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Notes on the Markowitz portfolio selection method.

by

J.Kriens and J.Th. van Lieshout

Tilburg University, Department of Econometrics
P.O.Box 90153 - 5000 LE Tilburg, The Netherlands

A proof of the validity of Markowitz's critical line method is given for a
more general situation than discussed by Markowitz. Next for the Markowitz
case with a positive definite covariance matrix explicit expressions are
derived for all efficient portfolios. Using these expressions it can be shown
that the critical line in the (u,c2) plane is a representation of a function
which is not necessarily differentiable everywhere.

Key Words and Phrases : finance, parsmetric programming.

1. Introduction.

Markowitz developed the critical line method for the following portfolio
selection problem cf. Markowitz (1956).(1959). Suppose an investor wants to
invest an amount b in the securities 1,...,n. He invests sn amount xj (20) in
security j, so

n
F x. - b

j-1 ~
(1)

The yearly revenue of a portfolio X' -(xl,...,xn) is a random variable r(X)
with expected value Er(X)-K(X) and variance 62(r(X)) - o2(X). Besides -the
constraint (1) other constraints may exist, restricting the feasible options
to a set ~ C~ n.

M
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A feasible portfolio is efficient if:
a) no feasible portfolio exists with lareer or equal expectation and smaller

variance of the revenue,

and

b) no feasible portfolio exists with smaller or equal variance and larter
expectation of the revenue.

This means that a portfolio X-R is efficient if and only if it is a solution
of both

min {o2(X)~u(X)2u(X) n X E x)
X

and

max {H(X) ~cs2(X)so2(X) n X E.,i ).
x

(2)

(3)

Markowitz derived an alrorithm to compute all efficient portfolios and the
correspondine efficient (x,62) points, assuning u(X) linear. and 62(X) quadra-
tic and all constraints linear. In section 2 we show that the theoreo on which
this al~orithm is based can be refornulated for a much more seneral situation.
Furthermore Markowitz derived some properties of the curve of efficient
points, but his remarks on differentiability properties of this curve are not
very explicit. In section 3 we derive explicit expressions for all efficient
portfolios and eive more precise statements on differentiability properties.
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2. A general theorev for the computation of efficient portfolios.

Theorem.

Let
i. the set of feasible portfolios be defined by X-{XI hi(X) 2 0, i E~},

with ~ an index set, hi(x) concave and continuously differentiable,l) X
compact with non empty interior,

ii. the expected value u(X) of the revenue be concave, continuously differen-
tiable on X ,

iii. the variance of X be continuously differentiable on X,
then X-X is efficient if and only if,

either
a) there exists a X~ 0, such that

min{~s2(X) - á x(X) IX E X} - 62(X) -~H(?C) ,
x

or
b)

max[H(x)Io2(X) - min{~Z(Y)IY E X}] - u(x).
X Y

or
c)

minCc2(x)Iu(x) - max{K(Y)IY E X }] - ~2(X).
X Y

Proof.

We first show the sufficiency property.

(4)

(5)

(6)

1) By continuously differentiable we mean that all partial derivatives
exist and are continuous. Strictly speakinQ, these conditions and the
concavity conditions can be somewhat weakened.



4

Case a . Suppose X is not efficient; this implies the existence of a port-
N M

folio X E~, X ~ X, such that

{u(xN)zu(x) ~ o2(xN)~e2(x) } ~{62(xN)so2(X) n x(XN)~u(X)},

hence

62(XN)-~~.t(XN) ~ 62(X)-~l~l(X) ,

for all X) 0, contradicting a). So ?{ must be efficient.

Next define

ómin '- min {cf2(X) ~ X E~}
X

and
um~ :- max {p(x)~ X E ~ }.

X

Case b If X-X suffices (5), then

o2(X) - 62
min

and
N(X) - max {u(X)~62(X)- omin n X E~}.

X

Thus X-X is efficient with minimum variance on ~.

Case c In the same way X-X sufficing ( 6) implies

u(X) - xm~,

62(X)- min {62(X)~K(X) - Nm~ n X E~. }.

In other words X- X is efficient with maximum expected value on .~ .

Secondly we prove that the conditions are necessary. If X- X is efficient, it
solves both (2) and (3), so it is a solution of
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max {-o2(X)~u(X)-u(X)t0 ~ X E ~ },

and of

(7)

max{}l(X)~62(X)-62(X)2O ~ X E X} (g)

To both problems we apply the Kuhn-Tucker theorem which gives sufficient opti-
mality conditions for the problem, maximize

y - f(X)

subject to

hi(X) Z 0 (i-1,...,1) (9)

with f(X) and hi(X) concave continuously differentiable functions.
These conditions run: f(X) has its global maximum in X-X if there exist num-
bers ti (i-1,...,1) such that

1
vf(X) t ï t.vh.(X) - 0

i-1 1 1

hi(X) z 0 (i - 1,...,1)

ti 2 0 (i-1,...,1)

1
ï t.h.(X) - 0~~i-1

(10)

(12)

(13)

The conditions are also necessary if a certain regularity condition is satis-
fied. We take Slater's condition, stating: the set defined by the conditions
(9) has a non empty interior.

We now differentiate between two situations:
1) Slater's condition is satisfied, and
2) Slater's condition is not satisfied.
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1) If Slater's condition is satisfied, in the case of problem (~) there exist
numbers ál and til (i E~) such that (10) ... (13) are fulfilled.
In the same way there exist numbers X2and ti2 (i E~) for problem (8) such
that (10) ...(13) are satisfied.

Next define

1tX
X:- 1. t. :- 1 (t tt. ) (i E~).1~~2 i 1t~2 il i2

then the two sets of conditions can be combined and rewritten as

-v~2(J{) t áv~,(}{) t ï tivhi(X) - 0.
iE ~

hi(X) Z 0

a ~ 0, ti2 0

F tihi(X) - 0,
iE ~

(iE~)

But this means that there exists a X~O, such that X-}C solves the problem

(14)

(15)

(16)

max {-c2(X) t a u(X) ~ X E~},
X

which is identical to (4).

2) If Slater's condition is not satisfied, this means that either x(X)-K(X)20
or o2(}C)-o2(X)ZO doesn't have an interior point because ~ has a non empty
interior. In the first case H(X) equals the maximum N~ of u(X) on .~ and the
efficient portfolio X solves ( 6); in the second case o~(X) equals the minimum
omin of v2(X) on ~ and the efficient portfolio X solves ( 5). If v2(X) - ómin
has an unique solution, finding the corresponding efficient portfolio is equi-
valent to solving (4) for X- 0. Analogous if K(X) - um~ has an unique solu-
tion, finding the corresponding efficient portfolio is equivalent to solvinS
(4) for a sufficiently large value of ~.



Remark 1.

The theorem implies that Markowitz's method for computing the efficient port-
folios can also be applied if the return r(X) is a nonlinear function of X. An
example of this is the case of a capital budgeting decision in which the
revenue of the investment is a concave function of the investment amount
(diminishing returns). This is especially the case if the capital budgeting
problem is combined with liquidity constraints. Then both r(X) and the condi-
tions hi(X) resulting from the liquidity constraints are non linear functions
of X.

3. The set of efficient (k,62) points in the Markowitz' case.

We now specialize to the original portfolio selection problem of Markowitz.
Suppose the yearly revenue of one dollar invested in security j equals r~ with
Er~-u~; the covariance matrix of the r~ is `~ . If M`- (y~l,...,un), then

N(X) - M'X, (18)

o2(X) - X' ~ X.

The constraints are

(19)

.r~ X s B, (20)

X z 0. (21)

If the feasible set ~ has a non empty interior, the efficient portfolios can
be found by applying the theorem of section 2 in which the left hand side of
(4) now reduces to

min {X' `~ X- X M'X ~~ X s B ~ X 2 0}.
X

The points (u,Q2) corresponding to efficient portfolios constitute the effi-
cient points in the (u,62) plane, sometimes called the critical line of the
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problem. If we start with X-0 and next raise 7~, we get different efficient
portfolios. For specific values of a, there is a change in the basis; suppose
these values are a1,...,Xk and corresponding efficient solutions are X1,...,
Xk. We form the (sub)sequence X. ..,X. from X1,...,Xk for which the (u,62)

~1~ ~h
combinations are different. This (sub)sequence is called the set of corner
portfolios. We have

M'X. C M'X.
~i ~itl

and

X' ~ X C X' ~ X .
ji ji jitl ji41

(22)

(23)

The critical line in the (N,o2) plane has the following properties.
a. Between the (N,62) points of two adjacent corner portfolios, it is part of

a strictly convex parabola.

b. On the segments mentioned in a, the relation

do2 - ~

[d~` ] (u.~s2)

hol.ds.

(24)

c. For `~ positive definite every point of the critical line (- every efficient
portfolio Xb) satisfies

Xb - A t Da (25)

with A and D constants which can be explicitly computed; moreover u(}Cb) is
a linear function of X with coefficient ~ 0.

Only property b is well known from literature, cf. Markowitz (1956) p. 16, or
Zangwill (1969) p. 66-68. We shall now prove properties a and c.
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Proof of property a.

We consider a part of the critical line between two adjacent corner port-
folios, so the efficient portfolios that are convex combinations of these
corner portfolios. For simplicity we note these corner portfolios not as
X~ and X~ but as Xi and Xitl.i ifl
The efficient portfolios of this part of the critical line can be written as:

X - a(Xi - Xitl) ' Xitl

With (18) and (19) it follows:

NÍX)- aM~(Xi-Xitl) t M'Xi41

ana

a E [0,1].

(26)

o2ÍX) - a2(Xi-Xi~l)' ~(Xi-Xi}1) } 2a(Xi-Xitl)' `~ Xitl a Xi.l ~ Xi}1' Í27)

Elimination of ~ from (26) and substitution in (2~) gives a quadratic expres-
sion of cs2(X) as a function of H(X) with as a coefficient of K(R)2

(Xi-Xitl)~ ~ (Xi-Xi~l)

{M'ÍXi-Xifl)}2
.

This coefficient is positive, because ( 22) gives

{M'(Xi-Xi}1)}2 ) 0,

and (23) leads to

(xi-xitl)~ ~ (Xi-Xi~l) - 62(Xi-Xi}1) - ~2(r(Xi)-r(Xitl)) 2

Z Í~(r(Xi))-6Í?'(Xifl)))2 ) 0.

So it follows directly that v2(R) is a strictly convex function of K(X).
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Proof of property c.

For efficient portfolios X- X with umin~ K(X) ~ um~ there exist numbers ~
and ti (i E~) satisfying (14) ... (1~). Specializing to the problem of this
section, combining the Lagrange multipliers of the conditions (20) in U' -
(ul,...,um), those of (21) in V' -(vl,...,vn) and adding slack variables
yl,...,ym to (20), (14) and (15) reduce to

-2 `~ }C - ~ ' U f V - -XM

and
.~A X t Y - ~

X z 0.

An expression which holds for every efficient portfolio can be derived as
follows. Denote the basic variables of X by Xb and the corresponding parts of
M, ~ and ,~ by Mb ,~b and ,~ , then as will be shown in appendix A, Xb can be

1 1 1
written as

Xb - A t D X

(28)

(29)

(25)

with

and
A - bl ~1 ( ~ bl ~, )-1Bb1 1 1 1 1 1

D - 2 ~ bl - bl~~ ( ~ bl~~ )-1 ~ ~1~Mb '1 1 1 1 1 1 1 1 1

(30)

(31)

Substituting (25) into (18) and ( 19), we get

u(Xb) - Mb A t Mb D X
1 1

62(Xb) - A' `~b A t 2 A' ~b D~ t D' ~b D~2.
1 1 1

(32)

(33)

Furthermore in appendix B it will be shown that
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Mb D ~ o. (34)1

for every efficient portfolio.

Remark 2.

Using the formulae (32) and (33) it can be shown that if `B is positive defi-
nite, the critical line needs not to be differentiable everywhere on the open
interval (umin' umax)' Dr. J. VtSrtSs from Pecz University ( Hungary) provided us
the following example.

1 r3 3 1l
M- 3, f~ - I-3 li 23J , .~- (1 1 1), B-(i).

5 l 1 23 75

The critical line of this problem is not differentiable in the point corres-
ponding to the corner portfolio X' -(0 1 0). On the parabola to the left
of this point the variables xl and x2 are in the basis, on the righthand side
the variables x2 and x3. For the point yt - 3, v2 - 11 the lefthand side and
righthand side derivative can be computed as follows. Substitute the corres-
ponding parts of M, ~i, .~ and B into (32) and ( 33) and next eliminate X. It

2 2
then turns out that lim d~ - 8 and lim d~ - 12.

~T3 dx K.~3 du
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Appendix A.

Proof of the formulae (25), (30) and (31).

We rewrite the equations ( 28) and ( 29), omitting the bars, to get variables
X,Y,U and V, as follows

X' Y' U' V'

-2 `~ a - . ~ ' ~ -aM

Let

Zb - (Xb ,Yb .Ub ~Vb)

(35)

(36)

be the feasible basic solution belonging to the eficient portfolio, then (35)
can be partitioned into

Xb Xnb Yb

-2 ~b -2 `~nb a1 1
-2 ~b -2 `~nb a

2 2

a B

Ynb Ub Unb Vb Vnb

- .,~' - .~' a g -áM
1 2 bl

a - ~b - ~b ~ a -~Mb
1 2 2

a s a a a a Bb
1

,~2 ~b2 g a a a a a Bb2

(37)

The matrix -2 ~ is partitioned into the square matrices -2 `~b and -2 ~nb1 2
corresponding to basic and non-basic variables x~ and into -2 `8b and -2 ~nb2 1
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with ~b -~b.,s~ and ~b represent the active constraints, .~2 and ~b2the
2 1 1 1

non-active constraints. Therefore we get identity matrices in the fourth place
of the Yb column and the third place of the Ynb column. The other partitions
are evident.
The matrix of basic vectors is

-2 `~b ~ - ,~' ~
1 1

-2~b ~ -~b ~
2 1

(38).

0' 0"

To facilitate computations we reshuffle rows and columns into

r -2 `~b - .~' (Í 0'
I 1 1

(39).-2 ~b - ~b .~ ~
2 1

o~ s

The values of the basic variables are
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0

Bb
1

0

LBb2J

Mbl

0

Mb2

0

(40)

with Zbv -(Xb'Ub'~b'Yb)' In order to get an explicit expression for }Cb we
compute ..̀~1:v

-2 ~ '
bl - ~1

-1

-2 `~ - .~ ' -2 `~ , -1
b2 nbl bl - ~1

~Z ~ ~1 ~

~

a s
(41).

-2 `~b , -1

Because ~ has an inverse, 1-~1 exists and since ~ is positive

definite b l exists and also (.~ bl .~')-1, cf. Hadley ( 1961) pp 107-109.
1 1 1 1

Hence

-2 `~b , -1

1 - ~1

~1 ~ -
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-~ blt2 bl ~~ ( ~ bl ~] ~ )-1 ~ bl
-----1 1 1 1 1~bl 1 1------------------------------------

1 , 1 1-( ,4 1 bl ~1)- ~1 bl

bl ~, ( ~ bl ~, )-1

----1---1----1---1---1---
-2( ~ bl

~,)-1
1 1 1

Substitution of (42) in (41) and the result into ( 40) gives

with

and

Xb - bl ~~ ( ~ bl ~~ )-iBb }1 1 1 1 1 1

t~Cl t~ 1 - 1 `~1 .s~' ( ,~ `~1 .~, )-1 ~ `~17M ,2 bl 2 bl 1 1 bl 1 1 bl bl

A - bl ~~( ~ bl ~ ~ )-iBb1 1 1 1 1 1

- 2 C bl - bl ~' ( ~ bl ~' )-1 .~ biJ~ ,
1 1 1 1 1 1 1 1 1

D

(42).

(3~)

(31)

as was to be proved.
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Appendix B.

Proof of formula (34).

We use the fact that an efficient portfolio with expected value ~ solves
problem (~), which in this case reduces to,
maximize

-X' `P~ X

The Kuhn and Tucker conditions with Lagrange multipliers U, X1 and V and slack
variables Y and yntl are

-2~x -~A'utMál.v-o (43)

~9 X t Y - B (44)

M'X -yn}1 - N (45)

X'V t Y'U } ynt1.X1 - 0.

XzO, YZO, ynt1Z0, U20, VZO.

For the equations (43), (44), (45), vector (36) completed with ~1, forms a
basic solution. Reordering in the same way as (39), the matrix of basic vec-
tors changes into

,~ ~ K
~ -

~ L' 0



with

L' -( Mb 0' 0' 0')
1

and

(46)

K' - (~ G' Mb 0') (47).
1 2

w w
~has an inverse, so (.~ )-1 exists, just as ~1 and (L' ~1 K)-1, cf. again

Had].ey (1961) pp. 10~-109. Now

`~1- c~-1K(L' `~1K)-1L, c~1 c~r-1K(L, ~-1K)-1
v v v v v v
(L~ ~1K)-1L ~1 -(L' ~1 K)-ll.

Substitution of (46), ( 41) and ( 4~) in -(L' ~1K)-1 gives

2 ~Mb { bl - bl ~~( ~ bl ~~)-1 ~ bl} b ~-1'1 1 1 1 1 1 1 1 1 1

which is, but for a constant, the reciprocal of the left hand side of (34).
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