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A GLOBALI.Y CONVERGENT SIMPLICIAL ALGORITHM

FOR STATIONARY POINT PROBLEMS ON POLYTOPES

by

A.J.J. Talmanl) and Y. Yamamotó )

Abstract: We propose a simplicíal variable dimension restart algorithm
for the stationary point problem or variational inequality problem: gí-
ven a convex polytope C of Rn and a continuous function f: C ~ Rn, find
a point x of C such that f(x).x ~ f(x).x for any point x in C. The algo-
rithm is globally and finitely convergent. Namely, starting from an ar-
bitrary point in C, it always gives an approximate stationary point af-
ter a finite number of function evaluations and linear programming pivot
operations. The algorithm leaves the starting point v along one of the
directions pointing to the vertices of C according to the optimum solu-
tion of the linear programming problem maximize f(v).x subject to
x E C. In general the algorithm follows a piecewice linear path of
pointa x satiafying for some t between 0 and 1, x E(1-t) {v} t tC and
f(x).x ~ f(x).z for all z E(1-t){v} f tC, where f i s the piecewiae li-
near approximation to f with respect to some specífic triangulation of
C. The algorith~ tPrminates at the moment it hits the boundary of C or
it finds an approximate zero of f.
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rithm, piecewise linear approximation, global convergence,
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1. INTRODUCTION

In order to compute zero points of continuous functions on the

Euclidean space Rn a lot of so-called simplicial variable dimension al-
gorithms have been introduced. Such an algorithm subdivides Rn into n-
dimensional simplices and searches fvr a simplex which yields an ap-

proximate zero point or solution. More precisely, starting in an arbi-

trarily chosen grid point of the triangulation the algorithm generates,

by alternating linear programming pivot steps in a system of typically

nfl linear equationa and replacement steps in the triangulation, a se-
quence of adjacent simplices of varying dimension. Given some coercivity

condition the algorithm then generates within a finite number of steps
an approximate solution. When the accuracy at the approximate solution
is not satisfactory, the algorithm can be restarted at the approximate
solution with a finer triangulation in the hope that within a few number

of iterations a better approximate solution is found, etc.
The several number of simplicial variable dimension restart al-

gerithma differ from each other in the number of rays along which the
algorithm may leave the starting point, say v, with one-dimeneional sim-
plíces. Such an algorithm with nfl rays, the so-called (nfl)-ray algo-
rithm, was introduced in van der Laan and Talman [8]. The 2n-ray algo-
rithm was also introduced in [8], the 2n-ray algorithm in [2], and the
(3n-1)-ray algorithm in [6]. A unifying approach for these algorithms
was given in van der Laan and Talman [9], see also Yamamoto [15]. In
[9], the piecewise linear (abbreviated by pl) path traced by the algo-
rithms when generating the sequence of adjacent simplices of varying
dimension is interpreted as a curve of stationary points to the under-
lying problem with respect to an expanding set containing the starting
point v ín its interior. In fact the expandíng set differs for each al-
gvrithm and is a polytvpe for which the number vf vertices is equal to
the number of rays along which the algorithm may leave the atarting
point. More precisely, let f be the function from Rn into Rn whoae zero
point is to be computed and let f be the pl approximation to f with re-
spect to the underlying triangulatíon, i.e., f(x) ~ E~i aif(wi) if

x~ E~1 aiwi lies ín the n-dimensional simplex with vertices wl,...,
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w~l. Then a simplicial variable dimension algorithm tracea the pl path
of points x satisfying for some t, t~ 0,

f(x).x ~ f(x).z for any z E{v} t tB (1.1)

which originates for t~ 0 at x~ v, where B is the appropriately chosen
polytope containing the point 0 E Rn in its interior. Of course t needs
not to be monotonic on the path and the path terminates with an approxi-
mate solutíon x as soon as f(x) ~ 0. In case of the (ntl)-ray algorithm
the set B is equal to an n-simplex. For the 2n-ray algorithm the set ís
the n-dimensional octahedron, for the 2n-ray algorithm it ia the n-di-
mer~sionel unit cube, and for the (3n-1)-ray algorithm the set B is a
polytope with 3n-1 vertices. For all these algorithma the so-called K'-
triangulation of Rn, due to Todd [13], might be the underlying triangu-
lation.

In order to solve the nonlinear complementarity problem or the
stationary point problem on the unit simplex and on the product space S
of unit simplices, called the simplotope, also several variable dimen-
sion algorithms have been developed in the last couple of years. Theae
algorithms can be seen as adaptions or generalizations of the algorithms
mentioned above for problems on Rn. The main difference between these
methods on Rn and S is that the set Rn is unbounded whereas S is boun-
ded. In the latter case the solution of the underlyíng problem may be on
the boundary of S so that the triangulation must be chosen in such a way
that a triangulation of S itself is obtained. The product-ray algorithm
on S presented in Doup and Talman [1] tracea a pl path of points satis-
fying the same condition as in (1.1) with the set B equal to S-{v},
i.e., this algorithm traces for varying t, 0 t t C 1, the pl path of
points x in (1-t){v} f tS satiafying

f(x).x ~ f(a).z for any z E(1-t){v} f tS (1.2)

which originates for t- 0 at v and terminates for t~ 1 with an ap-
proximate solution to the stationary point problem on S of findíng an
x in S such that

f(x).x ~ f(x).z for any z E S. (1.3)
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Here f is again the pl approximation to the continuous function f on the
simplotope S with respect to some specific triangulation of S and v ís
the arbitrarily chosen starting point in S of the algorithm. This so-
called V-triangulation of S seems to be the most natural triangulation
of S to underly the algorithm and is ín fact a generalízation of the K'-
triangulation of Rn to S. The V-triangulation of S may also underly the
other simplicial variable dimension algorithms on S(see e.g. [2]). The
other algorithms on S, however, trace their p.l. path with respect to a
different expanding set. Whereas for the zero point problem on Rn the
set B can be chosen freely, a natural set for problem (1.3) seems to be
S- {v}. The number of rays of the product-ray algorithm on S is equal to
the number of vertices of S. The algorithm leaves the starting point v
in the direction of one of the vertices of S depending on the values of
the components of f(v).

In this paper we will combine the ideas of a simplicial variable
dimension algorithm on Rn and the product-ray algorithm on the simplo-
tope S to obtain a simplicial variable dimension restart algorithm for
solving the stationary point problem on an n-dimensional convex polytope
C a{x E Rnlai.x t bi for ial,...,m} in Rn of finding a point x in C for
which

f(x).x ~ f(x).z for any z E C, (1.4)

where f is a continuous function from C to Rn. This problem arises e.g.
from economic equilibrium problems, noncooperative games, traffic as-
signment problems and nonlinear optimization problema (see e.g. [4] and
[12]). In each application the polytope C must be chosen in an appro-
priate way.

The algorithm to be presented in this paper will generate the pl
path of points x satisfying for some t, 0 t t t 1,

x E (1-t){V} f tC
and (1.5)

f(x).x ~ f(x).z for any z E(1-t){v} f tC
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which originates for t e 0 at v and terminatea for t ~ 1 with an ap-
proximate solution to (1.4). Again v is the arbitrarily chosen starting
point in C and f ís the pl approximation of f with respect to some spe-
cific triangulation of C. The underlying triangulation is a generaliza-
tion of the V-triangulation of S and its mesh size can be made arbitra-
rily small by taking the grid size small enough. The algorithm can be
restarted from the found approximate solution with a finer triangulation
in order to find a better approximate aolution hopefully within a few
number of iterations.

The algorithm leaves the poínt v in the direction of one of the
vertices of C. In order to determine which vertex first the linear pro-
gramming problem

maximize f(v).z subject to z e C

has to be solved. Barring degeneracy there is a unique vertex u of C
which optimizes this problem. This means that f(v) is in the relative
interior of the cone {y I Y' EíE I uiai, ui~ 0 for i E I}, where I-
{i ~ 1 t i ~ m, si.u ~ bi}. When the parameter t ís close to zero,
f((1-t)v1.tu) is also close to f(v) and remains ín this cone. Therefore
for small t the point (1-t)vftu is an optimum solution of the problem

maximize f((1-t)vFtu).z subject to z E(1-t){v} f tC.

That is, (1-t)v~tu is a solution to (1.5) as long as t ia small enough.
If t attains 1 while the function value f((1-t)W-tu) remains in the
cone, we find that the vertex u is an (approximate) stationary point.
Otherwise f((1-t)v-Ftu) hits the boundary of the cone at some t ~ 1. This
means that the optimum solutions of the problem

maximize f((1-t)vftu).z subject to z E(1-t){v} t tC

form a one-dimensional face (1-t){v} f tF of (1-t){v} t tC having y a
(1-t)v t tu as a vertex, where F is some 1-face of C. When v lies in F
the poínt y is an approximate solution. Otherwise the algorithm turns to
the directíon of the face F of C and moves in the two-dimensional set
{(1-t){v} f tF ~ t E[0,1]}. In this way the pl path leaves the starting
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point v along one of the directions pointing to the vertices of C and
then steps on to some two-dimensional set. In general, the algorithm
follows the pl path given in (1.5) by generating for varying boundary
faces F of C points x in the set vF ~{(1-t){v} f tF I t E[0,1]}
such that f(x) lies in the cone {y ~ y' Ei E I yiai, ui ~ 0 for i E I}
with I~{i I 1 c i c m, ai.x - bi for any point x in F}. In fact this
pl path i s followed by making linear programming pivot ateps and re-
placement steps with respect to a sequence of adjacent simplices of
varying dimension. The dimension of the sets vF where the path moves is
not necessarily monotonic. The algorithm terminates with an approximate
solution x when t becomes 1 or f(x) becomes 0 or F becomes such that v
lies in F.

The organization of thia paper is as follows. In Section 2 we
review the unifying framework for restart fixed point algorithms based
on the primal-dual pair of subdivíded manifolds proposed in Knjima and
Yamamoto [5]. In Section 3 we specify the primal-dual pair of subdivided
manifolds for our algorithm and present the basic system. We also prove
the convergence of the algorithm and show the accuracy of the approxi-
mate solntion obtair.ed. ln Section 4 w2 give a formál ueai:ription oi tiie
algorithm under the assumption that the polytope C is simple and the
linear inequalitiea defining the polytope are nonredundant. Section 5 is
devoted to the explanation of the new triangulation of the polytope C
underlying the algorithm. In Section 6 we discuss the relation between
the basic i dea in this section and the algorithm and we consider some
special cases.
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2. PRELIMINARIES

In this section we give a brief description of the subdivíded
manifold, the basic theorem for aimplicial algorithms and the primal-
dual pair of subdivided manifolds.

We call a convex polyhedral set a cell. A cell of dimension m is
abbreviated by m-cell. If a cell B is a face of a cell C, we write B~
C.

Let M be a finite or countable collection of m-cells. We denote
{B ~ B is a face of some m-cell of M} by M and u{C~ C E M} by ~M~ . We call
M a subdivided m-manifold í f and only if

(2.1) for any B, C E M, B ~iC -~ or B n C ~ B and C,
(2.2) for each (m-1)-cell B of M at most two m-cells of M have B as a

facet,
(2.3) M is locally finite: each point x of~M~has a neighborhood which

intersects only a finite number of m-cells of M.

We call the collection of (m-1)-cells of M that lie in exactly one m-
cell of M the boundary of M and denote it by 3M.

A continuoua function H from IM~ into some Euclidean space is
said to be a pl function on M if the reatriction of H to each cell of M
ia an affine function. For a aubdivided (nF~l)-manifold M and a pl func-
tion H on M into Rn we say that c E Rn is a regular value of
H: Ir,il -. Rn if B E M and H 1(c) n B~ 4) always imply dim H(B) ~ n.

The followíng theorem is a basíc theorem for fixed point algo-
rithms (see Eaves [3j).

Theorem 2.1. Let M be a subdivided ( n}1)-manifold, H be a pl function
on ,~ into Rn. Suppose that c E Rn ís a regular value of H. Then H 1(c)
is a disjoint union of paths and loops, where a path is a subdivided 1-
manifold homeomorphic to one of the i ntervals ( 0,1), ( O,lj and [0,1] and
a loop is a aubdivided 1-manifold homeomorphic to the 1-dimensional
sphere. Furthermore H 1(c) satiafies the following conditions.
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(2.4) H 1(c) n B is either empty or a 1-cell for each B E M.
(2.5) A loop of H 1(c) does not intersect I3MI .
(2.6) If a path S of H-1(c) i s compact, the boundary 8S of S consists

of two distinct points inl2 M~.

Let p and D be subdivided manifolds. If P and D satisfy the fol-
lowing condítions with some positive integer m and an operator d:
p u D~ p V D V {~}, we say that (P,D;d) is a primal-dual pair of subdi-
vided manifolds ( abbreviated by PDM) with degree m.

(2.7) for
(2.7)' for
(2.8)
(2.9)
(2.9)'

every XE p, Xd -~ or Xd E D.

every YE D, Yd ~ Q or Yd E P.

P u D and Zd ~~, then (Zd)d m Z and dimif Z E
if X1,
if Y1,

X2EP, X1~X2, Xdl ~WandXd~O,
Y2 E D, Y1 ~ Y2, Ya ~(~ and Y~ ~ Q),

We call the operator d the dual operator.
For a PDM (P,D;d) with degree m let

~P,D;d~ ~ {X x Xd~X E P, Xd ~~},

then

then

Z f dim Zd ~ m.
Xd2 ~ XdL.
Y2 ~ Yi.

or equivalently

~P,D;d~ ~{Yd x YIY E D, Yd ~~}.

Then we have the following theorems. See Kojima and Yamamoto [5] for the
proofs and more details.

Theorem 2.2. (Theorem 3.2 and 3.3 ín [5]) Let (p,D;d) be a PDM with de-
gree m. Then L~~P,D; d~ is a subdivided m-manífold and

8L ~{X x YIX x Y is an (m-1)-cell of L, X E p, Y E D

and either Rd or Yd ia empty}.

Let Q be a refinement of P, namely Q is a aubdivided manifold of
the same dimension as I', each cell of Q is contained in some cell of P
and IQ~ a IP~. For each cell X of P let
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X ~ {vaEQ, aCR, dim a~dimX}.

Theorem 2.3. (Theorem 4.1 in [5)) Let (P,D;d) be a PDM with degree m and
Q be a refinement of p. Then

M- {o x Y~Y E D, Yd ~~, a E QIYd}

is a subdivided m-manifold and a refinement of L~~P,D;d~.

Note that wM i s also a refinement of 2L and ~2~1~ ~ ~2L~.
Now consider a PDM (P,D ;d) with degree ntl, a refinement Q of P

and a pl function F: IQI ~ Rn. Let

H(x,y) ~ y- F(x) for each (x,y) EIM~ , (2.10)

whece M is the refinement of L~ ~,D;d~ i n Theorem 2.3. Then H is a pl
function on M. If we assume that 0 E Rn is a regular value of H, then
we can apply Theorem 2.1 to the system of pl equatíons

H(x,y) ~ 0, (x,y) EIMI . (2.11)

This system is a basic model of the class of varíable dimension algo-
rithms and also gives the foundation of the algorithm to be presented.
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3. THE ALGORITHM FOR STATIONARY POINT PROBLEMS

Before giving the PDM for our algorithm we rewrite the statio-
nary point problem (1.4). Let F be the collection of all faces of the
polytope C. For each face F E F let F~` be the set of all n-dimensional
coefficient vectors y such that any point of F is an optimum solution of
the linear programming problem

maximize y.x subject to x E C.

Then the stationary point problem on C is the problem of finding a

point x in C such that

f(x) E u{F~IxEFE F }.

By the i nclusíon reversing property of F and F~ it i s equivalent to
~f(x) E F for a minimum face F of C having the point x. Note that if we

define I - {ill t i t m, ai.x a bi for any point x in F}, then F~ ~
i ~

{y~y ~ EiC i uia , ui ~ 0 for i E T}, and also C-{0}.
Now let v be a starting point i n C of the algorithm. Take an

initial guess of a stationary point as v. Since an initíal guess normal-

ly lies on the boundary of C, we allow the starting point v to lie on

the boundary of C. For a face F of C which does not have the starting
point v let vF be the join of v and F, i.e.,

vF 3{xfx s av t(1-a)z for some z E F and some a E[0,1]}.

Note that dim vF s dim F t 1. To make a PDM we define

P-{vF~v ~ F E F, dim F a n- 1}. (3.1)

Then p is a subdivided n-manifold and

f~ - {vF Iv ~ F E F} u{F I v É F E F} u {{v} }. (3.2)
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g({3})

F({4})

It should be noted that

~P~ a C. (3.3)

Figure 3.1 shows two examples of p for two distinct stariing points,
where the convex polytope C is a pentagon defined by five linear in-
equalitiea si.x t bi, ia1,...,5 and F(I) ~{x I x E C, ai.x ~ bi
foríEI}.

P({5})
F({5})

Fig. 3.1. A subdivided manifold P

Let

Dz {F~IFEF, dimF~O}

~t
~{{u} ~u is a vertex of C}. (3.4)

Then D ís also a subdivided n-manifold and

D ~ {F~ ~F E F }, (3.5)

IDI a Rn. (3.6)
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Now let the dual operator d be defined by

(vF)d a F~` if v~ F E F

Fd a Q1 if v~ FEF

{~}d g 0

(F~`)d ~ vF if v~ F E F

a~ if vEFEF.

It is readily seen that (P,D;d) i s a PDM with degree ~1. By Theorem 2.2
we have the following lemma.

Lemma 3.1. Let La~P,D;d~. Then L is a subdivided (trl-1)-manifold and

~
8L ~{{v} x {u} ~u is a vertex of C, u~ v}

U{F x F~~v ~ F E F}

U{vE x F~ ~ v E F E F, dim F~ 0, E is a facet of F

and v ~ E},

(3.7)

Proof. We only prove (3.7). Suppose that an n-cell X x Y lies in the
boundary 8L of L. Then by Theorem 2.2 dim X f dim Y a n and either Xd ~
q or Yd z f~. Suppose first Xd ~ d. Then the unique (retl)-cell of L ha-
ving X x Y is Yd x Y. When X~{v}, Yd ia a 1-cell of P having {v} as a
facet, i.e., Yd ~ v{u} for some vertex u of C with u f v. Therefore Y~

~ ~ vF.(v{u})d ~{u} . When X~ F for some face F E F with v~ F, Yd

Therefore Y~ F~. Next suppose Yd a~, i.e., Y~ F~ for some face F of C

having v. Then X x Y lies in X x Xd and Xd ~ E~ for some face E of C

such that v~ E and E~ has F~ as a facet. Therefore X ~ ds (E ) ~ vE . By
the inclusion reversing property of F and F~ we see that E ís a facet of
F and d tm F~ 0.

Since it is readily seen that these cells above are members oE
2L, we have proved (3.7). O
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Corollary 3.2.

~IaLI ~({v} x U( {u} lu ís a vertex of C, u~ v))

U(U(g x F~Iv ~ F E F))

~
U(U(F x F I v E F E F, dim F~ 0)).

If the starting point v i s not a vertex of C, then

(3.8)

~3L~ ~({v} x Rn) U(UZF x F~~F E F)). (3.9)

Proof. Note that the set U(vEIE is a facet of F and v~ E) is equal to F
when F has the starting point v. Then we see that the third class of
cells ín (3.7) gives the third subset of ~eL~ in (3.8). (3.9) is readily
obtained from (3.6) and (3.8). p

Now let T be a triangulation of C such that the restriction T~X
also triangulates X for each cell X of p. A specific triangulation is
described in detail in Section 5. Then T is a refinement of p. We denote
by ~y the subdivided (mfl)-manifold defined by the refinement T of P, D

and the dual operator d(see Theorem 2.3). Let f be a pl approximation
of the function f with respect to the triangulation T and let

H(x,y) ~ y- f(x) for each (x,y) EIM~. (3.10)

Then the function H:I M ~ i Rn is a pl function on M. We consider the
system of pl equ~tions

H(x.Y) ' 0~ (a.Y) E~ M ~ (3.11)

as the basic model of our algorithm. By applying Theorem 2.1 to (3.11)
we have the following main theorem.

Theorem 3.3. Suppose that the etarting point v in G is not a stationary
point. Then (v,f(v)) lies ín H 1(0)r~laMl. Suppose further that 0 E Rn
is a regular value of the function H:IM ~~ Rn. Then the connected compo-
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nent S of H-1(0) having (v,f(v)) is a path and it leads to a point

(x,f(x)) in I~ylsuch that x is in C and f(x).x ~ f(x).z for any point z

in C, i.e., x is a stationary point of the pl approximation f of f.
Proof. Since the starting point v is not a stationary point, f(v) does

not lie in F~ for any face F of C having the point v. Therefore whether

v may be a vertex of C or not, we have by (3.8) that (v,f(v)) is in
~

{v} x V{{u} ~u is a vertex of C, u~ v} C~ BMI. Since the point v ts a
vertex of the triangulation T, f(v) s f(v) and consequently (v,f(v))E
H i(0).

By (2.5) in Theorem 2.1 the connected component S of H 1(0) ha-
ving (v,f(v)) is a path. Since f is continuous and C ís compact, f(C) is
also compact. Hence N 1(0) is bounded and so i s S. It is easily seen
that the intersection of S and each cell of M is a bounded 1-cell if it
is not empty. By the local finiteness property ( 2.3) of M S intersects
finitely many cells of M. Therefore S is compact and by ( 2.6) of Theorem
2.1 aS consists of two points in I2M~,one of which is (v,f(v)). Let
x,y) be the other point of 8S and suppose (x,y)E {v} x{V {u} I u is a( ~

vertex of C, u~ v}. Since (x,y) E S C H 1(0), y s f(x) ~ f(v). This
contradicts that (x;y,1 ~(~,f(v)). Then by Corollary 3.2 we have (x,y)

~~(x,f(x)) lies in V{F x F I F E F}. This implies that x is a stationary
point for f. O

Thus we have seen that we obtain an approximate stationary point
x by tracing the pl path S from (v,f(v)). If f(x) happens to lie in F~
for some face F of C having the point x, then x is a stationary point
for f. Otherwise it is only an approximate atationary point. If the dis-
tance between f(x) and F~ is not satisfactorily small, we take x as a
new starting poínt, take a finer triangulation of C and restart the al-
gorithm. In the following lemma we give the accuracy of the approximate
solution x.

Lemma 3.4. Let y~ aup {díam f(v)~a E T}, where diam B~ sup
{N~z --z~Nlzl,z2 E B}. Let x be an approxímate stationary point obtained
by the algorithm, i.e., x E F and f(x) E F~ for some face F of C. Then
f(x) lies in the y-neighborhood of F~.
Proof. Let wl;..,,wt}1 be the vertíces of the simplex of T having x.
Then f(x) z E~ái a~f(w~), where al,...,a~l are the convex combination
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coefficients such that x~ E~ i J1jwj and E~}i aj s 1. Therefore

If(x) - f(a)1 ~ IE~}1 ajf(wj) - f(x)1 a IEj1 aj(f(wj)

- f(x))1 t E~1 ajlf(wj) - f(x)1 c y.

Since the polytope C is compact and f is continuous on C, the error
y goes to zero as the mesh size á~ sup {diam a ~ a E T} of the triangu-
lation T goes to zero. Let xh be an approximate stationary poínt and
yh be the error ín Lemma 3.4 for a triangulation with mesh size 6h.
Suppose áh converges to zero as h goea to infinity. Then the sequence
{xh I h~1,2,...} has a cluater point x in C. For the simplicity of nota-
tions we assume that this sequence itaelf converges to x. Since the num-
ber of faces of C is finite, there is a face F of C and a subsequence
{zhl h~1,2,...} such that zh E F and f(zh) is in the yh-neighborhood of
~ ~F for all h. Therefore by the closedness of F and F we obtain that

- ,t
xEFandf(x)EF .

Theorem 3.5. Let xh be an approximate stationary point obtained by the
algorithm on a triangulation with mesh size dh for h~1,2,... . Suppose
áh converges to zero as h goes to infinity. Then the sequence
{xh I ha1,2,...} has a cluater point and any cluster point is a statio-
nary point.

In section 6 we will show that the path S when projected on C yields the
pl path of points satiafying (1.5) which originates for t a 0 at the
point v and terminates with an approximate solution x.
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4. DESCRIPTION OF THE ALGORITHM

In this section we will give a formal description of the algo-
rithm for following the path S under the assumption that the polytope C
is simple and the linear ínequalities defining the polytope are not re-
dundant.

The system (3.11) is equivalent to the following family of sys-
tems

~
y- f(x) ~ 0, (x,y) E v x F, (4.1)

where a is a simplex of TIvF and F is a face of C not havíng the star-

ting point v. Let I~{ill G i ~ m, ai.x a bi for any point x of F} and

let wl,.. ,wt}1 be the vertices of the simplex a. Then (4.1) has a so-

lution (x,y) if and only if the following system (4.2) has a solution
mftf 1(u.x) E R

F.ial uiai - E~}i ajf(wj) ~ 0

t~-1
E j~l aj- 1

ui ) 0 for isl,...,m, ui a 0 for i~ I

aj ) 0 for j~l,..., tfl.

(4.2)

A line segment of solutions (u,a) to (4.2) can be followed by making a
linear programming (lp) pivot step in (4.2). At the start of the algo-

~rithm we have to find the simplex a and the cone F such that
~ ~

(v,f(v))E a x F. To find the cone F we solve the linear programming
problem

minimize b.u subject to Ei~l uiai - af(v) ~ 0 (4.3)

ui ~ 0 for i~l,...,m

a s 1,
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which is the dual problem of

maximize f(v).z subject to z E C.

The optimum solution of (4.3) gives us the cell of L in which the end
point (v,f(v)) of the path S lies. Namely, let I be the set of indices
such that ui ~ 0 at the optimum solution and let F be the face of C de-
fined by the system of equations ai.x ~ b for i E I. Then (v,f(v)) -~, ~i
(v,Ei E I yiai) lies in {v} x F C vF x F E L. Barring degeneracy of the
linear programming problem (4.3), the set I has exactly n elements, so
that F ia a vertex of C and dim vF ~ 1. Then the simplex a is a 1-sim-
plex of T~vF having the starting point v as a facet, i.e., Q a{v,w} for
some vertex w of TIvF. Thus we leave the starting point v along the line
segment vF.

We now show that in general the set of solutions of (4.2) is
bounded. Suppose on the contrary that the set of solutions has an un-
bounded ray {(uo,~o) ~ a(eu,ea)~a ~ 0}. Since Eji(a~i.aea~) 3 1 and
71~~-aea~ ) 0 for any a~ 0, we have Aa ~ 0. Therefore Ei E I euisi - 0
and eui ~ 0 for i E I. Since a point of F satiafíes ai.x - bi for any
i E I, this implies dim C~ n, a contradiction. Hence the aet of solu-
tione to (4.2) is bounded and consequently has two distinct basic aolu-
tions. When some a vanishea at the basic solutions, the point (x,y) ~

t-Fl j ~ i ~ ~(E~~1 a~w , Ei E I uia ) liea in a facet r x P of a x F, where 7 is a
facet of a. Then either r is a facet of just one other simplex a of the
triangulation of vF or T lies in the boundary of vF. On the other hand,
when some ui vanishes, we can in general not conclude that (x,y) lies on~a facet of o x g. This is due to the fact that the cone F~ could have
more vectors si's than its dímension. When the polytope C is a simple
polytope and the syatem of linear inequalities defining C is nonredun-
dant, the number of inequalitiea such that ai.x ~ bi for any point x of
F is equal to n- dim F~ dim F~ so that F~ has exactly dim F~ coeffi-
cient vectors ai's. In this case we can conclude that (x,y) is on a fa-~ ~cet a x E of v x F when some ui vaniahes at the basic solution of
(4.2). By this reason we assume that the polytope C~{x E Rnlai.x t
bi for i~l,...,m} is a simple polytope and that the linear inequalities
are not redundant.
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For a subset I of the i ndex set {1,...,m} let

F(I) ~{x E Clai.x ~ bi for any i E I}.

Then F(I) is a face of C unless it is empty. Let I be the class of index

sets I C{1,...,m} such that F(I) is a nonempty face of C. Under the

above assumption that C is a simple polytope and the linear inequalities

defining C are nonredundant we have the following properties.

(i) For each face F of C the set I E I such that F(I) ~ F is unique
and identical with the set {i~l t i t m, ai.x a bi for any point x
in F}.

(íi) dimF(I) ~n-II~.

(iii) G is a facet of F(I) if and only i f G~ F(I V{j}) for some j~ I
with I V{ j} E I.

(iv) G has F(I) as a facet if and only if G~ F(I ` {k}) for some k E

I.

~TOre rhat 7 ~, 1k} E I for any ? E r an3 any k E I. i3ow starting at v ~he
algorithm generates the path S by making altertiating lp pivot steps in
(4.2) and replacement steps in the triangulatíon of vF(I), for varying
I E I, as described ín the flow chart given in Figure 4.1.

The algorithm terminates as soon as one of the following cases
occurs.
1) t lies in F(I).
2) ui becomes 0 for some i E I and F(I `{i}) has the starting point v

(including the case where I`{i} becomes empty).

In both cases let x be equal to Ei~l ~iwi. In case 1(x,f(x)) z(x,y)

lies in F(I) x F(I)~. In case 2 we have vF(I) C F(I `{i}) because F(I)

ía a facet of F(I `{i}) artd F(I `{í}) has the starting point v. Since x

líes in a simplex a in vF(I), we have (x,f(x)) ~(x,y) lies in
~

F(I ~{i}) x F(I` {i}) . Thus in either case we obtain a stationary point
for the pl approximation f of f.



18

start
~

input the starting point v in C;
evaluate f(v); find an optimum
basic solution (u,a) E R~1 of
problem (4.3); I:~ {1~1 G í t m,
ui ~ 0}

the starting point v is
a stationary point

stop

I C{ill t i c m, si.v m bi}

no

yes

find the 1-dimensional simplex v
of TIvF(I) having {v} as a facet;
w:~ the vertex of a opposite to
v; T:~ a;
evaluate f(w);
pivot in (-fT(w),1)T in system
(4.2)

((ai)T,0)T (-fT(u).1

I:~ I ` {i}

(decreasing dual dimension

pivoted out column is

yes
E F(I)

no

find the simplex a of TIvF(I) having a as a facet (see (5.3) in
Sectíon 5); w:~ the vertex of Q opposite to the facet o;
a:~ a (increasing primal dimension);
evaluate f(w);
pivot in (-fT(w)~1)T in system (4.2)

I
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no

find the simplex a of TIvF(I)
which shares T with a(see Table
5.3 and case 2 of Lemma S.S);
w:~ the vertex of a opposite to
T;

o:a a (replacement step);

evaluate f(w);

pivot in (-fT(w),1)T in system
(4-') ó

TCbd vF(I) s

find the index k~ I such that
T E TIvF(I U{k}) (see case 3 of

Lemma 5.5);

I:~ I u {k}
(increasing dual dimension);
a: ~ i
(decreasing primal dimension);
pivot in ((ak)T,0)T in system

4
x:a Ejái ajwj
(wl,...,wt}1 are the vertices of a and aj is the
basic solution of system (4.2) corresponding to the
column (-fT(w~),1)T);
x is an approximate stationary point

1

Fig. 4.1. Flow chart of the steps of the algorithm
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We show two examples of the trajectory of the algorithm in Fi-
~

gure 4.2. In the first example f(v) lies in F({1,2}) . Then the algo-
rithm leaves the starting point v along the line aegment vF({1,2}).
When the column (-fT(w2),1)T has been pivoted in, the column ((al)T~0)T

is pivoted out, i.e., I becomes {2} and the dual dimension decreases. To
íncrease the prímal dimension the vertex w3 is found and (-fT(w3),1)T is
pivoted in. After several pivot operations and replacements in vF({2})
we have the 1-simplex t~{w~,w8} in vF({2,3}), and the primal dimension
decreases. To increase the dual dimenaion we pivot in the column
((a3)T,0)T. Then the column ((a2)T,0)T is pivoted out and the dual di-
mension does not change. To move in vF({3}) we find the vertex w9. After
several iterations we have the simplex T~{w12~w13} which lies in
F({3}). Case 1 occurs and the algorithm terminates with an approximate
stationary point in F({3}).

In the second example f(v) lies in F({3,4}), and we go along
vF({3,4}). After several iterations we have t~{u~,u8} in vF({4,5}) and
the primal dimension decreases. To increase the dual dimension
((a5)T,0)T is pivoted in, (-fT(u~),1)T is out and we go to the left.
When (-fT(u9),1)T is pivoted in, ((a4)T,0)T is out and I becomes {5}.
The face F({5}) of C has the atarting point v. Case 2 occurs so that the
algorithm terminatea with an approximate stationary point ín the sim-
plex {u8,u9} in F({5}).
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F({2,3})

F({1,2})

Fig. 4.2. Two possible trajectories of the algorithm
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5. TRIANGULATION OF C

To describe the triangulation of C which underlies the simpli-
cial algorithm we have to know some face structure of C in advance. In
case C is just an n-simplex or the product of several simplices this
face structure need not be known a priori since in that case a face of C
can easily be obtained at any time from just the vertices of the set C.

Again let C~{x E Rnlai.x c bi for i~l,...,m} be an n-dimensio-
nal simple convex polytope in Rn and asaume that the linear inequalities
defining C are not redundant. Let I be the set of index sets I such that
F(I) is a nonempty face of C. For any I in I, let v(I) be a relative
interior point of F(I) if v~ F(I) and v(I) ~ v if v E F(I). We call
v(I) the projection of the starting point v on the face F(I) of C. These
projections of v on the faces of C will determine a triangulation of C
such that each vF(I) ~{x~x ~(1-a)v~ az for some z E F(I) and some
a E[0,1]} is triangulated for any I in I. Now let I(n) be a subset of n
indices of {1,...,m} such that I(n) E I, i. e., F(I(n)) ia a vertex of C.
Suppose this vertex is not equal to v. Clearly, vF(I(n)) is a 1-dimen-
aional face of vF(I) for all subsets I of I(n). Let I be a aubset of
I(n) and let Y(I(n)` I) be a permutation vector of the t- i~ n- III
elements of the set I(n)` I. The subset F(I,y(I(n) `I)) of F(I) E F is
the convex hull of the points v(I), v(I u{Yt-1}), v(I V{Yt-2'Yt-1})'
...,v(I V {Y2,...,Yt-1}) and v(I(n)), which all lie in F(I). Observe that
v(I(n)) ~ v(I V{Y1' "''Yt-1}). Clearly the t-dimensional aet
vF(I,Y(I(n) ` I)) is a t-simplex in vF(I). Now let F(I1(n)),...,F(IK(n))
denote the say K vertices of F(I).

Lemma 5.1. The union of the t-simplicea vF(I,Y(Ik(n) `I)) over all per-
mutatíons Y(Ik(n) `I) and over all k, k~1,...,K, i s a triangulation of
the set vF(I). Purthermore, the union of the n-simplices vF({i},
y(I(n)` {i})) over all permutationa Y(I(n)` {i}) such that i E I(n) and
over all I(n) E I,is a triangulation of C.

For n a 2 Lemma 5.1 is illuetrated in Figure 5.1. The only ver-
tices of this triangulation are the projections v(I) for IE I. Notice
that F(I(n)) a{v(I(n))} for all I(n) E I. In Figure 5.1 v({1,2}) and
v({2,3}) are the vertices of the facet F({2}) of C ao that the two-di-
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mensional set vF({2}) is triangulated in the two 2-simplices
vF({2},(1)) and vF({2},(3)).

;~({2,3}) ~ {~({2,3})}

F({2})
v({3})

({2},(3))

v({2})
vF({2}~(3))

F({2}r(~))

vF({2}, (l)) F({ ],2})-{v({ ] ~2})}

v v({1})

F({ 1 })

~
F({4,5}) - {v({4,5})} v({5})

f~({5})

Fí{1,5}) ~ {v({1,5})}

Fig. 5.1. Triangulation of C in vF(I,y(I(n) ` I))'s

Before we describe a triangulation of C with arbitrary mesh

size, we first discuss some properties of vF(I,y(I(n)` I)). For a given
index set I and permutation y(I(n) `I) such that I C I(n), I(n) E I and

v ~ F(I), define

q(0) ~ v(I(n)) - v

and for j- 1,..., t-1

q(j) ~ v(IV {Yj}1,...~yt-1}) - v(I V {Yj....,Yt-1})~

i. e., q(j) i s the vector between the projectton of v on
F(IV {yj}1,...,yt-1}) and the one on F(I U{yj,...,yt-1}). Notice that
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q(1) a v(I(n)` {yl}) - v(I(n)) and that q(t-1) - v(I) - v(IV {Yt-1})'

Lemma 5.2. The t-simplex vF(I,y(I(n) `I)) in vF(I) ís equal to the set

of points

{x E Rnlx ~ v f E~~~ a(j)q(j)

with 1~ a(0) ~... ) a(t-1) ~ 0}.

Proof. The set vF(I,y(I(n) ` I)) is the convex hull of the point v and
the projections v(I U{y~l,...,yt-1}) for h~0,1,...,t-1. On the other
hand

x- v f E~~ó a(j)q(j)

implies with a(t) ~ 0

x~ v- a(0)v f E~~ (a(j)-a(~1)) v(IU {yjt1,...,Yt-1})'

Therefore when a(0) ~ 0 the point x is equal to v and when a(0) ~ 0

x a av f(1-a)z with 0 ~ a S 1- a(0) ~ 1. (5.2)

The point z~ E~~ ajv(IU{yj,}1'"''yt-lf) lies in F(I,y(I(n) `I)),
since aj -(a(j)-a(jfl))~a(0) ~ 0 for j-0,...,t-1, and Ej~ aj ~
a(0)~a(0) ~ 1. O

The boundary of the t-dimensional set vF(I,y(I(n)` I)) is ob-
tained by letting one of the inequalitíes in (5.1) be an equality.

Lemma 5.3. The (t-1)-facets of vF(I,y(I(n) `I)) are obtained by setting
in (5.1) either a(0) ~ 1 or a(h) ~ a(htl) for some h, h~ O,l,...,t-2 or
a(t-1) ~ 0. More precisely we have the following four cases.
1) If a(0) ~ 1 in (5.1), then accordíng to (5.2) the facet

F(I,y(I(n)` I)) opposite to the vertex v is obtained.



25

2) If a(t-1) L 0 in (5.1), we obtain the (t-1)-dimensional set
vF(I U{Yt-1}'(Y1'" ''Yt-2)) as a facet of vF(I,y(I(n) `I)). This
facet lies opposite to vertex v(I) of vF(I,y(I(n) `I)).

3) If a(h) a a(hfl) in (5.1) for some h, hal,...,t-2 then the obtained
facet opposite to vertex v(I U{y~l'" -'yt-1}) is also a facet of the
t-simplex vF(I,y(I(n))` I)) with

Y(I(n) ` I) s (Y1,...,Yh-1.Y~1~Yh.Y~2~...,Yt-1).

4) If a(0) ~ a(1) in (5.1), then the obtained facet opposite to vertex
v(I(n)) is also a facet of the t-simplex vF(I,y(I(n) `I)) wlth I(n)
and y(I(n) ` I) determined as follows. Consider the edge F(I(n) `
{yl}) of C. This one-face connects the two vertices F(I(n)) and
F(I(n)) `{yl} U{k}) for some k not in I(n). Then I(n) ~
I(n)`{yl} U{k} and y(I(n)` I) ~(k,y2,-~~'Yt-1)'

Lemma 5.3 ts illustrated in Figure 5.2 for n a 3, I(n) ~{1,2,4} and I~
{2}. In this figure the sets F({2}, (5,4)), F({2}, (1,4)), F({2}, (4,1))
and F({2},(,3;1)) are 2-simplices ir. th~ facet F({2}) of C. Consider the
3-simplex vF({2},(4,1)). The set F({2},(4,1)) obtained by letting a(0) ~
1 in (5.1) is the facet of vF({2},(4,1)) opposite to vertex v. When a(2)
~ 0, we have case 2 and the facet vF({1,2},(4)) is opposite to vertex
v({2}). Case 3 of Lemma 5.3 occurs when a(2) - a(1), in which case the
facet of vF({2},(4,1)) opposite to vertex v({1,2}) is also a facet of
vF({2},(1,4)). If a(0) ~ a(1), i.e., case 4 of Lemma 5.3 occurs, we ob-
tain the facet of vF({2}, (4,1)) opposite to the vertex v(I(n)) ~
v({1,2,4}). Since v({1,2,3}) is the other end point of the edge
F({1,2}) of C than v({1,2,4}), this facet also lies in the 3-simplex
vF({2},(3,1)).
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v

v({2,4,5}) v({2,4})

F({1,2},(4))

v({1,2,4}) a ~(I(n))

Fig. 5.2. Part of triangulation of vF({2}) when n~ 3

To obtain a simplicial subdivision of C with arbitrary mesh size
each set vF(I,y(I(n) ~1)) is triangulated as follows. Let d be an arbi-
trary positive number such that á1 is an integer. We call d the grid
size. A t-dimensional set vF(I,7(I(n)` I)) will be triangulated into
(d 1)t simplices all having the same volume such that the union of these
triangulations yields a triangulation of C with mesh size less than or
equal to d.diam C.

Definition 5.4. The aet Gd(I,y(I(n) `I)) is the collection of t-aimpli-
ces a(wl,n) in vF(I,y(I(n) ` I)) with verticea wl,...,wt}1 auch that

i) wl ~ v t E~~~ R(j)dq(j) where R(0),...,R(t-1) are integers such
that

0 ~ R(t-1) t... ~ R(0) ~ d-1-1.
íi) n~(nl,...,nt) is a permutation of the t elements in the set

{0,...,t-1} auch that s~ a' if as a j, na~ ~ jtl and R(j-F1) ~ R(j)
for some j E{O,l,...,t-2}.



27

iii) wi}1 3 wi f dq(ni) for ial,...,t.

Observe the similarity with the V-triangulation of a simplotope defined
in Doup and Talman [1]. Furthermore i f d is equal to one
Gd(I,Y(I(n)` I)) consists of one simplex, vF(I,Y(I(n)` I)). Notice that

in that case R(j) ~ 0 for all j and ni z i- 1 for ial,...,t. So, in

fact, Gd(I,Y(I(n)` I)) is a triangulation of vF(I,Y(I(n) ` I)) with re-

finement factor á 1. Taking the union over all permutations Y and over
all feasible I(n) and I, we obtain a triangulation of C with grid size

d, i.e., with mesh size less than or equal to d.diam C.
As described i n Section 4, the algorithm follows the pl path S

defined in Theorem 3.3 leading from the starting point v to an approxi-
mate solution by alternating linear programming pívot steps in system
(4.2) and replacement steps with respect to a sequence of simplices of
varying dimension of the triangulation defined above. We discuse now in
detail the replacement rules of the algorithm. So, let a~ a(wl,n) be an
arbitrary t-simplex in Gd(I,y(I(n) ` I)) for some I(n) E I generated by
the algorithm. Suppose that by the linear programming pivot step in
(4.2) with respect to this simpïex u i becomes equal to zero for some
i E I. Let I be equal [o I`{i}. If v lies in the face F(I) of C, the

algorithm terminates and x- E~i ajwj is an approximate solution. Re-
call that this case includes the case where I ia empty. If v~ F(I),
then the algorithm continues with the uníque ( tfl)-simplex v in vF(I)
having a as a facet. Notice that the aet vF(I) is indeed ( tfl)-dimensio-
nal if v~ F(I). According to Definition 5.4 a i s the ( tfl)-aimplex
o(wl,n) in Gd(I,Y(I(n)` I)), where I~ I`{i},

Y(I(n)` I) ~ (Y1....,Yt-1'i)

-1 1w s w

R(j) s R(j) for j~ O,l,...,t-1, and

n - (al,...,at,i).

(5.3)

The algorithm continues by setting R(t) m p and t equal to tfl and by

making a linear programming pivot step in (4.2) with (-fT(~,r),1)T,



28

where w is the new vertex of a opposite to the facet a. If not a ui be-
comes zero when a linear programming pivot step is made in (4.2) with
respect to some t-simplex a(wl,n) in Gd(I,y(I(n) ` I)), then as becomes
zera for some s, 1 c s c t f 1. In that case the vertex ws of a has to
be replaced. Two casea can occur. Either the facet of a oppoaite to ver-
tex ws lies in the boundary of vF(I,y(I(n) `I)) or it is a facet of an-
other t-simplex a(wl,n) in Gd(I,y(I(n)` I)). In the latter case the al-
gorithm continues by making a linear programming pivot atep in (4.2)

T - Twith (-f (w),1) , where w is the new vertex of a opposite to the facet
shared with a. The parameters wl, n and R are obtained from the parame-
ters wl, n and R of a as described in Table 1.

-1w

s- 1 wl f dq(nl)
1 ~ s~ tfl wl
s - tfl wl -dq(nt)

n R

(n2,...,nt,n1) R f e(nl)
(Rl,....ns-2'rs'ns-1~....nt) R
(~rtt,nl,...~xt-1) R - e(nt)

Table 1. Parameters of a if the vertex ws of a(wl,n) is replaced

Lemma 5.5. The facet t oppoaite to the vertex ws of a(wl,n) in
vF(I,y(I(n) ` I)) lies in the boundary of the latter aet if and only if
one of the following three casea holds.
1) s- 1, nl - 0 and R(0) - á1- 1.
2) 1~ s ~ ttl, as - h f 1, a~l - h for some h E{O,l,...,t-2} and

R(h) - R(hfl).
3) s- t f 1, xt ~ t- 1 and R(t-1) - 0.

In case 1 of Lemma 5.5 t lies, according to Lemma 5.3, in
F(I,y(I(n) ` I)) and the algorithm terminates with an approximate sulu-
tion in F(I). In case 2 of Lemma 5.5 the facet t of a is, according to
Lemma 5.3 cases 3 and 4, a facet of a unique t-simplex a lying in
vF(I,y(I(n)` I)) with y defined as in case 3 of Lemma 5.3 when h~ 1
and in vF(I,y(I(n) ` I)) with y and I(n) defined as in case 4 of that
lemma when h- 0. In both cases wl, n and R do not change. Notice, how-
ever, that svme of the vectors q(j), j-0,...,t-1, change when
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y(I(n)` I) changes. The algorithm continues in both cases with the new
vertex w of a opposite to the facet shared with a by making a linear
programming pivot step in (4.2) with (-fT(w),1)T, setting I(n) to the
new I(n) when h- 0 and y to the new y.

Finally, in case 3 of Lemma 5.5 the facet T of a opposite to the

vertex wt}1 is, according to case 2 of Lemma 5.3, the (t-1)-simplex

v(wl,n) in vF(I v~yt-1}~(Y1....,Yt-2))~ where wl ~ wl, n~(nl,...,nt-1)

and R a(R(0),...,R(t-2)). The algorithm continues by setting I equal to

I U{Yt-1}' Y(I(n) ` I) equal to (yl,...,yt-2), a equal to a, t equal to

t-1 and making a linear programming pivot step with ((ak)T,0)T in system

(4.2), where k is the new element in the set I.

This completes the description of the replacement step in the
triangulation of C when the grid size is equal to d.
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6. REMARKS

We now show that the algorithm traces the path of stationary
points generated by the pl approximation f of f and the expanding set
C(t) ~(1-t) {v} t tC. Let (x,y) be an arbltrary point on the path S of~
H-1(0) that the algorithm traces. Then x E vF and f(x) ~ y E F for some
face F of C. Let a~ inf {tlx E C(t), tE [0,1]}. If x~ v, then
a~ 0, F(a) ~(1-a) {v} f aF is a face of C(a) and x E F(a). Let

~
F(a) ~{y E Rn~any point of F(a) is an optimum solution of the

linear programming problem maximize y.z subject to z E C(a)}.

~ ~Then it is readily seen that F(a) ~ F. Therefore we have that x is a
stationary point for the pl approximation f to f on the set C(a). If x s
v, then a~ 0 and hence v is a trivial atationary point for C(0) ~
{v}. Thus we have aeen that the algorithm follows the path of stationary
points for the pl approximation f to f with respect to the underlying
triangulation and the expanding set C(t), 0 c t t 1.

Special casea of the set C are cubes or simplices. In case the
set C is the n-dimensional cube C~{x E Rnla c x c b} for two vectors a
and b in Rn with ai ~ bi, i~l,...,n, the stationary point problem redu-

~ces to finding an x in C such that for all i

~ ~
xi a bi implies fi(x ) ~ 0,

and
ai ~ xi ~ bi ímplies fi(x~) s 0

~ ~
xi ~ si implies fi(x ) c 0.

A simplicial algorithm for this problem was introduced in [10]. However
that algorithm has only 2n rays to leave the arbitrarily chosen starting
point, one ray to each facet of C. The algorithm deviced in this paper
has 2n rays, one to each vertex of C. The difference between both algo-
rithma can be compared with the difference of Lemke's algorithm and the
algorithm proposed in [11] for solving the linear complementarity pro-
blem with upper and lower bounds. In the latter paper it has been argued
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that the algorithm with 2n rays is very natural and might be faster than

the algorithm with 2n rays.

In case C is an n-dimensional simplex T(wl,...,wr~l) in Rr~ the

algorithm proposed in this paper is similar to the algorithm proposed in
[1]. However, the latter algorithm was developed for the n-dimensional

unit simplex in R~1 with wi the i-th unit vector in R~1. The same re-

mark holds when C is the product space of more than one simplex. Notice
that the cube is the product of n one-dimensional simplices.
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