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A generalisation and some properties of Markowitz' portfolio selection
method.

J.Kriens and J.Th. van Lieshout

Summar

A proof of the validity of Markowitz' critical line method is given f or a
more general situation than discussed by Markowitz. Next it is shown that

in tY~e Markowitz' case the critícal line in the ( u,o') plane is strictly
convex and an everywhere differentiable function if the covariance matrix
is F~ositive defínite, so refuting a statement by Fama and Miller.



1. Introduction.

Markowitz developed the critical line method for the following portfolio

selection problem (cf.C3j,Cu7)- Suppose an investor wants to invest an

amount b in the securities t,...,n. He ínvests an amount xj (20) in security

j, so

(1.i) ~, xj : b .

j-1

The yearly revenue of a portfolio X' -(x1,...,xn) is a stochastic variable

r(X) with expected value Er(X)-v(X) and variance o2(r(X)) - o2(X). Besides
the constraint (1.1) other constraints may exist, restrieting the feasible

options to a set óC GOtn.
In order to get a first selection Markowitz introduces the notion of an

efficient portfolio.
A feasible portfolio is efficient if:
a) no feasible portfolio exists with larger or equal expectation and smaller

variance of the revenue,
and
b) no feasible portfolio exists with smaller or equal variance and larger

expectation of the revenue.

This means that a portfolio X-X is efficient if and only if it is a solution

of both

(1.2) min {o2(X)~v(X)?u(X) ~ XEo~)
X

and

(1.3) max {u(X)Io2(X)So2(X) ~ X E ~ ) .
X

Markowitz derived an algorithm to compute all efficient portfolio's and the

corresponding efficient (u,o') points, assuming u(X) linear, a~(X) quadratic

and all constraínts linear. In section 2 we show that the theorem on whích

this ~ilgoríthm is based can be reformulated for a much more general

sítu~~tíon.
Furthermore Markowitz derived some properties of the set of efficient

poínts, but his remarks on differentíability properties of this line are not

very explicit. In sPetion 3 we show that if the variance o2(X) is a strictly



convex t'uncLion the line of efficíenY, poínts in the (~,02) plane ís strictly
convex and differentiable everywhere.



2. A-peneral theorem for the computation of efficient portf olio's.

'I'heurem.

LPt
i. the set of feasible portfolio's be defined by ~- {X~~1í`xhi(X) 2 0},

with ~ an indexset, hi(x) concave and continuous differventiablel),~
compact with non vacuous interior,

ii. the expected value u(X) of the revenue be concave, continuous
differentiable on 9C,

iii. the variance of X be contínuous differentíable on ~,
then X-X is efficient if and only if,
either

a) there exists a a~0, such that

(2.1) min{aZ(X) - a u(X)IX 6 5l~} s o2(X) - aV(X),
X

or
b)

(2.2) maxCu(X)lo~(X) s min(o2(Y)IY6 .~}] - V(X),
X Y

or
c)

(2.3) minCo2(X)~u(X) ~ max{y(Y)~YE ~}] - o2(X).
X Y

1) By contínuous differentiable we mean that all partial derivatlves exist
and are continuous. Stríctly speaking, these eonditions and the concavity
conditíons can be somewhat, weakened.



Proof.

We first show that conditíon a) is sufficient. Suppose X is not efficient;
this implies

X~69e
(2.4) ~ {u(X~)?u(X) I~ a2(X~)~a2(X)} v

X~sX {oZ(X~)5a2(X) nu(X~)~u(X)},
or

(2.'~)

X~Eóe

~
~r r

o2(X )-au(X ) C a'(X)-aV(X) .

cont.radícting a). So X must be efficíent.

If X-X suffices (2.2), then

(2.6) o2(X) - min {az(X)~XeBt} - amín
x

and

(2.7) u(X) z max {v(X)~a2(X):Qmin n X E á}.
X

Thus XLX is efficient with minimum variance on ~. In the same way X-X
sufficíng (2.3) implies

(2.8) u(X)- max {u(X)IX E ~ } ` umax'
X

(2.9) o2(X)- min {o2(X)~v(X)'umaxn X EbC},
X

In other words X- X is efficient with maximum expeeted value on ~.



:econdly we prove that the conditions are necessary. If X- X is efficíent,
it solves both (1.2) ,~nd ( 1.3), so ít is a solution of

(,'.lU) m.~x (-o~(X)~u(X)-ri(X).OndGnhi(X) 20},

X á

and of

(~'.11) maxiv(X)la7(X)-o'(X)tO~díG~hí(X)20}.
X

Wf~ nc~w díl'i'~~rentiate bet,ween two sit.uations:
1) Slater's condition ís satisfied, and

~~) Slater's condition ls not satisfíed.

1) lt' :~laLer's condítion ís satisfíed the Kuhn-Tucker condltíons are not.
only sufficient, but also necessary. So in the case of problem (2.10):

there exist numbers ai and ti1 (i ~~) such that

(2.12) -DoZ(X) t a10v(X) t E til4hi(X)-0

i 6 ~-

(2.13) v(x) - u(X)?0

(;:'.14) hí(X)20 (iG ~ )

(2.15) A1?0, ti1?0 (i Ér~ )

(2.16) ~1(u(X)-u(X)) t E ti1h1(X) - 0 .

i E ~.

In the same way, for problem ( 2.11), there exist numbers a2 and ti2 (iE ~)

such that
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(2.17) vu(z) - á2vCZ(z) t~, ti2Vhi(X) - o

14~

(2.18') Cz(X) - CZ(X1 ? 0

(?.19) hi(X) ~ 0 (1E ~ )

(2.20) A, ? 0, ti2 L 0 (1E ~)

(;.;1) A,(C~(X) - aZ(X)) ' E t12hi(X) - 0.
1E~

Combining (2.12) and (2.17) leads to

(.'.;';') -(1~A1)Vo'(X) { (1rA,)V~i(X) ~

We define

): (t11ttiL,)Vhi(X) - p.

1E~

1tA
(2.23) á : 1 , ti - 1 (tiltti2) (1E ~ ) .

1tA2 1'A2

then (2.22) can be rewritten as

(2.24) -VCZ(X) t AVu(X) t E tiVhi(X) - 0.

ii ~

Wc conclude the existence of numbers a and ti (1E ~ ) satísfying (2.24),

(2.19) and

(2.25) A ~ 0 , ti2 0 (iE ~ )



(2.26) E tihi(X) - 0 ,

i E~

but. this means that tht~re~ exist~ ~i a~0, such Lhat X-X solves Lhe problem

(?.~''O m~tx {-o'(X) ' a u(X) ~ diE~ hi(X) 2 0},

X

which is i dentical to (2.1).

2) If Slater's condition is not satísfíed, this means that either u(X)-

u(X)20 or o2(X)-a~(X)ZO doesn~t have an interior point because ~ has a non

vacuous interior. In the first case u(X) equals the maximum Vmax of u(X) on

~and the efficient portfolio X solves (2.3); in the second case oZ(X) equals

the minimum aZmín of o'(X) on ~ and the efficient portfolio X solves (2.2).

II (7.6) h~~s a unlquc, solut.tr'n, flnding the corresponding efflclent

portfolio i s equivalent to solving (2.1) for a- 0. Analogous if (2.8) has
an unique solution, finding the corresponding efficient portfolío is

equivalent to solving ( 2.1) forasufficiently large value of a.



3. The set of efficient ( u,o2) points in the Markowitz' case.

We now specialize to the original portfolio selection problem of Markowitz.
Suppose the yearly revenue of one dollar invested in security j equals r~

with Er~-u~; the covariance matrix of the r~ is e. If M'- (u1,...,Ln),

then

(3.1) u(X) : M'X,

(3.~~) a2(X) - X'~ X .

'fh~~ ~~unc;tralnts aru

(3.3) ,A~X ~ B

(3.4) x ~ o .

If the feasible set ~ has a non vacuous interior the efficient portfolio's
can be found by applying the theorem of section 2 in which the left hand
side of (2.1) now reduces to

(~.5) min { X'Q X- A M'X ~~X 5 B n X 2 0 },

X

Ttu~ poínts (V,o2) corrr~spondíng to efficient portfolio's constitute the

efficient points in the (y,oz) plane, sometímes called the critícal line of
the problem. Suppose we start with a-0 and next raise a, we get different
efficient portfolio's, provided that we exclude the degenerate case ín which
ttrere exists only one effícient portfolio. For specific values of a, there

is a change in the basís; suppose these values are a1,...,akand

corresponding efficient solutions are X1,...,Xk. We form the (sub)sequence

X. . X. from X1,...,Xk for which the (u,a2) combinations are different.
~ 1 r ~ ~h

This ( sub)sequence is called the set of corner portfolío's. We have

(3.6) M'X. ( M'X.
~i ~itl

~m d

(3.7) x'ex ~x' .~ X. .
~1 ~i ~it1 ditl



The critical line in the (u,oZ) plane has the followíng properties.

a. Between the (u,o2) points of two adjacent corner portfolio's, it is part
of a strictly convex parabola.

b. On the segments mentioned in a, the relation

~
(3.8) ( do ~ - á

du (u,a2)

holds.
c. For ~ positive definite, the critical line is on the open interval

(umin'" ''umax) a differentiable, strictly convex funetion for which
(3.8) holds.

Properties a and c differ from the properties of the critical líne usually
mentioned in the literature. Property b is well known. We shall now proof
the properties a and c.

Proof of property a.

We consider a part of the critical line between two adjacent corner
portfolio's, so the efficíent portfolio's that are convex combinations of
these corner portfolio's. For simp.licity we note these corner portfolio's
as Xi and X1~1 instead of Xj and X~ .

í itl
The effícíent portfolio's corresponding with this part of the crítical line
can be written as:

(3.9) x- a(xi - xi}1) t xitl af [o,l] .

Wf~h ( i.l) rinri (~.~') lt, ftill~iws:

(3.10) u(X)z aM'(Xi-Xitl) t M'Xitl

and

(3.11) o2(X) ~ a2(X1-Xitl)'Q (Xi-Xitl) t 2a(Xi-Xit1)'~ Xi~ltXitl ~Xitl.

From (3.10) it is easy to derive

u(X)-M'Xitl
(3.12) a - M'(Xí-X1}1) '
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(x -x )'Q (x.-x )
(3.13) oZ(x) ~ i itl ~ it1 u(x)2 t

{M'(X1-Xí}1)}2

M'Xi ~IXt Xl I)'(~(Xí-Xí~~) ( Xt X1~1)'Q X1~1- - }v(X)~
iM'(Xí-Xi~1)}2 M'(Xi-Xít1)

M'X ~ M'X M'X { M'X
c{ i~- X- í--X {)'Q I` 1 1 X- i X i ).
M'(XI-Xí~l) i M'(Xi-Xiil) t 1 M'(xi-Xii1) í M'(Xí-Xí}1) t 1

,,
Thr~ cuefficient of u(X)`í~ posit.íve, because (3.6) gives

~
( i.lh) ÍM'(Xi-X1~1 )}` ~ 0,

and (3.7) leads to

(3.15) (Xi-Xi}1)'(G~ (Xi-Xi}1)~ a'(Xi-Xit1)- oZ(r(Xi)-r(Xit1))2

2 (o(r(Xi)-a(r(X1}1)))2 ~ 0.

So iY, follows directly that o2(X) is a strictly convex function of v(X). on
the interval between two adjacent corner portfolio's.

Pr~oof of property c.

Because of properties a. and b., property e only has to be proved for points
on the critical line correspondíng to corner portfolio's.
For efficíent, portfolio's X- X with Vmín~ u(X) ~ umax there exist numbers a

and tí (í (c ~) satisfying (2.19),(2.24),(2.25) and (2.26). Specíalízíng to

the problem of thís section, combining the Lagrange multipliers of the
condit.ions (3.3) in U' -(u1,...,um), those of (3.4) ín V' -(v1,...,vn) and

adding slackvariables yl,...,ym to (3.3), (2.24) and (2.19) reduce to

(3.16) -2QX- ,í~'Uf V--áM

and



( 3. 1 7) ,a-X t Y~ B

(3.15) X ~: 0 .

W.. nc,w Y,iv~r rin ~xpres:~ion which h~,lds for every efficient portfollo. Denote

thu basie variables of X by Xb and the corresponding parts of M, Q and .11 by

and „~- , then as will be shown later on, Xb can be written as
Mb1 ~ ~bl bl

(3.~9) Xb - A } ,1 D

witri

( 3.20) D - i LQ b1 - ~ b1 ~b ( ~ib ,e bl
~b )- 1 Ab ~ bl ~Mb .

1 1 1 1 1 1 r'~ 1 1 1

Substitutíng (3.19) into (3.1) and (3.2), we get

(3.21) u(X) ~ M' A} a M' D
bl bl

(3.22) aZ(X) s A' Qb A t 2 1A' eb D t a~D' eb D.
1 1 1

Furthermore we will show

(3.?3) M~~ D ~ ~ -
1

Using (3.21) and (3."~3) it ís easy to verífy property c.
Becaiise of (3.21) and (3.23) there is a one to one correspsndence between

~(X) and a. For efficient portfolio's, being convex combinations of two
adjacent corner portfolio's, the basis is the same, so differences in the

values of u(X) and oZ(X) are only due to ,1. Property c holds for these

portfolio's. Let the values yh and ah correspond to a corner portfolio. If

we take the limits u r Vh and u i uh. according to properties a and b, the

corresponding limits of a also exist and have as a límitvalue both ah, so

the lefthand derivative of the critícal line for y t uh equals the righthand

derivative for K i vh . Thus the function ís differentiable in y II vh with



derivative Ah, which means that (3.8) also holds for points on the eritical

line, corresponding with corner portfolio's.
z

Hecause (dv ~(u~o,) monotonically increases for increasíng p, the critical

linc is strictly convex.

Remark.

According to property c the statement of E.F. Fama and M. H. Miller
(C17,p.243) that the critical line needs not to be differentíable
everywhere doesn't hold if the covariance matrix is positive definite.



Appendix A.

Proof' of the formulae (3.19) and (3.20).

We rewrite the eyuations (3.16) and ( 3.17), omitting the Dars, to get
varíabies X,Y,U and V, as f ollows

(A.1)

Let

(A.2)

X' Y' U' U'

-2 1~ ~ - ~' ~ -a M

~ J ~ ~ g

Zh - (Xb ,Yb ,Ub ,Vb )

be the feasible basic solution belonging to the effícient portfolio, then
(A.1) can be partitioned into

(A.3)

X'b X'nb Y'b Y'n U'b U'nb V'b V'n

-2~b -2 ~nb ~ ~ tlib
1

-~b
2

~ J -,1Mb
11

-2~ b 2

1

-~ ~nb
2

~ ~ ~nb 1 - ~nb
2

~ v -~Mb
2

,Ía~ b ~Á' b ~Í J ~ v ~ ~ B b
1

n
1 1

~ b~ ~ ~ ~ ~ ~ ~ Ubb2 n 2 ,

ThP matríx -2 ~ is partitioned into the square matrices - 2 ~b and -2 ~nb
correspondíng to basíc and non-basic variables x~

wi th
~b L Q nb '

2 1

~nb the non-active
2

uwb and Wb represent t . b
1 1 2

constraints. Therefore we get identity matrices in

fourth place of the Yb column

other partitions are evident.
The matrix of basic vectors ís

the

and the third place of the Ynbcolumn. The

1 2
and into -2eb and -2Qb

2 1
he active constraints oi and



-z e 6' - ~ 'b~ b~

cA.u) r3 -

-2~b V -~nb
2 ~

~b ~ e~ d ~
2

To facilitate computations we reshuffle rows and columns into

b~ b~~ -2~ -~ . ~ ~l
J~

(A.5) ~v '

-2 Q b2 -~n nb, J U

~b2

The values of the basic variables are

0

(A.G) Lbv `~vl

Bb 1

0

- a (~-1
v

2Bb J

Mb
1

0

Mb
2

0

with Zbv -(Xb,Ub,Vb,Yb). In order to get an explicit expression for Xb we

comput~~ ~ -i .v



-2Q bl - Apl

(A.7) ~jVl

1
~ ~

-2 ~ - pQ' -1

Because ~ has an inverse, b1 b1 exists and since ~ posítive
v

-2 ~ -~ ~ -1

b1 b1

b

IR~ b 1 ~

definite ~-1 exists and also (,~ Q-1 ~')-1 (ef. [27 pp 107-109), so
bl b1 bl b1

( A.8)

-2 ~b~ - ~nbl

~ bl

-(~ b Q b1 ~b )-1 ~b ~ bl

1 1 1 1 1

Qb1 ~b ( f1b ~1 bl ~b )-1

1 1 J~ 1 1 1

-2(.Íil
~-1 ~, )-1

bl bl bl

Substitution of (A.8) into (A.7) and the result í nto (A.6) gives

( A.9) Xb ~ Q bl ~b (~b Q b1 ~b )-1 Bb }

1 1 1 1 1 1

-2Í1~ -~ ~ -1
bl bl

-1 1}1 -1 ~, ( n ~-1 ~,, )-1 ~ Q-1
z~b1 z~ bl bl t~b1 b1 b1

bl b1

~

taC~Q bl- ~~b1 ~b (,ab e
b1~b )-1 ~b Q b1 ~Mb ~

1 1 1 1 1 1 1 1 1



with

(A.IU) D - 2 l~b'-Ít'b'~b (~lb
Q~l~b

~-1JfbLJb~~Mb ,
1 1 1 1 1 1 1 1 1

as was to be proved.



A , ~~~ndi x t~.

Proof of formula (3.23).

We use the fact that an efficient portfolio with expected value u solves
problem (2.10), which in this case reduces to,
maximize

( fi. t ) -X'Q X

subject tn

(B.2) ,A X 5 B

(B.3) M'x '- v
( H. 4 ) x ~ o.

The Kuhn-Tucker conditions with Lagrange multipliers U, a, and V and

slackvariables Y and yn~1 are

(B.5) -2~X -~'U t Ma1 t V- 0

(B.fí) u4 X t Y . g

(B.7) M'X -ynrl - V

(B.8) X'U t Y'U ' ynt1.~1 ~ 0.

For the equations (6.5), (B.6), (B.7), (A.2) completed wlth a1, forms a

basic solution. Reordering in the same way as (A.5), the matrix of basic
vectors changes into

~v K
(f3.9) ~v -

I,' 0

with

(B.10) L' -( Mb 0' 0' 0')
1



and

(B.11) K' a(Mb1 Q' Mb2 Q') .

i13 ~ has an inverse, so ( l~~ )-1 exists, just asg-1 and (L' ~-1 K)-1 (cf.
v v v v

again C2], pp. 107-109). Now

~-1-~-1K(L'Q3-1K)-1L,~-1 ~-iK(L'~ 1K)-1
~-1 v v v v v v

(H.12) (Ó3v) -1 -1 -1 1 -1 '
(L'(Bv K) L'~v - (L'O3v K)

Substitution of (8.10), (A.7) and ( B.11) in -(L'(óv1K)-1 gives

( R. 1 3) z~M~ { Q b1 - Q b1 J~ b( ~b ~ bi ~b )-1 nb LJ b l }Mb ]-1 .
1 1 1 1 1 1 1 ár 1L 1 1

which is, but for a constant, the reciproke of the left hand síde of (3.23),
cf. (A.10).
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