Tilburg University

A generalisation and some properties of Markowitz' portfolio selection method

Kriens, J.; van Lieshout, J.T.H.C.

Publication date:
1986

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kriens, J., \& van Lieshout, J. T. H. C. (1986). A generalisation and some properties of Markowitz' portfolio selection method. (Research memorandum / Tilburg University, Department of Economics; Vol. FEW 211). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM R 7626
 1986 211

subfaculteit der econometrie

RESEARCH MEMORANDUM

IRG UNIVERSITY
RTMENT OF ECONOMICS
90153-5000 LE Tilburg
ands

K.U.B. BIBLIOTHEEK TILBURG

A generalisation and some properties of
 Markowitz' portfolio selection method

J. Kriens and J.Th. van Lieshout $\begin{array}{ll}653 \\ 650.19\end{array}$

A generalisation and some properties of Markowitz' portfolio selection method.
 J.Kriens and J.Th. van Lieshout

Summar y

A proof of the validity of Markowitz' critical line method is given for a more general situation than discussed by Markowitz. Next it is shown that
in the Markowitz' case the critical line in the (μ, σ^{2}) plane is strictly convex and an everywhere differentiable function if the covariance matrix is positive definite, so refuting a statement by Fama and Miller.

1. Introduction.

Markowitz developed the critical line method for the following portfolio selection problem (cf.[3],[4]). Suppose an investor wants to invest an amount b in the securities $1, \ldots, n$. He invests an amount $x_{j}(\geq 0)$ in security j, so

$$
\begin{equation*}
\sum_{j=1}^{n} x_{j}=b . \tag{1.1}
\end{equation*}
$$

The yearly revenue of a portfolio $X^{\prime}=\left(x_{1}, \ldots, x_{n}\right)$ is a stochastic variable $\underline{r}(X)$ with expected value $\operatorname{Er}(X)=\mu(X)$ and variance $\sigma^{2}(r(X))=\sigma^{2}(X)$. Besides the constraint (1.1) other constraints may exist, \bar{r} estricting the feasible options to a set $\boldsymbol{X} \subset \mathbb{R}^{n}$.
In order to get a first selection Markowitz introduces the notion of an efficient portfolio.
A feasible portfolio is efficient if:
a) no feasible portfolio exists with larger or equal expectation and smaller variance of the revenue,
and
b) no feasible portfolio exists with smaller or equal variance and larger expectation of the revenue.
This means that a portfolio $X=\bar{X}$ is efficient if and only if it is a solution of both
(1.2) $\min _{X}\left\{\sigma^{2}(X) \mid \mu(X) \geq \mu(\bar{X}) \wedge X \in \mathcal{X}\right)$
and
(1.3) $\max _{X}\left\{\mu(X) \mid \sigma^{2}(X) \leq \sigma^{2}(\bar{X}) \wedge X \in \mathscr{R}\right)$.

Markowitz derived an algorithm to compute all efficient portfolio's and the corresponding efficient (μ, σ^{2}) points, assuming $\mu(X)$ linear, $\sigma^{2}(X)$ quadratic and all constraints linear. In section 2 we show that the theorem on which this algorithm is based can be reformulated for a much more general situation.
Furthermore Markowitz derived some properties of the set of efficient points, but his remarks on differentiability properties of this line are not very explicit. In section 3 we show that if the variance $\sigma^{2}(X)$ is a strictly
convex function the line of efficient points in the (μ, σ^{2}) plane is strictly convex and differentiable everywhere.
2. A general theorem for the computation of efficient portfolio's.

Theorem.
Let
i. the set of feasible portfolio's be defined by $\mathscr{Z}=\left\{x \mid \boldsymbol{V}_{i \in \mathcal{H}_{i}}(x) \geq 0\right\}$, with \mathscr{y} an indexset, $h_{i}(x)$ concave and continuous differentiable ${ }^{1)}, \mathscr{R}$ compact with non vacuous interior,
ii. the expected value $\mu(X)$ of the revenue be concave, continuous differentiable on \mathscr{Q},
iii. the variance of X be continuous differentiable on $\mathscr{\mathscr { R }}$,
then $X=\bar{X}$ is efficient if and only if,
either
a) there exists a $\bar{\lambda}>0$, such that
(2.1) $\min _{X}\left\{\sigma^{2}(X)-\bar{\lambda} \mu(X) \mid X \in \mathscr{Z}\right\}=\sigma^{2}(\bar{X})-\bar{\lambda} \mu(\bar{X})$,
or
b)
(2.2) $\max _{X}\left[\mu(X) \mid \sigma^{2}(X)=\min _{Y}\left\{\sigma^{2}(Y) \mid Y \in \mathbb{Z}\right\}\right]=\mu(\bar{X})$,
or
c)
(2.3) $\min _{X}\left[\sigma^{2}(X) \mid \mu(X)=\max _{Y}\{\mu(Y) \mid Y \in \mathscr{L}\}\right]=\sigma^{2}(\bar{X})$.

1) By continuous differentiable we mean that all partial derivatives exist and are continuous. Strictly speaking, these conditions and the concavity conditions can be somewhat weakened.

Proof.

We first show that condition a) is sufficient. Suppose \bar{X} is not efficient; this implies
$x^{*} \in \mathscr{D}$
(2.4) ヨ
$\begin{aligned} &\left\{\mu\left(X^{*}\right) \geq \mu(\bar{X}) \wedge \sigma^{2}\left(X^{*}\right)<\sigma^{2}(\bar{X})\right\} \vee \\ &\left\{\sigma^{2}\left(X^{*}\right) \leq \sigma^{2}(\bar{X}) \wedge \mu\left(X^{*}\right)>\mu(\bar{X})\right\},\end{aligned}$
or
contradicting a). So \bar{x} must be efficient.
If $X=\bar{X}$ suffices (2.2), then

$$
\text { (2.6) } \begin{aligned}
\sigma^{2}(\bar{x})= & \min _{x}\left\{\sigma^{2}(x) \mid x \in \mathscr{X}\right\}=\sigma_{\min }^{2}
\end{aligned}
$$

and
(2.7) $\mu(\bar{X})=\max _{X}\left\{\mu(X) \mid \sigma^{2}(X)=\sigma_{\min }^{2} \boldsymbol{\lambda} \in \mathscr{X}\right\}$.

Thus $X=\bar{X}$ is efficient with minimum variance on \mathcal{X}. In the same way $X=\bar{X}$ sufficing (2.3) implies
(2.8) $\mu(\bar{X})=\max _{X}\{\mu(X) \mid x \in \mathscr{X}\}=\mu_{\max }$,

$$
\begin{equation*}
\sigma^{2}(\bar{X})=\min _{X}\left\{\sigma^{2}(X) \mid \mu(X)=\mu_{\max } \wedge X \in \mathscr{X}\right\} \tag{2.9}
\end{equation*}
$$

In other words $X=\bar{X}$ is efficient with maximum expected value on $\boldsymbol{\ell}$.

Secondly we prove that the conditions are necessary. If $X=\bar{X}$ is efficient, it solves both (1.2) and (1.3), so it is a solution of
(?.10)

$$
\max _{x}\left\{-\sigma^{2}(x) \mid \mu(x)-\mu(\bar{x}) \geq 0 \wedge \forall_{i \in y^{\prime}}(x) \geq 0\right\} \text {, }
$$

and of
(2.11)

$$
\max _{x}\left\{\mu(x) \mid \sigma^{2}(\bar{x})-\sigma^{2}(x) \geq 0 \wedge \forall_{i \in y} h_{i}(x) \geq 0\right\}
$$

We: now differentiate between two situations:

1) Slater's condition is satisfied, and
2) Slater's condition is not satisfied.
3) If Slater's condition is satisfied the Kuhn-Tucker conditions are not only sufficient, but also necessary. So in the case of problem (2.10):
there exist numbers $\bar{\lambda}_{1}$ and $\bar{t}_{i 1}(i 6 y)$ such that
(2.12)

$$
\begin{aligned}
-\nabla \sigma^{2}(\bar{x})+\bar{\lambda}_{1} \nabla \mu(\bar{x})+ & \sum_{i \in y} \bar{t}_{i 1} \nabla h_{i}(\bar{x})=0 \\
& =0
\end{aligned}
$$

(2.13)

$$
\mu(\bar{X})-\mu(\bar{X}) \geq 0
$$

$$
\begin{equation*}
h_{i}(\bar{x}) \geq 0 \quad(1 \in y) \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\lambda}_{1} \geqq 0, \bar{t}_{i 1} \geqq 0 \quad(i \in y) \tag{2.15}
\end{equation*}
$$

(2.16)

$$
\bar{\lambda}_{1}(\mu(\bar{x})-\mu(\bar{x}))+\sum_{i \in y} \bar{t}_{i 1} h_{i}(\bar{x})=0
$$

In the same way, for problem (2.11), there exist numbers $\bar{\lambda}_{2}$ and \bar{t}_{12} (ic γ) such that
(2.17)

$$
\nabla \mu(\bar{x})-\bar{\lambda}_{2} \nabla \sigma^{2}(\bar{x})+\sum_{i \in y} \bar{t}_{i 2} \nabla n_{i}(\bar{x})=0
$$

(2.18) $\sigma^{2}(\bar{X})-\sigma^{2}(\bar{X}) \geq 0$

$$
\begin{equation*}
n_{i}(\bar{x}) \geq 0 \quad(i \in y) \tag{2.19}
\end{equation*}
$$

(2.20) $\quad \bar{\lambda}_{2} \geq 0, \bar{t}_{12} \geq 0 \quad(i \in \mathcal{Y})$
(2.21) $\quad \bar{\lambda}_{2}\left(\sigma^{2}(\bar{x})-\sigma^{2}(\bar{x})\right)+\sum_{i \in y}^{\sum} \bar{t}_{i 2} h_{i}(\bar{x})=0$.

$$
i \in y
$$

Combining (2.12) and (2.17) leads to
(2.22) $-\left(1+\bar{\lambda}_{2}\right) V \sigma_{0}^{2}(\bar{x})+\left(1+\bar{\lambda}_{1}\right) V \mu(\bar{x})+\sum_{i \in y}\left(\bar{t}_{11}+\bar{t}_{12}\right) \nabla h_{1}(\bar{x})=0$.

We define
(2.23)

$$
\bar{\lambda}=\frac{1+\bar{\lambda}_{1}}{1+\bar{\lambda}_{2}} \quad, \quad \bar{t}_{i}=\frac{1}{1+\bar{\lambda}_{2}} \quad\left(\bar{t}_{i 1}+\bar{t}_{i 2}\right)
$$

then (2.22) can be rewritten as

$$
\text { (2.24) }-\nabla \sigma^{2}(\bar{x})+\bar{\lambda} \nabla \mu(\bar{x})+\sum_{i \in \gamma}^{\sum} \bar{t}_{i} \nabla h_{i}(\bar{x})=0 .
$$

We conclude the existence of numbers $\bar{\lambda}$ and $\bar{t}_{i}(i \in \mathcal{Y})$ satisfying (2.24), (2.19) and
(2.25)

$$
\bar{\lambda}>0, \bar{t}_{i} \geq 0
$$

$$
(i \in \mathcal{Y})
$$

(2.26)

$$
\sum_{i \in y} \bar{t}_{i} h_{i}(\bar{x})=0
$$

but this means that there exists a $\bar{\lambda}>0$, such that $X=\bar{X}$ solves the problem
(2.27) $\max _{x}\left\{-\sigma^{2}(x)+\bar{\lambda} \mu(x) \mid \forall_{i \in \gamma} n_{i}(x) \geq 0\right\}$,
which is identical to (2.1).
2) If Slater's condition is not satisfied, this means that either $\mu(X)-$ $\mu(\bar{X}) \geq 0$ or $\sigma^{2}(\bar{X})-\sigma^{2}(X) \geq 0$ doesn't have an interior point because \mathscr{Z} has a non vacuous interior. In the first case $\mu(\bar{X})$ equals the maximum $\mu_{\max }$ of $\mu(X)$ on \mathfrak{X} and the efficient portfolio \bar{X} solves (2.3); in the second case $\sigma^{2}(\bar{X})$ equals the minimum $\sigma_{\text {min }}^{2}$ of $\sigma^{2}(X)$ on \boldsymbol{X} and the efficient portfolio \bar{X} solves (2.2). If (2.6) has a unique solution, finding the corresponding efficient portfolio is equivalent to solving (2.1) for $\bar{\lambda}=0$. Analogous if (2.8) has an unique solution, finding the corresponding efficient portfolio is equivalent to solving (2.1) forasufficiently large value of $\bar{\lambda}$.
3. The set of efficient $\left(\mu, \sigma^{2}\right)$ points in the Markowitz' case.

We now specialize to the original portfolio selection problem of Markowitz. Suppose the yearly revenue of one dollar invested in security j equals \underline{r}_{j} with $\operatorname{Er}{\underset{j}{j}}^{=} \mu_{j}$; the covariance matrix of the \underline{r}_{j} is \mathbb{C}. If $M^{\dagger}=\left(\mu_{1}, \ldots, \mu_{n}\right)$, then
(3.1) $\quad \mu(X)=M^{\prime} X$,
(3.2) $\quad \sigma^{2}(X)=X^{\prime} \subset$.

The constraints are

$$
\begin{equation*}
A X \leqq B \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
x \geqq 0 \tag{3.4}
\end{equation*}
$$

If the feasible set $\mathscr{\mathscr { L }}$ has a non vacuous interior the efficient portfolio's can be found by applying the theorem of section 2 in which the left hand side of (2.1) now reduces to

$$
\text { (3.5) } \min _{X}\left\{X^{\prime} R x-\bar{\lambda} M^{\prime} X \mid A x \leq B \wedge x \geq 0\right\}
$$

The points $\left(\bar{\mu}, \bar{\sigma}^{2}\right)$ corresponding to efficient portfolio's constitute the efficient points in the $\left(\mu, \sigma^{2}\right)$ plane, sometimes called the critical line of the problem. Suppose we start with $\lambda=0$ and next raise λ, we get different efficient portfolio's, provided that we exclude the degenerate case in which there exists only one efficient portfolio. For specific values of λ, there is a change in the basis; suppose these values are $\bar{\lambda}_{1}, \ldots, \bar{\lambda} k$ and corresponding efficient solutions are $\bar{X}_{1}, \ldots, \bar{x}_{k}$. We form the (sub) sequence $\bar{X}_{j_{1}}, \ldots, \bar{X}_{j_{h}}$ from $\bar{X}_{1}, \ldots, \bar{X}_{k}$ for which the $\left(\bar{\mu}_{\mathrm{L}}, \bar{\sigma}^{2}\right)$ combinations are different. This (sub)sequence is called the set of corner portfolio's. We have

$$
\begin{equation*}
M^{\prime} \bar{X}_{j_{i}}<M^{\prime} \bar{X}_{j}{ }_{i+1} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{x}_{j_{i}} e \bar{x}_{j_{i}}<\bar{x}_{j_{i+1}} e \bar{x}_{j_{i+1}} \tag{3.7}
\end{equation*}
$$

The critical line in the $\left(\mu, \sigma^{2}\right)$ plane has the following properties. a. Between the $\left(\mu, \sigma^{2}\right)$ points of two adjacent corner portfolio's, it is part of a strictly convex parabola.
b. On the segments mentioned in a, the relation

$$
(3.8) \quad\left(\frac{\mathrm{d} \sigma^{2}}{\mathrm{~d} \mu}\right)_{\left(\bar{\mu}, \bar{\sigma}^{2}\right)}=\bar{\lambda}
$$

holds.
c. For \mathbb{C} positive definite, the critical line is on the open interval $\left(\mu_{\text {min }}, \ldots, \mu_{\text {max }}\right)$ a differentiable, strictly convex function for which (3.8) holds.

Properties a and c differ from the properties of the oritical line usually mentioned in the literature. Property b is well known. We shall now proof the properties a and c.

Proof of property .
We consider a part of the critical line between two adjacent corner portfolio's, so the efficient portfolio's that are convex combinations of these corner portfolio's. For simplicity we note these corner portfolio's as X_{i} and X_{i+1} instead of $X_{j_{i}}$ and X_{j+1}.
The efficient portfolio's corresponding with this part of the critical line can be written as:
(3.9)

$$
\bar{x}=\alpha\left(x_{i}-x_{i+1}\right)+x_{i+1} \quad \alpha \in[0,1] .
$$

With (3.1) and (3.2) it follows:
(3.10) $\mu(\bar{X})=\alpha M^{\prime}\left(X_{i}-X_{i+1}\right)+M^{\prime} X_{i+1}$
and
(3.11) $\sigma^{2}(\bar{x})=\alpha^{2}\left(X_{i}-X_{i+1}\right)^{\prime} \ell\left(X_{i}-x_{i+1}\right)+2 \alpha\left(X_{i}-x_{i+1}\right)^{\prime} \boldsymbol{\ell} X_{i+1}+X_{i+1}^{\prime} \boldsymbol{C} X_{i+1}$.

From (3.10) it is easy to derive
(3.12)

$$
\alpha=\frac{\mu(\bar{X})-M^{\prime} X_{i+1}}{M^{\prime}\left(X_{i}-X_{i+1}\right)},
$$

(3.13) $\sigma^{2}(\bar{x})=\frac{\left(x_{i}-x_{i+1}\right) \nmid \ell\left(x_{i}-x_{i+1}\right)}{\left\{M^{\prime}\left(x_{i}-x_{i+1}\right)\right\}^{2}} \mu(\bar{x})^{2}+$

$$
-2\left\{\frac{M^{\prime} x_{1+1}\left(x_{1}-x_{1}\right)^{\prime} \varrho\left(x_{1}-x_{1+1}\right)}{\left\{M^{\prime}\left(x_{i}-x_{i+1}\right)\right\}^{2}}-\frac{\left(x_{1}-x_{1+1}\right)^{\prime} \varrho x_{1}+1}{M^{\prime}\left(x_{i}-x_{i+1}\right)}\right\} \mu(\bar{x})+
$$

$1\left(\frac{M^{\prime} X_{i+1}}{M^{\prime}\left(x_{i}-x_{i+1}\right)} x_{i}-\frac{M^{\prime} X_{i}}{M^{\prime}\left(x_{i}-X_{i+1}\right)} x_{i+1}\right\}^{\prime} \ell\left\{\frac{M^{\prime} X_{i+1}}{M^{\prime}\left(x_{i}-x_{i+1}\right)} x_{1}-\frac{M^{\prime} X_{i}}{M^{\prime}\left(x_{i}-x_{i+1}\right)} x_{i+1}\right\}$.
The coefficient of $\mu(\bar{X})^{2}$ is positive, because (3.6) gives

$$
\begin{equation*}
\left\{M^{\prime}\left(x_{1}-x_{1+1}\right)\right\}^{2}>0 \tag{3.14}
\end{equation*}
$$

and (3.7) leads to
(3.15) $\left(X_{i}-x_{i+1}\right) \cdot \mathbb{C}\left(X_{i}-X_{i+1}\right)=\sigma^{2}\left(X_{i}-x_{i+1}\right)=\sigma^{2}\left(\underline{r}\left(X_{i}\right)-\underline{r}\left(X_{i+1}\right)\right) \geq$

$$
\geq\left(\sigma\left(\underline{r}\left(X_{i}\right)-\sigma\left(\underline{r}\left(X_{i+1}\right)\right)\right)^{2}>0 .\right.
$$

So it follows directly that $\sigma^{2}(\bar{X})$ is a strictly convex function of $\mu(\bar{X})$. on the interval between two adjacent corner portfolio's.

Proof of property c.

Because of properties a. and b., property c only has to be proved for points on the critical line corresponding to corner portfolio's.
For efficient portfolio's $X=\bar{X}$ with $\mu_{\min }<\mu(\bar{X})<\mu_{\max }$ there exist numbers $\bar{\lambda}$ and $\bar{t}_{i}(i \in \mathcal{Y})$ satisfying (2.19), (2.24), (2.25) and (2.26). Specializing to the problem of this section, combining the Lagrange multipliers of the conditions (3.3) in $U^{\prime}=\left(u_{1}, \ldots, u_{m}\right)$, those of (3.4) in $V^{\prime}=\left(v_{1}, \ldots, v_{n}\right)$ and adding slackvariables y_{1}, \ldots, y_{m} to (3.3), (2.24) and (2.19) reduce to

$$
\begin{equation*}
-2 c \bar{x}-\Omega^{\prime} \bar{U}+\bar{v}=-\bar{\lambda} M \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A} \bar{X}+\bar{Y}=B \tag{3.17}
\end{equation*}
$$

$$
\begin{equation*}
\bar{x} \geq 0 \tag{3.18}
\end{equation*}
$$

We now give an expression which holds for every efficient portfolio. Denote the basic variables of X by X_{D} and the corresponding parts of M, \mathscr{P} and \mathcal{A} by $M_{b_{1}}, \mathcal{C}_{b_{1}}$ and $\mathscr{F}_{b_{1}}$, then as will be shown later on, \bar{X}_{b} can be written as

$$
\begin{equation*}
\bar{X}_{b}=A+\bar{\lambda} D \tag{3.19}
\end{equation*}
$$

with

$$
\begin{equation*}
D=\frac{1}{2}\left[C_{b_{1}}^{-1}-Q_{b_{1}}^{-1} A_{b_{1}}^{\prime}\left(A_{b_{1}} \ell_{b_{1}}^{-1} A_{b_{1}}^{\prime}\right)^{-1} \mathcal{A}_{b_{1}} \ell_{b_{1}}^{-1}\right] M_{b_{1}} \tag{3.20}
\end{equation*}
$$

Substituting (3.19) into (3.1) and (3.2), we get

$$
\begin{equation*}
\mu(\bar{x})=M_{b_{1}}^{\prime} A+\bar{\lambda} M_{b_{1}}^{\prime} D \tag{3.21}
\end{equation*}
$$

$$
\begin{equation*}
\sigma^{2}(\bar{X})=A^{\prime} \mathbb{C}_{\mathrm{b}_{1}} A+2 \bar{\lambda} A^{\prime} \cdot \mathbb{C}_{\mathrm{b}_{1}} D+\bar{\lambda}^{2} D^{\prime} \mathbb{R}_{\mathrm{b}_{1}} \mathrm{D} \tag{3.22}
\end{equation*}
$$

Furthermore we will show

$$
\begin{equation*}
M_{b_{1}}^{\prime} D \neq 0 \tag{3.23}
\end{equation*}
$$

Using (3.21) and (3.23) it is easy to verify property c. Because of (3.21) and (3.23) there is a one to one correspondence between $\mu(\bar{X})$ and $\bar{\lambda}$. For efficient portfolio's, being convex combinations of two adjacent corner portfolio's, the basis is the same, so differences in the values of $\mu(\bar{X})$ and $\sigma^{2}(\bar{X})$ are only due to $\bar{\lambda}$. Property c holds for these portfolio's. Let the values $\bar{\mu}_{h}$ and $\bar{\lambda}_{h}$ correspond to a corner portfolio. If we take the limits $\bar{\mu} \uparrow \bar{\mu}_{h}$ and $\bar{\mu}+\bar{\mu}_{h}$, according to properties a and b, the corresponding limits of $\bar{\lambda}$ also exist and have as a limitvalue both $\bar{\lambda}_{n}$, so the lefthand derivative of the critical line for $\bar{\mu} \uparrow \bar{\mu}_{h}$ equals the righthand derivative for $\bar{\mu}+\bar{\mu}_{h}$. Thus the function is differentiable in $\bar{\mu}=\bar{\mu}_{h}$ with
derivative $\bar{\lambda}_{h}$, which means that (3.8) also holds for points on the critical line, corresponding with corner portfolio's.

Because $\left(\frac{d \sigma^{2}}{d \mu}\right)\left(\bar{\mu}, \bar{\sigma}^{2}\right)$ monotonically increases for increasing $\bar{\mu}$, the critical line is strictly convex.

Remark.
According to property c the statement of E.F. Fama and M. H. Miller ([1],p.243) that the critical line needs not to be differentiable everywhere doesn't hold if the covariance matrix is positive definite.

Appendix A.
Proof of the formulae (3.19) and (3.20).

We rewrite the equations (3.16) and (3.17), omitting the bars, to get variables X, Y, U and V, as follows
(A.1)

X^{\prime}	Y^{\prime}	U^{\prime}	V^{\prime}	
-2ℓ	θ	$-A^{\prime}$	Y	$-\bar{\lambda} M$
A	J	θ	θ	B

Let
(A.2)

$$
\bar{Z}_{\mathrm{b}}^{\prime}=\left(\bar{X}_{\mathrm{b}}^{\prime}, \bar{Y}_{\mathrm{b}}^{\prime}, \bar{U}_{\mathrm{b}}^{\prime}, \bar{V}_{\mathrm{b}}^{\prime}\right)
$$

be the feasible basic solution belonging to the efficient portfolio, then (A.1) can be partitioned into
(A.3)

x_{b}^{\prime}	$x_{\text {nb }}^{\prime}$	$Y_{\text {b }}^{\prime}$	$\mathrm{Y}_{\mathrm{nb}}^{\prime}$	U'	$u_{\text {nb }}^{\prime}$	v_{b}	$\mathrm{V}_{\mathrm{nb}}^{\prime}$	
$-2 e_{b_{1}}$	$-2 \boldsymbol{e}_{\mathrm{nb}_{1}}$	θ	θ	$\mathscr{q}_{\dot{b}_{1}}$	$-\ell_{b_{2}}$	σ	y	$-\bar{\lambda} M_{b_{1}}$
$-2 e_{b_{2}}$	$-2 \boldsymbol{e}_{\mathrm{nb}_{2}}$	θ	θ	$-u_{\mathrm{nb}_{1}}$	$-H_{\mathrm{nb}_{2}}^{2}$	J	θ	${ }^{-\bar{\lambda}} \mathrm{m}_{\mathrm{b}_{2}}$
$A_{b_{1}}$	$\mathcal{A n b}_{1}$	θ	〕	θ	θ	θ	θ	B_{1}
$\overbrace{\mathrm{b}_{2}}$	$\boldsymbol{f}_{\mathrm{nb}_{2}}$	Y	θ	θ	σ	σ	θ	b_{2}

The matrix $-2 \boldsymbol{\ell}$ is partitioned into the square matrices $-2 \mathbb{Q}_{\mathrm{b}_{1}}$ and $-2 \mathbb{Q}_{\mathrm{nb}}$ corresponding to basic and non-basic variables x_{j} and into $-2 \mathcal{C}_{b_{2}}$ and $-2 \ell_{n b}$ with $\ell_{b_{2}}=\ell_{n b_{1}}^{\prime} \cdot{\mathscr{b _ { 1 }}}_{Q_{1}}$ and $\mathscr{H}_{n b_{1}}$ represent the active constraints, $\mathscr{O}_{b_{2}}$ and $\AA_{n b_{2}}$ the non-active constraints. Therefore we get identity matrices in the fourth place of the Y_{b}^{\prime} column and the third place of the $Y_{n b}^{\prime}$ column. The other partitions are evident.
The matrix of basic vectors is
(A.4) $B=\left[\begin{array}{cccc}-2 e_{b_{1}} & \theta & -A_{b_{1}} & \theta \\ -2 \mathbb{C}_{b_{2}} & \theta & -d_{n b_{1}} & y \\ A_{b_{1}} & \theta & \theta & \theta \\ A_{b_{2}} & \jmath & \theta & \sigma\end{array}\right]$.

To facilitate computations we reshuffle rows and columns into
(A.5) $B_{V}=\left[\begin{array}{cccc}-2 L_{\mathrm{b}_{1}} & -A_{\mathrm{b}_{1}} & \theta & \theta \\ \Delta_{\mathrm{b}_{1}} & \sigma & \theta & \theta \\ -2 C_{\mathrm{b}_{2}} & -A_{\mathrm{nb}_{1}} & \gamma & \sigma \\ \Omega_{\mathrm{b}_{2}} & \theta & \sigma & \mu\end{array}\right]$.

The values of the basic variables are
(A.6) $\quad \bar{z}_{b v}=B_{v}^{-1}\left[\begin{array}{c}0 \\ B_{b_{1}} \\ 0 \\ B_{b_{2}}\end{array}\right]-\bar{\lambda} B_{v}^{-1}\left[\begin{array}{c}M_{b_{1}} \\ 0 \\ M_{b_{2}} \\ 0\end{array}\right]$
with $\bar{Z}_{b v}^{\prime}=\left(\bar{X}_{b}^{\prime}, \bar{U}_{b}^{\prime}, \bar{v}_{b}^{\prime}, \bar{Y}_{b}^{\prime}\right)$. In order to get an explicit expression for \bar{X}_{b} we compute B_{V}^{-1} :

Because \mathbb{B}_{v} has an inverse, $\left[\begin{array}{cc}-2 \mathscr{C}_{b_{1}} & -d_{b_{1}}^{\prime} \\ A_{b_{1}} & \theta\end{array}\right]^{-1}$ exists and since \mathscr{C} positive definite $\mathbb{C}_{\mathrm{b}_{1}}^{-1}$ exists and also $\left(\mathscr{A}_{\mathrm{b}_{1}} \mathbb{e}_{\mathrm{b}_{1}}^{-1} \mathbb{R}_{\mathrm{b}_{1}}^{\cdot}\right)^{-1}$ (cf. [2] pp 107-109), so
(A.8) $\left[\begin{array}{cc}-2 b_{b_{1}} & -\Delta t_{b_{1}} \\ \Delta_{b_{1}} & \theta\end{array}\right]^{-1}=$

Substitution of (A.8) into (A.7) and the result into (A.6) gives
(A.9) $\bar{x}_{b}=\mathbb{P}_{b_{1}}^{-1} A_{b_{1}}^{\prime}\left(A_{b_{1}} \mathbb{C}_{b_{1}}^{-1} A_{b_{1}}\right)^{-1} B_{b_{1}}+$

$$
+\bar{\lambda}\left[\frac{1}{2} \mathbb{C}_{\mathrm{b}_{1}}^{-1}-\frac{1}{2} \mathbb{C}_{\mathrm{b}_{1}}^{-1} \mathscr{A}_{\mathrm{b}_{1}}^{\prime}\left(\mathscr{A}_{\mathrm{b}_{1}} \mathbb{C}_{\mathrm{b}_{1}}^{-1} \mathcal{A}_{\mathrm{b}_{1}}^{\prime}\right)^{-1} \mathcal{D}_{\mathrm{b}_{1}} \mathbb{C}_{\mathrm{b}_{1}}^{-1}\right] M_{\mathrm{b}_{1}},
$$

with
(A.10) $D=\frac{1}{2}\left\lfloor\mathcal{C}_{b_{1}}^{-1}-\mathcal{R}_{b_{1}}^{-1} \Omega_{b_{1}}\left(\mathcal{A}_{b_{1}} \mathcal{Q}_{b_{1}}^{-1} \mathcal{S}_{b_{1}}\right)^{-1} \mathcal{A}_{b_{1}} \mathcal{P}_{b_{1}}^{-1}\right\rfloor M_{b_{1}}$,
as was to be proved.

Appendix B.
Proof of formula (3.23).
We use the fact that an efficient portfolio with expected value $\bar{\mu}$ solves problem (2.10), which in this case reduces to, maximize
(B.1) -X' X
subject to
(B.2) \& $x \leq B$
(B.3) $\quad M^{\prime} X \geq \bar{\mu}$
(B.4) $\quad x \geq 0$.

The Kuhn-Tucker conditions with Lagrange multipliers $\bar{U}, \bar{\lambda}_{1}$ and \bar{V} and slackvariables \bar{Y} and \bar{y}_{n+1} are
(B.5) $-2 \mathscr{X} \bar{A} \cdot \bar{U}+M \bar{\lambda}_{1}+\overline{\mathrm{V}}=0$
(B.6) ff $\bar{X}+\bar{Y}$
$=B$
(B.7) $\quad M^{\prime} \bar{x} \quad-\bar{y}_{n+1}$
$=\bar{\mu}$
(B. 8) $\quad \bar{X} \cdot \bar{V}+\bar{Y}^{\prime} \bar{U}+\bar{y}_{n+1} \cdot \bar{\lambda}_{1}=0$.

For the equations (B.5), (B.6), (B.7), (A.2) completed with $\bar{\lambda}_{1}$, forms a basic solution. Reordering in the same way as (A.5), the matrix of basic vectors changes into
(B. 9) $B_{v}^{*}=\left[\begin{array}{ll}B_{v} & K \\ L^{\prime} & 0\end{array}\right]$
with
(B. 10) $\quad L^{\prime}=\left(\begin{array}{llll}M_{b}^{\prime} & O^{\prime} & O^{\prime} & O^{\prime}\end{array}\right)$
and
(B. 11) $\quad K^{\prime}=\left(M_{b}^{\prime}, O^{\prime} M_{b_{2}}^{\prime} O^{\prime}\right)$.
β_{V}^{*} has an inverse, so $\left(B_{v}^{*}\right)^{-1}$ exists, just as B_{v}^{-1} and $\left(L^{\prime} B_{v}^{-1} K\right)^{-1}$ (cf. again [2], pp. 107-109). Now
(B.12) $\quad\left(B_{V}^{*}\right)^{-1}=\left[\begin{array}{lr}B_{V}^{-1}-B_{V}^{-1} K\left(L^{\prime} B_{V}^{-1} K\right)^{-1} L^{\prime} B_{V}^{-1} & B_{V}^{-1} K\left(L^{\prime} B_{V}^{-1} K\right)^{-1} \\ \left(L^{\prime} B_{V}^{-1} K\right)^{-1} L^{\prime} B_{V}^{-1} & -\left(L^{\prime} B_{V}^{-1} K\right)^{-1}\end{array}\right]$.

Substitution of (B.10), (A.7) and (B.11) in $-\left(L^{\prime} \cdot B_{v}^{-1} K\right)^{-1}$ gives
(B. 13) $\frac{1}{2}\left[M_{b_{1}}^{\prime}\left\{\mathbb{C}_{b_{1}}^{-1}-\mathbb{C}_{b_{1}}^{-1} \mathcal{A}_{b_{1}}\left(\mathcal{A}_{b_{1}} \mathbb{C}_{b_{1}}^{-1} \mathcal{O}_{b_{1}}^{\prime}\right)^{-1} \mathcal{O}_{b_{1}} \mathbb{C}_{b_{1}}^{-1}\right\} M_{b_{1}}\right]^{-1}$,
which is, but for a constant, the reciproke of the left hand side of (3.23), cf. (A.10).

References.
[1] E.F. Fama and M.H. Miller, The Theory of Finance, Holt, Rinehart and Winston, New York. (1972).
[2] G. Hadley, Linear Algebra, Addison-Wesley, Reading (1961).
[3] H.M. Markowitz, The Optimization of a Quadratic Function subject to Linear Constraints, Naval Research Logistics Quarterly $\underline{3}$ (1956) pp. 111-133.
[4] H.M. Markowitz, Portfolio Selection, John Wiley and Sons, New York (1959).

```
168 T.M. Doup, A.J.J. Talman
    A continuous deformation algorithm on the product space of unit
    simplices
169 P.A. Bekker
    A note on the identification of restricted factor loading matrices
170 J.H.M. Donders, A.M. van Nunen
    Economische politiek in een twee-sectoren-model
171 L.H.M. Bosch, W.A.M. de Lange
    Shift work in health care
172 B.B. van der Genugten
    Asymptotic Normality of Least Squares Estimators in Autoregressive
    Linear Regression Models
173 R.J. de Groof
    Geisoleerde versus gecoördineerde economische politiek in een twee-
    regiomodel
174 G. van der Laan, A.J.J. Talman
    Adjustment processes for finding economic equilibria
175 B.R. Meijboom
    Horizontal mixed decomposition
176 F. van der Ploeg, A.J. de Zeeuw
    Non-cooperative strategies for dynamic policy games and the problem
    of time inconsistency: a comment
177 B.R. Meijboom
    A two-level planning procedure with respect to make-or-buy deci-
    sions, including cost allocations
178 N.J. de Beer
    Voorspelprestaties van het Centraal Planbureau in de periode }195
    t/m 1980
178a N.J. de Beer
    BIJLAGEN bij Voorspelprestaties van het Centraal Planbureau in de
    periode 1953 t/m 1980
179 R.J.M. Alessie, A. Kapteyn, W.H.J. de Freytas
    De invloed van demografische factoren en inkomen op consumptieve
    uitgaven
180 P. Kooreman, A. Kapteyn
    Estimation of a game theoretic model of household labor supply
181 A.J. de Zeeuw, A.C. Meijdam
        On Expectations, Information and Dynamic Game Equilibria
```

182 Cristina Pennavaja
Periodization approaches of capitalist development.
A critical survey
183 J.P.C. Kleijnen, G.L.J. K1oppenburg and F.L. Meeuwsen
Testing the mean of an asymmetric population: Johnson's modified T
test revisited
184 M.O. Nijkamp, A.M. van Nunen
Freia versus Vintaf, een analyse
185 A.H.M. Gerards
Homomorphisms of graphs to odd cycles
186 P. Bekker, A. Kapteyn, T. Wansbeek Consistent sets of estimates for regressions with correlated or uncorrelated measurement errors in arbitrary subsets of all variables

187 P. Bekker, J. de Leeuw
The rank of reduced dispersion matrices
188 A.J. de Zeeuw, F. van der Ploeg
Consistency of conjectures and reactions: a critique
189 E.N. Kertzman
Belastingstructur en privatisering
190 J.P.C. Kleijnen
Simulation with too many factors: review of random and groupscreening designs

191 J.P.C. Kleijnen
A Scenario for Sequential Experimentation
192 A. Dortmans
De loonvergelijking
Afwenteling van collectieve lasten door loontrekkers?
193 R. Heuts, J. van Lieshout, K. Baken The quality of some approximation formulas in a continuous review inventory model

194 J.P.C. Kleijnen
Analyzing simulation experiments with common random numbers
195 P.M. Kort
Optimal dynamic investment policy under financial restrictions and adjustment costs

196 A.H. van den Elzen, G. van der Laan, A.J.J. Talman Adjustment processes for finding equilibria on the simplotope

197 J.P.C. Kleijnen
Variance heterogeneity in experimental design
198 J.P.C. Klei jnen Selecting random number seeds in practice

199 J.P.C. Kleijnen
Regression analysis of simulation experiments: functional software specification

200 G. van der Laan and A.J.J. Talman An algorithm for the linear complementarity problem with upper and lower bounds

201 P. Kooreman
Alternative specification tests for Tobit and related models

202 J.H.F. Schilderinck
Interregional Structure of the European Community. Part III
203 Antoon van den Elzen and Dolf Talman A new strategy-adjustment process for computing a Nash equilibrium in a noncooperative more-person game

204 Jan Vingerhoets
Fabrication of copper and copper semis in developing countries. A review of evidence and opportunities.

205 R. Heuts, J. v. Lieshout, K. Baken An inventory model: what is the influence of the shape of the lead time demand distribution?

206 A. v. Soest, P. Kooreman
A Microeconometric Analysis of Vacation Behavior
207 F. Boekema, A. Nagelkerke
Labour Relations, Networks, Job-creation and Regional Development
A view to the consequences of technological change
208 R. Alessie, A. Kapteyn
Habit Formation and Interdependent Preferences in the Almost Ideal Demand System

209 T. Wansbeek, A. Kapteyn
Estimation of the error components model with incomplete panels
210 A.L. Hempenius
The relation between dividends and profits

Bibliotheek K. U. Brabant

17000010597350

