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Abstract

An iterative numerical technique for the evaluation of queue length dis-

tributions is applied to multi-queue systems with one server and cyclic

service discipline with Bernoulli schedules. The technique is based on

power-series expansions of the state probabilities as functions of the

load of the system. The convergence of the series is accelerated by apply-
ing an adapted form of the epsilon algorithm. Attention is paid to eco-

nomic use of inemory space.

Keywords: power-series algorithm, traffic intensity, waiting time, epsilon
algorithm, memory space.
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1. Introduction

Queueing systems with more than one waiting line are very hard to

analyse when the joint queue length distribution is not of some kind of

product form. In [7], [1], [2], [3J a numerical technique has been deve-

loped for the evaluation of performance measures for such multi-queue

systems. The technique is based on power-series expansions of the state

probabilities as functions of one parameter (the traffic intensity) of the

system. The coefficients of these power-series can be recursively calcu-

lated for a large class of multi-queue models. The coefficients of the

power-seríes expansions of the moments of the queue length distributions

follow directly from those of the state probabilities. In most instances a

bilinear transformation ensures convergence of the power-series over the

whole range of traffic intensities for which the system is stable. We have

introduced in [2], C3] extrapolations of the coefficients of the power-

series ín order to accelerate the convergence of the series. One of these

extrapolations will be combined with the epsilon algorithm, cf. [6], [12],

in the present paper. The advantages of the present technique are that

quantities are calculated iteratively, that it is relatively easy to

compute additional terms of the power-series in order to increase accura-

cy, that algorithms for accelerating the convergence of sequences can be

applied, and that, once the coefficients of the power-series have been

obtained, it requires little effort to compute performance measures for

different values of the traffic intensity (compare with numerical tech-

niques based on truncation of the state space and solution of large sets

of balance equations). The main drawback is the large amount of inemory

space necessary to store the coefficients of the power-series of the state

probabilities. The available memory space mainly limits the size of the

models which can be handled. Therefore, attention will be paid to optimize

the use of available memory space.

The power-series algorithm will be applied to a multi-queue model
with one server and cyclíc service discipline with Bernoulli schedules.
This kind of model is often used to study distributed computer systems
with a single communication channel and a cyclic access scheme. Several
suthors have derived general relations or have proposed approximations for
the mean waiting times in such systems, cf. [4], [5], [8], [9]. [10],
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[11]. Our approach provides exact data for moderate sized systems, which
are of interest in itself for studying the interaction between queues, and
which may be helpful in finding and validating approximations for large
scale systems.

The organisation of the paper is as follows. The multi-queue model
with cyclic service will be described in section 2. Section 3 is devoted
to the derivation of the scheme for calculating the coefficients of the
power-series. An adapted form of the epsilon algorithm is introduced in
section 4. Section 5 contains remarks on the implementation of the power-
series algorithm, section 6 some numerical examples of the multi-queue
model. Possible extensions of the model and the algorithm will be dis-
cussed in section ~.

2. The multi-queue model

The system consists of s queues. Jobs arrive at queue j according

to a Poisson process with rate aj, j- 1,...,s. The single server inspects

the queues in cyclic order, i.e. queue 1,2,..., and after queue s again

queue 1, etc. When the server finds queue j non-empty, he serves the first

arrived job in this queue. After completion of the service of a job at

queue j the server starts another service at this queue with probability

qj when this queue is not empty; otherwise the server switches to the next

queue (j - 1,...,s). The times for switching from one queue to the next

will be neglected in the present study. Service times at queue j are assu-

med to be identically, exponentially distributed with mean l~uj, j-

1,...,s. Each queue may contain an unbounded number of jobs. See section 6

for a discussion on the relaxation of some of these model assumptions.

Note that the server visits queue j according to a Bernoulli schedule with

parameter qj; this includes exhaustive service (qj - 1) and non-exhaustíve

or one-limited service (qj - 0), j- 1,...,s.

First the condition for ergodicity of the system will be consider-
ed, cf. [8]. The sum of the arrival processes at the different queues is a
Poisson process with rate n- is ~.. The service rate of an arbitrary job~-1 ~
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is y,j with probabi.lity ~j~n, j- 1,...,s. Hence, the load or traffic in-
tensity p of the system is in a natural way defined by

s 1 ~1 - s ~.P :- n E - E ,
j-1 uj n j-1 xj

(2.1)

and a necessary and sufficient condition for ergodicity of the system is

p ~ 1. (2.2)

Because the traffic intensity p will be used as variable in power-series
expansions, the arrival rates will be written as

ajP - aj. j - 1,...,s. (2.3)

It will be assumed that the system is in steady state and hence (2.2) will
hold. Let Nj denote the number of jobs in queue j(waiting or being ser-
ved), j- 1,...,s. The supplementary variable H, indicating the queue to
which the server attends, is introduced in order to transform the queue
length process into a Markov process (which can be described as a multi-
dimensional quasi birth-death process). Let n-(nl,...,ns) be a vector
with non-negative integer entries. Note, that when the system is empty (in
state 0) the value of H is not determined. Therefore, the probability that
the system is empty at load p will be denoted by p(p;Ó). For n~ 0 the
state probabilities are defined as follows: for h- 1,...,s, 0 5 p~ 1,

p(p;n,h) :- Pr{Nj - nj, j- 1,...,s; H- h, at load p}, (2.4)

Let I{E} stand for the indicator function of the event E, and let ej be a

vector with zero entries except an entry of one at the jth position (j -

1, . ,s)

When the server attends queue h, a state n with nh - 1 could only have
been entered through an arrival at queue h if all queues were empty (h -
1,...,s). Note further that the server may reach queue h from any queue
h-j (j - 1,...,s) on condition that all íntermediate queues h-jfl,...,h-1
are empty (h - 1,...,s; read here and below queue its for queue i whenever
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i( 1). With this in mind, the balance equations for the state probabili-
ties (2.4) are readily verified to be, for h- 1,...,s, nh ~ 0,

s
[P E aj ' uh]P(P:n.h) - ahPP(P:0)I{n - eh}

j-1

s
t p ï ajp(p;n - ej,h)I{nj ) O;nj ) 1 if j- h}

j-1

t[qh t (1-qh)I{nj - 0 o'j, j~ h}]~P(P;n t eh.h)

s-1
t ï[1 - qh-j ` qh-jI{nh-j - 0}]I{ni - 0, i- h-jtl,...,h-1} X

j-1

X l~h-jP(P;n } eh-j;h-j): (z.5)

s s
p ï a.P(P;~) - F u.P(P;e..j).

j-1 J j-1 J J

3. The power-series algorithm

(2.6)

The power-series algorithm will be discussed briefly in this sec-
tion. The reader is referred to [2], [~] for more details and a motivation
of the method. First, introduce the bilinear mapping of the interval [0,1]
onto itself,

P- P(S) - 1~ G- G8 (s - 11tGGP) , G~ 0. (3.1)

Then, introduce the following power-series expansions, for h- 1,...,s,

nli...tns m k~
p(p(8);n,h) - g E 8-b(k;n,h), n~ 0,

k-0

P(P(8);0) - F gkb(k;0). (3.2)
k-0
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Replace p by 8 in the balance equations (2.5) according to (3.1), and
substitute the power-series f3.2) into these equations. Equating the coef-
ficients of corresponding powers of 8 in the resulting equations leads to
the following iterative scheme for computing the coefficients of the power-
series (3.2): for h- 1,...,s, nh ) 0, for k- 0,1,2,...,

s
(1tG)y~b(k;n,h) - [Gy~ - E a.]I{k ) 0}b(k-l;n,h)

j-1 ~

t ahb(k;0)I{n - eh}

s
t E ajb(k;n-ej,h)I{nj ) O;nj ~ 1 if j- h}

j-1

t[qh t(1-qh)I{nj - 0 vj, j~ h}]~[(1tG)b(k-l;nteh,h)I{k ~ 0}

-Gb(k-2;nteh,h)I{k ~ 1}]

s-1
t ï[1 - qh-j t qh-j I{nh-j - 1}]I{ni - O,i - h-jfl,...,h-1} X

j-1

X ~-j[(1tG)b(k-l;nteh-j,h-j)I{k~0}-Gb(k-2;nteh-j,h-j)I{k~l}].
(3.3)

To determine the coefficients of p(p(8);0) the law of total probability is
used instead of (2.6) to complete the recursive scheme, because the term
with b(k;0) vanishes in (2.6). Substituting (3.1) and (3.2) into the law
of total probability gives:

b(0;0} - 1,

s
b(k:0) -- ï ... L ï b(k-nl-...-ns:n,h). k- 1,2,... (3.4)

O~nlt...tnssk h-1

There are several ways to compute the coefficients b(k;n,h) recursively
from (3.3) and (3.4). One convenient way is the following. Calculate all
coefficients b(k;n,h) with k~n14....ns - m before those with ktnlr...ns -



mtl (m - 0,1,2,...), and on each hyperplane ktn14...tns - m, m fixed,
calculate all coefficients b(k;n,h) with k-j before those with k- jtl,
j- O,l,...,m-1 ( m - 0,1,...). See also (A.4) in the appendix.
Once the coefficients of the power-series expansions of the state probabi-
lities have been determined, those of the moments of the queue length
distribution can be obtained as well. Write

m
E{Nv} - E 8kf (k;j), j- 1....,s, v - 1,2,...~ k-1 v (3.5)

It follows readily from (3.5) and (3.2) that for j- 1,...,s, v- 1,2,...,
k - 1,2,...,

s
fv(k~j) - F... F E n~ b(k-nl-...-ns;n,h).

Osnlt...tnssk h-1
(3-6)

It is more convenient for obtaining moments of the queue length distribu-
tion to compute first their coefficients via (3.6) and then to use (3.5)
than to compute first the state probabilities via (3.2) and then the mo-
ments directly from the state probabilities. In the first way algorithms
for accelerating the convergence can be applied to partial sums of the
series (3.5); see section 4. Moreover, the second way will be more labo-
rous, when one is not interested in the ( many!) state probabilities them-
selves.

This section is concluded with a discussion of the stationary
waiting time (Wh) distribution of jobs arriving at queue h(h - 1,...,s).
The number of jobs at queue h left behind by a job departing from that
queue is equal to the number of jobs that arrived at queue h during the
sojourn time of the departing job. Because arrivals occur according to a
Poisson process, this implies, cf. [10], for h- 1,...,s, for ~z~ s 1,

N -a (1-z)W
E{z h} - 1 4(llz)~h,~ E{e h h}, (3.7)
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The moments of the waiting time distributions can be obtained from the
moments of the marginal queue length distributions through this relations
(3.7).
Let W be the waiting time of an arbitrary job, irrespectively of the queue
at which it arrives, in steady state. Then, with ( 3.7) and (2.1),

E{W} - E nh E{Wh} -[E{ F Nh} - p]~n.
h-1 h-1

(3.8)

Finally, we note that the expected values of the waiting times for jobs in
the different queues of a cyclic service system satisfy the following
conservation law, cf. [4],[11],

s ah - ~ s 2
ï E{Wh} - 1-p ï ah~}~.

h-1 uh h-1
(3-9)

This relation provides a useful check on the accuracy of the computations.
With the aid of Little's formula we obtain from (3.9) the following rela-
tion for the mean queue lengths:

s 1 - ~ s 2E E{Nh} - 1-p i ah,Nh'h-1 gh h-1
(3.10)

In the special case that all mean service times are equal (i.e. y~ - u,
h- 1,...,s) then ( 3.9) and (3.10) lead with (3.8) and (2.1) to

s
E{ ï Nh} - ytE{W} - P,

h-1
(3.11)

the well-known results for the M~M~1 system. Note that the relations

(3.8), (3.9). (3.10), (3.11) hold for any set of Bernoulli parameters {qj,

j - 1, . ,s}

4. Application of the epsilon algorithm

The epsilon algorithm aims to accelerate the convergence of slowly
convergent sequences or to determine a value for divergent sequences, cf.
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[12], [6]. The epsilon algorithm consists of the following triangular re-
cursive scheme: for m- 0,1,..., x- 0,1,...,

(m) (m.l) ( mtl) (m) 1
Extl - Ex-1 } [Ex - Ex ]- ,

wit~i initial values, for m- 0,1,...,

E (m) - ~. E (m) - S ;-1 0 m

(4.1)

(4.2)

here S, m- 0,1,..., is the partial sum of a series. Only the evenm
sequences {e2x), m- 0,1,...} will be sequences which may converge faster
to a limit than {S , m- 0,1,...}, x- 1,2,.... The odd sequences {E(m)m 2xt1'
m- 0,1,...} are just intermediate steps in the calculation scheme, x-
0,1,.... When Sm is the partial sum of a power-series, say

m
Sm - Sm(8) - F ci91,

i-0
m - ~,1, . , (4.3)

then the epsilon algorithm transforms this sequence of polynomials into

sequences of quotients of two polynomials. More precisely, EZK-2x) will be

a quotient of a polynomial of degree m-x over a polynomial of degree x,

and

Ism - E~K-2x)I - ~(gmtl), 8~ 0, x- 1,2,..., m- 2x,2xt1,...;
(4.4)

see [12]. Because many queueing systems have the property that the yth

moments of the queue length distribution are of order (1-p)-v as pTl, v-
1,2,..., we propose to modify the initial values for the epsilon algorithm
as follows when this algorithm is applied to accelerate the convergence of
power-series for moments, cf. (3.5). Before applying the epsilon algorithm
we first extrapolate the coefficients of the power-series to take into
account the pole at 8- 1. This extrapolation has been introduced in [1]
and [2]. It means that we take for first order moments

mtl
e~m) - Sm } cm ~1-8 ' m- 1,2,..., (4.5)



10

and for second order moments

c - c mtl
EÓm) - Sm } [cm } ml - 9-1] gl-8 ' m- 1,2,..., (4.6)

instead of the second relation of (4.2); here Sm is of the form (4.3) and

cm, m - 1,2,..., stand for coefficients of a series as defined in (3.5).

It is our experience that the use of (4.5) and (4.6) instead of (4.2)

leads to considerably faster convergence, cf. [2], and this property is

preserved in higher order sequences {EZK), m - 1,2,...}, x- 1,2,...,

produced by the epsilon algorithm. For instance, when relation (4.5) is

used as initial sequence, then

E(m-2) - S } c gmtl } 69m~1(cm - cm-1) ,2 m m 1-8 (1-9)(1-68)

with

c - co- m m-1 , m- 2.3. ...
cm-1 - cm-2

(4.7)

(4.8)

For comparison, when relation (4.2) were used as initial sequence, then

á8m}1 c cE(m-2) - s t m,~- m, m- 2,3. ...2 m (1-cs8) cm-1
(4.9)

It will be clear that (4.7) provides a better approximation of Sm than

(4.9) when Sm possesses indeed a pole at 9- 1. We notice that EZm-2) as
given in (4.7) is identical to the approximation proposed in [3] (formula
4.19).
From the theory of the epsilon algorithm, cf. [6], [12], it follows that
if S is a rational function of 8 with as denominator a polynomial of
degree rtv, r- 0,1,..., which contains a factor (1-8)v, then

e2m) - Sm, for m Z m0, (4.10)
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when (4.5) or ( 4.6) is used as initial value for v - 1, or v- 2 respecti-
vely; the constant mG depends on the degrees of the numerator and of the
denominator of Sm. This result holds for 9 smaller as well as larger than
the radius of convergence of the series Sm(9), cf. (4.3). Therefore, if
ti~e moments of the queue length distribution are rational functions of p,
it would not be necessary to use the transformation {3.1). However, expe-
ri-ence learns that it is still advisable to use the mapping (3.1) in such
a case, because the convergence of the series may be slower and the power-
series algorithm may be numerically instable when G is too small. The
latter seems to occur when some state probabilities possess more singula-
rities than the moments, as functions of p. To obtain a good value of G a
test run of the power-series algorithm with G- 0 is needed in order to
estimate the radius of convergence of the different power-series.
The performance of the modified epsilon algorithm, cf. (4.5), (4.1), is

illustrated in table 1 on the basis of an asymmetrical two-queue system

with alternating service discipline (i.e, ql - q2 - 0). The arrival rates

are ~1 - 0.64, a2 - 0.32, and the service rates are ul - 1, u2 - 2 (hence

p- 0.8). We have chosen G- 2. It should be noted that the rate of con-

vergence of the sequences {EZK), m- 1,2,...} does not increase monoto-

nously with increasing x(see the columns with x-3 in table 1). This may

be caused by pairs of complex conjugate singularities of the mean queue
lengths as function of p. In general, it is quite unpredictable which

sequence produced by the epsilon algorithm will converge most fastly. It

may depend on the value of G. When the model is more symmetrical or when

the traffic intensity is lower, the performance of the epsilon algorithm

will be better than in the case of table 1(and vice versa). More research

is needed to discover how the power-series algorithm can be combined most

effectively with the epsilon algorithm or any other algorithm for accele-

rating the convergence of sequences, cf. [6J.
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Table 1. Performance of the modified epsilon algorithm.

E{N1}

(m) (m-2) (m-4) ( m-6) (m-8) (m-16)m Eo e2 e4 e6 e8 E16

20 3.2545 3.2702 3.2742 3.2712 3.2721 3.271366
24 3.2639 3.2704 3.2726 3.2711 3.2716 3.273994
28 3.2683 3.2707 3.2720 3.2713 3.2715 3.271606
32 3.2702 3.2710 3.2717 3.2714 3.2716 3.271599
36 3.2711 3.2712 3.2716 3.2715 3.2716 3.271596
40 3.2714 3.2714 3.2716 3.2714 3.2716 3.271595

E{N2}

(m) (m-2) (m-4) (m-6) (m-8) (m-16)m ~o E2 E4 E6 E8 E16

20 .69101 .65968 .65162 .65762 .65583 .657269
24 .67225 .65924 .65484 .65784 .65682 .652o1i
28 .66345 .65863 .65605 .65749 .65694 .656788
32 .65953 .65803 .65653 .65720 .65689 .656801
36 .65788 .65753 .65672 .65707 .65685 .656807
40 .65722 .65718 .65679 .65721 .65683 .656810

5. Implementation

The main restriction in applying the power-series algorithm is the
required amount of inemory space. Therefore, this section is devoted to

ideas for an efficient implementation of the power-series algorithm. One
Nay to limit the required amount of inemory space is the reduction of the
number of coefficients b(k;n,h) which have to be calculated, cf. (3.2),

(3.3). (3.4), by applying algorithms for accelerating the convergence of



sequences such as the epsilon algorithm discussed in section 4. Other ways
may be found in preventing that a part of the available memory positions
remains unused and in reusing the memory positions which are occupied by
coefficients b(k;n,h) which will not be needed anymore in later computa-
tions. These topics will be addressed below.

Suppose that the coefficients of the power-series expansions of
the state probabilities and the moments of the queue length distribution
have to be computed up to the Mth power of 9 for a particular model. This
implies that the coefficients b(k;n,h) must be calculated for
ktnlt...tns - m, m- 0,1,...,M and h- 1,....s, cf. (3.2). (3.5). (3.6).
i.e.

Mtstls( stl ) (5-1)

of those coefficients are needed. When these coefficients would be stored

in rectangular arrays, then

s(Mtl)stl (5.2)

memory positions were required. Hence, there is a considerable reduction
in storage requirement when a two-dimensional array of size (5.1) is used
to store the coefficients b(k;n,h). In order to be able to locate the
coefficients the following mapping of the lattice points (k,n),

Mtstlktnlt...tns s M onto the set of integers 0,1,...,( s~l )-1, can be used,
cf. [2],

s k t J} Fi-1 ni
C(k;n) - F f

J-C l J t 1
(5.3)

The drawback of this procedure is that it costs quite some computation
time to determine the locations of the 3st2 coefficients which are in

general involved in each step of the iteration (3.3) by using (5.3) di-

rectly. Therefore, we give a more efficient algorithm for determining the
locations of these 3st2 coefficients simultaneously in the appendix.
A further reduction of the storage requirement can be obtained by the

following considerations. In many circumstances one is not interested in
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all the individual state probabilities (3.2), but only in some aggregated

measures of performance such as the first and second order moments of the

queue length distribution and a few characteristic probabilities. Zn this

case it will be more efficient to store the coefficients of the power-

series expansions of this limited number of performance measures in sepa-

rate arrays. The coefficients b(k;n,h) can then be deleted from memory as

soon as they are not needed anymore in later steps of the iteration (3.3),

and we can use the following mapping to locate these coefficients:

CM(k;n) - ( k;n) mod DM. (5-4)

Here DM is the maximal distance which occurs between the value C(k;n) and
any of the values C(k-l;n), C(k;n-eh), C(k-l;nteh), C(k-2;n4eh), h-
1,...,s, cf. (3.3), over all points (k;n) with ktnlt...tns 5 M. It is
readily verified that this implies (see also the appendix) that

DM - max{C(k;n) - C(k-2;ntes); ktnlt...tns 5 M}, (5.5)

if the coefficients b(k;n,h), h- 1,...,s, are computed in order of in-
creasing value of C(k;n), cf. (5.3). It turns out the maximum in (5.5) is
attained at the point (M;0), so that

D - (Mtstl) - 2(Mts-1) t (Mts-2) - (Mts) } (Mts-2) (5 6)
M stl stl sfl s s-1

This approach requires sDM memory positions to store the coefficients

b(k;n,h). Beside these coefficients also those of the aggregated perfor-

mance measures have to be stored. But in order to apply the epsilon algo-

rithm to the coefficients of these measures they must be determined also

when the modulus operator in (5.4) would not be used. To illustrate the

gain which is obtained by applying (5.4), (5.6), we show in table 2 the

maximum number M of terms of the power-series (3.5) which can be computed

when respectively rectangular arrays, cf. (5.2), the mapping (5.3), cf.

(5.1), or the mapping (5.4) are used and when there is storage capacity

for 106 coefficients b(k;n,h).
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Table 2. Maximum number of terms M at a storage capacity of 106 coeff'i-
cients.

ti queues 2 3 4 5 6

rectangular 78 23 11 6 C 5

triangular (5.3) 142 50 28 19 14
with modulus (5.4) 997 123 46 26 18

6. Examples

In this section numerical data for cyclic-service systems which
have been obtained with the aid of the power-series algorithm will be
presented. The value of G in the mapping (3.1}, the number of terms M of
the power-series, cf. (3.5), and the number of steps x in the epsilon
algorithm, cf. (4.1}, which were needed to obtain these data, depended on
various properties of the models. Generally, these quantities increase
with increasing traffic intensity, with increasing number of queues, with
increasing asymmetry between the parameters of the different queues, and
with decreasing value of the Bernoulli parameters qj, j- 1,...,s.
Table 3 shows the way in which the expected values and standard deviations

of the waiting times depend on the values of the Bernoulli parameters ql

and q2, for a two-queue system with ul - y~2 - 1 and ~1 - a2 - 0.45 (i.e.

p- 0.9). For comparison, the standard deviation of the waiting time in an

M~M~1 system with p- 0.9, u- 1 and FIFO service discipline is 9.950.
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Table 3. Dependency of the waiting time distributions on the parameters of
the Bernoulli schedules.

ql q2 E{W1} E{W2} c(W1) c(W2)

0 0 9.000 9.000 11.19 11.19
} ~ 9.000 9.000 11.55 i1.55
1 1 9.000 9.000 12.36 12.36
o ~ 14.70 3.302 i8.22 3.712
~ 1 15.69 2.306 19.14 2.378
0 1 16.36 1.636 i9.39 1.809

In table 4 the standard deviation of the waiting time distribution has
been listed for symmetrical systems with either exhaustive service (q. -

J
1, j- 1,...,s) or 1-limited service (q~ - 0, j- 1,...,s). The mean
waiting time follows directly from (3.11) for symmetrical systems, and
does not depend on the Bernoulli schedule.

Table 4. Standard deviation of the waiting time for symmetrical systems
~j - 1, j - 1,....s).

p
s-2

exh. 1-lim.
s-3

exh. 1-lim.
s-4

exh. 1-lim.

0.10 0.491 0.490 0.493 0.492 0.494 0.493
0.30 1.071 1.056 1.081 1.070 1.086 1.078
0.50 1.901 1.835 1.925 1.881 1.935 1.906
0.70 3.693 3.460 3.730 3.598 3.743 3.680
0.80 5.876 5.414 5.919 5.680 5.933 5.846
0.90 12.36 11.19 12.41 11.87 12.42 12.31
0.95 25.29 22.67 25.33 24.20 25.35 25.2i
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Table 5 shows the influence of a relatively heavily loaded queue on the
mean waiting times at queues which are four times more lightly loaded, for
different service schedules. The parameters of the system are in the case
of s- 3(4) 9ueues: xl - 1, xj - 2. j- 2,3Í,4); al - 2aj. j- 2,3(,4);
qj - q2, j- 3(,4); and p- 0.8. Note that the differences in mean wai-
ting times of the lightly loaded queues are not negligible, although
their arrival and service rates are the same.

Tabie 5. The influence of one relatively heavily loaded queue.

s- 3 ql q2 E{W1} E{W2} E{W3} E{W}

0 0 4.170 1.644 1.677 2.915
1 0 1.515 6.936 7.004 4.242
1 1 2.453 4.869 5.319 3.773

s- 4 ql q2 E{W1} E{W2} E{W3} E{W4} E{W}

0 0 4.190 1.719 1.745 1.774 2.724
1 0 1.334 5.499 5.554 5.610 3.866
1 1 2.344 3.979 4.183 4.460 3.462

Table 6 is concerned with the order in which the server attends the

queues. The system consists of 4 queues A, B, C, D, with parameters aA -

aB - 0.16, aC - aD - 0.64, xA - xC - 1, xB - xD - 4, qj - 0 for j- A. B.
C, D, and p- 0.9. For each queue the minimal mean waiting time has been

underlined in the table. It can be seen that for each queue A, B and D

separately it is best to follow after queue C and it is worst to precede

queue C, the most heavily loaded queue. This difference is relatively the

largest at queue B (4.3z).
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Table 6. The effect of the order in which the server attends the queues.

Order E{WA} E{WB} E{WC} E{WD} E{W}

A B c D 1.654 1.549 9.547 7.585 7.173
A D C B 1.654 1.485 9.544 7.611 7.176
A c B D 1.670 1.486 9.543 7.597 7.172
A D B c 1.639 1.548 9.547 7.597 7.177
A B D C 1.638 1.531 9.545 7.613 7.181
A C D a 1.671 1.499 9.547 ~~ ~~

7. Comments

The power-series algorithm has been applied in this paper to a
single server, multi-queue system with cyclic service discipline, Bernoul-
li schedules, infinite buffers, Poisson arrival streams, exponential ser-
vice time distributions and negligible switching times. It can also be
applied to several variations and extensions of this model. Service dis-
ciplines as random allocation or priority for the longest queue can be
treated in the same way as cyclic service. Disciplines as gated service or
K-limited service (a fixed number of jobs is served at each visit of the
server to a queue) pose some problems, because supplementary variables
with rather large value ranges are needed to transform the queue length
process into a Markov process. The power-series algorithm can in principle

also be applied to models with finite buffers. The main difference with
infinite buffer systems is that steady state occurs at any traffic inten-

sity p, p~ 0. Therefore, we propose to use the conformal mapping

g- CP (P - l~g) . C 2 0, (7.1)

of [O,m) onto [0,1), instead of the conformal mapping (3.1). Further, the

modification of the epsilon algorithm as in (4.5), (4.6), should not be

applied since the moments of the queue length distribution are finite for
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all values of the traffic intensity when buffers are finite. Application

of the power-series algorithm to finite buffer systems is a subject for

further research. Note, however, that it may be more efficient to solve

the set of balance equations directly when buffer sizes are very small.

F~cponential distributions in the model may be replaced by phase-type dis-

tributions, cf. C37. This requires the introduction of one supplementary

variable for each non-Poissonean arrival process and one supplementary
variable when one or more service time distributions are non-exponential.

Non-zero switching times can also be incorporated in the model and the
algoc~ithm, but they must have phase-type distributions. Then a two-valued

variable should be added indicating whether the server is serving a job or

moving from one queue to the next. In this case the variable H indicating

the position of the server is also defined when all queues are empty. The

distribution of H when the system is empty cannot be recursively cal-
culated, because the server may turn an arbitrary number of cycles around

the queues when they are all empty. Sets of s linear equations have to be

solved to compute the coefficients of the power-series expansions of the

probabilities that the system is empty and the server is moving between

two queues. The coefficients of all other state probabilities can be cal-

culated in a recursive manner.
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Appendix

In section 5 a mapping of the lattice points (k,n), with
ktnlt...tns s M, to the set of integers has been discussed, cf. (5.3). In
this appendix we give an efficient procedure for determining the value of
this mapping in an integrated way for all lattice points which occur at

one step of the power-series algorithm, cf. (3.3). This procedure is based
on the following properties of the mapping C(k;n) that are to verify

straightforwardly:

(k. j- 1 t
ii-1 nilC(k;n-ej) - C(k;n-ejtl) - I J , (A.1)l j

C(k-l;ntej~l) - C(k-l;ntej) (A.2)-
lk } J- 1} fi-1 n1J 'j

for j- O,l,...,s; here and below, both (k;n-es}1) and (k-1;n.e0) stand
for (k;n), while both (k;n-eG) and (k-l;n}es}1) are equivalent to (k-l;n).
Further, the iteration (3.3), (3.4) will proceed along points (k;n) ac-

cording to increasing values of C(k;n). This order will be indicated la-
ter, cf. (A.4). The precedessor of the point (k;n) in this order is de-

noted by (k",n"). The procedure to locate the points which are needed in
the iteration step (3.3) then reads:

C(k;n) - C(k~;nw) t 1;

k t j- 1 t Fi-1 nil
For j:- 0 to s calculate v(j) :- ~ J J ;

For j:- s downto 1 do C(k;n-ej) :- C(k;n-ejtl) - v(j);
If k Z 1 then for j:- 0 to s do

C(k-l;ntej}1) :- C(k-l;ntej) - v(j);
If k Z 2 and G) 0 then for j:- 0 to s-1 do

k- 1 t ï~ n
C(k-2;nte.~1) :- C(k-2;nte.) - v(j) j-1 1 . (A.3)

J J k t j- 1 t Ei-1 ni
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Finally, we present a procedure for calculating the coefficients of the
power-series expansions of the state probabilities and the moments of the
queue length distribution according to (3.3), (3.4) and (3.6) up to the
Mth -power of 8, along points with increasing values of C(k;n).

b(0;0) :- 1;
suml :- 0;
for m:- 1 to M

for n.- m downto 0s
for ns-1 :- m-ns downto 0

for nl :- m-ns-...-n2 downto 0 do
[k .- m-ns-...-nl;
if k-m then {b(m;0) :- -suml; suml :- 0} else
{determine the locations of the points needed in (3.3) according
to (A.3);
sum2 :- 0;
for h:- 1 to s do

[calculate b(k;n,h) according to (3.3);
sum2 :- sum2 t b(k;n,h)];

suml :- suml t sum2;
for v:- 1 to 2 and j:- 1 to s do

fv(m;j) :- fv(mcj) t n~ X sum2 (cf. (3.6))}]. (A.4)

The variables fv(m;j), v - 1,2, j- 1,...,s, m- 1,...,M, are initially
equal to zero in (A.4). The variabele suml in (A.4) is used to determine
b(k;0), k- 1,...,M, according to (3.4).
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