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THE POWER-SERIES ALGORITHM
APPLIED TO CYCLIC POLLING SYSTEMS

J.P.C. Blanc
Tilburg University, Faculty of Economics
P.0. Box 90153, 5000 LE Tilburg, The Netherlands

Abstract

The computation scheme of the power-series algorithm for the
evaluation of the joint queue length distributions for a broad
class of multi-queue systems is extended in order to become
applicable to polling systems with non-negligible switching times.
Several properties of the mean waiting times at the various queues

are discussed, in particular concerning'their light-traffic and
heavy-traffic behaviour.

Keywords: Bernoulli schedules, switching times, waiting times,
heavy-traffic limits.



1. Introduction

The power-series algorithm is a new tool which is being developed for
the numerical analysis of a large class of multi-queue systems which do
not possess some kind of product form solution, but which have the struc-
ture of a multi-dimensional birth-death process, possibly with one or more
supplementary variables (Blanc [1,2]). An important application of this
algorithm 1is the evaluation of performance measures for polling systems.
These systems consist of several stations (queues) which are attended by a
single server. They are often used to model computer-communication sys-
tems, for instance, local area networks with one common communication
channel (see Takagi [7,8] for surveys on polling systems). The power-
series algorithm has been used to study cyclic polling systems with Ber-
noulli or limited service disciplines in Blanc [2,3] in the case of negli-
gible switching times between the stations. The aim of the present paper
is to extend the algorithm such that systems with non-negligible switching
times can also be handled. For this purpose, the simplest polling models
with respect to the algorithm will be discussed in this paper, namely
models with cyclic polling, Poisson arrival streams, exponential service
and switching time distributions and Bernoulli disciplines at the queues.
However, the method developed in this paper is readily extended to models
with a visit order determined by a general polling table, and with Coxian
service and switching time distributions. Cyclic polling models with
Bernoulli schedules were previously studied by Servi [6] and Tedianto [9]
among others.

The power-series algorithm is based on power-series expansions of the
state probabilities and moments of the joint queue length distributions as
functions of the load of the system, in light traffic. By applying extra-
polation methods such as the epsilon algorithm (Wynn [10], Blanc [2]) the
heavy traffic behaviour of performance measures can also be studied. For
polling systems with zero switching times the procedure leads to a recur-
sive scheme for the computation of the coefficients of the power-series
expansions. For systems with non-negligible switching times the coeffi-
cients can be calculated recursively for all states except the empty
states. The cause of this phenomenon is the fact that there is no longer a
unique empty state as in models with zero switching times, because the
server continues to move along the queues when no jobs are present in the

system. In order to determine the coefficients for the empty states a set



of s 1linear equations has to be solved (here s stands for the number of
stations) at each step of the algorithm. It will be shown that explicit
solutions to these sets of equations can be given.

The organisation of the paper is as follows. The multi-queue model
for cyclic polling systems will be described in section 2. Section 3
contains a discussion on the generalization of the power-series algorithm
to polling systems with non-negligible switching times. In section 4 some
properties of the waiting times are discussed: the pseudo-conservation law
and some light- and heavy-traffic limits. Some of these properties have
been derived analytically, others are conjeétures based on numerical evi-
dence. Section 5 contains some numerical examples for polling systems with
6 stations, and a discussion on the performance of the algorithm. Section

6 is concerned with some concluding remarks.

2. Model description and notations

The system consists of s queues and a single server. Jobs arrive at
queue j according to a Poisson process with rate Aj, j=1,...,s. Each queue
may contain an unbounded number of jobs. The server inspects the queues in
a cyclic order (queue 1 up to queue s and then again queue 1, etc.). The
number of jobs which are served during a visit of the server to a certain
queue depends on the service discipline at that queue. In this paper we
will take as service disciplines Bernoulli schedules, which include 1-lim-
ited and exhaustive service. A Bernoulli schedule is a vector of s prob-
abilities (ql....,qs), which are used as follows. When the server arrives
at a queue, at least one job is served, unless the queue is empty (in
which case the server directly proceeds to the next queue). After the com-
pletion of a service at queue j the server starts serving another job at
this queue with probability qj if queue j has not yet been emptied; other-
wise the server proceeds to the next queue. At each queue jobs are served
in order of arrival. Service times of jobs arriving at queue j are assumed

to be exponentially distributed with rate u j=1,...,s. The times which

J'
are needed for switching from queue j-1 to queue j are assumed to be ex-
ponentially distributed with rate vj, j=1,...,s (read here and below queue

s for queue 0).



The sum of the arrival processes at the various queues is a Poisson
process with rate A = §=1AJ. The first two moments Bl and Bz of the dis-

tribution of the service time of an arbitrary job are given by:

i £ 2 2 2
B == L Rgfng, Bs == ¥ AT (2.1)
L7 A g 474 & &g 1
The load pj offered at queue j, j=1,...,s, and the total offered load p to
the system are defined by
s
. 1= N, " i= . 2.2
e 3745 e j§1 e (2.2)

The first two moments dl and 62 of the total switching time during one

cycle of the server along the queues are given by:

Me.

1 5 1
L o, =2 . (2.3)
1% 2 j=1n=1 %%

tithn [5] has derived general conditions for stability of cyclic polling
systems. For the present models with Bernoulli schedules these conditions
read (see also Tedianto [9]): for j=1,...,s,

A, 1-q.) © 1 <1 - + s 2.4
j [( qJ) g * /MJ] PRy (2.4)
These conditions can be summarized in the following condition:

X 1= p +0 max {A.(1-q,)} < 1. (2.5)
L 3% ;.03 8 J J

+¢ will call x the occupancy of the system. Because this quantity x will

he wused as a variable in power-series expansions, the arrival rates will
be written as

aJ % = Naa = Lrsuesbe (2.6)
Tt will be assumed that the systems are in steady state and hence (2.5)
:111 hold. Let Nj denote the number of jobs in queue j (waiting or being
served), j=1,...,s. The supplementary variables H, indicating the queue to

‘hich the server is switching or to which the server is attending, and Z,



where Z=0 indicates that the server is switching and Z=1 indicates that

the server 1is serving, are introduced in order to transform the queue

length process into a Markov process. Let n = (nl.....ns) be a vector with

non-negative integer entries. The state probabilities of the cyelic

polling system are defined as follows: for n € HS, h=1,...,8, ¥=0,1,
p(n,h,3T) := Pr{N; = n,, j=1,....s; H=h, Z=1)}. (2.7)

In the next section we will develop a computation scheme for the coeffi-
cients of the power-series expansions of these state probabilities as

functions of the occupancy of the system.

3. The power-series algorithm

The power-series algorithm has been described in Blanc [2] for cyclic
polling systems with Bernoulli schedules with zero switching times. In
this section it will be shown how the algorithm can be modified such that
it can also be applied to systems with non-negligible switching times. The
most important difference concerns the computation of the coefficients of
the power-series expansions of the probabilities for the states in which
no jobs are present in the system. There is no longer a unique empty state
in systems with non-negligible switching times, because the server con-
tinues to move along the queues when no jobs are present in the system. In
the following relations, let I{E} stand for the indicator function of the
event E, and let e. be a vector with zero entries except an entry of one
at the jth positionJ(j=1,..,s). The balance eéuations for the state prob-

abilities (2.7) are readily verified to be, for h=1,...,s, n € HS.

S S
x 2 a; + vl p(n,h,0) = x p a p(n-e

+h ,0) I{nJ>O}
j=1 j=1

3
+ Wyq P(nee, _,.h-1,1) [1 - q_, + g, I{n,_,=0}]
b By p(n,h-1,0) I{n,_,=0}; (3.1)

and for h=1,...,s, n € “s' n > 0,

h



[x a. + uh] p(n,h,1) = x aJ p(n- J.h.l) I{nJ)O}

1 J i

I M ®
" M®

J 1
+ v p(n,h,0) + q u p(n+e ,h,1); (3.2)

and further it holds of course that

' ™M 8

@ s 1 _
2 wew > X pln;hx) =1, (3:3)

n, =0 nS—O h=1 =0

1

It should be noted that for all h, h=1,...,s,

p(n,h,1) = 0, if n, = 0. (3.4)

We introduce the following power-series expansions, for h=1,...,s, %¥=0,1,

n,+ .+tn Gt

17778 5 K b(kin.h, ), (3.5)
k=0

p(n,h,%) = x

Substitute the power-series (3.5) into the balance equations (3.1) and
(3.2). Equating the coefficients of corresponding powers of x in the re-
sulting equations leads to the following set of equations for the coeffi-

cients of the power-series (3.5): for k=0,1,2,..., for h=1,...,s, n € HS,

S
vy b(k;n,h,0) = ¥ a; [b(k;ﬁ-éj,h.O) I{nj>0} - b(k-1;n,h,0) I{k>0}]
J=1

$ P b(k—l;ﬁ+éh_l,h—1,1) I{k>0} [1 - q _; *+ q,_, I{n, _;=0}]

+ v _; b(kin,h-1,0) I{n,_,=0}; (3.6)

and for k=0,1,2,..., for h=1,...,s, n € N°, n >0,

s, b(kin,h,1) =
j

n M

a, [b(k;n-e.,h,1) I{n,>0} - b(k-1;n,h,1) I{k>0}]
1 4 J J

+ v b(k;n,h,0) + qp Ay b(k-1;ﬁ+éh,h,1) I{k>0}. (3.7)



This set of equations (3.6), (3.7) forms almost a recursive scheme. In
order to make this observation clear we introduce the following partial
ordering of the vectors (k;n,h,Z). We say that (i;m,j,&) < (k;n,h,Z) if
one of the following conditions holds:

a. i+m1+...+m < k+n1+...+n s

s s
b. i+m ,+...+m_ = k+n_+...+n_ and i < k;
1 s 1 s
Cs i+m1+...+ms = k+n1+...+ns, i=kand & € ¥.

It is readily verified that the set of equations (3.6) and (3.7) expresses
coefficients b(k;ﬁ.h.;) in terms of coefficients with a lower order, with
the exception of the term b(k;n,h-1,0) in (3.6), which only plays a role
in the case that n,_,=0. If n # 0, an empty state, the set of coefficients
b(k;n,h,0), h=1,...,s, for k and n fixed, can still be recursively com-
puted by starting at a value h=j with nj_1>0 and by proceeding the compu-
tations of b(k;n,h,0) then sequentially for h=j+1,..,s,1,..,j-1. Hence,
the only states which require further attention are states with n = O and
% = 0. For these empty states the equations (3.6) read: for k=0,1,...,

vy b(k;0,h,0) = »_ . b(k;0,h-1,0) + y(k;h), B & 1,085 (3.8)

h

here, the quantities y(k;h), h=1,..,s, defined by y(O;h):=0 and

S
y(k;h) := u . b(k-1;e,_;,h-1,1) - I a. b(k-1;0,h,0), k =1,2,...,

j=1 9

consist of terms with coefficients of lower order and, hence, can be
considered to be known. By summing the equations (3.8) over h, h=1,..,s,
for k fixed, it is readily seen, that these sets of equations are depend-
ent. Therefore, we still need to use the law of total probability, cf.
Blanc [1,2]. Substituting the power-series (3.5) into (3.3) and equating
the coefficients of corresponding powers of x in the resulting equation

leads to the following equations:

b(0;0,h,0) = 1, for k =0,
1

n M

h



S
Y b(k;0,h,0) = -Z(k), for k = 1,2,..., (3.9)
h=1
here,
s 1 _
Z(k) 3= ¥ swe X > X b(k-n,-..-n_;n,h,%), e & 0,2 ..

0<n1+...+nSSk h=1 Z=0
Consider, for k fixed, the set of equations consisting of (3.9) and the

equations (3.8) for h=2,...,s. It is readily verified that the determi-

nants D(k) of these sets of equations are given by:

S
D(k) =c, M w»

3 for k=0, ,2:5:05 (3.10)
1 ey h
For k=0, this set of equations is readily solved: for h=1,...,s,
= 1
b(0;0,h,0) = " (3.411)
17h

It is more tedious, but straightforward, to show that for k=1,2,..

1 - £ 1
s [Z(k) + 2 y(k;h) % ;—]. (3.12)
| h=2 j=h 73

b(k;0,1,0) = -

Once the coefficient b(k;6.1.0) has been determined according to (3.12),
the coefficients b(k:ﬁ,h.O) can be sequentially obtained for h=2,...,s by
using (3.8). Hence, relations (3.11), (3.6), (3.7), (3.12) and (3.8) form
a complete scheme for computing the coefficients b(k;ﬁ.h,;) for k=0,1;:5:.
n € NS, h=1,...,s, Z=0,1. The coefficients of the power-series expansions
of moments of the joint queue length distribution can be obtained from
those of the state probabilities in the usual way, cf. Blanc [1]. The
convergence of the power-series can be improved by means of the epsilon
algorithm, cf. Wynn [10], Blanc [2], especially when the occupancy of a
system is high. The epsilon algorithm also transforms a divergent series
into a convergent series if the analytic continuation of the function
defined by the series at x = 0 possesses only poles as singularities
inside the unit circle, i.e. for |xl < 1. The latter seems to hold in all
cases considered. It may happen that the power series are so strongly

divergent that numerical instabilities occur. In that case a conformal



mapping as discussed in Blanc [1,2] should be used (see also the remarks

at the end of section 5).

4. Waiting times

This section is concerned with a discussion of the stationary dis-
tributions of the waiting times wj of jobs arriving at queue j, j=1,...,s.
The number of jobs at queue j left behind by a job departing from that
queue 1is equal to the number of jobs that arrived at queue j during the
sojourn time of the departing job. Because arrivals occur according to a

Poisson process, this implies, cf. Takagi [7], for j=1,...,s,

E{Nj} = Xj [E{Wj} & 1/uj] = agx [E(WJ} * l/uJ].

2 L 22 - s Gl
E(N]} - E{N;} = a{x” [E{WJ} + 2B{(W;}/u, + 2/u3]. (4.1).

The first two moments of the waiting time distributions can be obtained
from the moments of the marginal queue length distributions through these
relations. Let W be the waiting time of an arbitrary job, not depending on
the queue at which it arrives. The mean and the standard deviation of W

can be computed from:

E{W} =

>L>’

A
§ ey . B
A E(W]} - ET(W). (4.2)

nMuw

E{W.}, o2 (W} =
1 J J

nMuw

1

The expected values of the waiting times for jobs in the various queues of
a cyclic service system with Bernoulli schedules satisfy the following

pseudo-conservation law, cf. Boxma & Groenendijk [4], Tedianto [9],

s o,
1 - 1- = E{W,} =
= ISR RAN
e 2 T Glp[§ 2(1-q,) + L § o, (en,) (4.3)
= = + s === natl=q.) %5 N (l=n. ]. .
l-p 2B, 20, 1-e j=1 9 3 2 j=1 J J
here nj:=pj/p is the relative offered load at queue j, j=1,...,s, cf.
(2.2). This relation is useful for checking the correctness and the accu-

racy of the computations.
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From the relations of the power-series algorithm, in particular (3.11) for
n =20 and (3.6) and (3.7) for n = éj, j=1,...,s, it follows that as x | O,

Ta
E{N.} = n.x + a.
{ J} nyx o+ oax 20,

L 0(x%),  §el,....s. (4.4)

The following light-traffic limits are obtained from (4.4) with the aid of
Little's formula (4.1).
For cyclic polling systems with Bernoulli schedules it holds:

(¢

lim E{W —g—. Jop' 3 = 1,000,856 (4.5)

.} =
xlo J 20y

Note that these limits are same for each queue. These light-traffic limits
seem to form lower bounds for the mean waiting times for positive values
of the occupancy x.

This section is concluded with a discussion of the following heavy-

traffic limits of the mean waiting times:

W, := lim (1-x) E{W.}, il 3 W, me sl (4.6)
xT1 4

Note that these 1limits are defined in such a way that the total arrival
rate to the system increases to a value at which one or more queues become
instable, while the proportions between the arrival rates remain fixed,
ef. {2.5); (2:6):

When the number of queues is not too large and the parameters of a system
are not too asymmetrical, it is possible to obtain accurate data for per-
formance measures even for high occupancy of such a system (x close to 1).
From those results heavy-traffic limits as defined in (4.6) can be esti-
mated. An important general property is the following:

The limit UJ’ I=1; .58 Ta positive tf

aj(l-qj) = max {a;(1-q;)}, (4.7)
i=1,..,s
and it is zero otherwise.
A set of Bernoulli parameters will be called a balanced discipline for a

certain system if equality holds in (4.7) for each j, j=1,...,s. Special
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cases of systems with a balanced discipline are systems with exhaustive
service at each queue (qj=1. j=1,...,s). For the latter systems we have
found explicit expressions for the heavy traffic 1limits of the mean
waiting times:
%4 q = 1, j=1,...,s, then the limits defined in (4.6) are given by:
. I=n B, .
i s 2B
4 ny(l-m) M1

o, (1- nj). J ®laeesBe (4.8)

The mean waiting times in systems with exhaustive service at each queue
3 linear equations, cf. Takagi
[7], Ch. 4. The heavy traffic limits (4.8) can be derived from this set of

can also be computed by solving a set of s

equations in a similar way as it was done in Blanc [3] for systems with
zero switching times.

Also for the special case of 2 queues we have found explicit expressions
for the heavy traffic limits of the mean waiting times:

If s =2 and if al(l-ql) b/ a2(1—q2), then w, = 0 and

(1+a,/a,) [By+2(1-q;)oyn B ] + (1-q)0,

Wy = 2[(l*az/al)nlpl+(1-ql)gl] , (4.9)
(1-q,)0, +(1+a/a)B[qn+(1q)n]

lim E{W,} = L Rt ql)al/; 2 e 44

xT1 1 518,

These rather messy expressions have been obtained on the basis of the fol-
lowing four observations:

1. the property described with (4.7) implies that w, = 0s

2. the pseudo-conservation law (4.3) leads to a linear relation between w

1
and the finite limit of E{wz};
3. numerical evidence that Wy is independent of a, if al(l-ql) > az(l-qz);
4. numerical evidence that if q2=1 then:
} 2 ) (4.11)
lim E{w =, +s—— n,B,(1+a,/a,). .11
xT1 1 1 q 1 25

Observations 2 and 4 1lead to expression (4.9) for w, for q2=1. But this

3
expression holds for every value of a, by observation 3. By using (4.9)
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and again observation 2 the limit (4.10) is found. In this derivation we

have used the fact that when x=1, then, cf. (2.5), (2.6), (2.2), (210 5
1/a; = (1-q )0, + (1+a,/a,)B, . ' (4.12)

The conjectures (4.9) and (4.10) include similar conjectures formulated in
Blanc [3] for models with zero switching times (take 61=0 and 62=0). How-
ever, the motivation was less simple in the case without switching times
than in the case with switching times, because the conservation law (ob-
servation 2 above) directly implies the value of ul when switching times
are zero, so that observation 3 becomes trivial, while observation 4 does
not contain enough information for determining the finite limit of E{Wz}
for wvalues of a, < 1. Therefore, many more numerical data were needed to
find (4.10) for models with zero switching times.

Similar expressions as (4.9) and (4.10) hold when al(l-ql) < 32(1-q2) (all
indices should be interchanged). In the case that al(l-ql) = 2(1-q2) the
limits Ul and wz are both positive. No expressions for ul and 02 have been
found in this case, only a linear relationship stemming from the pseudo-
conservation law.

Finally, we note that the property described with (4.7) as well as the
limits given in (4.8), (4.9) and (4.10) hold for general service and
switching time distributions (with proper values for the moments Bl and B2
of the distribution of the service time of an arbitrary job and for the
moments 61 and 62 of the distribution of the total switching time during

one cycle of the server).

5. Examples

This section discusses some examples of cyclic polling systems for
which performance measures have been computed with the aid of the power-
series algorithm. Firstly, the parameters of the models will be described;
then the numerical results will be discussed. Finally, some remarks on the

computations will be made.

Example 1. The service rates, the arrival rates and the offered traffic
are listed in table 1 for a system with 6 queues. The total offered load

in this system is ¢ = 0.70. Table 2 contains a list of Bernoulli schedules



for
Ba.
ef. (2

ameters.

this
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model .

5) s

All stations are assigned 1-limited service in schedule
This discipline is one of the disciplines with the highest occupancy,

over all Bernoulli schedules for any given set of model par-

Other schedules with equal Bernoulli parameters for all stations

are Bb, Bc and Bo. Schedules Bd and Be are favorable to the stations with

the highest service rates.

For models with zero switching times it turned

Table 1. Arrival and service rates and offered loads for the model of

example 1.

Queue il 2 3 4 5 6 System
N 0.40 0.10 0.40 0.20 0.20 0.10 1.40 A
uq 2.00 1.00 4.00 4.00 1.00 2.00 2.00 ﬁl
pj 0.20 0.10 0.10 0.05 0.20 0.05 0.70

Table 2. Bernoulli schedules (BS) for the model of example 1.

BS Q, a, a3 Qy g g Max{)\j(l-qj)}

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.40

Bb 0.50 0.50 0.50 0.50 0.50 0.50 0.20

Bc 0.80 0.80 0.80 0.80 0.80 0.80 0.08

Bd 0.50 0.00 1.00 1.00 0.00 0.50 0.20

Be 1.00 0.00 1.00 1.00 0.50 1.00 0.10

Bf 0.00 0.50 0.75 0.75 0.00 0.50 0.20

Bg 0.80 0.60 0.90 0.90 0.60 0.80 0.08

Bh 0.90 0.80 0.95 0.95 0.80 0.90 0.04

Bi 0.75 0.50 0.50 0.00 0.75 0.00 0.20

Bj 0.90 0.80 0.80 0.60 0.90 0.60 0.08

Bk 0.95 0.90 0.90 0.80 0.95 0.80 0.04

Bl 0.75 0.00 0.75 0.50 0.50 0.00 0.10

Bm 0.90 0.60 0.90 0.80 0.80 0.60 0.04

Bn 0.95 0.80 0.95 0.90 0.90 0.80 0.02

Bo 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Table 3. Lay-out (Lo) of polling systems for example 1: switching rates.

Lo vy v, v3 V), v5 Ve o, 62/01
L1 100.0 100.0 100.0 100.0 100.0 100.0 0.06 0.07
L2 10.0 10.0 10.0 10.0 10,0 10.0 0.60 0.70
L3 1.0 1.0 1.0 1.0 1.0 1.0 6.00 700
L3a 05 2.0 2.0 0.5 2.0 2.0 6.00 750
L3b 0.5 0.5 2.0 2.0 2.0 2.0 6.00 7-.50
L3c 0.375 1.5 1.5 1.5 1.5 1.5 6.00 7.56
L4 0.1 0.1 0s.1 051 051 0:1 60.00 70.00
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Table 4. Model of example with an offered load of ¢ 0.70 and with
equal switching rates between the stations.

BS Lo X E{wl} E{wz} E{w3} E{wq} E{w5} E{WG} E{W} o{W}
Ba L1| .724 2.33 1.16 2LaT 1.35 1.58 1.09 1.87 3.1
Bb L1| .712 2.02 1,31 2.02 1.54 1.54 1.30 1.78 3.00
Bec L1| .705 1.78 1.48 1.91 1.73 1.51 1.53 1.73 2.91
Bd L1| .712 1.84 1.56 0.99 1.07 2.28 1.22 1.48 2.46
Be L1| .706 116 2.34 1.33 1.45 2.1 1.34 1.48 2.43
Bf 11| 712 1.98 1.51 1.28 1.19 221 1.18 1.55 2.51
Bg L1| .705 1.67 1.59 1.52 1.52 1.84 1.45 1.61  2.59
Bh L1{ .702 1.62 1.63 1.63 1.70 1.68 1.60 1.64 2.67
Bi Li| .712 1.57 1.49 2.33 2.47 1.33 1.79 1.89 3.38
Bj L1 .705 1.56 1.58 2.06 2.21 1.40 1.80 1.79 3.13
Bk L1| .702 1.56 1.63 1.94 2.10 1.43 1.79 1,75 3.01
Bl L1| .706 1.52 1.91 1.61 1:572 1.72 1.76 1.65 2.67
Bm L1| .702 1.53 1..79 1.70 1.84 ©1.59 1.78 1.67 2.75
Bn L1| .701 1.54 1.74 1.74 1.89 1.54 1.79 1.68 2.79
Bo L1| .700 1.56 1.68 1.78 1.95  1.49 1.79 1.69 2.81
min L1 0.87 0.81 0.86 0.86 0.83 0.84

max L1 3.19 2.89 3.75 3.54 2.92 2.91

Ba L2| .940 19.03 2.23 17.93 3.05 3.71 2.13 11.80 18.07
Bb L2 .820 5.15 2.29 5.15 2.88 2.91 2.29 4,08 5.66
Bc L2| .748 315 2.40 3.38 2.81 2.50 2.47 2.97 3.97
Bd L2| .820 4.69 2.99 1.63 1.75 5.85 2.16 3.26  L4.74
Be L2| .760 1.82 4.40 2.07 2.23 3.93 2.12 2.46 3.32
Bf L2| .820 4.60 2.91 2.47 2.08 5.73 2.10 3.49 4.76
Bg L2| .748 2.99 2.68 2.52 2.41 3.32 2.37 2.76 3.50
Bh L2| .724 2.63 2.61 2.57 2.60 2.76 2.51 2.62 3.33
Bi L2| .820 2.92 2.56 5.89 6.20 2.27 3.40 4,14 6.26
Bj L2| .748 2.53 2.53 3.60 3.85 2.23 2.96 3.01  4.24
Bk L2| .724 2.42 2.53 3.10 3.32 2.23 2.83 2.75 3.76
Bl L2| .760 2.91 3.67 3.08 3.27 3.30 3.41 3.16 4.01
Bm L2| .724 2.51 2.96 2.78 2.97 2.63 2.95 2.73 3.54
Bn L2| .712 2.41 2.75 2.70 2.91 2.43 2.82 2.62 3.4
Bo L2] 7000 2.32 2.54 2.64 2.85 2.25 2.69 2.52 3.27
min L2 1.44 1.39 1.44 1.45 1.38 1.45

max L2 22.58 5.27 25.51 8.21 7.15 5.29

Bh L3| .94 52.21 18.74 18.17 14.14 s56.04 14.13 32.50 40.7
Bk L3| .94 16.42 13.78 61.62 67.47 12.14 19.92 36.07 49.8
Bm L3| .94 50.32 61.67 56.59 60.72 53.49 62.42 55.73 56.1
Bn L3| .82 16.64 19.58 18.80 20.07 17.12 20.28 18.29 16.7
Bo L3| .70 9.95 11.12 11.22 11.88 9.88 11.72 10.79 8.4
Bo L4| .70 86.26 96.94 96.99 102.14 86.13 101.99 93.46 61.5
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Table 5. Model of example 1 with offered load ¢ = 0.70 and with 61 = 16,00,

BS Lo x E{Wl} E{wz} E{w3} E{wu} E{WS} E{we} E{wW} o{W}

Bh L3a| .94 53.75 19.02 18.47 14.29 57.69 14 .32 33.33  42.2
Bh L3b| .94 53.82 18.98 18.42 14.32 57.65 14.35 33:.32 42,2
Bh L3c| .94 53.87 19.03 18.46 14.34 57.84 14 .37 33.42  42.4

Bk L3a| .94 16.74 14.02 64.01 69.82 12.36 20:31 37:25 52.
Bk L3b| .94 16. 77 13.93 63.88 69.91 12.38 20.43 37.23 51..
Bk L3c| .94 16.75 14.00 64.09 70.17 12.44 20.41 37:37 52.

DD O

Bm L3a| .94 51.50 62.98 57.88 61.99 54.73 63.77 56.98 57.
Bm L3b| .94 51.55 62.92 57.84 61.98 54.73 63.75 56.97 57.
Bm L3c| .94 51.64 63.07 57.99 62.13 54.91 63.92 57.11 57.

Bn L3a| .82 17.00 20.03 19.29 20.48 17.52 20.78 18.71 17
Bn L3b| .82 17.04 19.93 19.18 20.51 17.56 20.82 18.70 17.
Bn L3c| .82 17.00 20.02 19.27 20.58 17.64 20.90 18.75 17.

Fww (Volb N e |

Bo L3a| .70 10.13 11.38 11.56 12.08 10,13 12.08 11.05 8.71
Bo L3b| .70 10.21 11.26 11.40 12.12 10.17 12.13 11.03 8.68
Bo L3ec| .70 10.11 11.33  11.47 12.19 10.25 12.23, 11.06 8.74

out that such schedules minimize E{W} in many cases, cf. Blanc [3].
Schedules Bf, Bg and Bh are such that the maximal mean visit time is the
same for each station. Schedules Bi, Bj and Bk are such that pj(l-qj) is
constant over j, j=1,..,6. Schedules Bl, Bm, Bn and Bo are balanced disci-
plines. Various lay-outs for this system, reflected by the switching rates
between the queues, are described in table 3. The stations are located at
equal distances in L1, L2, L3 and L4. The stations 1,2,3 and the stations
4,5,6 form two groups in L3a, with longer distances between stations in
different groups than between stations within the same group. Station 1 is
located at a longer distance from the other stations than the distances
which exist between the other stations in L3b. The stations can be con-
sidered to be arranged in one line in L3c, where the server has to travel
a longer distance from station 6 back to station 1 than in between the
other stations. The total mean switching time during one cycle is the same
for L3, L3a, L3b and L3c. Table 4 contains the mean waiting times at the
indivual queues and the mean and the standard deviation of the waiting
time of an arbitrary job, for various Bernoulli schedules and symmetrical
lay-outs of the system. Table 5 shows the same quantities for systems in

which the switching rates between the stations are not all equal.
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Example 2. Table 6 shows the influence of the presence of a relatively
heavily loaded queue on the mean waiting times at queues which are four

times more lightly loaded, for various Bernoulli schedules. The parameters

of the system are: s = 6, By = 1 “J w2 I92a0:00% Xl = 0.32, XJ = 0.16,
§=2, «++365 so -that oy = 0.32, pJ = 0.08, j=2,...,6, and p = 0.72. In all
examples we have chosen qj = q,, j=2,...,6. The stations are equally

spaced in the cases considered in table 6 (all switching rates are equal).
In table 7 the same stations as in table 6 have been considered, but with
different switching rates between the stations. Here, all switching rates
are equal to 10/3, except the switching rate to the station indicated by J
in the table, where »J=2/3. Consequently, Ul = 3.0, 62 = 11.7 for the sys-
tems considered in table 7, whereas 61 = 3.0, 62 = 10.5 for the systems
considered in the third block of table 6.

The Bernoulli schedules which only appear in some of the blocks in the
tables 4 and 6 have been deleted from the other blocks, because the total
mean switching time 61 in the latter blocks is such that these schedules
give rise to unstable systems. The data in tables 4 and 6 show that
different Bernoulli schedules may lead to a lower value of E{W} depending
on the total mean switching time oy For instance, E{W} is minimal over
the Bernoulli schedules considered in table 4 for Be, when 61=0.06 (L1)
and when Gl=0.60 (L2), but for Bo, when 61=6.OO (L3), and E{W} is minimal
over the Bernoulli schedules considered in table 6 for the schedule with
q1=0.0, qj=1.0. j=2,...,6, when 61=0.03. for the schedules with q1=0.5 or
q1=0.8, and qj=1.0. j=2,..,6, when 61=0.30, and for the schedule with
qj=1.0, j=1,..,6, when 61=3.OO. It should be noted that the discipline
with exhaustive service at each queue will outperform any other Bernoulli
schedule with increasing 61 and fixed arrival and service rates, because
it 1is the only discipline for which the occupancy is independent of 61.
cf. (2.5). It seems to be intuitively clear that the mean waiting time

E{wj}, j=1,...,s, is minimal over all Bernoulli schedules for the schedule
with qj=1.0 and qi=0.0. i#j, i=1,...,s, and maximal for the schedule with
qj=0.0 and qi=1.0. i#j, i=1,...,s, for any system. The values of E{WJ},
j=1,...,s, obtained with these schedules, have been added to table 4 for

the model of example 1 with lay-outs L1 and L2. It should be born in mind
that the values in each of these rows (indicated by min or max) have been

obtained with different schedules and cannot be realized simultaneously
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Table 6. Model of example 2 with offered load ¢ = 0.72. Switching times
between the various queues are equally distributed. In the first
block 61 = 0.03, in the second block dl = 0.30, in the third
block 01 = 3.00, and in the last case dl = 30.0.

a, a,| x  E{W)} E(W)) E{(W;} E{W) E(W)} E{Wg} E(W} oW
0.0 0:0| =730 2.65 1.41 1.43 1.45 1.46 1.48 1.79 2.85
0:0 0.5] 730 2.88 1.20 1:22 1.24 1.26 1.28 1:71 2.86
0.0 1:0] <730 3.08 1.02 1.04 1.06 1.09 1:13 1.65 2.91
0.5 1.0] 725 2.59 1.33 1.36 1.39 1.44 1.50 1.74 2.82
1.0 10.Q] =725 1.02 2.60 2.63 2.66 2.69 2.72 2.19 3.97
0.5 0.0 .725 1.88 1.97 1.99 2.01 2.03 2.05 1.97 3.13
0.5 0.5| 725 2.24 1.65 1.67 1%70 1.73 1.76 1.85 2.91
0.8 0.8] 722 1.85 1.88 1.92 1.96 2.01 2.06 1.93 311
0.8 0.9] .722 1.95 1.79 1.83 1.88 1.93 1.99 1.90 3.03
0.8 1.0] 722 2.05 1.70 1.74 1.79 1.85 1.93 1.87 2.95
0.9 0.6| .722 1.44 2:22 2.25 2.29 2.34 2.39 2.05 3.54
0.9 0.8| .721 1.59 2407 2:11 2.16 2 .21 227 2.00 335
0.9 1.0 .721 1.80 1.88 1.92 1.98 2.05 2.14 1.94 3.10
1.0 0.8 721 1:33 2.26 2.31 2.37 2.43 2.50 2,07 3.66
1.0: 1.0] 720 1.51 2.08 2.14 2.20 2.28 2.39 2.02 3.37
0.0 0.0| .816 5.19 2,15 2,17 2.18 2.19 2,21 3.04 4.50
0.0 0.5| .816 5.54 1.68 1.70 1.72 1.74 1.76 2.81 4.52
0.0 1.0]| .816 5.81 1.34 1..36 1.39 1.42 1.46 2.65 4.59
0.5 1.0| .768 3.82 1.70 1.73 117 1.82 1.88 2.36 3.48
1.0 0.0| .768 1.30 3.83 3.86 3.88 3.91 3.94 315 5.05
0.5 0.0 .768 2.83 301 3.02 3.04 3.06 3.08 2.98 4,12
0.5 0.5 .768 3.36 2.28 2.30 2:32 235 2.38 2.62 3.63
0.8 0.8] .739 2.45 2.43 2.46 2.50 2.55 2.60 2.49 3.51
0.8 0.9 .739 2.56 227 2.31 2.36 2.4 2.7 2.42 3.38
0.8 1.0( .739 2.69 2:12 2.16 2.21 2.28 2.36 2.36 3.:27
0.9 0.6| .739 1.85 2.93 2.97 3.00 3.05 3.09 2.68 4.08
0.9 0.8 .730 2.04 2.65 2.69 2.73 2.78 2.84 2.54 3.74
0.9 1.0} .730 2.28 2432 2.37 2.43 2.50 2.59 2.39 3.37
1.0 0.8] .730 1.65 2.86 2.91 2.96 3.02 3.09 2.59 4.05
1.0 1:0] <720 1.86 2.55 2.61 2.67 2.75 2.85 2.45 3.61
0.8 0.8 .912 21.25 10.59 10.64 10.69 10.75 10.82 13.67 15.3
0.8 0.9| .912 21.75 8.06 8.13 8.20 8.29 8.39 12.07 14.8
0.8 1.0| .912 22.10 6.43 6.51 6.60 6.72 6.88 11.05 14.6
0.9 0.6| .912 7.85 25.80 25.82 25.84 25.86 25.90 20.71 25.1
0.9 0.8 .816 8.61 11.42 11.46 11.49 11.54 11.58 10.67 10.9
0.9 1.0( .816 9.33 6.84 6.90 6.98 7.09 7.23 7167 7.2
1.0 0.8| .816 4.98 11.93 11.95 11.98 12.01 12.04 9.96 11.2
1.0 1,0 .720 5.33 725 7.30 736 7.43 7.52 6.79 6.2
1.0 1.0| .720 40.08 54.22 54.22 54.21 54.20 54.18 50.17 34.4
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Table 7. Model of example 2 with offered load ¢ = 0.72 and with dl = 3.00.

Q a9, J| X E{Wl} E{WZ} E{W3} E{Wq} E{WB} E{W6} E{W} o{W}
0.8 0.8 1/.912 21.83 10.80 10.87 10.95 11.03 11.11 14.07 15.9
0.8 0.8 2(.912 22.15 10.77 10.83 10.90 10.99 11.07 14.06 16.0
0.8 0.8 4|.912 22.14 10.85 10.92 10.88 10.95 11.04 14.07 15.9
0.8 0.9 1|.912 22.58 8.21 8.29 8.38 8.49 8.61 12.44 15.4
0.8 0.9 2(.912 22.70 8.17 8.25 8.34 8.45 8.57 12.44 15.4
0.8 0.9 4].912 22.64 8.26 8.35 8.32 8.42 8.53 12.44 15.4
0.8 1,0 1[.912 22.97 6.53 6.62 6.74 6.89 7.08 11.40 15.3
0.8 1.0 2|.912 23.10 6.50 6.59 6.71 6.85 7.03 11.41 15.3
0.8 1.0 4|.912 23.03 6.59 6.70 6.68 6.81 6.99 11.41 15.3
0.9 0.6 1/.912 8.01 26.65 26.69 26.74 26.78 26.80 21.38 26.0
0.9 0.6 2|.912 8.05 26.58 26.61 26.66 26.71 26.76 21.35 26.0
0.9 0.6 4|.912 8.03 26.67 26.70 26.62 26.69 26.77 21.36 26.0
0.9 0.8 1|.816 8.84 11.73 11.79 11.86 11.92 12.00 11.00° 11.3
0.9 0.8 2(.816 8.93 11.67 11.73 11.78 11.85 11.91 10.97 11.2
0.9 0.8 4(.816 8.89 11.80 11.86 11.75 11.81 11.88 10.98 11.2
0.9 1.0 1|.816 9.62 6.98 7.07 718 7.32 7.50 7.90 7..47
0.9 1.0 2(.816 9.75 6.93 7.01 7.11 7.24 7.41  7.89 7.46
0.9 1.0 4(.816 9.69 7.05 7.16 7.09 Te21 7.37 7.89 7.46
1.00.8 11.816 5.01 12.30 12.36 12.41 12,48 12.54 10.30 11.6
1.0 0.8 2|.816 5.09 12.22 12.27 12.32 12.37 12.42 10.25 11.6
1.0 0.8 4|.816 5.05 12.39 12.45 12.28 12.33 12.38 10.28 11.6
1.01.0 1/.720 5.45 7.44 7:52 7.61 7.73 7.88 7.01 6.50
1.0 1.0 2| .7200 5.58 T3T 7.44 7.52 7.61 7.73 6.97 6.43
1.0 1:0 47200 5.51 7.54 7.64 7.49 7.58 7.69 6.99 6.47

(see also the appendix). For the lay-outs L3 and L4 all these schedules
give rise to unstable systems, which implies that the maximal value of
each mean waiting time is infinite in these cases; the minimal values can
be obtained by means of vacation models, but this is outside the scope of
the present paper.

The data in the tables 5 and 7 show that the individual switching rates
have only a minor influence on the mean Qaiting times. These and other
data indicate that the influence of the individual switching rates is most
important at a moderate occupancy of the system (x between 0.5 and 0.8),
but the relative differences in the mean waiting times due to variations
in the switching rates, with the total mean switching time kept fixed,

have never been observed to be more than a few percentages for systems
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with 6 stations. The strongest influence of the switching times on the
mean waiting times is through the first two moments of the total switching
time during a cycle of the server along the stations, cf. (2.5), (4.3),
(4.5), (4.8), (4.9), (4.10).

Most data for the above examples have been determined on the basis of
18 terms of the power-series expansions of the first two moments of the
distributions of the number of jobs at the various stations, without the
use of a conformal mapping (see the remark at the end of section 3), and
with at most 7 steps of the epsilon algorithm. This number of terms has
been imposed by the limitations on storage capacity on a specific com-
puter. The relative errors for the data presented in the tables 4-7 is
estimated to be well below 1% in most cases. Generally, the relative
errors increase with increasing occupancy. The accuracy of the data has
been checked on the basis of differences between the left- and the right-
hand side of the pseudo-conservation law (4.3) and on the basis of dif-
ferences in the results obtained with 16, 17 and 18 terms of the power-
series expansions, respectively.
The data for several two-queue models which have been used to formulate
the conjectures (4.9) and (4.10) have been obtained on the basis of 60
terms of the power-series expansions, with the use of a conformal mapping
which 1is wusually necessary with this amount of terms, and values of x up

to 0.995.

6. Conclusions

The scope of the power-series algorithm has been extended to polling
models with switching times. For the sake of simplicity, the method has
been discussed on the basis of models with a cyclic polling order and
exponential distributions for all random variables, but it can readily be
generalized to models with arbitrary periodic polling orders and Coxian
distributions. In fact, the algorithm is applicable to any polling system
which can be modelled by a multi-dimensional quasi-birth-death process.
This includes systems with random polling and also with dynamical
strategies such as polling with priority for the longest queue.
The advantages of the power-series algorithm over techniques based on
truncation of the state space and solu;ion of large sets of balance

equations are that the required quantities are iteratively computed, that
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algorithms for improving the convergence of sequences can be applied, and
that, once the coefficients of the power-series have been obtained, it
requires little effort to compute performance measures for various values
of the load of the system. The main limitation for application of the
algorithm 1is the storage requirement which grows exponentially with the
number of stations. Concepts for economic use of the available storage
capacity have been discussed in Blanc [2]. The algorithm provides accurate
data for moderate sized systems, which compare favorably with simulation
results, and which may be helpful in finding and validating approximations
for larger systems. A topic for further reéearch is the possibility to
modify the algorithm in such a way that it will generate good

approximations for larger systems.
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Appendix

This appendix contains a table with values of the mean waiting times
E{wj}. j=1,...,6, for the model of example 1 with lay-outs L1 and L2 and
for the schedules with qj=1.0 and qi=0.0. i#j, 1=1,...,6, indicated by Ij,
j=1,...,6, and for the schedules with qj=0.0 and qi=1.0, 1#7, di=1;.::.:6;
indicated by Uj, j=1,...,6. The values of E{wj} for the schedules Ij and
Uj, j=1,...,6, form the rows in table 4 indicated by min and max respect-
ively. E{W} is minimal over the Bernoulli schedules considered in table A
for U5, and is even smaller than the minimal value of E{W} in table 4 (at-
tained to with the schedule Be), when 61=0.06 (L1), but E{W} is minimal
over the schedules considered in table A for U2, when 61=O.60 (L2); in the
latter case it is somewhat larger than the minimal value of E{W} in table

4 (attained to with the schedule Be).

Table A. Model of example 1 with an offered load of e = 0.70 and with
equal switching rates between the stations.

BS Lo| % E{Wl} E{WZ} E{WS} E{Wq} E{WB} E{W6} E{W} o{w}
I1 L1 .724 0.87 1.53 2.85 1.82 2.05 1.40 1.85 3.45
I2 L1| .724 2.39 0.81 2:22 1.41 1.64 1.14 1.89 3.21
I3 L1| .724 2.59 1.27 0.86 1:52 .1.78 1.20 1.63 2.89
I4 L1| .724 2.37 1.18 2.19 0.86 1.62 1.12 1.82 3.14
I5 L1| .724 2.62 1.41 2.46 1.63 0.83 1.32 2,000 3.53
I6 L1| .724 2.35 1.8 2.19 1.37 ° 1.60 0.84 1.86 3.14
Ul L1| .724 3.19 111 1.19 1.31 1.02 1.24 1.7 3.1
u2 L1 .706 1.37 2.89 1.58 1.73 1..31 1.58 1.60 2.73
U3 L1]| .724 1.30 1.43 375 1.58 1«22 1.47 2.05 4.27
U4 Li| .712  1.45 1.57 1.68 3.54 1.:37 1.65 1.83 3.58
U5 Li| ,712 1.09 1.17 1.24 1:35 2.92 1.26 1.45 2.52
U6 L1| .706 1.48 1.59 1.69 1.85 1.42 2.91 1.69 2.98
I1 L2| .940 1.44 2.87 24.04 4.32 5+13 2.64 8.97 17.7
I2 L2| .940 19.41 1.39 17.95 3.26 3.76 2.19 11.81 18.2
I3 L2| .940 21.12 2.43 1.44 3.58 4.18 2.32 7.99 15.8
I4 L2| .940 19.23 2.27 17.85 1.45 3.70 2.17 11.43 18.6
I5 L2| .940 19.75 2.58 18.20 3.62 1.38 2.46 11.92 18.6
I6 L2| .940 19.19 2.26 17.87 3.25 37T 1.45 11.77 18.5
U1 L2| .940 22.58 197 1.85 2.00 1.63 1.97 7.76 16.4
U2 L2| .760 2.08 527 2.38 2:57 2.02 2.42 2.48 3.5
U3 L2| .940 1.97 2.19 2551 2.35 1.87 2.25 8.78 19.3
u4 L2 .820 2.17 2.39 2.50 8.21 2.09 2,50 3.16 5.7
us L2| .820 1.72 1.88 1.95 2.10 7+15 2.00 2.65 4.3
U6 LZ| .760 2.21 2.42 2.52 2,72 2.15 5:29 2.60 a7
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