influen-

ces the results. In this case we vary only the back sales cost.

~
For the above cases the optimal decisions x and q~ with its cost func-

~tion K are determined, together with the cost K of the null strategy
(x0, y0). The values of these cost are compared with each other.

We have the following formulas:

Xin K(x.9)](u - u0. 02- Q~; R4- 0.5; R.3 -?.3) - K(x0 , qo) - Ko
~q

~ ~ ~
zin K(x.q)](u - u0; 02- oo; R4 - R4~ R3 - R3) - R(x ~ q)- K

,q

K(x0. 90)](v - u0~ a2~ a~. R4 - R4, k3 - k3) ' K.

The res~ilts are summarízed in table VIII.

Table VIII: Null strategy versus optimal stcategy

c0 - 10, c2 - 10

R3 - 0.4

u0 - 100, a~ - 400, r- 100, cl - 1 1

q0 - 51.2 ICO - 0.6134x0 - 110.1

~
q , q0

reduction

in q

0.2 0.96 0.98 2.0
0.4 0.99 0.99 0.3
0.6 1.01 1.02 0.2
0.8 0.99 1.18 1.1
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A3 - 1.8

~
9 ~ q0 reduction

in ~

0.2 1.03 1.01 0.5

0.4 1.02 1.02 0.2

0.6 1.00 0.93 0.3

0.8 1.01 O.A7 0.6

c0 - 10, c2 - 100

X,3 - 0.4

~
q , q0

reduction

0.2 0.95 1.00 6.5
0.4 0.98 1.00 1.8
0.6 1.03 1.00 3.2
0.8 1.11 1.02 29.1

k3 - 1.8

~
9 ~ q0 reduction

in ~

0.2 1.03 1.00 1.7
0.4 1.03 1.00 1.8
0.6 0.95 0.99 4.3
0.8 0.90 0.95 15.4

~ ~
reduction in ~:- K-~K . 100

q0 - 57.7 KO - 0.6391x0 - 106.2

q0 - 46.3 KO - 0.6853x0 - 122.2

q0 - 48.8 K0-0.7978x0 - 130.9

K
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From table VIII it follows that a strategy which takes into account only
the mean and variance of the lead time demand distributíon is in maiiy
cases not optimal at all. Moreover, if distributions with a mode are
compared with U-shaped distributions the differences will increase. From
the table it also follows that differences in cost very much depend on a
combination of the shape of the distribution and the cost parameters.

3. The influence of the skewness of the lead time demand distribution on
the cost function

We also investigated the effect of left and right skewness on the cost
function and came to the following conclusíons:

i) c2 ~~ cl:
If the shortage cost per unit per time unit is much greater than
the holding cost per unit per time unit, then the optimal cost is
lower for a left skewed distribution than i t ís for a right skewed
one.

ii) cl ~~ c2:
In the reverse case the optimal cost is much lower for a right
skewed distribution than for a left skewed one.

iii) c1-c2 :
When both costs are equal, then the skewness has little influence

on the value of the optimal cost.

If the lead time demand distribution has an anti-mode (U-shaped distrí-
bution) we found that the above relations are strengthened in many ca-
ses.

Remarks:

It was not possible to determine the consequences for the minimal cost
when, for example, a left skewed distribution with skewness a3- -2 was
changed into a3- -1 or a3- -3. Thís was also not possible for a change
ín the kurtosis values. The reason is probably that a change in the kur-
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tosis must be reached by a change in 23 and R4 of the S-D distribution,
which simultaneously changes the skewness and the quantiles of the S-D

distribution.

Appendix~)

In this appendix the first four central moments of the lead time demand
distribution will be derived in terms of the moments of the lead time
N and of the demand per unit of time xi(is1,...,N). The stochastic lead
time demand is defined by: SN xl f x2 f...f xN.

Assuming that N is a discrete stochastic variable and that
N, xl, xZ,... are independent and the xi are identically distributed and
;ill moments exist, then we will show that the following relations hold:

ul(SN) - ul(N) ul(X)

u2(SN) - V1(N) u2(x) t u2(N) ul(x)

u3(SN) - u3(N) ui(X) f ul(N) u3(X) f 3u2(N) u2(X) ul(x)

(1) -
u4(sN) - ui(x) u4(N) f u4(x) u(N) f 6u2(N) ul(N) ui(x) u2(x)

t 4 v2(N) ul(x) u3(x) t 3 u2(x) {vi(N) - ul(N) f u2(N)} t

6 u3(N) ul(X) u2(x)~

un(x) :- E{x-E{x}} , for n~ 1, and the same for un(N).where n
It can be shown that the results of Kottas and Lau [6,7] are not cor-

rect, as the third and fourth central moment which they derived for

SN are false.

~) stochastic variables will be underlined.
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When the lead time N i s detenninistic, then the above results reduce to:

In the next part of the appendix we will derive the formulas in (1)

using genera[ing functions.

Derivation of the first four central moments of the lead time demand

distribution using generating functions

Let x be concentrated in {0,1,...} with point probability

pk:- P(x - k), k- 0,1,... . Then mhe generating function of x is de-

fined as Px(z):- P(z):- E{zX} - E pk zk for those values of z for

whích the expectation exists (thekséries converges absolutely).

Lemma

Let x be restricted to {0,1,2,...}.
a) The probability distribution of x is completely determined by

P of x.
x -

b) When P(z) of x exists for a z with ~z~ ~ 1 then we have for all n-

0,1,2,... .

x n
P(n)(z) - z-n E{x(x-1)...(x-ntl) z}, iziC 1, where P(n)(z):- an(P(z)).

- - dz

In particular we have:

P(n)(1) - E {x(x-1)...(x-ntl)}
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P(1)(1) - E{x}, P(2)(1) a E{x(x-1)}.

Now assume S~ - 0 and Sk - xl f...t xk, k-1,2,..., then SN (formally

defined by SN - Sn when N-n) is the total demand during the lead time.
The variables N, xl, x2,... are independent and the xi are identically

dístrihuted. Assume that the moment generating function M(s) of the

xi exists in an open internal around s-0, and let P be the generating
function of N. n
Define M(n)(s) as an(M(s)), then we have

ds
n

E{es SN N-n} - E { es Sn} 3 R E {es xk} -(M(s))n
- - k-1

E{es SN} - E{E{es SN N}} - E{(M(s))N} - P(M(s)).

So, using the notation yp(x) - E{xn}, we get

E(SN) - ás {P(M(s))~ s-0} - p(1)(1) M(1)(0) ~ L(N) V(x)

F. (SN) - d?2 {P(M(s))l s-o} - p(2)(1) (M(1)(0))2t P(1)(1) M(2)(0) -
-- ds

{uz(N) -u(N) } V2(x) f u(N) lu2(x)} -

{u2(N) t u2(N) -L(N)f u2(x) f u(N) {u2(x) t u2(x)}~ giving

u2(SN) - E(SN) -(E(sN))2- u(N) v2(x) t u2(N) u2(x).

In an analogous way, we find after lengthly computations

u3(sN) - u3(N) v3(X) t v(N) u3(x) f 3 u2(N) uZ(x) u(X)

u4(sN) - v4(x) u4(N) t v4(X) u(N) f 6 u2(N) u(N) U2(x) u2(x)

t 4 u2(N) u(x) v3(x) t 3 u2(x) {V2CN) - u(N) f u2(N)}

f 6 u.~(N) u2(X) u2(X).
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These results are confirmed by those of Carlson [2], who uses cumulant
generating functions. Let the c~.unulants of N, x and SN be denoted by

Ki(N), Ki(x) and Ki(SN). Then Carlson has found the following relation-

ships: -

(3)
K3(SN) - K1(N) K3(X) f 3 K2(N) K2(X) K1(X) f K3(N) K1(X)

K4(SN) - K1(N) K4(x) t K2(N) (4 K3(x) K1(x) f 3 KZ(x))

~ f K3(N) (6 KZ(X) K1(X)) f K4(N) K1(X)

Using a well-known relationship between cumulants and central moments:

K2(.) - u2(.)
(4)

K3(.) - u3(.)

K4(.) - u4(.) - 3 uZ(.)~

rKi(.) - ul(.)

and combining the above results we find:
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It can be seen that the results of Carlson correspond with our results,
but not with those of Kottas and Lau [6,7]. We have checked the solution
procedure of Kottas and Lau and found errors in their derivation for
u3(SN) and u4(SN). Details of a correct derivation using the solution
procedure of Kottas and Lau can be obtained from the authors on request.
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