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A generalisation and some properties of Markowitz' portfolio selection
method.

J.Kriens and J.Th. van Lieshout

Summar y

A proof of the validity of Markowitz' critical line method is given for a
more general situation than discussed by Markowitz. Next it is shown that

in the Markowitz' case the critical line in the (p,02?) plane is strictly
convex and an everywhere differentiable function if the covariance matrix
is positive definite, so refuting a statement by Fama and Miller.



1. Introduction.

Markowitz developed the critical line method for the following portfolio
selection problem (cf.[3],[4]1). Suppose an investor wants to invest an
amount b in the securities 1,...,n. He invests an amount xJ (20) in security

Jj, so

J=1
The yearly revenue of a portfolio X' -(x1,...,xn) is a stochastic variable

r(X) with expected value Er(X)=u(X) and variance oz(g(x)) - ¢°(X). Besides
the constraint (1.1) other constraints may exist, restricting the feasible

options to a set ® e,

In order to get a first selection Markowitz introduces the notion of an
efficient portfolio.

A feasible portfolio is efficient iifs

a) no feasible portfolio exists with larger or equal expectation and smaller
variance of the revenue,

and

b) no feasible portfolio exists with smaller or equal variance and larger
expectation of the revenue.

This means that a portfolio X=X is efficient if and only if it is a solution
of both

(i.2) min {02(X)|u(X)2u(X) A X € &)
X

and

(1.3) max {u(X)|02(X)S02(X) A XE &) .
X

Markowitz derived an algorithm to compute all efficient portfolio's and the

corresponding efficient (u,0?) points, assuming u(X) linear, o0?(X) quadratic
and all constraints linear. In section 2 we show that the theorem on which
this algorithm is based can be reformulated for a much more general
situation.

Furthermore Markowitz derived some properties of the set of efficient
points, but his remarks on differentiability properties of this line are not

very explicit. In section 3 we show that if the variance o2(X) is a strictly



convex function the line of efficient points in the (u,0?) plane is strictly
convex and differentiable everywhere.



2. A general theorem for the computation of efficient portfolio's.

Theorem.

Let
iy the set of feasible portfolio's be defined by &= {X|V1‘5hi(x) 2 03,

with H'zn11ndexset. hi(X) concave and continuous differentiab1e1),9!

compact with non vacuous interior,

ii. the expected value u(X) of the revenue be concave, continuous
differentiable on @€,

iii. the variance of X be continuous differentiable on e,

then X=X is efficient if and only if,
either

a) there exists a 1>0, such that

(2.1)  min{e2(X) - X u(X)|x € 8} = 02(X) - Au(X),
X

or
b)

(2.2)  max[u(X)|o?(X) = min{o?(Y)|Y€ @}] = u(X),
X Y

or
c)

(2.3)  minfo2(X)|u(X) = max{u(Y)|Ye @8] = a2(X).
X Y

By continuous differentiable we mean that all partial derivatives exist
and are continuous. Strictly speaking, these conditions and the concavity
conditions can be somewhat weakened.



Proof'.

We first show that condition a) is sufficient. Suppose X is not efficient;

this implies

x*coe
* - * -
2.y 3 w(XHzuX) A 02(X )<o2(X)} v
- = * -
X=X o2 (X )502(X) Ap(X )>u(X)1,
or
x*em
* = * - - -
(2,57 3 02(X )=Ap(X ) < a2(X)-du(X) ,
W e
X #X

contradicting a). So X must be efficient.
If X=X suffices (2.2), then

(2.6) 0*(X) = min {0?(X)|Xx&8€} = o2
X

and

(270 u(X) = max (W(X)[e?(X)=02 A XEX].
X

Thus X=X is efficient with minimum variance on .

sufficing (2.3) implies

(2.8)  w(X)= max {W(X)|X€X} =u .,
X

(2.9)  0*(X)= min {2 (X)|u(X)=u__ AXEX}.
X

In other words X = X is efficient with maximum expected

In the same way X=X

value on &.



Secondly we prove that the conditions are necessary. If X= X is efficient,
it solves both (1.2) and (1.3), so it is a solution of

(2100 max {=o? (O [u(X)-u(X)20 AV,

X €%

hi(X) 20},

and of

(2.11) m;x1u<x)|07(i>-o*(X)¢oA»V;ia_n1<x)201.

We now differentiate between two situations:
1) Slater's condition is satisfied, and
?) Slater's condition is not satisfied.

1) If Slater's condition is satisfied the Kuhn-Tucker conditions are not
only sufficient, but also necessary. So in the case of problem (2.10):

there exist numbers X1 and t (i6 9 ) such that

i1

(2.12)  -Vo2(X) + X1Vu(i) + I 511V“1(i)'°

16}

(2.13) u(X) = u(X)20

(2.14) h, (X)20 (1e %)

(2.15) x,20, t.,20 (1&%)

(2.16) L uX)-u(0) ¢+ L b (X) =0 .

iel}

In the same way, for problem (2.11), there exist numbers XZ and 512 (ie 5’)
such that



- . -
(2.17)  Vu(X) - A, Ve (X) + I &,/ (X) =0

iey
(2.18) 02(X) - o2(X) 20
(2.19) ni(i) 20 (ie%)
(2.20) fa 20, 8,80 (1)
(2.21) X, (02(X) - 62(X)) + I EIth(i) -0 .
1e%

Combining (2.12) and (2.17) leads to

(2.22) =(14h)Ve?(X) + (1¥X OVu(X) + x (t +€12)Vn1(i) - 0.

1‘} o ]

We define

_1e _ . o
(2.23) A = , t. = EPPE L) (15’} ) 4

= = i1 Ty
1+A2 1+A2

then (2.22) can be rewritten as

(2.24)  -Vo2(X) + AVu(X) + I Ethi()_() = 0.
16’y
We conclude the existence of numbers A and Ei (1e 5 ) satisfying (2.24),

(2.19) and

(2.25) 20,880 (1e’<})



(2.26) L tihi(X) =0,

1e%

but this means that there exists a A>0, such that X=X solves the problem

(2.27)  max {-0?(X) + X u(X) | V. 4 n (x) 2 0},
X lear i

which is identical to (2.1).

2) If Slater's condition is not satisfied, this means that either u(X)-
u(X)20 or 02(X)-02(X)20 doesn’t have an interior point because & has a non

vacuous interior. In the first case u(X) equals the maximum - of u(X) on

Pand the efficient portfolio X solves (2.3); in the second case 02(X) equals

the minimum o’m of ¢2(X) on @ and the efficient portfolio X solves (2.2).

in
1t (2.6) has a unique solution, finding the corresponding efficlent

portfolio is equivalent to solving (2.1) for A = 0. Analogous if (28) has
an unique solution, finding the corresponding efficient portfolio is

equivalent to solving (2.1) forasufficiently large value of Y



3. The set of efficient (u,0?) points in the Markowitz' case.

We now specialize to the original portfolio selection problem of Markowitz.
Suppose the yearly revenue of one dollar invested in security j equals Ej

with E£j=uj; the covariance matrix of the T is @ . If M'= (u1,...,un).
then

(3:1) u(x) = M'X,
(3.2) 02(X) = X'€ X .
The constralnts are

(3.3) AX ¢ B

(3.4) X220 .,

If the feasible set % has a non vacuous interior the efficient portfolio's
can be found by applying the theorem of section 2 in which the left hand
side of (2.1) now reduces to

(3.5) min { X'@ X - X M'X | #X S BAX 20 }.
X

The points GLE’) corresponding to efficient portfolio's constitute the

efficient points in the (p,0?) plane, sometimes called the critical line of
the problem. Suppose we start with A=0 and next raise A, we get different
efficient portfolio's, provided that we exclude the degenerate case in which
there exists only one efficient portfolio. For specific values of A, there

is a change in the basis; suppose these values are X1,....Xkand

corresponding efficient solutions are i1""’ik' We form the (sub)sequence

ij ,...,Xj from i1""'ik for which the (u,02) combinations are different.
1 h

This (sub)sequence is called the set of corner portfolio's. We have

(3.6) M'X, < M'X
Iy Jin
and
(37 Xn@ ¥, < £ X, :

' )_(v
i 4 Iy Ji+1
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The critical line in the (u,0?) plane has the following properties.

a. Between the (u,02?) points of two adjacent corner portfolio's, it is part
of a strictly convex parabola.
b. On the segments mentioned in a, the relation

2 -
3.8 () __ =i
(p,0?)

holds.
c. For @ positive definite, the critical line is on the open interval
(umin""'umax) a differentiable, strictly convex function for which

(3.8) holds.
Properties a and c differ from the properties of the critical line usually
mentioned in the literature. Property b is well known. We shall now proof
the properties a and c.

Proof of property a.

We consider a part of the critical line between two adjacent corner
portfolio's, so the efficient portfolio's that are convex combinations of
these corner portfolio's. For simplicity we note these corner portfolio's
as X, and X instead of X, and X &

i 141 Ji J1*1
The efficient portfolio's corresponding with this part of the critical line
can be written as:

(3.9) )-(=a(Xi-X ) + X ag [0,1] .

i+1 i+1

With (3.1) and (3.2) it follows:

(3.10)  w(X)= aM" (X=X, ) + M'X,
and

; 2% w2 e = =

(3.11) 02(X) = a?(X =X )" (X=X, 1) + 20(X =X )@ Xy K] EX,

From (3.10) it is easy to derive

e = A}
u(x)-M L

(3.12) O =g
M (X=X )
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(=%, W@IX~% . ) _
i "1#1 S LRSI

(3.13) 02(X) =

2
fMr(x-x,, 40
' ’ \J - = '
LT Xy @ KX ) Xy x“1)é’x1” .
=21 > o Ju(x )
(] - ] -
M7 (X =X, 40} MU(X =X, )
M X M'X M'X M'X
N X - ———x,, e Ll %y~ L Xy}
' - L\l - Al - Al -
WY g A T WO Rpand AR gy

- 0 )
The coefficient of u(X)“is positive, because (3.6) gives

LT 2
(3.11) (M (X, =X, , )" >0,

and (3.7) leads to

(3.15) (X =X )8 (X =Xy, )= 0% (X =Xy )= 0*(n(X,)-r(X, )2

2 (o(r(x)-alr(X;, N7 > 0.

So it follows directly that 02(X) is a strictly convex function of u(X). on
the interval between two adjacent corner portfolio's.

Proof of property c.

Because of properties a. and b., property c only has to be proved for points
on the critical line corresponding to corner portfolio's.

For efficient portfolio's X = X with umin( u(X) < W there exist numbers X

and Ei (i € a-) satisfying (2.19),(2.24),(2.25) and (2.26). Specializing to

the problem of this section, combining the Lagrange multipliers of the
conditions (3.3) in U' = (u1,...,um). those of (3.4) in V' = (v1,...,vn) and

adding slackvariables y,,...,y to (3.3), (2.24) and (2.19) reduce to

(3.16) 2€X - $'U+ V= -M

and
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(3.17) AX + Y =8B

(3.18) X 20 .

We now glve an expression which holds for every efficient portfolio. Denote
the basic variables of X by Xb and the corresponding parts of M, @ and B by

M, @

% b and Jlb , then as will be shown later on, ib can be written as
1 1 1

(3.19) X = A+ 2D
with

-1 e -1 By -1 -1
(3.20) D =#%[@ b, £b1ﬁ—b1(.ﬂ»b1£b1 Jlb1) Jlb1¢b1 ]Mb1 :

Substituting (3.19) into (3.1) and (3.2), we get

(3.21) u(x) = Mt‘)1A + A M{)]D

Y) = A' YA 32
(3.22)  02(X) = A @b1A + 2 %4 €b1D + A2D! fb1D .

Furthermore we will show
(3.23) M' Dgt O .
bl

Using (3.21) and (3.23) it is easy to verify property c.
Because of (3.21) and (3.23) there is a one to one correspendence between

u()—() and A. For efficient portfolio's, being convex combinations of two
adjacent corner portfolio's, the basis is the same, so differences in the

values of u(X) and 02(X) are only due to A. Property c holds for these

portfolio's. Let the values th and Xh correspond to a corner portfolio. If
we take the limits p + ':h and p + ]:h’ according to properties a and b , the
corresponding limits of A also exist and have as a limitvalue both Xh' so
the lefthand derivative of the critical line for uot ;h equals the righthand

derivative for p + ﬁh . Thus the function is differentiable in u = Gh with
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derivative Xh’ which means that (3.8) also holds for points on the critical

line, corresponding with corner portfolio's.
do? -
Because [a% )(5 52) monotonically increases for increasing u, the critical
’

line is strictly convex.

Remark .

According to property c the statement of E.F. Fama and M: H: Miller
([1]1,p.243) that the critical 1line needs not to be differentiable
everywhere doesn't hold if the covariance matrix is positive definite.
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Appendix A.

Proof of the formulae (3.19) and (3.20).

We rewrite the equations (3.16) and (3.17), omitting the bars, to get
variables X,Y,U and V, as follows

X' Y u' A

(A.1) 22|l |- " |-wm
BAl3 | oo &

Let

(As2) Zb' = (Xt’) 'Yt') 'Ut'> ’Vl') )

be the feasible basic solution belonging to the efficient portfolio, then
(A.1) can be partitioned into

A} Ll ] 1 Al Al 1 1
Xb an Yb an Ub Unb Vb vnb
2@ -2 € va ora -3 oY | m
b nb b b b
1 1 1 2 1
e, (e | o |[Otd |- $10 | aw,
2 S 1 - 2
(A.3) .
s | e |o |sle| o |T0]
b nb b
1 1 1
&b ‘Dnb 5 6 0' U d 0’ Bb
2 2 2
The matrix -2 € is partitioned into the square matrices-%?fb and -2 ¢nb
2
corresponding to basic and non-basic variables xJ and into -28b and _Zenb
2 1
1
with Q = e & Jl and Ln' represent the active constraints, J and
b2 nb1 b1 nb1 b2
‘Lnb the non-active constraints. Therefore we get identity matrices in the
2
fourth place of the YB column and the third place of the Yabcolumn. The

other partitions are evident.
The matrix of basic vectors is



(A.4)

To facilitate computations we reshuffle rows and columns ‘into

(A.5)

B -

@V

]
-2 eb1 & —‘91')1 o4
—Zebz v _‘nﬁb1 .
o & 7
1
Ny O
2 4

_15_

e, -8 O 4
‘Db1 v 00
=28, Fr. 3 g

The values of the basic variables are

B ob,
A, o 0 ’3
2 5 = r a 1
b,
B 0
b1
@7 -r@1
A v
0 M
b2
B 0
L b2‘ L J
b Vb ¥
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[ =]
-2@ - &
b1 b1 ;
| % €
(A7) 65;1- .
_ _ g | o
‘Zsz ‘pnb o€, L
1 1 1
A & A o & A
L b, b,
L -
2@ A |
® : b b e
Because v has an inverse, 1 1 exists and since positive
‘gb1 o
definite € " exists and also (Jl e'4 Jl' )-.I (ef. [2] pp 107-109), so
b1 b1 b.l b1
20, -# "
1 1
(A.8) -
Mo o

seleT) By Ay i BT R € | @ b idy e;'h

1 1 1 1 1 1 1 1 1 1 1 1 1

—(‘Qb 0:‘“6 )—1'»b 2;1 —Z(ﬁb @;1 "ot': )"

- 1 1 1 1 1 1 1 1 o

Substitution of (A.8) into (A.7) and the result into (A.6) gives
a9 X =C 'R (p @R B +

b b1 b1 b1 b1 b1 b1

+X[§@ if .R'(.D 6’ : 1u9 @ 1]M ;
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with

= &4 . =1 i w1 -1
(A.10) D = & [@b1-@b19b1(ﬂb1@b1kgb1) 19b1¢ bleb1.

as was to be proved.
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Appendix B.

Proof of formula (3.23).

We use the fact that an efficient portfolio with expected value ﬂ solves
problem (2.10), which in this case reduces to,

maximize

(B.1) -x'¢ x

subject to

(B.2) Hxsos
(B.3) M'X 2 u
(B.4) X 2 0.

The Kuhn-Tucker conditions with Lagrange multipliers ﬁ. A, and V and

slackvariables Y and ;n+1 are

(B.5) 20 X —.0'6+MX1 + V=0
(B.6) AX + Y =B
(B.7) M'X o - u
(B.8) XV e POey A =0,

For the equations (B.5), (B.6), (B.7), (A.2) completed with X1. forms a

basic solution. Reordering in the same way as (A.5), the matrix of basic
vectors changes into

®, K

L' 0

(8.9) B .

v

with

(B.10) ¥ = MY OV ©' Q)
b
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and

(B.11) K' = (Mt')1 0 Mt')2 o")

* * - - = -
63v has an inverse, so (@V ) 1 exists, just as(Bv1 and (L'(Bv1 K) J (el

again [2], pp. 107-109). Now

-1 o1 I . -1 sty
. Giv —(Bv K(L (Bv Ky L 03v (Bv K(L'® VO
(B.12) (ozv) = e i
(L'QV K) L'® -(L'®

-1, -1
'S b

K)

Substitution of (B.10), (A.7) and (B.11) in -(L'(B‘_,1K).1 gives

I T X — -1 -1
(B.13) %[Mb1{2b1 @b19b1(ﬁb1¢blwb]) ,0b1fb1}Mb1] .

which is, but for a constant, the reciproke of the left hand side of (3.23) 5
ef; (A.10)
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