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ASY:~iPTOTIC ANALYSIS OF NASH EQUILIBRIA IN NONZERO-SUM
LINEAR-QUADRATIC DIFFERENTIAL GAMES.

THE TWO-PLAYER CASE.

A.J.T.If. ~b'EERE`. J.:~i. SCHt'`tACHER, AtiD J.C. EIGWERDA

.-~BSrRacr. In this paper we discuss nonzero-sum linear-quadratic differential games.
~1lready in the papers by Starr and Ho [13. 14], for this kind of games the Nash
equilibria for difTerent kinds of information structures were studied. ltost of the
literature on the topic of nonzero-sum linear-quadratic differential games is concerned
with games of fixed (finite) duration, i.e. the games are studied over a finite time
horizon t~. ~ti'e w~ill studc the behaviour of ~ash equilibria for t~ - x for two different
information structutes, the open-loop and the closed-loop perfect state information.

[n the open-loop case. it is known ftom [1, 2] that the coupled Riccati differential
equations describing the `ash equilibrium can be related to a linear dynamical system.
Csing this linear s}stem, asymptotic properties of the open-loop tiash equilibrium are
studied.

[n the case of closed-loop perfect state information. we will study the so-called feed-
back ~ash equilihrium. The equations for the feedback ~iash equilibrium are inher-
ently nonlinear and ~~e ~~.ill limít the dvnamic analysis to the scalar case. For the
~pecial case that all parameters are scalar. a detailed dynamical analysis is given for
the quadratic s}stem of coupled Riccati equations. ~~-e show that there esist choic-
es of parameters. for ~~hich the asvmptotic behaviour of the solutions of the Riccati
equations depends strongly on the specified tetminal values. Finally. we show that,
although the feedback ~ash equilibrium over any fixed finite horizon is unique. ihere
can exist several different feedback `ash equilibria in stationary strategies for the
infinite horizon problem, even w.hen we restrict our attention to ~ash equilibria that
are stable in the dvnamical sense of the w~ord.

L I~TRODC'CTIOti

Differential games were first introduced by Isaacs [i], within the framework of two-person
zero-sum games. Recently, the theory of zero-sum differential games has successfully been

The work of Ir. ~~"eeren is supported by a grant from the common research pool of Tilburg and
Eindhoven l~niversities (SOBL-).
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used in the area of H~ control theory. see e.g. [-1]. tionzero-sum differential games were
introduced in the papers bv Starr and Ho [13, l~k]. :~ good survey of the area of dynamic
games is provided in the book by~ Ba~ar and Olsder [3].

In this paper we look at a special class of nonzero-sum differential games, namely nonzero-sum
differential games of the linear-quadratic type. The dynamics are supposed to be described
b}- a linear differential equation,

(1) i(t)-.-lr(t)}Biui(t)-~Bzuz(t), r(0)-ro.

and for each player a quadratic cost functional is given:

(Z)
Li(ui,uz) :- r(t~)~Iiilr(tl) f

(tJJ {rlt)~Qir(t) f ui(t)~Riiui(t) f uz(t)~Rizuz(t)}dt,
a

L~(ui. uz) :- r(t~)'lízJr(t~) f
(3) !`~

J {r(t)'Qzr(t) f u,(t)'Rz,u,(t) f uz(t)'Rzzuz(t)} dt,
0

in ~~~hich all matrices are symmetric, and moreover Q; 1 0 and R;; 1 0.

The objective of the game for each player is the minimization of his own cost functional by
choosing appropriate inputs for the underlying linear dynamical system.

For gi~~en information sets p,(t) and any pair of strategies ( ~1.-.z), the actions of the players
are completely~ determined by the relations (ui, uz) -(ryi(r)i),yz(~z)). Substitution of the
pair (u~, u~) in Í'?-3). together ~rith the corresponding unique state trajectory, yields a pair
of numbers (L1( ul. u~). L-~( u~, u,)). Therefore ~~-e have a mapping for each fixed initial state
~ector ro, defined b}

1-1) J, : r, x I'z - ~.(-.,,-„) ~- L,(u,.uz),

which ~~e call the cost functional of pla}-er i for the game in normal form.

In [8] the `ash equilibrium concept was introduced. ~ti.hich was argued to be a natural concept
in a noncooperative contest. The `ash equilibrium is defined in the following way (see e.g.
[:3] ):
Definition 1.1. .1 pair of strategies (~ i.-.: ) E F1 x i z is a `ash equilibrium for the differential
game. if for all (-;~. ~~) E ri x rz the following inequalities hold:

Ji( ïi,';z) 5 Ji('~i,~~),

Jz(tii~ l:) 5 Jz(7i,1'z).

The `ash equilibrium is defined such that it has the property that there is no incentive for any
unilateral de~iation by- an}~ one of the players. -~ possible problem when dealing with Vash
equilibria, is that in general one cannot expect to have a unique tiash equilibrium. Already in
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the paper [I-I], for nonzero-sum differential games, non-uniqueness problems regarding Nash
equilibria were discussed, related to different information structures for the game.

In almost al] papers on linear-quadratic differential games, the games are studied over a fixed
time period [0, t~]. In the case of open-loop information, where every player knows at time
t E [O.t~] the initial state ro ( denoted by ~,(t) -{.ro}), conditions for the e~cistence of a
unique `ash equilibrium can be given. In the case of closed-loop perfect state information,
where ever~. pla~.er knows at time t E ( 0, t~] the complete history of the state ( denoted by
q,(t) -{r(s) ~ 0 ~ s ~ t}), one can show that there exist many Nash equilibria. In this
case it is possible to define a refinement of the Nash equilibrium concept towards feedback
tiash equilibria, which have the nice property of strong time consistency. In the finite (fixed)
horizon case, uniqueness of the feedback tiash equilibrium can be shown ( see e.g. [3]).

Onl~~ a few authors have studied the game over an infinite time horizon, or the asymptotic
behaviour of `ash equilibria for tt - x. In the paper by Abou-Kandil et a1. [2], the asymp-
totic behaviour of open-loop ` ash equilibria is studied. For the feedback Nash equilibrium,
in the paper b}~ Papavassilopoulos [9], an initial study is made of infinite horizon feedback
~iash equilibria. However, in the paper [9] the asymptotic behaviour of finite horizon feed-
back ~ash equilibria is not studied. Also, the problem of existence of infinite horizon feedback
~ash equilibria is not addressed. Instead, some sufficient soh~ability conditions for the coupled
algebraic Riccati equations are derived, using Brouwer's fixed point theorem.

In section 2 of this paper, we discuss the asymptotic analysis of Vash equilibria in the open-
loop case. based on the fact that in the open-loop case the related coupled Riccati equations
can be related to a linear differential system ( see papers [1, 2]). In section 3, we will show
that for feedback `ash equilibria it is not possible to follow a similar approach. Instead we
will gíve a detailed as~ mptotic analysis for the special case that all system parameters are
scalar. Finall~~, in section - 1, we stud~~ infinite horizon feedback ~ash equilibria, and use the
results from section :3 to show that in the infinite horizon case we no longer have uniqueness
of feedback ~ash equilibria.

'~. OPEV-LOOP ~`ASH EQCILIBRIA

In this section we stud~ the open-loop information structure, i.e. rl;(t) -{xo}, t E[O,tt].
The following theorem is well-known (see [3]):

Theorem 2.1. The pair of strutegies, yiren by

( i ) uilt) - 7i(t,zo) - -Rii'B[Iíi(t)~(t,0)zo,

(8) u~(t) - y~(t.ro) - -Rz~`Bzliz(t)iY(t.0)ao,
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is a.~-nsh eguilibrium for the open-loop information structure. Here h'1(t) and h'2(t) ar~e giren
by the asymmetric coupled Riccati differential equations

(9) Iil --.-1'lí, - lil.-1-Q1 t Ii1Sllí1 f h',SZh'~,

(10) Ií~ --.-1'lí, - lí~.-1 - Q~ f h"2SZh'~ f h'~S,h',,

(11) lil(t~) - li,~,

(12) !i~(t~) - li~~.

in u~hich S, - B,Ri,IBí and 5'z - BzR;,'B~. Furthermore rY(t,s) is given by

(13) ~Y(t) - (.~ - SrFí,(t) - S~líz(t)) ~(t,s), ~(t,t) - I

Gi~-en the fixed time horizon t~, we ha~.e an espression for the open-loop 1'ash equilibrium,
stated in terms of solutions to the coupled Riccati equations (9-12). These equations can be
related to a linear differential s}stem (see (1, 2~). Define the matrix .11 in the following way:

a S, S,
.11 :- ~Qr ,d' Ol .

Q~ 0 ~1'J

Then ~~e can characterize the solution of the differential equations (9-12) by means of

I I
ur(1.5) c h,t -span lír(r)

Ií~f Ií~(r) ~

~~.here r- t~ - t.t E [O.tr~.

The characterization ( 15) not onl~~ allows for explicit calculation of the solutions of the coupled
differential equations (9-1'2) in a gi~~en specific case, but it also facilitates the as~-mptotic
analy-sis of the open-loop ~ash equilibrium (see also [1. 2~). Before we can give the main
theorem from ;2f, ~~e first need the following definition:

Definition 2.2. Let 11 E IE83"x3".

(i) .11 is called dichotomically separable if there exist subspaces X1 and X~ of )E33n
such that -tl-t; C.~~1. .11-t-~ C.t-~, l, ~-.lz - II83n, dim Yr - n, and Reo(~11~X,) ~
ReQ( .ll i a, ).

(ii) .11 is called rez~erse dichotontically separable if there exist subspaces .X, and .YZ
of IlS3n. such that 11.1"1 C.t1, .1i.t~ C.t~, .Y, ~ X~ - II83", dimX, - n, and
Reo(JIIx,) c Reo(.11~~,).

Then the main theorem of [2~ can be formulated in the following way:
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Theorem 2.3. Let .11 be the matrix giaen 6y (1-tJ.

(i) ff .if is dichotontically separable, there exists a constant solution (Ki , K~ ) af
the cnupled differential equations (9-12), u~hich has an open and dense domain of
attraction far t~ - x.

(ii) ff 11 is rererse dichotomically separable, then there exists a constant solution
(Ii Í. lio I of the coupled differential equations ( 9-12), which has an open and dense
domain uf atiraction Jor ft --x.

(iii) (Ii~ ,li-) (or (lí~ .lío)) are the oaly stable equilibrium solutions of (9-12J for
t~ - x (or t~ - -x).

~1'e conclude this section on open-loop ~ash equilibria with an exatnple. In this example we
show that the theorem 2.3 does not tell the complete story. We show in the simplest possible
case (dimension of the state space n- 2), that there e~cist matrices .1f of the form (14).
that are neither dichotomically separable nor reverse dichotomically separable, but where the
coupled differential equations (9-12) do allow for constant solutions.

Example 2.4. In this example, we choose the following matrices:

C O 11
'4 '- 1 OJ

B, :- ~~~ .

`0B: : - 1 ~ .

C 1 0~
Q' ~ - 0 1

1 0
~' '- 0 0)

rhen 1I is gi~en b~~

0 -1
-1 0
1 0
0 1
1 0
0 0

1 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
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~~irh eigen~alues

a.11 - j-~.-~f lf~2t ~iv2 lt-~,2f lfff 2if li-f,f~.

Hence .lf ills neither dichotomically separable nor reverse dichotomically separable. Yet it
is eas} to show that there exist exactl}- two constant solutions to the coupled differential
equations ( 9-12). namel}~ ( Iío.Ií~`~) and (Iíi.lizz~), where

lii-~~l ~~.

]í-,'' 2Vlt2 lff

-( lff f lff).

Ií:-.;
- 2~1~ 1 -~ f

(- ltf -~ 1-~ f).

Furthermore it is eas~~ to show that both equilibria are neither stable nor unstable. This
implies in particular that, for generic terminal conditions ( Kl~, lízJ), there w.ill be no con-
cergence of the corresponding solution of the open-loop coupled Riccati differential equations
(9-12) to a constant solution.

:3. FEEDBACK ~iASH EQC'ILIBRIA

3.1. Introduction. In this section we study closed-loop perfect state ( CLPS) information,
i.e. rt,( t)- {.r( s )' 0 ~ s C t}, t E(0. t~]. For this information structure the following theorem
is ~~ell-kno~~ n! see ~3-13] ):

Theorem 3.1. Let the strategies ( }~.~:) 6e such that there erist solutions ( ~~l,~~z) to the
differential equatioas

(16)

in u~hich, for i- 1, 2.

c~í - -~~rt(x.' fi(r~),}:(x'),Vi)

dH, 8-~~
-

~u~(x~.7i(,r'),~:(z').~l~i)' ax(x~)
~Hz

Z'z - - 8z (r~'7i(x'),?z(x').u~z)

- ~~z(r'.?,(x'),,z(x'),4'z) ~ a~~ (r~)

( 18) H,(.r. ul, uz. z~~) -- x~Qii f uíR,iui f u-R~zuz f~v;(Ax f Blul f Bzuz)
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u~ith terminal conditioas, for i- 1.2.

(19)

such that for i- 1.2,

~'~0 )

t',(11 ) - lí~~r'(t~)

~R,
r1u, (~r~

'lr').--(r').c~,l - ~

and r' sati.Sfies

(21) z'(t) - .-~r'(1) f 8,-,,(r'(t).t)f Bz-rz(z'(t),t),
(22) r'(~) - zo.

Then ( fi. ~.) is a .`ash eyuilibrium u~ith respect to the CLPS information structure, and is
yiren by u~(t) - ;,'(r~,t) - -R,~'B~~4(t).

Remark. Let (-.i'. -.;') be an open-loop ~ash equilibrium. Then it is easily seen that (-yi~~ yz')
is also a tiash equilibrium w-ith respect to the CLPS information structure, because ey,~ - 0.

~L-hen w-e restrict the admissible strategies to the class of (possibly timevarying) linear feed-
back strategies. i.e. r~b :- {-~, ~-.,(r.t) - F,(t)r}, then there evsts an unique feedback lash
equilibrium (see e.g. ~3. section 6.5.1.6.~.2~). The fotlowing theorem can be found in [3, 13].

Theorem 3.2. Suppose (li~.lí~) satisfy the coupled Riccati equations. giuen 6y

(23) lít --.~'lí, - líi.-l - Q~ f lí1S.lí~ ~ Ii1S,lí~ f h~~S~líl - h'~So~Ií~

(2lj li, --.-1~Ii., - Ií,.-1 - Q~ f Ií~S~li~ f lí~Sllíl f 1í15'IIiZ - Ií15'oilíl
(Z~) líl(t1)-1í11
(26) li~(tf 1 - li~~

u~here SI - B1R;1'B,. .S, - B~R~~'B-. Snl - BiRi11R,IR;t`Bi and So~ - B~R;,1R12RzZ1B:.

Thcn the pair of strategies (-.i (r, t). -.;(r, t)) :- (-R~i`Bilí i(t)x, -R:~`B:liz(t)x) is the feed-
back .Vash eyuilibriuna. I~he functions u'; are giT~en by u~,(t) - h-;(t)a(t).

Proof ( outline). Suppose ( c.~i.c~,) in theorem 3.1 can be written as ~; - h";x. Then the
~ash equilibrium is gi~en by ~;(r,t) -- R,;'B;t~,(t) --R;;'B;lí;x. Obviously (7„tiz) E
rjb X r.~,b. 0

Remarl~. ~~'hen w.e allow. for more general ( e.g. nonlinear feedback) strategies, there e~cist
many more `ash equilibria for the C'LPS information structure.
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In the pre~-ious section ~ce have rewritten the Riccati equations (9-12) as a linear differential
system l 15), as was suggested in the papers [1, 2). In that way it was easier to investigate the
asymptotic properties of the open-loop tiash equilibrium and it also enabled us to calculate
the solutions of (9-12). ~~'e w.ill now see what happens if we try to rewrite the Riccati
equations (23-26) for the feedback ~iash equilibrium as a linear system, following the same
approach as in the previous section. For the feedback `ash equilibrium the functions (~1, k~z),
as described by theorem :3.1, satisfy the following differential equations:

(27)
(28)

L'i - -Qia - (~1' - IízSz) i~l - lízSoz~'a,

z~, - -Qzr - Ií1Soli~1 - (.-1' - IiiSi) ~'z-

This gi~-es for the matris .11

a S, S~
-tl - 11(Iíl, liz) - Q1 .-l' - h"zSz IízSoz

~Qz IíiSai A'-IíiSi

In the (realistic) case R1~ - 0. R~1 - 0, (29) simplifies to

(:30}
-1 S, S~

.t l-.l1( li ~. li~)- Q 1 .-1' - Ii z Sz 0C Q a 0 .-1' - li 1 S1

`ote that, even in this special case. 11 depends on (Ií1,Iíz), so that the resulting equations
are still nonlinear. In the rest of this section we will study in detai] the quadratic system of
Riccati differential equations for the feedback tiash equilibrium in the most simple case where
all parameters are scalar aud R1z - 0, R~t - 0. This analysis will show that the situation for
the feedback ~ash equilibrium is much more complicated than in the open-loop case.

3.2. The scalar case. Below we restrict our attention to the case in which all the system
parameters are scalar'. Furthermore, we shall confine ourselves to the case where ql, qz, sl
and s~ are all strictly positive. If we rewrite the terminal value problem for (ki(t), kz(t)) as
an initial value problem for (ki(r),k~(r)), we get

1To emphasize the fact that all s~stem parameters are scalar we put them in lower case, hence e.g.
qi instead of Qi.
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(31) !ti - 2aki -}- gi - sik~ - 2s,kik~,

(32) k~ - Zak2 f q~ - s2k; - 2slklkZ,
(33) k~(0) - k,~,

(3-1) k~(0) - k~~.

~ow define

(35) o, :- s~9~. i - 1.2,

(36) r:, :- s,k;, i - 1,2.

Then ~~~e get the follo~~~ing s~~stem of quadratic differential equatíons:

(3~)

(3t3)

K1 - 2an1 -f- ai - xi - 2hi~s,
~h~ - 2aK~ ~ 02 - KZ - 2ninz.

The stud~- of planar quadratic systems in general is a very complicated topic, as e.g. can
be seen in the sutve~- papers [6. 12]. For example the famous 16th Hilbert problem, to
determine the mazimal number of limit c~~cles, Hd, for dth degree polynomial planar systems,
has not been solved }~et e~-en for quadratic systems (d - 2). Hence, in general we can expect
complicated dependence on the parameters for the quadratic system (37-38); for instance in
[12], Re~n finds 101 topologicall~~ different global phase portraits for a 6-parameter family of
quadratic systems. In tiie follo~~~ing subsections we address some of the characteristics of the
quadratic s~~stem ( 3~-3? ) that one t~-pically- is interested in.

3.3. Periodic solutions. The first question we address is the determination of the maximal
number of limit cycles for the quadratic sy-stem ( 3 ~-3R ). This leads to the question of existence
of periodic solutions. ~~'e recall a famous criterion due to Bendixson ( introduced in the paper
[5], see also e.g. f 10] ):

Theorem 3.3 (Bendixson). Let f E C'(E), u~here E is a simply connected region in R'.
If the diz~ergence of the r~ector field f, C'. f, is not identically zero and dces not change sign
ia E, then the planar system r - f(r) has no periodic solution lying entirely in E.

Recall that the di~-ergence of a ~~ector field in II8'- is gi~-en by- the trace of the Jacobian matrix.
The di~-ergence of the quadratic sy-stem (3ï-38) is given by

(39) C' - f - -Ia - ~n,, - 4n~.

Hence, the di~.ergence equals zero on the line



10 .a.J.T.~I. ~~"EERE~. J.`l. SCHC-~IACHER. AtiD J.C. ENGWERDA

(10) a-al-K~-O.

From theorem 3.:3 it follow"s that if there would exist a periodic solution of the quadratic
sy stem ( 3 ï-3g ), this solution w~ould have to cross the line (-10) at least two times. However,
on the line (~!0) we ha~e

~~i-aifnr~0.

i:~ - o~ f- ~c: ~ 0,

and hence an~~ solution of (3ï-38) can cross the line (40) at most once. We conclude therefore
that there does not ezist any periodic solution to the quadratic system (3ï-38), and thus
there are no Gmit c~.cles.

3.4. Critical points. The question of determining critical points of the quadratíc system
(3ï-38) is closely related to the question of the existence of stationary feedback Nash equi-
libria. The critical points of the differential equations (3ï-38) are the intersection points of
the hyperbolas. gi~~en by

(-11) 2ar:i f a~ - ni - 2~cin~ - 0,

(-12) 2a~:~ -t- o~ - n- - 2nln~ - 0.

Simple calculations sho~~ that h~"perbo)a (-11) has the asymptotes nt - 0 and ~c2 - a-',-Kr and
hyperbola (-12) has tlie ascmptotes r:., - 0 and n2 - 2a - 2nr. Furthermore h,yperbola (41)
intersects the n1-avs in the points w"here nl - a t a2 f ol, and hyperbola (-42) intersects
the rt~-azis in the points ~tihere r:-~ - a t a~ t Q~. ~~'e are now able to prove the following
lernma:

Lemma 3.4. Thc hyperbo(as (-11 ) and (-12~ can on(y intersect in the first or third quadrant
of the (hl.n.) NlanE.

Proaf. Suppose ( kl ) and (!2) intersect in a point S- ( ic~,ic~) where ict ~ 0. Hyperbola (-f2)
intersects the n~-axis in the points K~ - at a' ~ a~. Because the ~c1-axis is an asymptote of
(-12), in S w"e ha~-e either h~ ~ 0 or is~ G 0 and then ic~ G a- az f aZ, i.e. S might be located
either on the upper cur~~e or on the lower curve of ( 42). Suppose, in the intersection point S,
n~ G a- a'- f o~, i.e. S is located on the lower curve of (42). Elementary calculus shows that
on (-11) for nl 1 0. n, C a- a- t a~ iff K1 ~ a'- f o2 f a2 f or f o2. Hence, necessarily
n~ ~ va' t a~-va' -r~ ol f o~. ~Ioreover. because the intersection point S lies on (41) to the
right of the n~-asis, we know S has to be located above the asymptote ~c2 - a- Z~ct, hence
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n~ ~ n-;n;. Similarly., .S has to be located on (-12) below the asymptote ~cZ - 2a - 2K1.
Hence nt C 3. But this contradicts the fact that icl 1 a2 f o~ -~ a2 -~ ar f oZ. Therefore
n, ~ 0, and thus there exists no intersection point in the fourth quadrant. Along the same
lines one can pro~.e that there e~cists no intersection point in the second quadrant. p

By taking a closer look at the proof of the pre~-ious lemma we can identify two square regions
in 118' in which possible critical points can be located. Define the following two regions in IEB-,

( 13) G1 :- (O,a f a'- f o;) x(O,a f a~ f o~) ,

(-1-I} G'~ :- (a - az f o1, 0) x(a - a2 f- as, 0~ .

~~'e ha~~e the following lemma:

Lemma 3.5. The critical points of the quadratic system (37-38J are located in the regions
G; and G~. .tloreot~er, each of the regions contains at least one critical point.

Proof. The region G1 lies entirel~. in the first quadrant. ( 41) intersects the K1-axis, in the
point where hr - a rt y faó;, and hence any critical point in the first quadrant has to be
located to the left of ~:1 - a f a' f ol. Similarly, any critical point in the first quadrant has
to be located below. the line n~ - a f a'- t o~. Hence, any critical point in the first quadrant
has to be located in G';, and similarly any critical point in the third quadrant has to be located
in G~. Furthermore. it is easil~~ seen that (- 11) enters Gt in the point ( O,a f az ~o~ , and
leaves G'i through the line nl - a f va fó;. Hyperbola (~12) enters G1 through the line
K- - a rt a'- -r a~. and lea~~es G; in the point ( a f a' -~ o1i0). lecessarily, ( ~1) and (42)
ha~'e to intersect at least once in GI (and similarl~' at least once in G2). p

Lemma 3.6. In et~ery critica! point S - ( n;, i:~) located in G; there holds a- nl - icZ G 0,
oad in et'ery critica! point T -( ni.i~~) located in G~ there holds a- icl - n., ~ 0.

Proof. Let .S - ( hl. ~~) be a critical point in G;. Because S is located on the hyperbola (41),
~~"e know .S is located abo~-e the asymptote n~ - a- Zn;, and thus

1
n~ 1 a - 2ki.

:~nd hence
1 1

a-r;;-n~Ca-hl-af2ic1--Zict C0.

The proof that for e~ery critical point T-(ïcl, n~) located in G~ there holds a- icl - icZ 1 0,
goes along the same lines. ~

Remark. The property. a- n l- n~ C 0 can be interpreted in terms of closed-loop stability of
the associated stationary linear feedback strategies y; -- 6, k;x.
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~~'e see that the sy~stem (3ï-38) has at least two critical points. Because the system is
quadratic we also know- that the system (37-38) has at most four critical points. Furthermore,
the s} stem ( 3 ~-38 ) can only~ ha~~e critical points of multiplicity up to 3, because of the locatíon
of the critical points in the areas G1 and Gz.

Lemma 3.7. If the quadratic system ( 37-38) has a critical point of multiplicity 2 or 3, then
the system parnmeters hace to satisfy the equation

a8 f(6oloz - 6oi - 60:) aa f(12oioz f 120102 - 8oi - 8oZ) az

(~5) -90~0~ f óo3az f ó0103 - 304 - 30; - 0

Prooj. Suppose .S is a critical point of higher multiplicity of the system (37-38). Then the
tangent of (-tl) and the tangent of (-12) in S have to coincide. Note that, because of the fact
that on the line a- n~ - nz - 0, both à~ 1 0 and Kz ~ 0, in any critical point a- K1 - Kz ~ 0.
~Ce find that in 5' necessarilv

2aK~ ~- o~ - Kï - 2K1A? - Q

)

2a~,z -~ oz - ~cz - ZK,nz - O
~?

(a - tit - Yí~ ~ - 1C1IC~ - ~

t~sing a Grbbner basis ( calculated with Jlaple V) for the system of equations (46), nl and ~cz
are eliminated from the equations (-16), and so we find that the system parameters have to
satisfy the equation (-{5). ~

From the pre~~ious ]emiua. ue see that bifurcations can occur where the system parameters
satisf} equation (-i5). ~~-hen equation (-15) is not satisfied, all critical points will have mul-
tiplicit}~ 1. In the point where equation (-I5) is satisfied two (or three) critical points may
coincide. In the case all critical points have multipGcity 1, there will be either two or four
critical points. There are three possibilities:

(i) The s~~stem (3ï-33) has ezactly two critical points, one of them lies in G1, the
ot her in G'z. ( see figure 1)

(ii) The system has four different critical points, one of them lies in G1 and all the
others in G~. (see figure 2)

(iii) Ihe system has four different critical points, one of them lies in Gz and all the
others in G'~. (see figure 3)

~~'e will illustrate the above results in an example.

Example 3.8. In this esample w~e take o1 - 0.25 and oz - 0.2. Then (3ï-38) is given by

i:i - 2ak1 f 0.2~ - ~ci - 2~ci~z,

~z - 2a~cz f 0.2 - k~ - 2k1KZ.
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Flct'RE 1. Case (i), tw~o critical points
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Fic~RE 2. Case (ii), four critical points, one in Gi.
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k1

0.5 1.5 25

F~ct-ee 3. Case 3: four critical points, three in G1.

The equation (-15) is gi~.en by

16000ae - 50-k00aa f 12960a' - 1323 - 0,

which has the ( real) solutions a ti f0.6383. First we study the case a- 1. In this case the
critical points are

P, ti(-0.110.-0.03~),
P: x (1.925. 0.102 ) .
P3.~(0.~12.0.820).
P~ ~ ( 0.139. 1.832 ) .

~ow the case a- 0. Then the critical points are

P, ti (-0.321,-0.230),
P~ ti (0.321,0.230).

Finally, ~ce study the case a--1. The critical points are:

P, ti (-0.139,-1.832),
P~ ti (-0.712,-0.819),
P3 ti (-1.925.-0.102),
PQ .~ (0.110,0.087).
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F[GC'RE -I. Solutions of the differential equations for a- 1, al - 0.25 and o2 - 0.2.

In the bifurcation at a ti 0.6383, the system changes from having four critical points (for
a~ 0.63,k3) towards a situation in w-hich there are two critical points (for a G 0.6383).
In the bifurcation at a.~ -0.6383 the sy-stem changes again from two critical points (for
a~-0.638:3) to four critical points (for a G-0.6383).

For the case a- 1 w-e ha~.e calculated some solutions of the differential equations (37-38).
(see figure -I )

3.5. The behaviour at infinity. Finally we analyze the critical points at infinity. We
study the behaviour of trajectories'~at infinity" by. study~ing the flow of the quadratic system
(3~-38) on the so-called Poincaré sphere. This approach was introduced by Poincaré in the
paper [11]. .~ description of this theory can be found in [10, pp. 2d8-269]. When we consider
a flow of a dynamical sy.stem on ]E8'. given by

i - P(x. y)
(q~) tJ - Q(~,y)

where P and Q are polynomial functions of x and y, then the critical points at infiníty for the
poly~nomial sy~stem ( -17 ) occur at the points (X,Y,O) on the equator of the Poincaré sphere
~~~here X'- f~" - 1 and

(-181 -tQm(X.Y) - YPm(X.Y) - 0.

Here, m is the maximal degree of the terms in P and Q, Pm and Qm denote the polynomials
constisting of the terms of degree m. The solutions X,Y of (q8), with XZ ~ Y'- - 1, can be
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found at the polar angles B~ and B~ f n satisfying

(-19) G'm}1(B) - (cosB,sinB)cosBQm - Pm(cosB,sinB)sinB - 0.

For the system (3~-38), m- 2 and the polynomials P and Q are given by

(50) P(.z, y) - 2aa ~ oi - a~ - 2xy,

(51) Q(z,y)-2aY-foz-y'`-2xy.

Thus, P and Q, become

(52) P~(r, y) - -x~ - 2xy,

(~3) Qz(z,Y) - - y'` - 2xy.

The critical points at infinity~ for the system (37-38) can now be íound by solving the following
equations:

(3~k)

(~~)

-~Q~(.~",}')-YP~(X.Y) - ~,

XZfY''-1,

~~~hich is equi~-alent to

(56)

(5i)

~t'e find the followinó points:

i"}''--}'Y'-0,

.t"'~Y'-I.

.t" }' B nature
Pl 1 0 0 saddle
P: ';f '; ~ 1 n unstable node
P3 0 1 Za saddle
P4 -1 0 n saddle
P; -'; ~ -;f 5 n stable node
P; 0 -1 ~a saddle

~ote that the beha~-iour at infinity of the system (37-38) is independent of the parameters
a, al, a~.

3.6. The nature of the critical points. In this subsection we study the nature of the
finite critical points of the quadratic system (37-38). The Jacobian of the system (37-38) is
gi~~en bc

(b8) Df(Ki,tia) -
(2(a - nl - n2) -2ni

J- ` -2K? 2(a - K1 - K2)
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The eigen~alues of Df I hI. n~ ), for ( n.l. ~~) in G1 or G,. are given b,y

(59) ~i.a - 2(a - nl - n2) t 2 ~cl~c~.

We already noted (see proof of lemma 3.i), that in any critical point of multiplicity 1, (a -
nl - n~)' r n~n~, hence any critical point of multiplicity 1 is hyperbolic. ~rloreover, since ~1
and a~ are both real, all hyperbolic critical points are either nodes or saddles, there are no
foci.

On the projective plane (the ptojection of the upper hemisphere of the Poincaré sphere onto
the unit disk). when we identify the antipodal points on the unit circle, we know for the
vectorfield, defined by (3ï-38), by the Poincaré Index theorem, that n- s- 1, where n is
the number of nodes and s is the number of saddles. In the previaus section we determined
the nature of the critical points at infinity (2 saddles and 1 node), hence

(60) n~-s~-1-n~fs~-2,

where n~, s~ are the number of "finite nodes" and "finite saddles", respectively, and n~, s~
are the number of nodes and saddles respectively at infinity.

Case (i): tw.o finite critical points of multiplicity 1. In the case there are exactly two finite
critical points, we deduce from (60) that these points necessarily have to be nodes. Because
of the fact that for the critical point in G1, by lemma 3.6, a- ~c~ - KZ G 0, we know that
in this point, in agreement with (59), the eigenvalues of the Jacobian al and a~ are both
negati~.e. Hence the critical point in G1 is a stable node. Similarly, the critical point in GZ is
an unstable node.

Case (ii): four finite critical points. one of them in Gi. ~Ve have four finíte critical points,
hence n~ t s~ -~. Jloreover, by ( 60 ) ~ce know n f- s~ - 2. Hence, n~ - 3 and s~ - 1: there
are three nodes and one saddle. Denote the critical point in Gt by (nt,KZ). We will show
that this point is a stable node. ~t'e can (locally) interpret hyperbola (~1) as a function, given
by n~ - hl(nl ). and similarly we can (locally) interpret hyperbola (-12) as a function given by
n~ - h~(n, ). I~hen. the derivative of hl in a point (Kl,n~) on hyperbola (41), is given by

(61)
a-kl-n~

hl(IA1.Yi~) -
~1

and the deri~.ati~-e of h~ in a point (~~,n~) on hyperbola (42), is given by

ti2
(62) h.(~c,.n~)- .

a-K1-nz

Furthermore, the determinant of the Jacobian (58) is given by

(63) det Df(n~,n,~) - 4~(a - ~ci - ~t2)~ - K i~cz~ .
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FIG 0 RE J. Case ( i), two finite critical points.

Since. in G1, nl 1 0. n~ ~ 0 and (a - nl - a~) c 0 we find

det Df(hl,r:~j ~ 0 q h'(~1,K2) G 0,

ÍI(KI ) - hl(~`1) - h~(til).

tiow it is easil}~ ~~erified. that the critical point in G1 is the point where h(icl) - 0, and
moreo~.er that h(nl ) changes sign from positi~~e to negati~.e when nl is increased. Hence,

h'(i;i,n~) C 0.

detDf(i~~,n~) ~ 0,

meaning that the eigen~~alues ~i and ~~ are both negative. Thus, (ict, ic2) is a stable node.

Case (iii): four finite critical points, one of them in G~. Similarly as in case (ii), we find n~ - 3
and sJ - 1. The only critical point in GZ is an unstable node, the remaining three critical
points in G1 now consist of two stable nodes and one saddle.

For the three cases. ~~~ith finite critical points of multiplicity 1, we find the global phase
portraits, as sketched in figures 5,6 and 7.
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F~~~'[te 6. Case ( ii), four finite critical points, one in G1.

FiG[ xe i. Case (iii), four finite critical points, three in G1.
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.-lpart from the bifurcations, we see that there exist three topologically different phase por-
traits of the system (3i-38). E~~en more possibílities can be expected when the dimension of
the state space or the number of players is increased. The analysis in this section can not
straightforwardly be generalised to more dimensions or to the general N-player case. In our
opinion it is a rather complicated task to perform a more general multidimensional, .1~-player,
analysis. However, since in the 1-player case (the LQ optimal control problem) we know that
the beha~.iour in the multi~~ariable case is similar to the behaviour in the scalar case, we
belie~.e that our analysis pro~~ides some clues to what can be expected in the more general
case.

The most important obsen-ation we have made, is that it is possible that there exist several
different stable critical points for the coupled system of Riccati differential equations (23-26).
In that case, even o~~er a longer (finite) horizon, the solutions of the of the coupled system of
Riccati differential equations depend heavily on the terminal conditions (K1f, líz~).

~1. THE ItiFIti1TE HORIZON FEEDBACK NASH EQUILIBRIUM.

In this section we consider the feedback tiash equilibrium in stationary strategies for the
differential game o~-er an infinite time horizon. By a stationary strategy, we mean a linear
time-in~~ariant feedback strategy. ~~~e study the following cost functionals:

(~9)

C;i(ui.u~) - I ~ {r(t)'Qir(t) f ui(t)'Riitti(t)}dt,
JJ

G-(ui.u~) - ~~ {.r(t)'Q~r(t) f u~(t)'Rz~uz(t)}dt,
~

with Q; 7 0 and R;, ~ 0.

R'e find the follo~~-ing lemma:

Lemma 4.1. Suppose (C,. D,) are such that C;C; - Q;, D;C; - 0 and D;D; - R,;. Suppose
that there erist (Ií~.li~) satisfying the coupled algebraic Riccati equations

.-1'líl ~ líl.-1 f Q1 - Ií1Sllí1 - Ií;S~Ií~ - Ií~S~KI - 0,
-1'Ií, ~- li~.-1 f Q~ - lí~S~lí~ - lí~S,h", - lí1S,h"z - 0,

such that Ií 1 is the smallest real positir~e semidefinite solution of ( i0) for given KZ and KZ
ís fhe smallest real positiue semidefinite solution of (71) for given Iii, and moreover h'i and
Ií~ aresuch that the.systems(~l-B~R~~1B~Ií,,B1,C1,D1) and (A-B1R111BiK1iB~,C2,D2)
are both output stabiliwable. Then the strategies ry;,given by u; - ry;(x) --R;;'B;h-;x, are a
feedback .ti'ash equilibrium in stationary strategies.
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Proof. Suppose the second player plays some stationary feedback strategy y~(x) - F2x, where
F. is such that the system (.-1 f B~F~, BI, Cl, D1) is output stabilizable. To obtain the best
response for play-er 1, pla}er 1 has to solve the linear-quadratic optimal control problem

min~~ {x(t)'Qix(t) ~- ui(t)Riiui(t)}dt,
~~ o

subject to
i-(,-1 ~ BzF~)x f Biui,x(0) - xa.

Because (.-1 f B~F.. Bl, Cl, Dt) is output stabilizable, the optimal u1 is given by the stationary
linear feedback strategy ul - yl(x) --Ril'BiPx, where P is the smallest real positive
semidefinite solution of the algebraic Riccati equation, given by

(A f B~F~)~P f P(A f BzF~) - PS,P ~ Qr - 0.

1'ow suppose pla~'er 2 pla~-s the strategy ryz(x) - -R~2'BZlízx, for some KZ, such that the
system (.-1 - B~R;~~B., B1,C1, D1) is output stabilizable. Then, the best response against
this strategy for player 1 is to play the strategy y1(x) --Ril'BiKrx, where Kr is the
smallest real positive semidefinite solution of (70) for given K~. Similarly, for given Kl such

that the system (,~ - B1R111B(Ií1,Bz,C2,Dz) is output stabilizable, the best response of
player 2 against yi(x) - -RiiiBilíix is to play yz(x) - -R2zBzKzx, where Kz is the

smallest real postive semidefinite solution of ( i 1) for given Ki. Hence, (yi(x),ry2(x)) -

(-Ril'Bitílx, -R-,'B:Ií~x) is a`ash equilibrium in stationary linear feedback strategies. p

Remark. ~ote that, although we reqwre the smallest real symmetric solutions of the coupled
Riccati equations, we do not necessarily have uniqueness by this lemma.

Remark. Taking a closer look at the proof of this lemma, we see that the best response against

any stationary linear feedback strategy. is again a stationary linear feedback strategy.

In the scalar case anal}~zed in the precious section. all (dynamic) equilibria in the first quad-

rant are also stationary- feedback `ash equilibria. This illustrates the possible nonuniqueness
of stationarv feedback ~ash equilibria. ~i'e also see that the criterion of dynamic stability

does distinguish betw'een these equilibria, but only partly: the nonuniqueness is reduced, but
not eliminated completel}-.

~. CO~CLL'SIONS.

In this paper we have studied the asymptotic properties of some different Nash equilibria in

two-player, nonzero-sum, Gnear-quadratic differential games. For the open-loop case we have

seen in section two. that there can e~cist at most one stable (in the dynamic sense) stationary
~ash equilibrium. ~~'e have also seen that there are examples, in which there exists no stable

stationary ~ash equilibrium at all. In section three we have seen that the situation for the

feedback lash equilibrium is more complicated. ~Ve found out that it is possible that there

e.~ist several different stable tiash equilibria. :~4oreover, we saw that the asymptotic behaviour

of a feedback tiash equilibrium depends heavily on the specified terminal conditions. Finally,
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in section four, we have studied stationary feedback tiash equilibria for games over an infinite

time horizon. ~~-e saw that, although in the finite horizon case there is an unique feedback

lash equilibrium. in the infinite horizon case there may be nonuniqueness problems.
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