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COMPUTING ECONOMIC EQUILIBRIA BY VARIABLE DIMENSION ALGORITHMS:
STATE OF THE ART.

I. Introduction.

Since the originating work of Scarf [46,47] and Kuhn [19,20], many algorithms
have been developed to compute a Walras' equilibrium in a general equilibrium model.
In this paper we intend to give an exposition on simplicial algorithms for finding an
equilibrium price system and their interpretation as a price adjustment mechanism. In
this exposition we are mainly concerned with variable dimension restart algorithms. Such
an algorithm was first introduced by the authors in 1979.

In the fifties Debreu [2), Gale [14], McKenzie [37,38], and others developed a
theory from basic azioms on the existence of a market clearing price system in an
economy where the agents act as price takers. This theory answered the first question of
Walras' research programme, see Ingrao and Israel [IS], but did not say anything about
the computation of such a market clearing price system. A further question in Walras'
program was the existence of an effective price mechanism, that is a globally and
universally converging price adjustment mechanism. A mechanism is globally convergent
if it converges to some price equilibrium from any starting point. A mechanism is
universaily if it converges for any economy which is described in terms of standard
quasi-concave utility functions. We know that the classical Walras' tatonnement process
may fail to converge to a vector of equilibrium prices, even when the set of initial price
systems is restricted. In fact, neither global nor local convergence can be guaranteed. So,
the mechanism is not effective (see Saari and Simon [42]). Counterezamples where the
prices can spiral forever have been constructed by Scarf [45]. Sonnenschein [52] proved
that any continuous function satisfying Walras' law can be realized as the excess demand
function for some pure exchange economy. So, we need a process that converges
universally and globally, i.e., a process that converges for any continuous function
satisfying Walras' law and from any initiai starting price vector.

While the classical Walras' tatonnement process does not converge universally, for
Smale's global Newton process (see Smale [50)) convergency may not hold for an
arbitrarily chosen starting point. ln [42] it is shown that an effective mechanism needs
information about both the excess demand at any price and the value of the gradients of
all except one of its component functions. Saari [41] further concludes that there does
not exist an iterative, globally and universally convergent mechanism which depends
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only upon a finite amount of information about the ezcess demand function and its
derivatives. So, other information is required to design a global and universal iterative
price mechanism. Saari suggests that a mechanism which depends on values of prices
could be a possible option. This brings us to Scarf-type alEorithms. In such an algorithm
an approximate equilibrium price system is computed by generating a sequence of
adjacent simplices in a simplicial subdivision of the unit price simpiex. Each new
simplex is obtained from the previous simplex by replacing one of its vertices by a new
vertex. At each new vertez the excess demand function is evaluated. This evaluation
determines the next vertex to be replaced. This vertex and the location of the simplex
uniquly determine the next simplex to be considered by the algorithm.

In this paper we expose Scarf-type algorithms to find an equilibrium price vector
in an exchange economy. We are mainly concerned with algorithms on the unit price
simplex. However, we should be aware about the generalizations of these algorithms to
other spaces, namely the Euclidean space and the product space of several unit price
simplices. These generalizations allow us to handle with more complex general
equilibrium models or to utilize some specific structure in pure exchange models.

The original Scarf algorithm to find an approzimate equilibrium price vector
starts at a corner of the unit price simplex. Also the two algorithms of Kuhn start at the
boundary of the unit simplex. The accuracy of the approximate solution generally
increases if the mesh of the underlying simplicial subdivision decreases. If a given
approximate solution is found to be of insufficient accuracy, the subdivision needs to be
refined. Since the algorithms of Scarf and Kuhn have to start on the boundary of the
unit simplez the computational results are of slow speed. To overcome this inefficiency
Eaves [9] presented a simplicial algorithm which continuously refines the subdivision by
embedding the unit simplex in a one higher dimensional space. This has given a vast
improvement in computational speed.

Another approach to computing approximate solutions of increasing accurac~ is
the use of a restart algorithm. A restart algorithm is an algorithm which can be initiated
at an arbitrary grid point. Successive restarts with subdivisions having decreasing mesh
sizes yield increasingly more accurate solutions. Every restart is initiated at or close to
the previous found approzimate solution. These methods are used now in virtually all
practical applications.

Merrlll [39] first introduced a restart algorithm for solving systems of nonlinear
equations. Kuhn and MacKinnon [21] proposed a similar algorithm for fixed point
problems on the unit simplex. The restart possibility is obtained by introducing an
additional dimension and embedding the unit simplex in the product of itself and the
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interval [0, I]. In a subdivision of this product space in simplices the algorithm traces a
sequence of simplices. lt starts with a simplex having a facet on the zero-level
containing the unique, known solution of a well-defined artificial problem, and the
sequence ends with a simplex having a facet on the one-level containing an approximate
solution to the real problem.

Whereas the algorithms of Scarf and Kuhn generate a sequence of adjacent n-
dimensional simplices in a subdivision of the n-dimensional unit simplex, the algorithms
of Eaves and of Kuhn and MacKinnon trace a path of (ntl)-dimensional simpiices. The
restart algorithm of van der Lasn and Talman [27] bypasses the introduction of an
artificial dimension and traces a path of simplices of varying dimension in the
subdivision of the unit simplex. This path starts at an arbitrary grid point representing a
zero-dimensional simplex, and terminates at a full-dimensional simplex containing an
approximate solution point. The attractiveness of this restart method lies in the fact that
movements with simplices of varying dimension in the n-dimensional unit simplex are
typically faster than movements with full-dimensional simplices in an (ntl)-dimensional
set.

In the algorithm of van der Laan and Talman the function value at the starting
point determines a unique ray out of ntl possible rays along which the starting point is
left. The directions in which the rays point are induced by the underlying simplicial
subdivision of the unit simplex. Simplicial subdivisions introduced in van der Laan and
Talman [29J and Doup and Talman [5] yield different directions. This has resulted in
both an improvement of the computational efficiency and a more reasonable
interpretation of the path followed by the algorithm as a price adjustment mechanism. A
further development can be found in Doup, van der Laan and Talman [7] in which an
algorithm is introduced having 2ntl-2 rays to leave the starting point.

This work has been extended into several directions. In van der Lasn and Talman
[28] and in Todd [55] an (ntl)-ray variable dimension simplicial algorithm for solving
systems of n-dimensional nonlinear equations has been given. Further results in
designing simplicial algorithms for solving this problem can be found in van der Lsan
and Talman [31, 32], Reiser [40], Todd [57], WriQht [59], Kojima and Yamamoto (17,18],
SaiQal [44], Yamamoto [60), van der Laan and Seelen [26], and Broadie [1]. Variable
dimension simplicial algorithms also have been developed for solving the nonlinear
complementarity problem on the product space of several unit simplices. Therefore we
refer to van der Laan and Talman [33], Doup and Talman [5], van der Laan, Talman
and Van der Heyden [35], Freund [13], and Doup, van den Elzen and Talman [6].
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The work of van der Laan and Talman [34], van den Elzen, van der Laan and
Talman [ I I], and van dea Elzen and van der Laan [ 10] deals with the interpretation of
the various algorithms as price adjustment mechanisms. These adjustment processes are
governed by relating the value of the excess demand to the location of the corresponding
price vector with respect to the initial price vector. We will see that these processes are
both effective and economicly meaningfull as an alternative for the classical Walras'
tatonnement process.

In this paper we survey the simplicial algorithms literature mentioned above. The
paper is organized as follows. In the next section we formulate the problem of finding
equilibrium prices on the unit price simplex for a general pure exchange economy
model. The basic idea of simplicial algorithms on the unit simplez is given in Section 3
by exposing the algorithm of Scarf. Moreover, in that section we handle briefly with the
restart method of Kuhn and MacKinnon and the continuous deformation method of
Eaves. The basic idea of a variable dimension restart algorithm on the unit simplex is
given in Section 4. Section 5 deals with vector labelling algorithms. Section 6 considers
the paths followed by the algorithms as price adjustment mechanisms. Finally, in Section
7 we discuss the generalization for solving problems on the product space of several unit
simplices.

2 General ~ure exchanae economv model

simplex

In this paper we deal with excess demand functions on the n-dimensíonal unit

Sn -{x E Rn}11 Ej xj ~ l, xj ~ 0, j a 1,...,ntl).

In case of a competitive exchange economy with ntl commodities, Sn is the price
simplex with the sum of the prices normalized to one. Suppose we have an economy
with m consumers and for each consumer i~ 1,...,m holds

a) the consumption set X~ is a compact, convex subset of Rtntl, containing the
set

(x E Rntl~ 0 ~ xj ~ wj, J~ 1,...,ntl},

where w' is the (ntl)-vector of initial endowments of consumer i and wj-Eiw~j
b) w'ji0 for all i,j
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c) the preferences of the consumers are continuous, monotonic and strictly
convex.

Let x~(p) be the demand of consumer i given price pESn, i.e., x~(p) is preferred by i to
all other consumptions x~ subject to xEX~ and pTx~pTw~. Then the (total) ezcess demand
function z defined by z(p)-Ei(x~(p)-w~) belongs to the class of continuously
differentiable functions from Sn to Rntl satisfying

i) for all pESn, pTZ(p)-0 (Walras' law)
ii) zj(p)~0 if pj-0 (nonnegative excess demand at zero price).

s s sA price vector p is called an equilibrium price vector if z(p )-0, i.e., if p is a zero
point of z.

From Sonnenschein [52] and Debreu [3] we know that any continuously
differentiable function satifying i) and ii) can be obtained as an excess demand function
of some pure exchange economy. So, we want to have computational procedures and
price adjustment mechanisms that are effective for this whole class of functions. In this
paper we will even allow for a more general class of functions. Clearly the next
definition contains the class of functions given above.

Definition 2.1. A continuous function z: Sn-.Rntl is an excess demand function if there
exists a nonnegative function y: Sn-.Rn}1 such that

i) for all pESn, yT(p)z(p)s0

ii) yi(p)~0 if pi~0

iii) zj(p)~0 if pj-0.

Example. (Price rigidities). Suppose that for an exchange economy with m consumers and
ntl commodities the conditions i)-iii) above hold. Further assume that the set of
admissible prices is given by

P-(P E R}nt1~0 ~ plj ~ pj ~ puj for all j).

Clearly, P does not necessarily contain a vector p~ such that z(p~)s0. Drèze [8] defined
an equilibrium concept with quantity constraints on the excess supplies and the ezcess
demands. The ezistence of an equilibrium with quantity constraints on the supplies only
has been proven by van der Lsan [24,25] and Kurz [22]. Such a supply-constrained
equilibrium is an allocation z~, i~l,...,m, a price vector pEP, and a rationing scheme r~0
such that
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Sl) for all i, x' is a maximal element with respect to the preferences of i in the
set

B'(P,r) ~{XEX1I PTx 5 pTw', x-wl~r}

S2) Ei x~-~i wi

S3) rj--oo if pj~plj jzl,...,ntl

S4) rjL-oo for at least one j.

To show the existence of such an equílibrium we construct an excess demand function
for which a zero point yields a supply-constrained equilibrium. For qESn, let p(q) and
r(q) be defined by

Pj(q) - max [plj, qjpuj~maxh qh] 1-1,...,nt1

r-(q) - -min [1, q.pu ~max wJ J j h qh] j jzl,...,ntl.

Let x'(q) be the optimal consumption in the budget set

Bl(q) -{xEX'I PT(q)x 5 PT(q)wl. R-w1~Kq)}

and let z(q)aEixl(q)-w. From the conditions i)-iii) it follows that xl is a continuous
function of q and satisfies pT(q)x'(q)~pT(q)w'. Hence z is a continuous function from Sn
into Rn}1 satisfying yT(q)z(q)~0 for all qESn, with y(q)~p(q)~0. Furthermore, qj-0
implies rj(q)-0 and hence zj(q)~0. So, z is an excess demand function. Clearly, xl(q;),
i-1,...,m, p(q~) and r(q~) is a supply-constrained equilibrium iff z(q~)-0.

The example shows that Definition 2.1 covers excess demand functions z which
may arise both from an economy with flexible prices (Walrasian) as well as from an
economy with bounded prices.

The existence of a zero point of a given excess demand function on Sn follows
from the theory of fixed points. Any continuous function which maps the unit simplex
into itself has according to Brouwer's theorem a fixed point. It is well-known how to
construct such a function for which x~ is a fixed point if and only if z~ is a zero point
of z. In fact, the existence of a zero point of an excess demand function is equivalent to
the existence of a fixed point of a mapping from the unit simplex into itself (see e.g.
Uzawa [58] or Scarf [48]). The fixed point theorem is also equivalent with the
intersection theorem of Knaster, Kuratowski and Mazurkiewicz [16] on the unit simplex.
A dual analogue of this theorem can be found in Scarf [47] and can be stated as follows.



Theorem 2.2. (Scarfs intersection theorem). Let CI,...,Cn~l be ntl closed subsets of Sn,
with the properties:

a) Sn is covered by the union of all sets Ci, i-1,...,nt1
b) for each p in Sn, pis0 implies pECi, i.e., the set of points for which the i-th
component is equal to zero is contained in Ci, for i-1,...,nf1.

Then the intersection of all sets Ci is not empty.

A constructive proof of the theorem will be given in the next section. We use the
intersection theorem to prove that any excess demand has a zero point.

Theorem 2.3. Let z be an excess demand function. Then there exists a p~ in Sn such thats
z(P )-0.

Proof. For i-1,...,nt1, let Ci be defined by

Ci ~(pESnIPi-O or zi(P) ~ maxh zh(P)}. (2.1)

Clearly, these sets satisfy the conditions of Theorem 2.2 and hence there exists an
s

intersection point p. From the definition of the sets Ci it follows that for each i,s
zi(p )~maxh zh(p~) if p~i is positive. Suppose that p;i~0 for all i. Then
yT(p~)z(p~)-Eiyi(p~)maxh zh(p~)-0. Since yi(p)i0 if pii0 we obtain that zi(p;)amaxh
zh(p~)30. If, for some i, p~i-0, then maxh zh(p~)~0 because zi(p~)~0, so that zj(ps)~0 for

~ ~all j. Since for at least one j, p j~0 and hence also yj(p )~0, it follows from: .
yT(p )z(p )-0 and yi(p')~0 for all i, that mazh zh(p~)S0. Consequently z(p~)-o, which
proves the theorem.

The proof of Theorem 2.3 shows that an equilibrium price vector is an
intersection point of the sets Ci defined in (2.1). In the next sections we will see that the
basic idea of a simplicial algorith:n is to find such an intersection point approximately,
i.e., to approximate a zero point of z by a point lying close to all Cis.

We conclude this section with a more general existence theorem.

Definition 2.4. A continuous function z: Sn-yRntl is a generalized excess demand
function if there exists a nonnegative function y: SnyRntl such that

i) for all pESn, yT(p)z(p)-0

ii) yi(p)i0 if pii0

iii) if pj-0, then zj(p)~0 or yj(p)s0.
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Theorem 2.5. Let z be a general excess demand function. Then there exists a p; in Sn
s

such that z(p )~0.

Proof. Again the proof follows from the intersection theorem by taking the sets Ci as
s s s

defined in (2.1). If p is positive, then again zi(p )-maxh zh(p )-0 for all i. If, for some
s s s

i, p i-0 and zi(p )~0, then maxh zh(p )~0, and with condition iii) we have that
~ s r

yj(p )zj(p )~0 for all j. From condition i) it follows that maxh zh(p )-0 and hence that
z(p~)~0. Finally, if yi(p!)~0 for all i with p~i~0, it follows from yT(pt)z(p4)-0 and
condition ii) that mazh zh(p~)~0.

We notice that for a solution point p~, zi(p~) can be less than zero only if psi-0.
Therefore we call this ezistence problem the NonLinear Complementarity Problem
(NLCP) on Sn. By taking C.~{pESn~z-(p) - max z si i h h(p)}, i-1,...,ntl, a point p is a
solution to the NLCP with respect to z iff for all i, ps~0 or p~ECi. Clearly, these sets
Ci do not satisfy condition b) of Theorem 2.2. However, from the intersection theorem
the next corollary follows immediately (see also Freund [13] or van der Laan, Talman
and Van der Heyden [35J).

Corollarv 2.6. (Generalized intersection theorem). Let C1,...,Cntl be ntl closed, possibly

empty, subsets of Sn covering Sn. Then there exists a point pt with for all i, piis0 or
s

p ECi.

3. Simr)licial alaorithms: the basic idea.

In this section we expose a simplicial algorithm for finding an intersection point
that is closely related to the original algorithm of Scarf, see Scarf [46,47]. First some
notation is introduced.

The vertices of Sn are denoted by e`, the i-th unit vector in Rn}1, i-1,...,nt1. A
t-dimensional simplex or t-simplex in Rn}L is the convex hull of ttl linearly
independent points in Rntl, called the vertices of the simplex. A t-simplex a with
vertices vl,...,vttl is denoted by a(vl,...,vttl). A k-face of a t-simplex o, k~t, is the
convez hull of kf 1 vertices of o. A k-face of o is called a facet of a if kLt-1. The facet
r(vl,...,vi-1 vitl ,vttl) of o is denoted by r(v-1). The facet of Sn with xk-0 is denoted

by Snk, k~l,...,ntl.

Definition 3.1. A finite collection of n-simplices with vertices in Sn is a simplicial

subdivision or triangulation of Sn if

i) Sn is the union of the simplices
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ii) the intersection of any two simplices is either empty or a common face of
both of them.

By the restrictions i) and ii) a simplicial subdivision has the property that any two
simplices can not have interior points in common. Moreover, any facet of a simplex is
either a facet of just one other simplex or lies in the boundary of Sn and is not a facet
of any other simplex.

Together with the concept of a simplicial subdivision the concept of a labelling
plays a central role in the theory of simplicial algorithms. Let In~l denote the set of
integers { I ,...,nt 1 }.

Definition 3.2. A labelling function l on Sn assigns to each element zESn a label
l(x)EInt l ~

Definition 3.3. An n-simplex o(vl ~vntl) is completely labelled if Intl -
{l(v 1),...,1(vnt 1)}.

Definition 3.4. A facet r(v-') of an n-simplex o(vl,...,vntl) is almost-complete if
{1(v l ),...,1(vi-1),l(vit 1) ...,I(vnt 1))-{2,...,ntl }.

Definition 3.5. An n-simplex is almost-complete if it has at least one almost-complete
facet.

Since an almost-complete n-simplex bears the labels 2,...,nt1 on its ntl vertices,
at most one of these labels occurs twice. So, the next lemma follows immediately.

Lemma 3.6. An almost complete simplex is either completely labelled or has just two
almost-complete facets.

In applying a simplicial algorithm for finding an intersection point of ntl sets
satisfying the conditions of Theorem 2.2, an appropiate labelling function is defined
such that a completely labelled simplex yields an approzimate intersection point. A
simplicial algorithm searches for a completely labelled simplex. The ezistence of a
completely labelled simplex is guaranteed by asserting a properness condition for the
labelling on the boundary of Sn.

Lemma 3.7. (Sperner's lemma [51 ]) Let 1 be a labelling on Sn satisfying 1(x)~i if zESni,
iLl,...,ntl. Then a simplicial subdivision of Sn contains a completely labelled simplex.
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The properness condition !(x)~i if xiz0 implies that l(et)-i, i-1,...,nt1. The Sperner-
properness condition is enough for the existence of a completely labelled simplex. In the
algorithm of Scarf a dual properness condition is utilized.

Dual Pro~erness Condition: A labelling is said to be dual proper or "Scarf proper" when
1(x)E{iEIn}1~xi-0} if x is on the boundary of Sn.

This condition does not guarantee that each label appears at least once on the set of
vertices. The subdivision must be sufficiently fine in order to guarantee a completely
labelled simplex. For instance, if there is only one simplex in the subdivision, the
simplex Sn itself, then we can easily assign a label to each el, such that Sn is not
completely labelled.

Lemma 3.8. (Dual Sperner's lemma). Let l be a dual proper labelling and assume that for
a simplicial subdivision no simplex has a non-empty intersection with every facet Snk.
Then there ezists at least one completely labelled simplez.

The lemma can be proved by embedding Sn in a larger simplex (see Scarf [48]). Here we
prove the lemma for a specific triangulation and labelling. When applying Scarf's
algorithm for this triangulation and labelling, a path of simplices is generated, which
terminates with a completely labelled simplex.

Let G be a triangulation of Sn having, for some 0~~~1, the convex hull 00 of
sw-e 1 and w1-~e 1 t(1-a)e', i~2,...,nt 1 as a simplex (see figure 1). Moreover, let l be a

dual proper labelling such that for x on the boundary of Sn, l~(x)-i-1 with i the least

index for which xi-190 and xi~0 where i-lantl if i~l. Now, we have the following

properties:

i) a0 is the only simplex of G having el as a vertez
ii) l~(wl)sl~(w2)3nt1, li(wt)zi-1, i-3,...,nt1, and hence r(w-1) and r(w-Z) are
the two almost-complete facets of a0

iii) the facet r(w-2) of o0 is the only almost-complete facet in the boundary of
Sn.

We are now ready to describe the algorithm which finds for a labelling l~ a
completely labelled simplez in a simplicial subdivision G having a0 as a simplex. The
algorithm starts with o0, leaves this simplex through the almost-complete facet r(w-1),
and finds the unique simplez al sharing this facet as a common facet with o0. If the
vertex, say v, of ol opposite r{w-1) has label I, then ol is completely labelled and the
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algorithm terminates. If !(v)-j, j~l, then the facet of ol opposite the vertex w~ (i~l)
with label j is also almost-complete and the algorithm proceeds with the unique simplex
02 having the almost-complete facet opposite w' in common with al. The algorithm
continues by determining in each new simplex o the label of the vertex of o opposite the
facet shared with the previous simplex and going to the unique simplex having the facet
opposite the vertex with the same label in common with v, until a vertex carries label 1.
ln such a way a sequence of adjacent simplices is generated from a0 in which each pair
of adjacent simplices has an almost-complete facet in common. The door-in door-out
principle which first appeared in Lemke and Howson [36J proves that the sequence
terminates with a completely labelled simplex within a finite number of steps. The
finiteness argument is based on the fact that no simplex can be visited more than once.
Since the number of simplices is finite the algorithm must then terminate, either with a
completely labelled simplez or with a simplex having the almost-complete facet opposite
the vertex to be replaced in the boundary of Sn. However, according to property iii)
only the facet r(w-2) of o0 lies in the boundary of Sn. So, in this case the algorithm
must have been returned in the starting simplez. This simplex can only be entered
through the almost-complete facet in common with ol and hence the algorithm must also
have been returned in ol. Now, suppose that in the sequence of generated simplices a~,
j-1,2,..., for some h, h?2, all simplices o~, j-1,...,h-l, are different and that oh - o~ for
some i, 15i~h. Since a' can only be entered through the two almost-complete facets in
common with the adjacent simplices o'-1 or a'tl we must have that either ah-1 a ol-1 or
~t-l s~tl. Unless h-13it1, this contradicts the fact that all simplices up to oh are
different. On the other hand, 0'}1 has been entered and left through two different
almost-complete faceu which excludes that oi}2 s o' and hence each simplex can nly be
visited once. So, seeing almost-complete simplices as rooms and the almost-complete
facets as doors, the door-in door-out principle shows that the algorithm must terminate
with a room having one door, being a completely labelled simplex. This shows the
existence of a completely labelled simplex for a dual labelling !~ and a triangulation G
having o~ as a simplex. In Figure 1 the algorithm is illustrated for na2.

The existence of a completely labelled simplez immediately proves the existence
of an intersection point for sets Ci satisfying the conditions of Theorem 2.2. Observe

s
that a labelling ! and condition b) of Theorem 2.2 imply that l(z)E{i~zECi} for x on
the boundary of Sn. Now, for interior points x we choose !s(x) also such that~
!(z)E{i~zECi}. Let o(vl,...,vntl) be a completely labelled simplex for the labelling 1 and
let the vertices be indexed such that v' has label i, i-1,...,ntl. By definition, v'ECi,
i-1,...,ntl, and hence any point x in o lies close to Ci, i~l,...,ntl. Let Gk, k~1,2,..., be a
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sequence of triangulations with mesh size tending to zero if k goes to infinity, let ak be

a completely labelled simplex in Gk, and let xk be any point in o~. Then it follows from
the compactness of Sn and the closedness of the sets Ci that there is a subsequence xk(~),
j-1,2,..., with limit point x in the intersection of all sets Ci.

e(3)

e(1) 3
Figure l. Scarfs algorithm, na2

e(2)

The reasoning above gives two results. Firstly, it shows the existence of an
intersection point as stated in Theorem 2.2. Secondly, we have that for a sufficiently
fine subdivision, each point x~ in a completely labelled simplex for a labelling 1'
satisfying 1(z)E{ilxECi) is an approximate intersection point, in the sense that x~ lies
close to each set Ci, where the distance depends on the mesh size of the subdivision and
goes to zero if the mesh size tends to zero. So, with the sets Ci as defined in (2. I), an

approximate zero point can be found for any excess demand function z by applying a

simplicial algorithm in an appropriately labelled triangulation.

Kuhn [19,20] introduced two similar algorithms for Sperner-proper labellings. For

an appropriately chosen proper labelling function, again a completely labelled simplex
yields an approximate zero point of z. However, all these originating or "first-generation"

simplicial algorithms have a major drawback. They suffer from inefficiency. They all

have to start outside the region of interest, namely in a vertex or on the boundary of Sn.
If an approximate zero point has been found, whose accuracy is not satisfactory, then we

have to start again with a finer grid in a vertex or on the boundary of Sn, and all
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information about the location of the solution obtained from the previous calculations
becomes worthless. So, as could be expected, soon after these algorithms "second-
generation" algorithms were introduced. These algorithms, of Eaves [9] and of Kuhn and
1`1acKinnon [21 ] permit to utilize information obtained at an approximate zero for
finding an approximate zero in a finer simplicial subdivision.

The Sandwich method of Kuhn and MacKinnon, which is essentially identical to
a method of Merrill [39] to solve zero point problems on Rn, permits to start at an
arbitrary point of the simplex by embedding Sn in the set Snx[0,1]. The latter set is
subdivided into (ntl)-dimensional simplices, such that for each vertex (w,a) of the
triangulation, aE{0,1 }. Now, let v be an initial guess of the solution point, for instance
obtained from a previous application of the algorithm with a larger mesh size. To find a

snew approximation, all vertices in Snx{ 1) are labelled by 1 as above. However, the
labelling on Snx{0} is completely determined by v. Assume that (v,0) lies in the interior
of an n-simplex, say r, in Snx(0), being a facet of only one (nt 1)-simplex, say o, of the
subdivision. If not, v is slightly perturbed. Now, on Snx(0) we take a proper labelling !s
such that r is the only simplex with label set equal to Int l. For instance, 1 (x)-i-1 with i
the least index for which xi-l~vi-l and xiivi (i-l~ntl if i-1). Since v is in the interior
of r and hence in the interior of Sn, this labelling is dual proper on the boundary of
Snx(0). Since r is in Snx{0}, the vertez of o opposite r lies in Snx{1}. Suppose this vertex
has label j. Then the facet of v opposite the vertex of r with label j is also completely
labelled. In other words, the (ntl)-simplex o has just two completely labelled facets,
namely r and the facet opposite the vertez of r with label j. Now, again by the door-in
door-out principle, the Sandwich method generates a sequence of different adjacent
(ntl)-simplices having completely labelled common facets. Since the number of simplices
is finíte, within a finite number of steps we must find an (ntl)-simplez having a
completely labelled facet on the boundary of Snx[0,1]. Since each simplex is visited at
most once, this simplex can not be a and hence the facet can not be r. Moreover, there
are no other completely labelled n-simplices in Snx(0}, while the dual properness of the
labelling guarantees that there is no completely labelled facet in bd(Sn)x[0,1]. So, the
algorithm must terminate with an (ntl)-simplex having a completely labelled facet in
Snx{ 1}. Since the labelling of the vertices in Snx(1 } have been derived from the original
problem this n-simplex yields an approximate solution point. The algorithm is illustrated
in Figure 2 for n-l.
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Snx{0}
L~~~~~~

r 1 1

Figure 2. Sandwich method, n-1

While the Sandwich method allows to start at an arbitrary point of the simplex,
Eaves' method is based on a continuous refinement of the grid. More precisely, Sn is
embedded in Snx[l,oo) and this set is subdivided into (nfl)-simplices, such that for each
vertex (w,a), a-2k, for some k, k~0,1,2,.... Moreover, for all k-0,1,2,..., the subdivision
induces a subdivision of Snx[2k~2kt1] into a finite number of (ntl)-simplices and a
subdivision Gk of Snx(2k} in n-simplices, such that each Gktl is a refinement of Gk.
Finally, GD consists of only one simplez, namely Snx{1}. Each vertex of the triangulation
is labelled according to li. This labelling assures that Snx{1} is the only completely
labelled facet in the boundary of Snx[ I,oo). Starting with the unique (nf 1)-simplez having
Snx{ 1} as a facet, a sequence of adjacent simplices having completely labelled common
facets is generated. Since, for any k, the number of simplices in Snx[1,2k] is finite, the
algorithm must find within a finite number of steps (a simplex in Snx[2k-1,2k] having) a
completely labelled facet in Snx(2k} (in common with a subsequent simplex in
Snx[2k,2kt1]) For k large enough, such a facet yields an approximate solution point
with acceptable accuracy. It should be remarked that although each level k will be
reached within a finite number of steps, the algorithm can return to previous levels.

4 A variable dimension alaorithm

The second-generation algorithms of Kuhn and MacKinnon and of Eaves gave a
substantial improvement of the efficiency of simplicial algorithms. In both methods a
path of (nf1)-dimensional simplices having completely labelled common facets is
generated. To do this the n-dimensional unit simplex Sn is embedded in an (ntl)-
dimensional space. The algorithm of Eaves is rather complicated to work with, because
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of the construction of a simplicial decomposition of the product space with decreasing
mesh size. On the other hand, the Sandwich method is rather easy to implement. This is
one reason to be in favor of the Sandwich method. Another reason is its greater
flexibility. In Eaves' method the mesh size is halved between each two levels. [n many
cases, it may be much more efficient to decrease the mesh size with a larger factor.
Some work in this direction has been done, see e.g. Saigal [43]. Saigal showed that under
some conditions the algorithm may jump from a certain level to a higher level without
bypassing the levels between. Of course, in this case the algorithm can not return to the
lower level. Later on there also appeared subdivisions allowing for a larger grid
refiaement between two levels, see vaa der Lsan and Talman [30] and Shamir [49].

The Sandwich method allows for any factor of refinement at a restart. Together
with its simplicity this resulted in a lot of attention for the Sandwich method. However,
there is one drawback. In each run about half of the generated vertices lies in the
artificially labelled level Snx{0}, implying that about half of the effort is spent without
obtaining any new information. In the integer labelling version of the algorithm
considered so far this does not matter too much. However, in general it is much more
efficient to use vector labelling. Under vector labelling each vertex receives an (ntl)-
vector as Label instead of an integer. Then the algorithm operates by making alternately a
replacement step in the simplicial subdivision and a linear programming pivot step with
the label of the new vertez in a corresponding system A~b of ntl linear equations with
the labels of the current vertices being the columns of the matrix A. The linear
programming pivot step eliminates one of the columns and determines in this way the
next vertex to be removed. An approximate solution is found as soon as all columns of
A correspond to vertices on the real level. Before reaching such a'solution system' about
ha(f of the linear programming steps will be made with labels corresponding to
artificially labelled vertices. To minimize the work on the artificially labelled level Todd
[56] utilized the linearity of the artificial function. This linearity allows for combining
n-simplices on the artificial level into polyhedra. This reduces the number of vertices
and therefore the amount of work to be done with artificial labels.

At the end of the seventies ran der Laan and Talman [27] introduced a new
restart algorithm. This algorithm can be described by embedding Sn into Snz[0,1] with a
subdivision having Sn itself as the only n-simplex on the zero-level, see e.g. Todd [55]
and van der Lasn [23]. So, in this case the number of vertices on the zero-level achieves
its absolute minimum. However, it is much more attractive to describe the algorithm as
generating in a subdivision of Sn a sequence of adjacent simplices of variable dimension.
The sequence starts at an arbitrary grid point, and can therefore start anywhere, and
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terminates at a full-dimensional simplex containing an approximate solution point. The
attractiveness of this method lies in the fact that movements with simplices of varying
dimension in Sn are typically faster than movements with (ntl)-dimensional simplices in
Snx[0,1 ].

We now consider the variable dimension algorithm in more detail. The original
algorithm utilizes the well-known Q-triangulation of Sn (see e.g. [23] or [54}). Given
some mesh size m-l, this triangulation subdivides Sn into simplices o(vl, ,vn}1) ~vith
v1-(kl~m,...,kntl~m)T for some nonnegative integers kl,...,kn}1 summing up to m and
with vt}1-vtt(e(xt)-e(xt-1))~m, tzl,...,n, where (al,...,xn) is a permutation of the
elements of the set of integers In. Given m, this triangulation is fixed and the starting
point v must be an element of the vertex set {wESnlw-(kl~m,...,kntl~rn)T for
nonnegative integers kl,...,kn}1 summing up to m}. However, in a later version of the
algorithm the starting point v can be any arbitrarily chosen point of Sn and the
algorithm operates in the V-triangulation induced by the starting point v. This version
of the algorithm is not only more efficient but also more attractive from a didactical
viewpoint.

To describe the algorithm, let v be an arbitrarily chosen point in, for simplicity,
the interior of Sn. Then, for any proper subset T of Intl~ the t-dimensional subset A(T)
of Sn, where t-~Tj, is defined as the convex hull of the point v and the vertices e(i),
iET, of Sn, i.e.,

A(T) z{x E Sn ~ x a v t Ei ai(e(i) - v), with ai i 0, i E T}.

For na2 the sets A(T) are illustrated in Figure 3. Observe that the collection of sets
A(T), T a proper subset of Int 1~ induces a simplicial subdivision of Sn, such that for
each pair S,T with ScT, A(S) is a face of A(T), while the intersection of two sets A(T)
and A(S) is the common face A(SnT). In particular, for i~l,...,ntl the set A({i}), in the
sequel to be denoted by A(i), is a one-dimensional face being the line segment
connecting v and the vertex e(i) of Sn, i.e., A(i) is a ray pointing from v to e(i). Further,
A(f6) -{v}, i.e., A(~) is the zero-dimensional simplex o(v). Finally, observe that for
T~k~, the face Conv{e(iNiET} of Sn, where Conv means convex hull, and the sets
A(T`{h}), hET, are the ttl facets of A(T). The V-triangulation of Sn, illustrated in
Figure 4 for n~2, subdivides each t-dimensional set A(T) into t-dimensional simplices.
For a formal description of this triangulation we refer to Doup and Talman [5] and Doup
[4J.
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e(3)

Figure 3. The sets A(T), n-2

e(3)

e(1)

A(2)

e(2)

e(2)

Figure 4. The V-triangulation of Sn, n-2
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It is now very easy to expose the variable dimension algorithm. In fact, it ic

described by the next device:

starting with the zero-dimensional simplex o(v), generate Jor various T and
corresponding t-~Tj, a sequence oJ adjacent t-simplices in A(T), such that the
common (t-I)-Jacet oJ two adjacent simplices in A(T) has labelset T, i.e., the
vertices oJ such a Jacet jointly bear al! the labels in T.

This device is extremely simple and operates as follows. First the starting point v is

evaluated and suppose that this vertex has label í. For the moment we assume that we
s

have a dual proper labelling 1. The zero-dimensional simplex o(v) is a facet of a unique
one-simplex d(v,w) in A(i). Starting with this simplex in A(i), the algorithm continues
by generating one-dimensional simplices in A(i) having common vertices labelled i, until
a new label is found, i.e., a simplex is generated for which the new vertex has some
label ~i. Because of the sj proper labelling we know that 1 ( e(i))iti and therefore such a
simplez, say o(wl,w2), must ezist. This simplez is a facet of a unique 2-dimensional
simplex in A({i,j)). Then the algorithm continues by generating adjacent two-
dimensional simplices in A({i,j}) having common facets with vertices bearing the labels i
and j. Until now, only an increasement of the dimension has been possible. However, we
now come to the general case. For some set T, let tho algorithm generate a sequence of
different adjacent t-simplices in A(T) having the t labels in the set T on the vertices of
the common facets. Such a facet is called T-complete. If a new label j is found and
Tu{j} ~ Intl, then the current t-simplez in A(T) is a(Tu{j})-complete facet of a
unique ( ttl)-simplez a(wl,...,wt}2) in A(TU{j}) and, starting with this simplex a, the
algorithm continues by generating adjacent (ttl)-simplices in A(Tu{j}) having (Tu{j})-
complete common facets. If TU{j} ~ Intl the current simplez is completely labelled and
the algorithm terminates. On the other hand, operating in A(T), a simplex a can be
generated having a T-complete facet, say r(wl,...,wt), in the boundary of A(T). Because
of the proper labelling r can not lie in the face Conv(e(i)~ieT} of Sn. Hence, for some
hET, the facet lies in A(T`{h}). Guided by the device, now the vertez of o not in r is
eliminated, label h is deleted from the current label set T, and the unique vertez of r
having label h is replaced, i.e., starting with r the algorithm continues by generating
adjacent ( t-1)-simplices in A(T`{h) having ( T`{h))-complete common facets.

Again all steps are uniquely determined. Since, for each T, TcIntl, the total
number of t-simplices is finite, the door-in door-out principle again guarantees that the
sequence of generated simplices ends with a completely labelled simplez within a finite

number of steps. If the labelling has been induced by an excess demand function any
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point in the completely labeiled simplex yicds an approximate zero point. If the accuracy
of an approximate solution x~ is not satisfactory, a restart can bc madc with v equal to
x~ and a finer subdivision of the new regions A(T). Successive restarts with simplicial
subdivisions having decreasing mesh sizes yield increasingly more accurate approximate
solutions.

For n-2 the algorithm is illustrated in Figure 5. Before finding a completely
labelled simplex, the algorithm operates in A(1), A(1,2), A(2) and A(2,3) succesively.

e(3)

e(1) ~ 'e(2)

Figure 5. The variable ciimension algorithm, n32

We conclude this section with some remarks. First, recall that when the algorithm
operates in A(T), a sequence of adjacent t-simplices in A(T) is generated having
common facets with labelset T. Of course, except for the sequences generated by the
algorithm also other such sequences may exist. By the door-in door-out principle each

sequence is either a loop or a chain having two terminal simplices. As described above,
for given T a terminal simplex is either a t-simplex having, for some hET, a facet with
labelset T in a facet A(T`{h}) oF A(T), or is a t-símplex with labelset Tu(k} for some
ktFT. Of course a simptex could present both features, in wh;ch case the chain reduces

to this single simplez. In the former case the boundary facet with labelset T is a terminal
simplex of a chain of (t-1)-simplices in A(T`(h}), in the latter case the t-simplez is

either a facet of a terminal (tfl)-simplex of a chain in A(Tu{k}) or, if Tu(j}~Intl, the

simplex is completely labelled. So, except for the terminal simplex o(v) in A(f6), each
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terminal simplex of a chain in A(T) for some fixed T is either completely labelled or
uniquely determines a terminal simplex of another chain. Chains can thus be linked
yielding loops or paths with two terminal simplices. Except for the terminal simpiex a(v),
each terminal simplex of a path is a completely labelled n-simplex. Thus there is a
unique path which connects o(v) with a completely labelled simplez. The algorithm
follows this path from v to the other terminal simplex whích will be completely labelled.
All other paths connect two completely labelled simplices. On the other hand for each
completely labelled simplex o there is a unique j, such that o lies in A(In~l`{j)) and is
therefore a terminal simplex of a chain in A(In~l`{j}). Hence each completely labelled
simplex is a terminal simplex of a path. This shows the well-known result that the
number of completely labelled simplices is odd.

The second remark concerns the labelling. In the description of the algorithm we
~used the properness properties of the labelling 1 to show that a terminal simplex of a

chain can not have a facet r with labelset T on the face Conv{e(i)~iET} of Sn. If we
allow a general labelling, i.e., a labelling 1 which does not have to satisfy any properness
condition on the boundary, a vertex on the boundary of Sn can posses any label in Intl.
Of course, in this case a chain in some region A(T) can have a terminal simplex having
a facet r with labelset T on the face Conv{e(i)~iET} of Sn. Now, consider such a facet r
with vertices, say wl,...,wt. Then {I(wl),...,1(wt))sT, while on the other hand for all x in
r, xi~0 for i~T. Hence we have that

{l(wl),...,1(wt)} u {i~xi~0 for all x in r} ~ Intl. (4.1)

Such a(t-1) simplex, t~n, is called complete. Observe that the sets on the left hand side
of (4.1) partition Int 1. For a completely labelled simplex we have that (4.1) holds with
tzntl and such a simplex is therefore also said to be complete. Linking all chains we
obtain by the same reasoning as above that there is a unique path having o(v) as one of
its terminal simplices and a complete simplex as its other terminal simplex, whereas all
other paths have two complete simplices as terminal simplices. So, in case of a general
labelling there is an odd number of complete simplices (including the completely labelled
simplices). See also Freund [12,13] and van der Laan, Talmsn and Van der Heyden [35].

If the general labelling ! is induced by a generalized ezcess demand function z
(i.e., z is not required to satisfy zi(p)i0 if pi-0), for example

1(P) E{i I zi(P) ~ maxh zh(P)),
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then it is not difficult to see that a complete simplex r yields an approximate solution
point to the NLCP with respect to z. Ciearly, for all p in r we have that pi~0 for i~T,
while the labelling assures that for all iET the corresponding ezcess demands are close to
each other and hence close to zero. This result also proves Corollary 2.6.

S. Vec[or IabellinQ algorithms

The variabie dimension algorithm described in the previous section generates a
sequence of adjacent simplices of varying dimension starting with a zero-dimensional
simplex and ending with a complete simplex (in case of an arbitrary labelling). In case
the labelling has been induced by a generalized excess demand function z the
terminating simplex yields an approximate solution to the NLCP with respect to z. Now,
for some T, let p be any point in a T-complete simplex o. Then T is a subset of the
labelset of o, i.e., for each i in T there is a vertex of o carrying label i. So, any point p
in o is close to Ci-{xESn~zi(x)-maxh zh(x)} for all i in T. Hence, for all i in T, there is a
positive e such that

maxh zh(P) - e ~ zi(P) ~ maxh zh(P) } E,

whereas for k not in T

zkíP) ~ maxh zh(P) t E,

(5.1)

(5.2)

where e depends on the mesh size of the underlying triangulation. If the mesh size tends
to zero, then e can be taken arbitrarily small so that approximately (5.1) and (5.2) reduce
to zi(p)~maxh zh(p) and zk(p)~mazh zh(p) respectively. In case of vector labelling a path
of points is followed by the algorithm along which for various T these properties exactly
hold for a piecewise linear approximation of z.

The piecewise linear approximation of z with respect to an underlying
triangulation of Sn is the function Z obtained by the linearization of z on each simplex
of the triangulation, given the function values on the vertices of the simplex. So, for a
point x in a(t-1)-simplex o(yl,...,yt),

Z(x) - Ei aiz(Y'),

with the nonnegative weights ai, isl,...,t, summing up to 1 given by the unique convex
combination of the vertices yielding x, i.e.,
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x - E~ aiYl.

The vector labelling algorithm then follows starting in p equal to v a path of points p
satisfying for some set T, TClntl, both pEA(T) and

Zi(p) z ~ for iET
and

Zk(P) ~ {~-l~k for kSET

for some ~ with ~~maxh Zh(p) and positive numbers ~k, k~T. Let o(yl~ ~yttl) be a t-
simplex in A(T) containing p. Then there are unique nonnegative numbers ai, i-1,...,tt1,
summing up to one, such that p~ Ei aiyl and Z(p) - Ei aiz(yl). Consequently, the
number ~4 and the nonnegative numbers ai, i-1,...,tt1, and ~k, k~T form a solution, to
be denoted by (a,~,~), to the system of nt2 linear equations

i~l~~ ( zly')) k~T k (e(~))
- ~(p) ~ (4) (5.3)

where e(k) is the k-th unit vector in Rnt 1~ e is an (nt1)-vector of ones, and Q is an
(ntl)-vector of zeroes.

Definition 5.1. Given a continuous function z: Sn-yRntl~ a t-simplex o(yl,...,ytfl) for
ts~T~~n is T-complete if the system (5.3) has a solution (a,~,~), with ai~0, ial,..,ttl, and
I~k?0, k~T.

We assume that at a feasible solution at most one variable of (a,u) is equal to zero
(nondegeneracy assumption). If, for some i~I,...,t, a~ z 0, then the facet r(y-r) of o is
also called T-complete. The nondegeneracy assumption implies that in this case all
variables ah, h~i, and ~k, k~T, are positive. If, on the other hand, ~k-0 for some k~T,
then o is also Tu{k}-complete. In this case all variables ai, i-1,...,tt1, and ~h, h~T`{k},
are positive. A solution with one of the variables equal to zero is called a basic solution.
The nondegeneracy assumption guarantees that the system (5.3) has a line segment of
solutions (a,~,~4). This line segment connects two basic solutions and can be followed by
making a linear programming pivot step in (5.3) with one of the variables that are zero
at a basic solution.



23

Definition 5.2. A T-complete simplex a(yl,...,yh}1), h-~T'~ or ~T~-1, ís complete if it has a
feasible solution (a,p,14) such that for all k~T,

or

xk-0forallxinv.

Theorem 5.3. For some T, let v be a complete T-complete simplex in A(T). Then, either
h~~Tj-n and uk-0 for k the unique element of Intl not in T, or h~Tj-1 and xk-0 for all
k not in T.

Proof. First, suppose h-~Tj. Because of the definition of A(T), a ~T~-dimensional simplex
in A(T) can not lie in the boundary of Sn and hence xk-0 can not hold for all x in o.
Thus o is complete if and only if ~k-0 for all k~T. The nondegeneracy assumption
implies that only one variable can be equal to zero and hence ~T'~an.
Second, suppose that h-~Tj-1. Then h~n since ~Zj~n. The nondegeneracy sssumption
implies that not all ~k, k~T, can be zero and hence xk~0 for all x in v.

We now show that a complete simplez yields an approximate solution in case z is a
generalized excess demand function. First, for some T with ~Tj~n, let o(yl,...,yntl) be a

complete T-complete n-simplex in A(T). Then the corresponding system (5.3) has a
sslution asi~0, i-1,...,nt1, {~;k-0, k the unique element of Intl not in T, and p~. With

x- Ei a iy' it follows from (5.3) that

~ ~ i ;Zk(x )- Ei a izk(Y ) z á k-1,...,ntl.

So, all components of the piecewise linear approximation Z to z are equal to each other
at x~ and hence the components of z at x~ are close to each other because of the
continuity of z. The accuracy again depends on the mesh size. The (generalized) Walras'
condition assures that all components are close to zero and hence that x; is an
approximate solution point. Secondly, for some T, let o(yl~ ,yhtl) be a complete T-
complete h-simplex in A(T) with hz~T~-1 and xk~0 for all k~T and all x in v, and with
solution ayi~0, i-1,...,htl, ~Rk~O, k~ T and ~~. With xt s Ei a~iyl it follows from (5.3)
that
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Zk(x.) - Ei a~izk(Yl) z l~~

Zk(x~) - Ei a~izk(Yl) - Qs -
~sk ` ~s

kET
k~T.

By a similar reasoning as above it follows that for all k, either x~k~0 and zk(z;) is close
to zero or z~k~0 and zk(zs) is negative or close to negative. So, again x~ is an
approzimate solution point.

Analogously to the device of Section 4 the vector labelling algorithm generates
for varying T, a path of uniquely determined adjacent simplices with T-complete
common facets in the region A(T) of the V-triangulation of Sn, leading from the
arbitrarily chosen starting point v to a complete simplez yielding an approximate
solution. Let ~'-zh(v)-mazk zk(v). Then a(v) is a zero-dimensional (h)-complete simplex
with solution a1-1 and ~ke~-zk(v) for k~h. The nondegeneracy assumption assures that
h is the unique index for which the maximum of the components of z is obtained at v.
The simplez a(v) is a facet of just one one-dimensional simplex o'(yl,y2) with yl-v in
A(h). Analogously to the case of integer labelling the vector labelling algorithm initially
generates a sequence of adjacent {h)-complete 1-simplices in A(h) with common (h)-
complete facets until a simplex o is generated having a{h}-complete simplez in common
with the previously generated simplez, whereas at the other basic solution one of the
variables pj, j~h, say pk, equals zero. Then o is also (h,k)-complete and is a facet of a
uniquely determined 2-simplex in A(h,k). In general, generating for some T a sequence
of adjacent T-complete t-simplices in A(T), a piecewise linear path of points is traced
corresponding to the solutions of (5.3). This path is traced by alternating replacement
steps in the triangulation and going from basic solution to basic solution through linear
programming steps in the system (5.3). Let o(yl,....,yttl) be a simplex generated by the
algorithm and suppose that ai equals zero for some i-1,...,tt1 at the basic solution not in
common with the previously generated simplez. Then r(y-1) is T-complete and lies either
in the boundary of A(T) or not. In the latter case y1 is replaced by the vertex y opposite
r(y-~) of the unique simplez in A(T) having r(y-1) in common with o and a linear
programming step is made in (5.3) with the vector (z(y)T,1)T. Doing so, we get a new
basic solution. If r lies in the boundary of A(T) then either r lies in the boundary of Sn
or in A(T'`{k)) for some kET. The definition of A(T) implies that in the first case xk-0
for all k~T and for all x in r, and hence r is complete and yields an approximate
solution. In the latter case r is an (T`{k})-complete simplex in A(T'`{k}) having pk-0 at
one of its basic solutions and the algorithm continues in A(T`{k)) by making a linear
programming step with (eT(k),0)T in (5.3). Finally, suppose that a simplez o is generated
with ~h~0 for some hET at the basic solution not in common with the previously
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generated simplex. Then either h is the unique element of T and hence o is complete, or

o is also (Tu(h})-complete. In the latter case o is a facet of a unique ( ttl)-simplex a' in

A(Tu(h)) and thc algorithm continues in A(Tu(h}) by making a linear progrttmming

step in (S.3) with the vector corresponding to the vertex of o' opposite o. By the

finiteness arguments the algorithm finds a complete simplex in a finite number of steps.

For a detailed description of the algorithm and computational results we refer to
Doup and Talman [5], see also Doup [4]. The technique of vector labelling gives more
possibilities than integer labelling. In this respect we notice that both in the integer

labelling algorithm of Section 4 and the vector labelling algorithm described above the
starting po;ont v can be left along one out of ntl rays, namely the one-dimensional sets
A(j), j-1,...,nt1. Therefore these algorithms are called ( ntl)-ray algorithms. In case of

integer labelling the starting point v is left along A(j) iff v carries label j. Because there
are ntl variables the number of ntl labels is natural. However, in case of vector
labelling there is no need to restrict the number of rays for leaving the starting point to

be equal to ntl. An algorithm with 2n}1-2 rays has been described in Doup, van der
Laan and Talman [7]. To motivate the (2n}1-2)-ray algorithm we recall that a point p in
A(T) for some TcIn}1 on the path followed by the ntl-ray algorithm satisfies the
complementarity property that for all j, xj~b(x)vj if Zj(x)-i4-maxh Zh(x) and xj-b(x)vj

if Zj(x)~p-maxh Zh(x), with 05b(x)al-EiET ryi(x), the nonnegative ryi(x)'s being
uniquely determined by x-vtEiET ryi(xxe(i)-v). In a similar way complementarity

between the variables xj and the values Zj(z) is utilized in the (2n}1-2)-ray algorithm.
In this algorithm the starting point v is left along a ray in Sn on which the components

of v with positive z-value are proportionally increased and those with negative z-value
are proportionaily decreased. In the specific case that only one component of z(v) is
positive, say zi(v), the ray leads from v to the vertex e(i) of Sn. In fact, there is a ray

from v to each face of Sn. Since a face of Sn is the convex hull of a proper subset of
the ntl vertices of Sn, there are 2n}1-2 faces in Sn and therefore there are 2nt1-2 rays.

7'he sign pattern of z(v) determines along which ray the algorithm leaves v, The

algorithm moves along this ray until a point y is reached where Zh(y) is equal to zero

for some h, l~h5ntl. Then the algorithm continues from y along a piecewise linear path

of points x for which Zh(z) is kept equal to zero while the components xk, k~h, are

further proportionally increased ( decreased) if Zk(x) is still positive ( negative). ln

general the algorithm traces a piecewise linear path of points x in Sn satisfying for all j
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xj - avj if Zj(x) ~ 0
bvj ~ xj ~ avj if Zj(x) - 0 (5.4)
bvj- x j if Zj(x) ~ 0,

with O~b515a. When comparing a point x on the path with the starting point v we have
that all components zj for which the piecewise línear ezcess demand Zj(x) is positive
(negative) are the same factor a(b) larger (smaller) than vj, while the components xj
with zero excess demand lie between bvj and avj, So, for each index j e;ther "Lj(x).0 or
zj is equal to one of the two relative bounds bvj or avj depending on whether Zj(x) is
negative or positive. The algorithm terminates as soon as a point z~ is reached for which
either Z(zs)~0 or Zj(x~)~0 for all the j's with x~ji0. Because of Walras' law such a point~
x is an approximate solution to the NLCP.

The piecewise linear path of points from v which satisfies (5.4) is followed by
the algorithm through alternating replacement steps in the V-triangulation of Sn and
pivot steps in a linear system of equations. To describe the algorithm we first subdivide
Sn into subsets A(s) for sign vectors s in Rntl N,ith components sj E{-1,O,tl}. For a
sign vector s, let

I-(s) a(i E In}I~ Si z-1}

IO(s) -{i E Intl~ si z 0}
It(s) ~{i E In~l~ si ~ tl).

In the sequel we assume that both (It(s)~ and ~I"(s)~ are at least equal to one, so that at
least one component of s is equal to f 1 and at least one component of s is equal to -1.
Observe that there are 2nt1-2 of such sign vectors containing no zeroes at all. Each sign
vector s induces a t-dimensional subset A(s) of Sn with t~~IO(s)~tl. Notice that t lies
between 1 and n and is equal to one for the 2ntl-2 sign vectors containing no zeroes at
all. We assume that v lies in the interior of Sn.

Definition 5.4. Let s be a sign vector with ~It(s)~ and ~I-(sH positive. Then

A(s) z{z E Sn~ zi - avi if i E It(s), zi z bvi if i E I-(s), and
bvi ~ zi ~ avi if i E IO(s), with 0 ~ b ~ 1 5 a).

The boundary of a t-dimensional A(s) consists of the ( t-1)-dimensional sets A(s') with
s'i3t 1 for exactly one i in IO(s) and s'h~sh, h~i, and of the intersection of A(s) with the



boundary face Sn(I-(s))-(xESn~xk-0, kEi-(s)} of Sn. The V-triangulation of Sn
triangulates each A(s).

The algorithm traces for the piecewise linear approximation Z to z with respect
to the underlying V-triangulation the path of points x from v satisfying (S.4), i.e., for

some sign vector s, x lies in A(s) and sssgn Z(x). A t-simplex containing such a point is
called s-eomplete.

Definítion 5.5. A t-simplex o(yl yttl) is s-complete if the system of nt2 linear
equations

tEl ai( z~yl) ) t E -Phsh(ph)) ~(j)
i-1 h~I~(s)

(S.5)

has a nonnegative solution ái, i~ 1,...,ttl, and ~~h, h~ I~(s).

Again we assume that for each solution to the system (S.5) at most one of the variables
ai's and ~h's is equal to zero. Under this nondegeneracy assumption the system (S.S) has
a line segment of solutions (a~,~s), if any. An end point of such a line segment is called
a basic solution and has exactly one of the variables equal to zero. The line segment of
solutions (a,~) induces a line segment of points xaEi aiy~ in o for which according to
(5.4) sgn Z(x)-sgn(Ei aiz(y~))-s. The line segment of such poínts or solutions to (S.S) can

be followed by making a linear programming step in (S.S) with one of the variables
swhich are equal to zero at an end point. At an end point x' either ~ ha0 and hence

Zh(x')-0 for some h~ -n - '

opposite the vertex yt. At the starting point v, let s~-sgn z(v) and let a~(yl,y2), where
y1-v, be the unique one-simplex in A(s~) having v as a vertex. Then o~ is s~-complete
with a2-0 at one of its basic solutions. The algorithm starts with this solution by making
a linear programming pivot step with (zT(y2),1)T in the corresponding system of linear
equations (S.5). In genral, if at a basic solution ~k~0 for some kEIO(s), then the
corresponding point x' is an approximate zero of z if sk:t 1 and ~It(s)~~ 1 or if sk--1 and
~I-(s)~-I. In the first case Z(x')~0 and in the latter case Z(x')~0. Otherwise, o is also s'-
complete and a facet of just one s'-complete (ttl)-simplex o' in A(s') with s'k-0 and
s'h-sh, h~k. Then the algorithm continues with making an l.p. pivot step with (zT(y),1)T
with y the new vertex of o'. If by an l.p. pivot step with respect to a, aj becomes zero
for some j, 15j5tt1, then the facet r of o opposite to vertex y~ is also s-complete. If the
(t-1)-simplex r lies in the boundary bd A(s) of A(s) then either r lies in the boundary

face Sn(I-(s)) of Sn or r lies in a(t-1)-dimensional set A(s') with s'iatl for exactly one i
in I~(s) and s'h~sh for all h~i. In the first case, at the point x' corresponding to the
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solution, x'j-0 for all j with Zj(x')~0 and hence x' is an approximate solution. In the
other case r is the s'-complete ( t-1)-simplex o' in A(s') and the algorithm continues bv
making an I.p. pivot step in (5.5) with ( -sieT(i),0)T. Finally, if the s-complete facet r of
o does not lie in bd A(s), then the algorithm continues by making an Lp, pivot step in
(5.5) with (zT(y), 1)T, where y is the vertex of the unique t-simplex adjacent to o sharin~
r.

In this way the algorithm generates a unique sequence of adjacent simplices of
varying dimension. Under the nondegeneracy assumption no simplez can be generated
more than once. Since the number of simplices of the underlying triangulation is finite,
the algorithm must terminate within a finite number of steps with an approximate
solution `point x for which either Z(x~)~0 or Zj(xs)~0 for all j with x j~0. If the
accuracy of this approximate solution is not satisfactory the algorithm can be restarted ins
x with a finer triangulation. For computational results we refer to [7j.

6. Path-followine as r)rice adiucrment

As noticed ie the introduction the classical Walras' tatonnement process may fail
to converge to a vector of equilibrium prices, even when the set of initial price systems
is restricted. In fact, neither global nor local convergence can be guaranteed. So, the
mechanism is not effective in the sense that from any initial price system in any given
standard pure ezchange economy the process always yields a path which converges to a
system of equilibrium prices. In Saari and Simon [42] it is shown that an effective
mechanism needs information about both the excess demand at any price and the value
of the gradients of all except one of its component functions. Saari [41 ] showed that an
effective iterative mechanism which depends upon information obtained solely from the
excess demand function and its derivatives does not exist.

In the algorithms discussed in the Sections 3, 4 and 5 a path of points is followed
leading from an (arbitrarily chosen) starting point to an approximate solution. In case the
underlying function z is an excess demand function the algorithms can be seen as a price
adjustment processes leading from an arbitrarily chosen initial price system to a market
clearing price system. The process converges globally and universally and is governed by
comparing the value of the excess demand at a price vector with the location of that
price vector with respect to the initial price vector. In this section we discuss the
economic justification of such a process. We mainly restrict ourselves to the process
described in the last part of the previous section.
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'faking z instead of the piecewise linear approximation "L, the process
corresponding to the ( 2n}t-2)-algorithm traces for varying sign vectors s a path of
prices p in AC(s)-A(s)nC(s), with A(s) as defined in the previous section and

C(s) -(p E Sn~ sgn z(p) ~ s}.

So,

AC(s) -(PESnIPjlvj - minh phwh and zj(p) ~ 0 if sja-1,
minh ph~vh ~ pj~vj ~ maxh ph~vh and zj(p) a 0 if sj-0,

pj~vj~ maxh ph~vh and zj(p) ~ 0 if sjaf 1}.

The process starting in v traces such a path of prices in AC(s) until the path reaches
either the boundary of A(s) or the boundary of C(s). In the first case either the
boundary of Sn is reached, i.e., pj-0 for all j with zj(p)~0 and a solution point has been
found, or we get an equality in the price ratio for some i in the set of indices {j~sj~0},
i.e, for a commodity with zero excess demand either pi~vi becomes equal to maxh ph~vh
or pi~vi becomes equal to minh ph~vh. Then the process continues in A(s') with s'j-sj
for all j except i and s'i equal to f 1 and -1 respectively In case the boundary of C(s) is
reached, i.e., zi(p) becomes equal to zero for some i with siE{-l,tl}, the process
continues in A(s') with s'is0 and s'j-sj for all other components of s. In this way the sets
AC(s) can be linked together and the union AC ~ us AC(s) over all sign vectors s
contains under some regularity and nondegeneracy conditions a curve leading from the
initial sprice system v to an equilibrium price system p. This is illustrated in the Figures
6 and 7. In these figures the curves along which zi ~ 0 are drawn for i z 1, 2, 3. In
Figure 6, AC contains just one curve. In Figure 7, AC is a collection of three one-

sdimensional manifolds, namely a curve from v to an equilibrium price system p, a

curve connecting two equilibrium price vectors and a loop along which z130 in A(0,-

1,t I). The formal proof that AC contains a curve leading from v to an equilibrium price
s

vector p is given in van der Lsan and Talman [34}.

The process described above converges for any v and for any continuously
differentiable excess demand function z, i.e., the process is globally and universally. This
is the most appealing feature of the adjustment mechanism. It also shows the

attractiveness of the process, above both the classical tatonnement process and Smale's

global Newton method. The process is also economically meaningfull. To define the path

of the process we introduced primal sets A(s) and dual sets C(s). The primal sets contain

information about the location of the price vectors with respect to v. The dual sets

contain information about the value of the excess demands. So, the path can be traced
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by an auctioneer by keeping in mind the starting price vector v and by observing the
reaction of the people in the market as reflected by the ezcess demand.

e (3)

e(1)

z2-0

Figure 6. AC consists of the curve from v to p

e(3)

z1L0 z2a0 z1-0

s

e(2)

Figure 7. AC consists of the curve P from v to p~, the curve C and the loop L
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The behaviour of the auctioneer is governed by the total excess demand

expressed by the individual agents. Initially, the auctioneer decreases all prices of the

commodities with negative excess demand and increases the prices of all commodities

with positive excess demand in such a way that the ratio between any two prices with

either positive or negative excess demand is kept constant. Prices are adapted in this way

until one of the markets becomes in equilibrium. Then the auctioneer adjusts the prices

in order to keep the excess demand of this commodity equal to zero. In general, the

auctioneer keeps with respect to their initial values at v the relative prices of the

commodities with positive (negative) excess demand maximal (minimal) and allows the

relative prices of the commodities with zero excess demand to vary between these two

bounds. As soon as one of the markets with positive (negative) excess demand becomes

in equilibrium the corresponding price is decreased (increased) away from the relative

upper (lower) bound and the auctioneer adjusts this price simultaneously with the prices

of the other commodities with zero excess demand in order to keep these markets in

equilibrium. On the other hand, if one of the prices of the commodities with zero excess

demand reaches the relative upper (lower) bound, then this market is not longer kept in

equilibrium and the price is kept equal to the relative upper (lower) bound. In this way

the auctioneer traces a path of prices leading to an equilibrium price system.

We want to conclude this section by considering the necessary information to
follow the path of prices. Suppose that for some s, a path of prices is traced in A(s).
Along this path we have that zj(p)-0 for all j with sj-0. So, the prices pj with j in the
set 1-1~(s) solve the differential equation

d zI(p)~dt - - I~zI(p),

with zI(p) the (t-1)-dimensional vector containing the elements of z(p) in I, under the
restriction that p belongs to A(s). For the adjustment mechanism induced by this process
the auctioneer needs information about zI(p) and the corresponding gradients. Moreover
the auctioneer has to keep in mind the starting price vector. Following the path

approximately by the steps of the simplicial algorithm described in Section 5, the
corresponding piecewise línear path of prices in A(s) is traced by generating a sequence
of adjacent t-dimensional simplices. In each step the excess demand at a vertex is
needed. A new vertex is completely determined by the vertices of the current simpiex,
their corresponding excess demands, and by the initial point v. This confirms the
observation of Sasri [41] that a convergent adjustment procedure should depend on the

values of the prices. This paper shows that not only the values of the current prices are
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needed, but that also the value of the initial price system might play a very important
role.

Of course also the other processes can be described in terms of price adjusment
mechanisms. For the ( ntl)-ray algorithm the process follows a path in uT. AC'("I') f'ur
various T with A(T) as defined in Section 4 and C(T)z(pESn~zi(p)-maz zh(p) for all i in
T}.

7, Alaorithms on the simnlotor)e

Thusfar we have considered algorithms on the unit (price) simplez. However,
simplicial algorithms have also been utilized on other sets. For algorithms solving the
problem of finding a zero point of a continuous function f: RnyRn we refer to [1], [17],
[ 18], [26], [28], [31 ], [32], [40], [57], [59], and (60]. The vector labelling algorithms on Sn
and Rn can also be applied to find zero or fized points of upper semi-continuous point-
to-set mappings, see e.g [23] and [54]. In this section we want to consider the
generalization of the algorithms on the unit simplex to algorithms on the simplotope, i.e.,
the Carthesian product of several unit simplices. For more detailed descriptions of the
algorithms to be discussed in this section we refer to vao der Laan and Talman [33],
Talman [53], Freund [13], Doup and Talman [5], van der Laan, Talman and Vaa der
Heyden [35], Doup, van den Elzen and Talman [6], and Doup [4].

Let the simplotope S a Snl x... x SnN denote the Carthesian product of N unit
simplices Snj, j-1,...,N. An element xES will be denoted (zl,...zn) with zjESnj, j~1,...,N.
The k-th component of zj will be denoted by zjk. The set of indices (j,l),..., (j,njtl) is
denoted by I(j), and I denotes ujI(j). Let TO a subset of I, such that ~TOnI(j)lal for all j,
say TOnI(j)a(j,kj), then e(TO) denotes the vertez of S, such that ej(TO) is the kj-th unit
vector in Rnjtl. Furthermore, for any (proper) subset T of I, such that ~TnI(j)~~l for all
j, the boundary face S(T) of S is defined by

S(T) -(x E SI xjk - 0 for all (j,k) ~ T}.

Finally, let z be a continuous function from S to Rnl}1 x... x RnNtl, satisfying
xjTZj(z)-0 for all zES and jEIN, where z(z)s(zl(z),...,zN(x)) with zj(z)ERnjtl Given
such a function the NLCP on S consists in finding a point z in S such that z(z)50.

A well-known example of an NLCP on S arises in game theory when computing
a Nash equilibrium for a noncooperative N-person game. Given an element x in S, xj is
the mixed strategy of player j in his strategy space Snj, and zjk(x) is the excess profit to
player j when he plays his k-th pure strategy and the others play x. A Nash equilibrium
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strategy vector is a solution to the NLCP with respect to z. An other application

concerns an international trade model in which each country has a group of domestic .

goods traded only within that country, while a group of common goods is traded among

all countries. Of course, the problem of computing an equilibrium price vector can be
formulated on the full-dimensional price simplex. However, by exploiting the block-

diagonal structure of the demand function, the problem can be converted into an NLCP
problem on the simplotope S with N-1 the number of countries, nj the number of

domestic commodities in country j, and nNf 1 the number of common goods. This

approach gives a substantial improvement in the computational efficiency.

In this section we will discuss two algorithms to find a solution to the NLCP on
S. The first one is a generalization of the ( ntl)-ray algorithm on Sn and the second of
the (2n}1-2)-ray algorithm. The triangulation underlying both algorithms is the V-
triangulation of S, introduced in [5]. This triangulation is a direct generalization of the
V-triangulation of Sn. Furthermore, let Z be again the piecewise linear approximation to
z with respect to the underlying triangulation.

In the same way that the (ntl)-ray algorithm has a ray to each of the ntl

vertices of the unit simplex, the generalization of this algorithm [o S has a ray from the

arbitrary starting point v to each vertex of the simplotope S. Because the number of
vertices of S is equal to IIj (njtl), this algorithm is called the product-ray algorithm or

the IIj ( njfl)-ray algorithm. From the (interior) point v, the algorithm makes initially a
search along the ray pointing to the vertex e(Tp) of S where T~ is the set of indices
(j,kj), jEIN, such that the kj-th component of zj(v) is equal to maxh zjh(v). Going

along this ray to e(T~), for each j the kj-th component of xj is increased, while all other

components of x are proportionally decreased, until either the point e(T~) is found as an

exact solution of the NLCP, or a point x is found, such that for some (j,k) in I, k~kj,

also Zjk(z)-maxh Zjh(x). In the latter case the algorithm continues in the convex hull of

v and S(T~u((j,k)}) keeping Zjk(x) also maximal. In general, for varying T satisfying

~TuI(j)~il for all j, the algorithm traces a piecewise linear path of points x in the convex

hull A(T) of v and S(T), such that for all j, Zjk(x)-maxh Z~h(x) for all ( j,k) in T. If a
s

point x is reached in the boundary of A(T), then either x lies in S(T) or xs lies in

A(T`((j,k'))) for some (j,k') in T. In the first case for all (j,k) not in T and hence for all

(j,k) with Zjk(xs)~maxh Zjh(xs), xsjk~0 and hence xs is an approximate solution. ln the

other case the algorithm continues in A(T`((j,k')}) by relazing the condition
s

Zjk,(x)zmaxh Zjh(x). On the other hand, a point x in A(T) can be reached where for
s s

some (j,k') not in T, Zjk,(x )-maxh Zjh(x ). Then, either the algorithm continues in
A(Tu((j,k')}), or Tv((j,k')}~I and xs is an approximate solution satisfying Zjk(xs)-maxh
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Zjh(x ) for all (j,k)EI(j), jEIN. The algorithm traces this piecewise linear path from the

point v to an a approximate solution z by generating for varying l' a seyuence uf
adjacent T-complete simplices in A(T) w;th T-complete common facets. Generalizing
Definition 5.1, a t-simplex o(yl, yttl) is T-complete, tz~T~, if the system of L'j (njtl)
t 1 of linear equations

tEl ai( zly~-) t E ~jk( e(pk)) - JE ~j(eoJ)) - íl~
i-1 (j,k)~T

(7.1)

where e(j,k) is the (j,k)-th unit vector in 7Ij Rnjtl, e'(j)-Eh e(j,h), and Q is the Ej (njt])
vector of zeroes, has a solution (a,~,~) with ais0, isl,...,ttl and {~jk~0, (j,k)~T. Again we
assume nondegeneracy, i.e., at a basic solution (a,~,~) of (7.1) at most one of the
variables (a,~) is equal to zero. If at a basic solution ai-0 for some i, then the facet
opposite y~ is also called T-complete. As soon as a T-complete simplex is generated
having a T-complete facet in S(T), or having a solution with u~k ~0 while T-I`((j,k)),
the al orithm terminates with the a ~g pproximate solution x zEiaiy~. If the accuracy at the
approximate solution is not sufficient, the algorithm can be restarted at x~ with a finer
mesh size of the triangulation. We remark that the algorithm also allows for starting on
the boundary of S. For further details and computational results we refer to Doup and
Talman [5] and Doup [4].

The second algorithm on S we want to discuss shortly is the generalization of the
(2nt 1-2)-ray algorithm on Sn. Recall that the path traced by this algorithm is governed
by the sign pattern of Z. This also holds for the generalized algorithm on S. Because the
total number of different sign patterns of z at an interior point v is equal to IIj (2njt1-

2), this algorithm on S has this number of rays to leave the starting point v and is called
the IIj (2nj}1-2)-ray or exponent-ray algorithm. From xav, initially the algorithm
decreases proportionally all components (i,h) of x with negative zih(v) and increases for
each j proportionally all components (j,k) of xj with positive zjk(v). As soon as for some
(j,h) in I, Zjh(x) becomes equal to zero, the algorithm adapts xjh, keeping Zjh(x) equal
to zero. In general the algorithm traces for varying sign vectors s a piecewise linear path
of points x in S satisfying s-sgn Z(x) and lying in the subset A(s) of S defined by

(A) xjk~vjk s min(i,h) xih~vih if sjkc0 and sjhi0 for some h

(B) xjk~vjk a minh xjh~vjh if sjk~0 and sj50

(C) min(i,h) xihwih ~ xjkwjk ~ maxh xjhwjh if sjk-0 and sjh~0 for some h

(D) minh xjh~vjh ~ xjk~vjk ~ mazh xjh~vjh if sjk~0 and sj~0
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(E) xjk~vjk - maxhxjh~vjh if sjk~o.

Remark that the piecewise linear approximation Z to z only satisfies the Walras'

condition approximately. Therefore, the case that sjssgn Zj(z) ~0 (i0) can not be

excluded. The path is followed by generating for varying s a sequence of adjacent s-

complete simplices in A(s) with s-complete common facets. Generalizing Definition 5.5,

a t-simplex o(yl yttl) is s-complete, tz~I~(s)~tl, if the system of Ej (njtl)tl linear

equations

,Ela;( Z~y,) t E -v~hs~h(e(p'h)) L (1~ (7.2)
(j,h)~I~(s)

J J

has a nonnegative solution asi, i~ 1,...,ttl, and ~~jh, (j,h)~I~(s). Again we assume
nondegeneracy, i.e., at a solution (a,~) of ( 7.2) at most one of the variables ( a,{~) is equal
to zero. If at a solution ai-0 for some i, then the facet opposite y~ is also called s-
complete. As soon as an s-complete t-simplez is generated in A(s) having an s-complete
facet in the boundary of S or having a solution with for all j either sjk~jk~0 for all
(j,k)EI(j) or sjk{~~k50 for all (j,k)EI(j), the algorithm terminates with the approximate
solution x~~Eiaiy'. Not;ce that Zjk(x~'~0 if x~jk ~0 and that fo:all j either Zjk(x~)~0
for all (j,k)EI(j) with x jk~0 or Zjk(x ) 50 for all (j,k)EI(j) with z jk~0. If the accuracy
at the approximate solution is not sufficíent, the algorithm can be restarted at x~ with a
finer mesh size of the triangulation. We remark that also this algorithm can be started on
the boundary of S. For further details and computational results we refer to Doup, van
den Elzen and Tatman [6] and Doup [4].
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