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STATISTICAL ASPECTS OF SIMULATION: AN UPDATED SURVEY

by JACK P.C. KLEIJNENY)

ABSTRACT

Practical statistical techniques for the design and analysis of simulation

experiments are presented. These techniques are relevant in both discrete

and continuous, deterministic or stochastic simulation. To generalize

and interpret the simulation output the analyst can use regression

analysis..This analysis allows for interactions among factors. Actually

the regression model provides a first-order or a second-order approxi-

mation to the complicated simulation model. To decide which system

variants (parameter combinations) should be simulated, the analyst

should apply experimental design theory. This theory makes the exploration

of the simulated system much more efficient and more thorough. In the

preliminary phase of the simulation experimentation special screening

designs can be used to investigate hundreds of factors in relatively few

runs.

In stochastic simulation there are additional problems. Several

approaches are available for determining how to initialize a simulation

run and how long to continue that run. These approaches result in a

confidence interval for the estimated response. Both steady-state and

transient behavior are examined. Special variance reduction techniques

are briefly discussed; the use of common random numbers (identical seeds)

is discussed in more detail.

l.Introduction

This article is meant as a survey for simulation practitioners. The reader

should know basic statistical theory such as elementary regression

analysis and t tests. The reader should not expect a discussion of the

generation of random numbers and their use in sampling from distribu-

tions, as the simulation practitioner may rely on standard computer programs

t) Department of Business and Economics, Katholieke Hogeschool Tilburg
(Tilburg University), 5000 LE Tilburg, The Netherlands.
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for sampling from distributions. Another aspect not discussed is the

use of statistical techniques for validating slmulation models. The
following statistical aspects, however, are discussed in detail:

(i) Strategic statistical problems.

Simulation can be applied in the study of many practical problems but
unfortunately the results of a simulation experiment are valid only for
the specific parameter values and mathematical relationships of the

executed simulation program. If the user wishes to know the effects

of changing a parameter or relationship, then the simulation program
must be run again. An astronomical number of combinations of parameters

could be formulated. Running all these combinations, however, would
take too much computer time. This paper will recommend the use of
experimental desígn theory to help in the efficient and systematic
exploration of the great many system variants that could be simulated.

Apart from the technical lmposslbility of simulating all system
variants, there remains the problem of how to interpret the qreat mass

of data usually produced by computer programs. Understanding the
simulated system is certainly not easy when confronted with reams of
papez output or wíth numerous tables. This paper proposes to gain

ínsight into the behavior of the simulation model by using a regression
model that explains how the simulation output (y) reacts to changes
in the simulation model's parameters and relationships (x1...xk).
Hence regression analysis yields a metamodel or auxiliary model built

on top of the simulation model, so-called hierarchical modeling. Obvious-
ly the validity of the regression (meta)model should be checked (just

like the validity of the underlying simulation model should be checked
in an earlier phase).

So experimental design and regression analysis may mitigate the
ad hoc character of the simulation technique. These statistical methods

are useful in determining the sensitivity of the simulation results to
specific model assumptions (simulation model validation), and in finding
optimal or satisficing values for the decision variables in the
simulation (this includes the what-if approach). The number of references
- both theoretical papers and practical applications - has been kept
small; additional references are found in [11].
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(ii) Tactical statistical problems.

Tactical problems are defined as problems arising when simulating a

single, specific system varlant, i.e., given the specification of all

parameters and relationships the following (mutually related) statisti-

cal problems remain: How long should the simulation run be? Once the

run is terminated, how can a confidence interval for the run's response

be derivedl Cnn special "tricks" be applied to reduce the variabílity

of a response variable? Note that these tactical issues arise only in

stochastic simulation models, whereas the strategic problems exist in

both deterministic and stochastic simulation.

2. Regression metamodels.

Before discussing the details of regression metamodeling in simulation,

we emphasize that this regression analysis is merely a formalization

of the followinq common sense approach. In practice the analyst changes

the value of a parameter; observes the resulting response; possibly

he chanqes that parameter agaín; he plots the input~output combinations;

fits a curve by band; and he concludes whether this parameters has

an important effect on the output; next he .repeats this process for

another parameter. Regression analysis formalizes the hand-fitting by

applying the least squares algorithm; regression analysis permits an

extension into multiple dimensions (main effects and interactions of

an arbitrary number of parameters can be analysed); to judge the

importance of a parameter an objective significance test is used; the

validity of the fitted curve ís checked statistically. Note that the

use of formal metamodels in simulation (and in other disciplines such

as mathematical programming and World Dynamics) has been advocated by

several authors, e.g. ~ 14, 22] .

Let the simulation model be briefly denoted by the function symbol

f, with simulation response y, parameters z. (j - 1,...k) and random
J

number vector r.

y - fl(zl,....zk, r) (2.1)

Some comments can be made an eq.(2.1). The intricate simulation model

is indeed a mathematical function, i.e.,for a given set of arguments

it yields a unique value. Although the simulation program generates a
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whole time series per output variable, this time series is usually

summarized by a limited number of ineasures, e.g., the average, the

maximum, the spectrum. This paper concentrates on a single statistic

per simulation run (multiple statistics will be briefly discussed

later; so also Appendix 1). Further note that the random vector r is

completely determined by its seed (initial value), say r~. Metamodeling

also applies to deterministic simulation in which case r vanishes. The

symbol z can represent not only a parameter like service rate but also

a(discrete) quantitative variable like number of service stations, or

a qualitative "variable" like queuing discipline. In experimental

design terminology z is called a"factor". From a user's point of view

factors in the model can be partitioned into decision and environmental

factors. Decision factors are under the user's control. Environmental

factors are not controllable but they do affect the output. Decision

factors can be selected such that either the output is optimized, or a

satisficing value of the output is obtained (related to H. Simon's theory

and to the "what if" approach), or a fixed output value is realized

(control approach). A valid model implies that the exact values of the

environmental factors either are known or are not critical.

Returning to eq. ( 2,1), the simplest situation would permit a
strictlv mathematical foundation for metamodeling. If all factors z

are continuous variables and r vanishes, and the simulation model fl is
a nicely behaving function, then a Taylor series expansion holds. A
first-order approximation to eq. (2.1) is then

y - SD f ~1.?1 } ... t ~k ' zk (2.2)

In practice such simple situations do not occur. Therefore the analyst

has to hypothesize a specific form of the metamodel and later on he

has to test the validity of his metamodel. The analyst's hypothesis is

inspired by mathematical reasoning, theoretical knowledge about the

simulated system which indicates the important factors, intuition, etc.

Inspired by the first-order approximation of eq. (2.2) the

analyst may postulate the following metamodel
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yi - B~ t Bl.zil t...t Sk.zik t ei ( i - 1,...,n) (2.3)

where e, represents noise in simulation run i. A first-order metamodel
i

like eq. (2.3), however, implies that a change in factor j has a

constant effect on the expected response, independent of the other

factors j' (j' ~ j):

a{F( ) i~- Sj (j-1.....k)
J

(2.4)

Eq. (2.4) also implies parallel response curves. The simplest metamodel

allowing for interactions Sjj, (non-parallel response curves) is shown

in the next equation where for illustration purposes k is limited to

three:

- (~0 } ~1'~il t (i2'z12 t (j3~Li3 }

} s12'Zil'zi2 t S13'zil'zi3 t S23.zi2.zi3 t ei (2.5)

Whatever metamodel the analyst starts out with, he has to test

this model's validity. In the statistics literature the reader may find

the lack-of-fit F-test. However, we would recommend the following

procedure:

(i) Postulate a specific form for the regression metamodel, e.g., eq.

(2.3) or (2.5).

(ii) Estimate the parameters S in this metamodel as follows. If the

model contains c7 parameters, then the number of simulation runs should

satisfy n? q. I~etermining which system variants (i.e. which combinations

of z) should be simulated, is an experimental design problem, discussed
later on. Let the experimental design yield a non-singular matrix of
independent variables Z with n rows and q columns.
Executing the corresponding simulation runs yields the n simulation
responses yi plus the correspondinq standard errors si ( saction 4 shows
how these standard errors are computed). The Ordinary Least Squares
(OLS) estimators of ~ are well-known. However,typical for simulation is
that the covariance matrix of y(say S2 ) is usually a diagonal matrix

"Y
D(the independence of the responses is guaranteed if indepeiident
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seeds r~ are used) with elements ai - E(si), Therefore OLS may be re-
placed by Estimated Weighted Least Squares (EWLS) where observation y.i
is weighted with its estimated variance s? :i

~ - (Z'.D 1.Z)-1-Z'-D-1 x (2.6)

Analytically the variances of the estimators for ~ can be derived only
for known D or for large sample sizes. Monte Carlo experiments reported

2in [ 13 ] show that if the ai are estimated from at least five obser-

vations (e.g., five subruns; see section 4), then the asymptotic
formula can still be used, i.e.,

R. - (Z'.D-1 .Z)-1tis ~ ti ti (2.7)

The EWLS estimators givemore accurate estimators of ~, provided the
a? differ by a factor, say, ten. Then significant parameters S cani
be detected more frequently,

fii.i) Validate the estimated regression model following the traditional
scientific procedure, i.e., use the regression model to forecast the
response y at a new setting of the simulation factors, say zntl-

yntl - ?~ntl ' ~ (2.8)

Compare the metamodel's predic tion to the actua 1 simulation response

yntl'
Only if the metamodel's prediction deviates significantly from

the simulation model's result, the estimated regression model is rejected.

An appropriate statistic is

(yntl - yntl),{snti } ?ntl'~S '~ntltl~2 (2.9)

According to a recent Monte Carlo study [ 12 ] the statistic of eq.

(2.9) may be approximated by the standard normal variable N(0,1). The

following "tríck" may be used to obtain as many validation runs as

possible:
Suppose n simulation runs are available (n ~ q). Then remove one

run, say run i(i-1,...,n) and estimate ~ from the remaining n-1

observations (assuming a non-singular matrix, say Z(i) remains).
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Use the resulting estlmator ~(i) to predict the simulation response of

the run removed. Compare this prediction yi tot the (removed) actu~~l
response yi, using the statistic of eq. (2.9).Next remove a different

run i' and add the previously removed run i(i ~ i'). Estimate ~ from the

resulting n- 1 observations, etc. This permutation procedure (called

cross-validation) results in n statistics based an eq. (2.9). Reject the
metamodel if a~ of the n values of the statistic is significant. The

proper significance level is based on the Bonferroni inequality, i.e.,the

metamodel is rejected if

max ~ ti ~ ~ ta ~ with a,' -(a E~n) ~2
1 S i ~ n

(2,10)

where aE is the "experimentwise error rate" and the factor 2 is needed

because a two-sided test is appropriate; see Appendix 1 for a discussion

on "experimentwise" and "per comparison" error rates.
(iv) if the metamodel postulated in step (i), and estimated ("calibrated")

in step (ii), is rejected in step (iii), then several options are

available:
- Mechanistic alternative: Add higher-order interactions to,the postulated

model. This alternative may be inspired by the Taylor series argument;

see the discussion around eq. (2.2). In Analysis of Variance high-order

interactions are also traditional. This option means that, e.g., (2,5)
is augmented with an extra term, namely, 5123'Zil'Zi2'zi3' The
disadvantages of this option are:

o The interpretation of high-order interactions is difficult.

o Adding explanatory variables increases var(y) and may
require extra runs.

- Transformations: For instance, if y denotes waiting time, and xl and x2
denote mean interarrival and service rate, then the transformation

z- xi~x2 yields a better metamodel, as we know from queuing theory. In

econometrics the logarithmic transformation is popular since it means

that the parametezs,~ can be ínterpreted as elasticity coeffícients.

In general, transformations may be based on theory and exploratory data

analysis. Simulation without a theoretical or common-sense basis, can

never lead to insight: For examples see [9, 14].
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- Smaller experimental domain: The Taylor series argument suggests that
an approximation may become valid if rhe domain of the function is
reduced. Unfortunately this option also limits the generality of the

analyst's conclusions. A small domain is no problem if the objective
of the simulation is not to obtain a c7eneral understanding but to
search for the optimun setting of the quantitative narameters z. In the
latter case the analyst can use "Response Surface Methodology" (RSM),
explained next.

RSM runs as follows:
o Start in a subdomain, i.e., let the varaiables z not range
over the w]-.ole experimental area. In this small area the
first-order model of eq. (2.3) is applied.

o The local first-order model is used to find the direction of
steepest ascent for the response.

o Repeat fitting first-order models, locally along the path of
steepest ascent. When the optimum (possibly a local optimum)
is approached, the first-order model is rejected (we would
suggest the validation test of eq. 2.9 but this test is no
part of traditional RSM). Then a second-order model is fitted,
i.e., the model is augmented with interactions as in eq. (2.5)
plus "pure quadratic" effects (add F. (~,..z? to eq. 2.~i). Note

J] J
that addincl higher-order effects means that more observations
(simulation runs) become necessary; see the "central composite"
designs in section 3).

o Taking derivatives of the second-order model a~az, and solving
7

a~azj - o yields the optimum setting of zj. For literature
on RSM see [ 10, 17] .

Metamodels with interactions, pure quadratic effects,or trans-
formed variables are not linear in the independent variables, but

these models do remain linear in their parameters ~. Hence familiar
linear regression analysis applies, i.e., the metamodel is

(2.11)

Zf qualitative factors occur in the metamodel, then the lineair model
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of eq. (2.11) still applies. (The model for qualitative factors may be

familiar to the reader with a knowledge of Analysis of Variance.) The

representation of qualitative factors is first demonstrated for a single

qualitative factor z which can assume only two "values" or levels, say,

FIFO versus LIFO queuing discipline. These two levels are denoted by

-1 and tl respectively. Hence the response y may be modeled as

yi - BO t sl.zi t ei (i - 1,...,n) (2.12)

where z. --1 if the queuing rule is FIFO in simulation run i, etc.i ~
Hence the effect of switching from FIFO to LIFO is 251. If S 1 is not
significant then the analyst concludes that queuing discipline is un-
important.

If a qualitative factor has more than two levels, then several

dummy variables assumíng the values 0 or 1, are necessary. For instance,

if z assumes three levels, namely level i in run i(i - 1, 2.3), thzn

the model becomes

yi - SO } S1 t el

y2 - s0 t s2 t e2 (2.13)
y3 - SO t S3 f e3

with the restriction

S1 t S2 t 63 - O

Fq. (2.13) corresponds to eq. (2.11) with

1 1 0 0
z- 1 0 1 0

1 0 0 1

Bo
sl
s2
a3

(2.14)

(2.15)

Althouqh Z is singular the restriction ( 2.14) yields unique least squares
estimato rs of ~: see [10 ,pp.299-301 ]. Note that eq. (2.13) implies
that a change from level 1 to level 2 may produce an effect different
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from the effect of changing from level 2 to 3. Note further that only
if a factor is quantitative, interpolation and extrapolation are possible.

Usually regression analysis (or equivalently Analysis of Variance)

is used to estimate the effects ~ and to test whether these effects
are significantly different from zero. This is a practical approach in

the early phase of an investigation when the analyst examines which

factors are important; see also the next section. In a later phase,
however, he may examine a few remaining system variants, say,ten vari-
ants. Then "multiple comparison procedures" (MCP) can compare all systern
variants with each other (45 comparisons) or can select a subset con-
taining the best variant with prescribed probability, say 1- a. Since
oractitioners show litt~ interest in these procedures we shall not discuss
them further but refer to [4,10]. Remember that RSM also investigates
systems in detail but then all factors are quantitative.

3. Experimental design

Sectíon 1 has already explained the need for an efficient and systematic
way to explore the great many possible system variants (factor-level

combinations). Experimental design theory has been widely applied in
agricultural and technical experiments. Its application to socio-
technical systems is more difficult. However, in a simulation model
of whatever system all factors are completely under control so that

experimental design theory becomes highly relevant. Because of this
complete control traditional design topics like randomization and

blocking are unimportant in simulation. The present section contains
simple classical designs. Appendix 2 demonstrates that these scientific

designs are superior to the "common sense" approach.

(i) Resolution III designs.

Suppose three factors are investigated, so that k- 3 in eq. (2.1).

Assume further that each factor is studied at only two levels (this

assumption may be changed in certain situations discussed later). Hence
all 23 factor-level combinations might be simulated. However, if the

analyst assumes that a first-order metamodel like eq. (2.3) is valid,
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he can save 50~ of his simulation runs. The explanation is that the
first-order model contains only four parameters (RO,Sl,s2,s3) so that
four runs suffice. Which four runs to simulate can be specified by the

"tricks" of experimental design (before reading on the reader may try
to specify his own selection of four runs). Table 1 shows that the
column for the variable x3 is constructed by multiplying the corres-

ponding elements of the xl and x2 columns.

The symbol x is used in Table 1 and not z as in eq. (2.3), because
the experimental design literature gives "normalized" variables x, i.e.,
variables assuming only the values -1 or tl. The original qualitative
variables z(with two levels) are identical to these x; see the dis-

cussion around eq. (2.12). The original quantitative variable z,
J

(assuming values between L~ and H~) is derived from x~ through the
lineair transformation

with

z.. - a. . x., t b, (3.1
1] J iJ J

a. - (H, - L,)~2
7 J J

(3.2)

b~ - (Hj t L~)~2 (3.3)

In general, Resolution IIZ (R III) designs assume that a first-

order model with q- ktl parameters holds, and permits the estimation

of these k t 1 parameters in only n-[ k t 1] runs (where ( x] means
that x is rounded upwards to the next multiple of 4, e.g., if k is
12 or 15 then n becomes 16). For high values of k. dramatic savings
result, e.g., if k is 7 then n is 8 while simulating all combinations
would require 2~ - 128 runs; see the upper part of Table 2 where x4i -
- xli.x2i or in short-hand notation 4- 1.2~ likewise 5- 1.3, 6- 2.3

and 7 - 1.2.3.

The designs demonstrated in Table 1 and (the upper part of)

Table 2 are a special subclass of R-III designs, namely 2k-p designs

(p denotes the fraction of the 2k combinations not executed). If n is
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Table 1

Experimental Design for Three Factors

Combination i
xli x2i x3i~- xli'x2i~

1 tl tl tl

2 -1 tl -1
3 tl -1 -1

4 -1 -1 tl

Table 2

Experimental Design for Seven Factors

Combination xl x2 x3 xn x5 x6 x~

i - - - t t t -

2 t - - - - t t

3 - t - - t - t
4 t t - t - - -

5 - - t t - - t

6 t 1 t - t - -
7 - t t - - t -

8 t t t t t t t------------------------------------------------------------
9 t t t - - - t

10 - t t t t - -

11 t - t t - t -

12 - - t - t t t

13 t t - - t t -

14 - t - t - t t

15 t - - t t - t

16 - - - - - - -
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not a power of 2(but still a multiple of 4), e.g. n- 12, then the

trick of identifying first-order effects with interactions does not
work. Instead a table of so called Plackett-Burman designs has to be
consulted which specifies X; see [ 10 ] for such a table.

Advantages of R-III designs are; see also [10. p 370]:

- Small number of runs: n?(ktl) but n ~~ 2.k

- Maximum accuracy (?): It can be shown that under the classical

statistical assumptions concerning e(independent errors with constant

variances) the variances of the oLS estimators of B are minimized if X is
orthogonal. R-III designs are orthogonal indeed, as Tables 1 and 2

demonstrate. If ~~ a2. I then it is unknown whether R-III designs~e
yield optimal results, but these designs certainly provide non-

singular X. Moreover, in simulation it would be possible to run a
factor-level combination so long that all combinations have the same

(estimated) variance; however, we do not know applications of this

approach.

- Model validation: If n~ k t 1 the cross-validation approach of the
previous section is possible. This condition is met if k t 1 is not
exactly a multiple of four. If k t 1 is exactly a multiple of four
one or more extra runs can be added to the R-III design to validate
the first-order model. If a factor is quantitative, then this extra
run may correspond to the "central" value x- 0, so that the analyst
can check whether pure quadratic effects are zero indeed. If the
analyst feels from the start that a first-order metamodel may very
well be too simple, then the next type of designs can be useful.

(ii) Higher resolution designs.

If more than k t 1 combinations are simulated then estimaó~rs of higher-
order effects become possible in principle. Experimental design theory
orovides a number of design types. The following types remain quite
simp.le.
- Resolution V (R-V) designs
By definition R-V designs permit estimation of all two-factor inter-
actions 5..,; see eq. (2.5). Unfortunately the total number of

7J
parameters q increases drastically with k, since there are k.(k-1)~2
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two-factor interactions plus k first-order effects and one grand-

mean. There are several types of R-V designs, e.g., 2k-p designs

of course p is lower than in R-III designs). Designs where n is not

higher than q have been proposed by Rechtschaffner; see [ 10 ], but
we do not know any practical applications of Rechtschaffner's designs.

- Resolution IV (R-IV) designs.

If all factors are qualitative, then RIV designs permit the unbiased

estimation of all first-order effects even if two-factor interactions

are important; at the same time these designs provide estimators of

certain sums of interactions. For instance, if k- 7 then the sixteen

runs of Table 2 provide unbiased estimators of Rj (j - 1,...,7) plus

estimators of the sums S24 } S35 } S67' S14 } S36 } S57' etc.

(assuming no interactions among more than two factors are important).

If all sums of interactions are non-significant then the first-order

model has been estimated and validated. Otherwise additional experimen-

tation is necessary but the R-IV design may suggest the elimination

of one or more factors in future experimentation, namely if one or more

first-order effects are non-significant. Applications of R-IV can be

found in [ 10 ] .
Technically R-IV designs can be constructed very simple: once

a R-III design is available, just duplicate this design with reversed

signs,i.e., in the lower part of Table 2 xij --x~,j (i' - 1,...,7;

i- 8,...,16). So aR-IV design requires twice as many runs as a R-III

design. Note that once a design has been selected, cross-products

xjxj, are also fixed.

- Response Surface Methodology designs.

If all factors are quantitative then RSM may be applied; see Section 2.

As long as the optimum region is not approached first-order models

guide the search so that R-III designs can be used. In the optimum

region a second~egree. polyr.omium is used, including k pure quadr3tic

effects 5... Then "central composite" designs can be applied, i.e.,
7J

the R-IV design is augmented with 2k "axial" points: x. --c and
7

xj - fc respectively while xj, - 0(j ~ j'~ Moreover the central point

(~ xj - 0) is replicated a few times. Under specific statistical

assumptions like cor.stant variances the central composite design has

certain optimum properties like minimum bias caused by possible third-

order effects.
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- Other designs.

In a simulation study of the Rotterdam harbor six factors were studied;

not all interactions were thought to be equally important; actually

only the following interactions were expected to be interesting:

S12' ~13' R23' S24' s25 and 526. Hence the total number of parameters

in the postulated metamodel was q- 13. Using the "tricks" of

exPerimental desiqn these 13 parvneters were estimated in only 16 runs

(trick: 1- 5.6 and 3- 4.5~ . Of course some extra runs were used

to validate the resulting metamodel; see [14 ],

In general experimental design theory clearly shows how

estimators of effects are biased by other effects. For instance, in
the last example S1 is not biased by 612 (suspected to be an important
interaction) but sl is biased by S56 (but this interaction is assumed
to be unimportant). Another example is Table 1 where S1 is biased
by S23 but not by S2 or S3. Clear.ly the choice of a design is based
on a postulated metamodel.

(iii) Screening designs.
For pedagogical reasons screening designs are discussed after the other
types of designs. In practical applications screening designs, however,
play a role in the very first stage of experimentation. Screening designs
are namely meant to investigate a great many factors, e.g., k- 1000.
So when the analyst has constructed a first version of his simulation
model, this model contains many factors of unknown importance but -

hopefully - only relatively few (say, k' ~~ k) factors are really
important. (Otherwise everything depends on everything else and a
scientific explanation breaks down.) The analyst may then use screening
designs to detect the k' important factors. (After this screening or
pilot phase the important factors can be investigated in detail, applying
the designs discussed earlier).

Until now practical applications of screening designs have
been rare. The reason may be that academíc problems are usually small-
scale so that screening is irrelevant. Practical problems are often
large-scale but then the necessary statistical know-how is usually
missing. In practice one type of screening design is sometimes applied,
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namely random designs. This type is easily constructed: sample the

factor-level combinations randomly. The price paid for thís simplicity

is that control over the factor levels is relinguished ( 10 j, We

recommend that the analyst uses his control over the simulation axperi-

ment as follows.

Group the k original factors into a much smaller number of

groups. Under mild assumptions discussed below, a group will be signifi-

cant if and only if that group contains one or more important original

factors. Since in the pilot phase many individual factors are unimpor-

tant, many groups are unimportant. Future experimentation can then

ignore all individual factors within non-significant groups. Let us

consider this procedure in more detail.

First suppose a first-order metamodel in the original factors

x is valid. (In the pilot phase factors are treated as qualitative,

on~off variables; with qualitative factors the assumption of a first-

order model can be easily relaxed; see below.) Moreover assume that the

signs of the effects are known, e.g., if the number of service stations

is really important then it has a negative effect on the waiting time

(this assumption is discussed below). Hence the levels of the factors

x can be so defined that possible effects S are positive or zero but

certainly not negative: S. ? 0(j - 1,...,k). Now a"group factor",
J

say wl,has the level -1 if all its members x are at their low-level
g

-1 (g - 1,...,G with group size G). And when wl - tl then xg - tl.

tdext consider an example with k- 100 and G- 50 so that only two group

factors wl and w2 result. These two group factors can be investigated

in a classical 22 design. Let all effects S be zero except for S1 and

S2, Then Table 3 results. Hence the effect yl of group factor wl is

estimated by. n
yl - E wil.yi ~n (3.4)

i-1

with expected value

E(Y1) -(4F1 t 4~2)~4 - 81 t g2 (3.5)
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whereas analogous reasoning yields E(YZ) - 0. Hence after a screening

phase of four runs all fifty individual factors within group factor 2

can be eliminated. In the next stage group factor 1 can be group-

screened further, etc.

How restrictive are the assumptions of group screening? If a

few individual factors have unknown signs then these factors only can

be placed in groups of size one. Alternatively the analyst may rely on

the low probability of several important factors x being placed within

the same group and moreover having opposite signs of the same magnitude

so that their effects cancel out. The other assumption, a first-order

metamodel, can be relaxed as follows. If the metamodel is postulated

to include two-factor ínteractions, then the group factors should be

investigated, not in a R-III design, but in a R-IV design. (For instance,

Table 3 is actually-a R-IV design; if S12 ~ 0 then add tslZ to all

responses; compute y as in eq. (3.4); find that in E(Y1) S12 vanishes;

likewise a12 vanishes in E(Y2).) For details see [ 10 ].

Practical applications of group screening are rare. We can

mention only two references [18,19], one on the simulation of a strategic

airlift and one on a computer system simulation. In an unpublished

Monte Carlo experiment we found that group screening indeed detected

the seven important factors among the 88 original factors.

Concluding the discussion of the strategic issues we emphasize

that statistical techniques alone cannot solve the analyst's problem.

The model specification and the hypotheses are not provided by statis-

tical theory. Moreover the statistícal techniques do not specify which

a value to take, etc. Finally, statistical techniques are based on

statistical assumptions like normality so that the analyst has to use

his judgement in considering the sensitivity of the technique to these

assumptions (robustness issue). Nevertheless statistical techniques can

drastically improve "common sense" approaches.
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Table 3

Group screening example

Run Group factor Individual factor Response
i wl w2 xl x2 x3..- x50 x51 "' x100 E~y~-60

1 - - - - - ... - - ... - -S1 -~2

2 - t - - - ... - t ... t -S1 -~~

3 t - t t t... t -... - S1 tS2

4 t t t t t... t t.., t S1 tsz
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4. Runlen~th and confidence intervals.

As we mentioned in the Introduction runlength determination is
a tactical issue. Much has been published on this problem; see [2,20 J.

Many publications ignore the fact that iti practical situations - as oppose3

to academic simulations - the r.unlength issue can be solved with

elementary statistics rather than with complicated theory on stochastic
processes. The explanation is that in practice simulations are usually
"terminating" , i.e., the run is stopped when a specific event occurs.

Some examples are:
- A queuing system such as a bank closes at 5 P.M. (critical event: 5

P.M.). The next run start on a new day, in the empty state.

- A corporate simulation investigating how profit reacts to different

policies, stops when the planning horizon of three months is reached.
The runs start from the most recent situation of the company.

- When studying maintenance strategies the simulation starts with a new

piece of equipment and stops when the equipment breaks down.
- Queuing systems are often simulated to see if they can handle Peak

traffic. The run starts before the peak and stops when the peak is
over. This example is more difficult than the preceding three examples

since the start condition and the critical event are not sharply

defined: when exactly is the rush hour? We emphasize that practioners
often do not realize that their simulation should not be run indefi-

nitely long with the peak hour traffic intensity. We do not know any

publications where the runlenght problem in peak systems is examined
in detail.

In academic studies simulation is often used to estimate the expected
response in the steady state. Then we have non-terminating simulation

(see later). In the above examples, however, start-up (transient) and
end effects are part of the response. One run from the start condition
until the critical event yields one observation y. More accurate

estimates are possible, repeating the run with different random number

streams. The statistical analysis requires only elementary statístics
for the standard error after n runs is

n ~
s - { E (yi -y)2 ~ ( n - 1)}1 2

(4.1)
i-1
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The (1 - a) confidence interval can be based on the Student t statistic

(y is often approximately normal as explained by the central limit

theorem or a related theorem; moreover t is a robust statistic):

P( E(y) r y t tn,i . s~~n) - 1- a (4.2)

If the confidence interval is found to be too wide, additional runs can

be generated. It seems straightforward to derive n, the total number ofc
runs necessary to obtain a confidence interval with lenght c:

nc - (tn,21 . s ~ c)2
c

(4.3)

However, a complication is that n in eq. (4.2) is deterministic but nc
in eq. (4.3) has become stochastic. Fortunately it can be proven that

eq. (4.3) gíves satisfactory results, if y is indeed independent and

normally distributed. In practice some care is needed since if y is not

normal then y and s become dependent, so that the coverage of the

confidence interval may deviate from 1- a. Anyhow eq. (4.3) is superior

to the "practical" method of executing so many runs that,say,the third

digit of the averaged output does not change.

In the literature most attention is focussed on steady-state
behavior (even though in practice most systems are terminating). Then
the analyst has several options:

(i) Replicated runs.
The analyst may try to use the same technique as used with terminating

systems, i.e., he may replicate the simulation run n times, each run

with different random number seeds. The advantage is that these n runs
are independent. Unfortunately in steady-state problems there is an

initialization problem. Whereas in terminating systems the transient

observations are part of the relevant output, in steady-state situations

start-up observations create bias. Hence two alternatives are available:

- Retain the transient phase.

Though the start-up phase creates bias, this phase does contain in-

formation. Hence it is very well possible that Mean Squared Error (MSE)

is minimized if all observations are used. However, minimizing MSE may
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yield invalid confidence intervals.

- Eliminate the transient phase. But two practical problems remain:
o How can the duration of the transient phase be determined?

The practical solution is to make graphs and see whether

start-up effects seem to have disappeared. We do not know

practical statistical techniques for this problem.
o With n replications n transient phases are thrown away. 'Po

avoid this waste, several other approaches have been developed.

Instead of replicating runs the analyst can continue the simulation run
a very long time (remember no critical event terminates the run). This
single run comprises rmany individual observations, say individual wai-
ting times w. Unfortunately these individual observations are auto-
correlated. In most systems the autocorrelations are positive, e.g., if
a customer has to wait long, then the chance of a long waiting time for

the next customer increases. Consider the individual observations wt

with autocorrelation pj between wt and wt}~ and with variance
var (wt) - oW - p0 ( the wt form a stationary stochastic process since
p and aW do not depend on t).Then the variance of the averaqe w is:

m Z
var (w) - {1 t 2 E (1 - m ) . pj } . 6w~m

j-1
(4.4)

Applying elementary statistical techniques assuming independence among

the w, would be very misleading. Assuming independence eq. (4.4) reduces
2to the familiar expression var(w) - a ~m. The positive autocorrelationsw

inflate the variance of the average. For instance, in a Markovian single-

server system with a utilization of 50~ the inflation factor (the curly

brackets in eq. 4.4) becomes 10; for a traffic load of 90~ this factor

is as high as 360. Therefore option (i) is augmented with several more

options.

(ii) Estimate the autocorrelation structure

The analyst may estimate the autocorrelations pj~ in eq. (4.4)

(j' - 0, 1,....). Spectral analysis is a technique for estimating not

the p~~ themselves but their Fourier transformations [2, 6]. Unfortunately

there area number of technical problems, e.g., at which value of m in eq.

(4.4) should the analysis stop? Moreover for most practioners spectral
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analysis is too sophisticated. Of course, practioners may use an

appropriate statistical package as a black box, but such an approach

certainly has its disadvantages.

(iii) Cut the run into nearly independent subruns.
In practice the prolonged run is often cut into, say, S subruns of
lenght L- m~5, and the subrun averages w are treated as S independents
observations to which eqs. (4.1) through (4.3) are applied, replacing

yi in those equations by ws, etc. The underlying idea is that although

the first few observations of a subrun still depend on the last few
observations of the preceding subrun, the subrun averages are practi-

cally speaking indenendent, if at least the subruns are long enough.
Obviously the stronger the autocorrelations among the individual obser-

vations, the longer the subruns should be. Therefore the analyst may
start with some intuitively selected subrun lenght L0, compute the
resulting subrun averages; and statistically test the independence of

these averages (e.g. through the Von Neumann test). If the selected
subrun length creates significant dependence, then the subrun length is
increased, etc. [ 2].

In practice the subrun approach is often followed, but without
testing the appropriateness of the intuitively selected subrun size.
Relying on intuition only is dangerous, since analytical results for
simple queuing systems have demonstrated that individual observations
on heavy-traffic systems remain autocorrelated over surprisingly long
intervals; see also the comment below eq. (4.4). On the other side, a
too conservative subrun size means that few subrun averages remain so
that the resulting confidence interval becomes less stable. A practical
heuristic is to take ten to twenty subruns to estimate the confidence
interval for the mean (but to take at least 100 subruns to test their

independence); [ 15 J.

(iv) Renewal analysis.

Stochastic systems may have a renewal or regenerative property. For

instance, a queuing system with utilization less than 100~, becomes
idle now and then; the next history is then independent of the past
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history if the arrival process is Poisson (memoryless). So"subruns"
(or cycles, tours) can then be defined such that a subrun starts as
soon as a customer arrives into an empty system. In contrast to option
(iii) renewal analysis creates perfectly independent subruns; the S
subruns have diff.erent lenghts L1 (1 - 1,...S) depending on when thc~
subruns return to the renewal state.

In general,any Markov system has the renewal property. A
practical problem is that the renewal state may occur so infrequently
that only few (independent) subruns result. For instance, if the system
has heavy traffic then the empty state occurs rarely. In another
situation the system may have so many states that the realization of one
particular state occurs rarely. A practical remedy is to define an
approximate renewal state, e.g., let a new subrun start as soon as the
system is "nearly" empty [3].

From a statistical viewpoint it is interesting to note that the
renewal analysis of stochastic processes involves ratio estimation.
For instance, to estimate the expected steady-state waiting time, say
u, subrun s with lenght Ls yields the subrun's total waiting time Ys
computed from the individual waiting times wsk.:

L.

Ys - ~1 wsk ( s - 1,...,5)
R,-1

Then the traditional estimator of u is rewritten as

m S S
w- E w. ~m - E Y ~ E L - Y ~ L

j-1 ~ s-1 s s-1 s

(4.5)

(4.6)

The following 1-a confidence interval can be derived, applying the
central limit theorem:

w f z a~2 . (Q~ ~S) ~ L

with

c2 - all - 2 w. a12 t(w) 2. a22

(4.7)

(4.8)
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where all , a22 and a12 are the usual estimators of var (Y), var (L)
and cov (Y,y). However, the estimator of eq. (4.6) is only one of the
possible estimators of u, For it can be shown that

V - E (Y) ~ E (L) (4.9)

and to estimate this ratio several point estimators and confidence
intervals (including jackknifing) an available; see [1,2 ], These
procedures can be learned by practitioners without much trouble, and

applications have indeed started to appear, In the mean time research
on renewal analysis continues, e.g., recently regression and graphical
techniques have been developed to detect and diminish small-sample bias
and nonnormality of renewal estimators; [5].

Note that the initialization problem is severe in option (i).
But in options (ii) and (iii) transient observations also have to be
removed. Option (iv), however, has no initialization problem since
observations can be collected immediately when the simulation starts in
the renewal state, e.g., the idle state.

The discussion of this section has concentrated on the estimation
of the expected value of the response variable, say E(y). This emphasis
is in line with most publications. In practice the user is often in-
terested not only in the mean but also in quantiles, say y with

P
P(y ~ yP) - 1- p. Sometimes yp is fixed, e.g., what is the chance
that customers have to wait longer than two seconds. Then the analvst
has to estimate the probability 1- p and he may introduce the binary
variable, say

v- 0 if y~ y
P

- 1 if y ~ y
P

(4.10)

It is also possible that not y but p is fixed, e.g., estimate theP
response time not exceeded by 95~ of the customers. Then y can be

P
estimated, arranging the observations y in increasing order, so-called
order statistics. Publications on quantile estimation are extremely
rare (except for some recent working papers; see also [ 8].),
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5. Variance reduction techniques (VRT).

Many VRT are available [ 10 ) but most techniques are too sophisticated
for practical use. Moreover computa time can be saved by other means,
e.g. more efficient sampling of input variables, better simulation
languages. Therefore this section emphasizes a technique that has already
been used by practitioners (but often without proper statistical care).

(i) Common random numbers.
Several systems variants may be simulated using the same random number
seed. This technique has great intuitive appeal since it means that,
e.g., queuing system variants are simulated wíth the same customers.
We add that in complicated systems care should be taken to synchronize
the random number streams in different system variants, e.g., arrival
and service processes may use separate streams. An issue overlooked by
most practitioners i s the statistical analysis of the simulation outnut
which becomes more complicated when responses are dependent. When
estimating the regression metamodel's parameters ~ Generalized Least
Squares ( GLS) may be considered, so that in eqs. (2.6) and (2.7) D
is reolaced by a co variance matrix S2 with positive elements off- ...y
the main diagonal. When using OLS the standard errors of the estimated
,~ follow not from the "classical" formu]a ( replace D by a2.I in eq. 2.7),
but from

~- - (X'.X)-1 . X'. S2 . X (X'.X)-1~S ~ ~. ~ tiy .., ti .r (5.1)

Classical experimental designs have certain statistical opti-
mality qualities like minimum variance, if the responses are indepen-
dent with constant variances. If this condition does not hold, the
designs are not known to be optimal (but they are still superior to the
"common sense" approach). If the use of common random numbers does
create the desired positive correlations, then common random numbers
applied in an experimental design do create more accurate estimated
effects; see [ 21 ] .
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(ii) Other simple VRT.

There are more VRT, some techniques only slightly more complicated than
using common random numbers. Nevertheless even a minor complication
seems enough to preclude practical use. Moreover it cannot be guaranteed
that these techniques yield substantial variance reduction. The reader
who wants to consider VRT, is advised to start by looking at the fol-
lowing techniques [ 10 ] :
-"Antithetic variates": this is a very simple technique which does not

complicate the statistical analysis. This technique is relevant if
more than a single run is generated per factor-level combination.

-"Control variates" or "regr~ssion sampling": Compared to antithetic
variates this technique is more complicated.

-"Importance sampling" and "virtual measures": this technique is really
complicated and should only be studied when extremely much computer
time is needed per factor-level combination, in order to estimate
very rare events like "excessive" waiting times, and nuclear disasters
[ ~].

6. Conclusions.

Since simulation means experimentation (albeit with a model instead of
a real-world system), statistical analysis and design techniques are
necessary. The following strategic and tactical issues have been dis-
cussed.

Strategic issues:

(i) In order to generalize and interpret simulation output a metamodel
is useful for which regression analysis can be applied. This metamodel
is a first-order or second-order approximation to the intricate simula-
tion program. The metamodel can be tested for its adequacy, weighted
Least Squares is recommended (unless common random numbers are used).
(ii) To decide which factor-level combinations (system variants) should
actually be simulated, experimental designs can be applied.These designs
provide more accurate estimators and enable estimation of interactions,
often saving simulation runs at the same time.
(iii) In the preliminary phase of simulation experimentation screening
designs can be used to investigate, say, hundreds of factors in relati-
vely few runs.
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Tactical issues:
(i) The analyst should be aware of the distinction between terminating
and non-terminating systems.
(ii) For terminating systems replication results in a simple confidence
interval procedure. Initialization is no major problem.
(111) For steady-state estimation a number of procedures are available,
each with its advantages and disadvantages.
(iv) Variance reduction techniques are available but only the common
random numbe2s technique is popular. The latter technique slightly

complicates the statistical analysis.

Appendix 1 The experimentwise error rate.

In many experiments a number of responses are investigated, e.g., both
waiting time and server utilization. Moreover a single response
variable may be characterized by several measures, e.g. its mean and
its 958 quantile. Suppose that for N variables a 1- a confidence inter-
val is derived, e.g., an interval as in eq. (4.2). For illustration

purposes assume that N- 20 and a- 0.10. Consequently we expect that
two intervals will fail to contain the true values. To ensure - with

probability 1- a- that all twenty intervals contain the corresponding

true values, the individual intervals must be made wider. More exactly,

let 1- aE denote the probability that all statements made in the
analysis of the experiment, are correct. Let 1- aC be the probability

that an individual statement is correct; aC is the "per comparison"
error rate used in elementary statistics, e.g., in eq. (4.2) a„ - a.
If the individual statements are independent then `

1 - aE - (1 - aC)N (A1.1)

Zf the statements are dependent, then the Bonferroni inequality applies:

(A1.2)

Actually different values for aC may be used, say, aCi and then the

Bonferroni inequality yields
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N
~

aE - i-1
aCï (A1.3)

For siunultaneous inferences or for multivariate responses the Bonferroni
inequality provides an extremely simple technique, which is often
superior to more sophisticated techniques; [10,16]. Note that the experi-
mentwise error rate is controlled at the expense of wider confidence
intervals (i.e. decreased power of the corresponding hypothesis tests).

A~pendix 2: One-factor-at-a-time versus factorial ex erímentation.

In practice simulation models are usually explored, changing one factor
at a time. Sometimes this method is even heralded as "the" scientific
method. A simple example shows that factorial methods yield the same
type of estimators but make these estimators more accurate; moreover
factorial experiments provide some extra estimators. For illustration
purposes assume there are only two factors. Then as Table 4 shows the
one-factor-at-a-time method yields

S1 - Y1 - YZ . S2 - Y3 - y4 (A2.1)

with var (s) - 2 a2 (assumíng constant variances a2). The factorial
experiment yields responses y' so that

~1 -(yl' t y3')~ 2-(y2' t y4')~ 2

~z -(yl' t y2')~ 2-(y3' t y4')~ 2

(A2.2)

(A2.3)

- zwith var (S) - a. Moreover it becomes possible to estimate the inter-
action S12 (construct a column xli'x2i)'

S12 -(yl' - y2' - y3 ' t y4' ) ~ 2 (A2.4)

If many factors are to be examined, then the "practical" method requires

2 k runs. Each estimated first-order effect has variance 2 62. A R-III
design would requiring only n- ktl runs and yield estimators with
variance 4 a2~n. If (roughly) the same number of runs as with the
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Table 4

One-factor-at-a-time versus factorial experimentation

Run One-factor-at- Response Factorial Response
a-time

i xl x2 y xl x2 y'

1 tl 0 yl t t yl'

2 -1 0 y2 - t y2~

3 0 tl y3 t - y3~
4 0 -1 y4 - - y4~



-30-

"practical" method are executed then a R-IV design becomes possible with
all the additional information provided by such a design.
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