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Association schemes.

A.E. Brouwer & W .H. Haemers

1. Introduction.

Association schemes are by far the most important unifying concept in algebraic combinatorics.
They provide a common view point for the treatment of problems in several fields, such as coding theory,
design theory, algebraic graph theory and finite group theory.

Roughly, an association scheme is a very regular partition of the edge-set of a complete graph. Each
of the partition classes defines a graph, and the adjacency matrices of these graphs (together with the iden-
tity matrix) form the basis of an algebra (known as the Bose-Mesner algebra of the scheme). But since this
basis consists of 0-1 matrices, we see that the algebra is not only closed under matrix multiplication, but
also under componentwise (Hadamard, Schur) multiplication. The interplay between these two algebra
structures on the Bose-Mesner algebra yields strong information on the structure and parameters of an
association scheme.

The relation of the theory of association schemes to the various fields varies. Finite group theory
mainly serves as a source of examples - any generously transitive permutation representation of a group
yields an association scheme -, but also as a source of inspiration - many group-theoretic concepts and
results can be mimicked in the (more general) setting of association schemes. On the other hand, in com-
binatorics association schemes form a tool. Using inequalities for the parameters of an association scheme,
one finds upper bounds for the size of error-correcting codes, and lower bounds for the number of blocks
of a t-design. Many uniqueness proofs for combinatorial structures depend crucially on the additional infor-
mation one gets in case such inequalities hold with equality.

The graphs of the partition classes of an association scheme are very special. For instance distance-
regular graphs and Kneser graphs are of this type. For these graphs the spectrum of the adjacency matrix
can be computed from the parameters of the association scheme. Thus results about the eigenvalues of
graphs (cf. Godsil’s chapter) can be applied.

An association scheme with just two classes is the same as a pair of complementary strongly regular
graphs. Because strongly regular graphs are themselves important combinatorial objects and because their
treatment forms a good introduction to the more general theory, we shall start with a section on strongly
regular graphs. In the subsequent section we treat the elements of the general theory of association
schemes: the adjacency matrices, the Bose-Mesner algebra, the eigenvalues, the Krein parameters, the
absolute bound and Delsarte’s inequality on subsets of an association scheme. The last section is devoted
to some special association schemes and the significance to other fields of combinatorics, as indicated
above.

Association schemes were introduced by Bose & Sumvamoro [10] and Bose & MEsner [9] defined
the algebra that bears their name. DeLsaRTE [17] found the linear programming bound, studied P- and Q-
polynomial schemes, and applied the resulting theory to codes and designs. HioMAN [29] introduced the
more general concept of coherent configuration to study permutation representations of finite groups.
There is much literature on association schemes and related topics. BANNAI & ITo [3] is the first text book
on association schemes. On the more special topic of distance-regular graphs a lot of material can be found
in Biccs |7]; a monograph on this topic by Brouwer, Cohen & Neumaier is under preparation. Some intro-
ductory papers on association schemes are DrLSARTE [18], GogTHALs [23], chapter 21 of MAacWLLIAMS &
SLOANE [43], HAEMERS [25], chapter 17 of CAMERON & VAN Lint [15] and SEDEL 150].



2. Strongly regular graphs.
A simple graph of order v is strongly regular with parameters v, k, A, p whenever it is not complete
or empty and

(i) each vertex is adjacent to k vertices,
(ii)  for each pair of adjacent vertices there are A vertices adjacent to both,
(iii) for each pair of non-adjacent vertices there are p vertices adjacent to both.

For example, the pentagon is strongly regular with parameters (v,k, A,p) = (5,2,0,1). One easily ver-
ifies that a graph G is strongly regular with parameters (v,k, A, ) if and only if its complement G is strongly
regular with parameters (v,v—k—1,v—2k+1—-2,v—2k+A). The line graph of the complete graph of order m,
known as the triangular graph T(m), is strongly regular with parameters (%m (m-1),2(m-2), m-2, 4).
The complement of T'(5) has parameters (10,3,0, 1). This is the Petersen graph.

A graph G satisfying condition (i) is called k-regular. It is well-known and easily seen that the adja-
cency matrix of a k-regular graph has an eigenvalue & with eigenvector j (the all-one vector), and that
every other eigenvalue p satisfies |p| < k (see Godsil's chapter or Bicas [7]). For convenience we call an
eigenvalue restricted if it has an eigenvector perpendicular to j. We let / and J denote the identity and all-
one matrices, respectively.

2.1. Theorem. For a simple graph G of order v, not complete or empty, with adjacency matrix A, the fol-
lowing are equivalent:

() G is strongly regular with parameters (v,k, A, ) for certain integers k, A, W,
(i) A%=A-pA+(k—pI+W for certain reals k, A, 1,

(iii) A has precisely two distinct restricted eigenvalues.

Proof. The equation in (ii) can be rewritten as

A2 =kl +M +u(J =T -A).

Now (i) &> (ii) is obvious. (ii) = (iii): Let p be a restricted eigenvalue, and u a corresponding eigenvector
perpendicular to j. Then Ju=0. Multiplying the equation in (ii) on the right by u yields
p® = (A—p)p+(k—p). This quadratic equation in p has two distinct solutions. (Indeed, (A—p)? =4(u—k)
is impossible since p < kand A <k-1.)

(i) = (ii): Let r and s be the restricted eigenvalues. Then (A —r/}A —sl)=oJ for some real number o
So A? is a linear combination of A, [ and J. W

As an application, we show that quasisymmetric block designs give rise to strongly regular graphs. A
quasisymmetric design is a 2-(v,k, A) design such that any two blocks meet in either x or y points, for cer-
tain fixed x, y. (CE. the chapter on block designs.) Given this situation, we may define a graph G on the set
of blocks, and call two blocks adjacent when they meet in x points. Then there exist coefficients
&, -+, 0 such that NN = oyl + 0, NJ =03J, JN = aJ, A =asN'N + el +a;J, where A is the adja-
cency matrix of the graph G. (The o; can be readily expressed in terms of v, k, A, x, y.) Then G is strongly
regular by (ii) of the previous theorem. (Indeed, from the equations just given it follows straightforwardly
that A2 can be expressed as a linear combination of A, / and J.) A large class of quasisymmetric block
designs is provided by the 2-(v,k,A) designs with A = 1 (also known as Steiner systems §(2,k,v)) - such
designs have only two intersection numbers since no two blocks can meet in more than one point. This
leads to a substantial family of strongly regular graphs, including the triangular grapbs 7 (m) (derived from
the trivial design consisting of all pairs out of an m-set).

Another connection between strongly regular graphs and designs is found as follows: Let A be the
adjacency matrix of a strongly regular graph with parameters (v,k,A,1) (i.e., with A =y; such a graph is
sometimes called a (v,k,A) graph). Then, by (2.L.ii)

AAT =AY =(k-MI+MJ,

which reflects that A is the incidence matrix of a square (‘symmetric’) 2-(v,k, A) design. (And in this way
one obtains precisely all square 2-designs possessing a polarity without absolute points.) For instance, the
triangular graph T (6) provides a square 2-(15,8,4) design, the complementary design of the design of
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points and planes in the projective space PG (3,2). Similarly, if A is the adjacency matrix of a strongly reg-
ular graph with parameters (v,k,A,A+2), then A +1 is the incidence matrix of a square 2-(v,k, A) design (and
in this way one obtains precisely all square 2-designs possessing a polarity with all points absolute).
2.2. Theorem. Let G be a strongly regular graph with adjacency matrix A and parameters (v,k,\,p). Let r
and s (r > s) be the restricted eigenvalues of A and let f, g be their respective multiplicities. Then
(i) kk-1-M)=pv-k-1),
(i) rs=p—k r+s=A-p,

-1)+2k

L g=L(v-1F (r+s)v-1)+2k i
@) f.g=50 i )
Proof. (i) Fix a vertex x of G. Let ['(x) and A(x) be the sets of vertices adjacent and non-adjacent to x,
respectively. Counting in two ways the number of edges between I'(x) and A(x) yields (i). The equations
(ii) are direct consequences of (2.1.ii), as we saw in the proof. Formula (iii) follows from f+g =v—1 and
O=trA=k+fr+gs =k+%(r+s)(f+g)+%(r-s)(f—g). &
These relations imply restrictions for the possible values of the parameters. Clearly, the right hand

sides of (iii) must be positive integers. These are the so-called rationality conditions. They imply that r
and s must be integers if £ # g. As an example of the application of the rationality conditions we can derive
the following result due to HorFmaN & SINGLETON [32].
2.3. Theorem. Suppose (v,k, 0,1) is the parameter set of a strongly regular graph. Then (v,k)=(5,2),
(10,3), (50,7) or (3250,57).

Proof. The rationality conditions imply that either f =g, which leads to (v,k) = (5,2), or r —s is an integer
dividing (7 +s)(v — 1) + 2k. By use of (2.2.i-ii) we have

s=—r—1, k=ri+r+l, v=r*42r343r242r +2,

and thus we obtainr = 1,20r 7. W
The first three possibilities are uniquely realized by the pentagon, the Petersen graph and the Hoffman-
Singleton graph. For the last case existence is unknown (but see ASCHBACHER [1]).

Except for the rationality conditions, other restrictions on the parameters are known. We mention
three of them.
The Krein conditions, due to Scott [48], can be stated as follows:

(r+1)k+r+2rs)<(k+rXs+ LA
(s+ 1)k +s+2rs) < (k +s)r+ 1)
Seidel’s absolute bound (see DELSARTE, GOETHALS & SEEL [20], KooRNWINDER [37], SEmEL [49]) reads

v<f(f+3),
v<g(g+3)

The conference matrix condition, due to BELevirc [4] (see also Van LiNt & SemeL [41]), states that if
f =g, then v must be the sum of two squares (such a graph is related to a conference matrix of order v + 1).

The Krein conditions and the absolute bound are special cases of general inequalities for association
schemes - we’ll meet them again in the next section; the conference matrix condition is the analogue of the
Bruck-Chowla-Ryser theorem for square 2-designs. In BRouwER & VAN Livt [11] one may find a list of all
known restrictions; this paper gives a survey of the recent results on strongly regular graphs. It is a sequel
to Husaut [33]’s earlier survey of constructions. SEmEL [49] gives a good treatment of the theory. Some
other references are Bose [8], CaMERON [14] and CameroN & Van Lint [15].



3. Association schemes.
An association scheme with d classes is a finite set X together with d+1 relations R; on X such that
(i) {Ro.R,, --,R,} isa partition of XxX;
(i) Ro={(xx)xeX});
@iii) if (x,y) € R;, then also (y.x)€ R;, forallx,y € Xand i€ {0, - ,d}
(iv) for any (x,y)€ R, the numberpfj of z € X with (x,z) € R; and (z,y) € R; depends only on i, j and k.

The numbers pf, are called the intersection numbers of the association scheme. The above definition is the
original definition of Bosg & Sumamoro [10]; it is what DELsARTE [17] calls a symmetric association
scheme. In Delsarte’s more general definition, (iii) is replaced by:

(iii’) foreachie {0, --,d}there existsaj€ (0, -+, d} such that (x,y) € R; implies (y,x) € R;,

(iii"") pf, =p,*-,-.foralli,j.ke {0+~ gd}.

D.G. Hioman [29,30,31] studied the even more general concept of a coherent configuration. He requires
(i), (iii"), (iv) and

(ii") {(x.x)|x € X} is a union of some R;.

If (ii) holds, then the coherent configuration is called homogeneous. We shall not treat coherent configura-
tions here, but content ourselves with the remark that a coherent configuration with at most 5 classes must
be an association scheme (in the sense of Delsarte), see HigMAN [30].

Define n := |X|, and n; :=p?,~. Clearly, foreachie (1, -,d}, (X,R;) is a simple graph which is reg-
ular of degree n;.
3.1. Theorem. The intersection numbers of an association scheme satisfy
() pbj =8 pY=8;n; phi=p}
@) Xpi=np Xnj=n
2 J

(iii) phne=phn;.
(v) Xpipl=Trupi.
1 ]
Proof. (i)-(iii) arc straightforward. The expressions at both sides of (iv) count quadruples (w,x,y,z) with
(w,x) € R;, (x,y) € R, (y,2) € Ry, for a fixed pair (w,z)€eR,,. B

It is convenient to write the intersection numbers as entries of the so-called intersection matrices Lo, " -,
Ly
= 7k
(Liyj =pij-
Note that L, = I. From the definition it is clear that an association scheme with two classes is the same as a

pair of complementary strongly regular graphs. If (X,R,) is strongly regular with parameters (v,k,A,p),
then the intersection matrices of the scheme are

0k O 0 0 v—k-1
Ly=|1Ak-A-1| Ly=|0 k-A-1 v-2k+A
Op k—p 1 k—p v=2k+p-2

We see that (iii) generalises (2.2.1).

The Bose-Mesner algebra.

The relations R; of an association scheme are described by their adjacency matrices A; of order n
defined by

I whenever (x,y)€R;,
Ads =1 0 otherwise.

In other words, A; is the adjacency matrix of the graph (X,R;). In terms of the adjacency matrices, the



axioms (1)-(iv) become
d
(i) YA =J,
i=0

(i) Ao=I,

(i) A; =A],forallie (0,---,d},

(iv) AA; =3 phAs, forallijke (0,---,d}.
k

From (i) we see that the A, are linearly independent, and by use of (ii)-(iv) we see that they generate a com-
mutative (d+1)-dimensional algebra A of symmetric matrices with constant diagonal. This algebra was
first studied by Bose & MesNEr [9] and is called the Bose-Mesner algebra of the association scheme.

Since the matrices A; commute, they can be diagonalized simultaneously (see Marcus & MmN [44]),
that is, there exist a matrix § such that for each A € A, S ' AS is a diagonal matrix. Therefore A is semisim-

ple and has a unique basis of minimal idempotents Eo, * - -, E, (see Burrow [12]). These are matrices
satisfying

E;E; =§;;E;,

d

SE =1

i=0

The matrix %J is a minimal idempotent (idempotent is clear, and minimal follows since rkJ = 1). We shall
take Eq = --J. Let P and %Q be the matrices relating our two bases for A:

d
A;= Y PE;
i=0

E;= ,',—f',Q.»,A.x
i=0
Then clearly
PQ =QP =nl.
It also follows that
AE;=P,E,

which shows that the P;; are the eigenvalues of A; and that the columns of E; are the corresponding eigen-
vectors. Thus ; =k E, is the multiplicity of the eigenvalue P;; of A; (provided that P;; # Py; for k # ).
d

We see that uo =1, Y |; =n, and p; =tr E; = n(E;);; (indeed, E; has only eigenvalues 0 and 1, so tkE,
i=0

equals the sum of the eigenvalues).
3.2. Theorem. The numbers P;; and Q;; satisfy
(i) Pio=Qio=1Po=n.Qo=W

d
@) PyPu= Epngu’

1=0
(i) wiPi;=nQjin WPiiPu= nn;Bjes T, Qi Qi = np; 8,
('V) {Pi/I S"j' |Qljl Sl"’j'
Proof. Part (i) follows easily from Y E; =1 =A,, Y A; =J =nEy, AJ =nJ, and trE; = p,.
Part (ii) follows from A A, = T PiAL.

]

The first equality in (iii) follows from ¥\ n,Q;P; =nn;8; =wA;A, = 3 M Pi;Py, since P is nonsingular,

this also proves the second equality, and the last one follows since PQ = nl.
The first inequality of (iv) holds because the P;; are eigenvalues of the n;-regular graphs (X,R;). The



second inequality then follows by use of (iii). B

Relations (iii) are often referred to as the orthogonality relations, since they state that the rows (and
columns) of P (and Q) are orthogonal with respect to a suitable weight function.

If d =2, and (X,R,) is strongly regular with parameters (v,k, A,jt), the matrices P and Q are

1k v—k-1 vt 7 '
P=|1r —r-1|, Q=1 f% g% .
ls —s-1
R % S .. 8

v—k—-1 " vok-1
where r, 5, fand g can be expressed in terms of v, k, A by use of (2.2).

In general the matrices P and Q can be computed from the intersection numbers of the scheme, as
follows from the following

3.3. Theorem. Fori =0, - - ,d, the intersection matrix L; has eigenvalues P;; (0 < i <d).
Proof. (3.2.ii) yields

P.‘,‘ZP,}(P_l)bn ‘_‘EPII(L/‘)I&(P—‘)&M'
X ]

hence PL;P™" =diag (P, """, Pyj). B
Thanks to this theorem, it is relatively easy to compute P, Q (= TIP—I) and p; (=Qy;). It is also

possible to express P and Q in terms of the (common) eigenvectors of the L;. Indeed,
PL,-P’I = diag (P, * * - , P4j) implies that the rows of P are left eigenvectors and the columns of Q are
right eigenvectors. In particular, p; can be computed from the right eigenvector u; and the left eigenvector
vI, normalized such that (i) = (v;)o = 1, by use of p;u]v; = n. Clearly, each p; must be an integer. These
are the rationality conditions for an association scheme. As we saw in the case of a strongly regular graph,
these conditions can be very powerful. Godsil (see his chapter) puts the rationality conditions in a more
general form, which is not restricted to association schemes.

The Krein parameters.

The Bose-Mesner algebra A is not only closed under ordinary matrix multiplication, but also under
componentwise (Hadamard, Schur) multiplication (denoted o). Clearly {Ao, ", Ay} is the basis of
minimal idempotents with respect to this multiplication.

Write

d
E"OEI' = % qu,Ek
k=0

The numbers ¢ thus defined are called the Krein parameters. (Our qf; are those of Delsarte, but differ
from SEmEL [49]’s by a factor n.) As expected, we now have the analogue of (3.1) and (3.2).

3.4. Theorem. The Krein parameters of an association scheme satisfy
() g6, =8 a5 =81 4=}
(ii) qu,=u,-, zul':"'

i j

(i) gfpe = ghh;,
(iv) Xqiq8 =X 9497
V l
<
V) Q0= qpQu
=)
i) npgl =3 mQiQ,Qu.
[

Proof. Let £(A) denote the sum of all entries of the matrix A. Then JAJ =Z(A), Z(A0oB) =trAB" and
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XE)=0 if i#0, since then EJ=nEEy=0. Now (i) follows by use of E,0Ey= %E,.,

qf»’,- =X(E,0E;)=w E;E; = §;;0;, and E;0E; =E;OF,, respectively. Equation (iv) follows by evaluating

E,0E;0FE; in two ways, and (iii) follows from (iv) by taking m = 0. Equation (v) follows from evaluating

A;0E;OE; in two ways, and (vi) follows from (v), using the orthogonality relation 3 1QimQuk = Smehicn.
1

Finally, by use of (iii) we have

WY 95 = Tahh; = ntr (E;0Ey) = n3,(E)y(Ex)y = Wik
i [

proving (ii). @

The above results illustrate a dual behaviour between ordinary multiplication, the numbers p}} and
the matrices A; and P on the one hand, and Schur multiplication, the numbers qf, and the matrices E; and QO
on the other hand. If two association schemes have the property that the intersection numbers of one are
the Krein parameters of the other, then the converse is also true. Two such schemes are said to be (for-
mally) dual to each other. One scheme may have several (formal) duals, or none at all (but when the
scheme is invariant under a regular abelian group, there is a natural way to define a dual scheme, cf.
DeLsarTE [17]). In fact usually the Krein parameters are not even integers. But they cannot be negative.
These important restrictions, due to Scotr [48], are the so-called Krein conditions.

3.5. Theorem. The Krein parameters of an association scheme satisfy qf} 20foralli,jke (0, --,d}.
Proof. The numbers %qu (0 <k <d) are the eigenvalues of E;oE; (since (E;0FE;)E; = —:—quE,). On the
other hand, the Kronecker product £; ® E; is positive semidefinite, since each E; is. But E;OE; is a princi-
pal submatrix of E; ® E;, and therefore is positive semidefinite as well, i.e., has no negative eigenvalue. B

The Krein parameters can be computed by use of equation (3.4.vi). This equation also shows that the
Krein condition is equivalent to

> mQuiQ,Qu 20 foralli,jke (0, --,d}.
!

In case of a strongly regular graph we obtain

3 3
qh =ﬁ{l+r————(’+l) J 20,

v K2 (v—k-1)

2 3 3
p =L[,+L_&_} >0

2Ty K (v—k-1)
(the other Krein conditions are trivially satisfied in this case), which is equivalent to the result mentioned in
the previous section.
NEUMAIER [45], generalized Seidel’s absolute bound to association schemes, and obtained
3.6. Theorem. The multiplicities p; (0 < i <d) of an association scheme with d classes satisfy

Hil; ifi #j,

ZHE) Lpguen i

q;to

Proof. The left hand side equals rk (E;0E;). But rk(E,0E;)<tk(E;®E;) =1k E;xrk E; =p;p;. And if
i =j, then rk (E;,0E,) < A;-p,-(u,- +1). Indeed, if the rows of E; are linear combinations of p; rows, then the

rows of E;0E; are linear combinations of the p, + } W, (p; — 1) rows that are the elementwise products of any
two of these p; rows. B )

For strongly regular graphs with g}, =0 we obtain Seidel's bound: v < %f(ﬂ- 3). But in case
gl >0, Neumaier’s result states that the bound can be improved to v < %f f+1).



Subsets of association schemes.

The last subject of this section is a result of DeLsARTE [17] (Theorem 3.3, p. 26) on subsets in associ-
ation schemes. ForY < X, Y # @, we define

a;=—x"Ax
lYl

where y is the characteristic vector gf Y. In other words, g; is the average degree of the subgraph of (X,R;)
induced by Y. Clearly ao =1, and ¥ a; = |Y|. The vector @ = (ao, * * * , a,) is called the inner distribution
i=0

of Y.

3.7. Theorem The inner distribution a of an nonempty subset of an association scheme satisfies aQ 2 0.

Proof. |Y|Za Q= ZX Q,;Aix =nx"E;x 20, since E| is positive semidefinite. B

This mequahty leads to Delsarte’s linear programming bound, as we shall see in the next section.

As an application we have the following result (DELSARTE [17], Theorem 3.9, p. 32).
3.8. Theorem. Let {{0},1,,1,} be a partition of |0, - - -, d}, and assume that Y and Z are nonempty sub-
sets of X such that the inner distribution b of Y satisfies b; =0 for i € I,, and the inner distribution ¢ of Z
satisfies ¢; =0 for ie I,. Then |Y|"|Z| <|X|, and equality holds if and only if for all i #0 we have
(bQ@); =00r(cQ); =0
Proof. Define B, =7 |Z|"Z¢,QI, Then Bo=1, B; 20 for all i, and ZB Ok =ni'|Z| ncy. Now we

have |Y| = Zbk =(bQ) < EkahB ZQ°‘B‘ B ]ZI .

Let us investigate a special case of this situation somewhat closer. Let, for 7 ¢ {0, - - -, d}, the I-sphere
around the point x € X be the set {y € X|(x,y)€ R, forsome i€ [}. A nonempty subset Y of X is called
perfect (more precisely, I-perfect) when the I-spheres around its points form a partition of X.
3.9. Theorem. (‘Lloyd’s theorem’, cf. Lroyp [42], DELSARTE [17], p. 63). Let Y be I-perfect, with inner
distributiona. Then 3,P;; =0 for all j # 0 such that (aQ); # 0.
iel
Proof. Apply the previous theorem, with for Z an /I-sphere. If ¢ is the inner distribution of Z, then
lZ|F;1(CQ), Z z ",PmQu Z E pgh 2 PMPI,.:(EPF)Z |
ghel iel

ighel ighel

4. Applications.

In this section we discuss some special types of association scheme and their significance to other
fields of combinatorics.

Distance regular graphs.

Consider a connected simple graph with vertex set X of diameter d. Define R; c X 2 by (x,y)€R;
whenever x and y have graph distance i. If this defines an association scheme, then the graph (X,R)) is
caued distance-regular. The corresponding association scheme is called metric. By the triangle inequality,
p,/ =0if i+j <k or |i—j| >k Moreover, p{¥ > 0. Conversely, if the intersection numbers of an associa-
tion scheme satisfy these conditions, then (X,R ) is easily seen to be distance-regular.

Many of the association schemes that play a réle in combinatorics are metric. In fact, all the exam-
ples treated in this chapter are metric. Strongly regular graphs are obviously metric. The line graph of the
Petersen graph and the Hoffman-Singleton graph are easy examples of distance-regular graphs that are not
strongly regular.

Any k-regular graph of diameter d has at most



L+k+k(k=1)+ - - +k(k=1)*"

vertices, as is easily seen. Graphs for which equality holds are called Moore graphs. Moore graphs are
distance-regular, and those of diameter 2 were dealt with in Theorem 2.3. Using the rationality conditions
DameriaL [16] and BANNAIL & [To [2] showed:

4.1. Theorem. A Moore graph with diameter d 2 3 is a (2d +1)-gon.

A strong non-existence result of the same nature is the theorem of Farr & G. HioMaN [22] about finite
generalized polygons. A generalized m-gon is a point-line geometry such that the incidence graph is a con-
nected, bipartite graph of diameter m and girth 2m. It is called regular of order (s,t) for certain (finite or
infinite) cardinal numbers s, ¢ if each line is incident with s+1 points and each point is incident with ¢+1
lines. (It is not difficult to prove that if each point is on at least three lines, and each line has at least three
points (and m < e<), then the geometry is necessarily regular, and in fact s =¢in case m is odd.) From such
a regular generalized m-gon of order (s,¢), where s and ¢ are finite and m 2 3, we can construct a distance-
regular graph with valency s (¢+1) and diameter d = [%m ] by taking the collinearity graph on the points.
4.2. Theorem. A finite generalized m-gon of order (s,t) with s > 1 and t > 1 satisfies m € {2,3,4,6,8}.
Proofs of this theorem can be found in Far & Hioman [22], Knmover & SoromoN [36] and Roos [47];
again the rationality conditions do the job. The Krein conditions yield some additional information:

4.3. Theorem. A finite regular generalized m-gon with s > | and t > | satisfies s < andt<s*ifm=4
or 8; it satisfies s < 1> and t <s5* if m =6.

This result is due to HiomaN [28,29] and Haemers & Roos [26]. For each m € {2,3,4,6,8} infinitely many
generalized m-gons exist. (For m =2 we have trivial structures - the incidence graph is complete bipartite;
for m =3 we have (generalized) projective planes; an example of a generalized 4-gon of order (2,2) with
collinearity graph T'(6) can be described as follows: the points are the pairs from a 6-set, and the lines are
the partitions of the 6-set into three pairs, with obvious incidence.)

Many association schemes have the important property that the eigenvalues P;; can be expressed in
terms of orthogonal polynomials. An association scheme is called P-polynomial if there exist polynomials
fe of degree k with real coefficients, and real numbers z; such that P = fy(z;). Clearly we may always take
Z; = P,‘ 1.

By the orthogonality relation (3.2.iii) we have

T HifiEeE) = TWiPPix = Sy,

which shows that the f; are orthogonal polynomials.
4.4. Theorem. An association scheme is metric if and only if it is P-polynomial.
Proof. Let the scheme be metric. Theorem 1.1 gives
AA; =piT" A +PLA+PIT A
Since pit' #0, A;,; can be expressed in terms of A 1, A;_; and A;. Hence for each j there exists a polyno-
mial f; of degree j such that
Ay= f,‘(A 1)-

Using this we have P,E; = A E; = f,(A)E; = (A E)E; = f,(P;))E;, bence P;; = f;(P;).
Now suppose that the scheme is P-polynomial. Then the f; are orthogonal polynomials, and therefore they
satisfy a 3-term recurrence relation (see Szgod [52] p. 42)

o fin(@) = (B =) () +Yj-1fj1(2).
Hence
Pi\Pij= —0ju P ju +BP+Y1Pijoy fori=0,---.d.
Since P, P;j = Ypi;Py and P is nonsingular, it follows that p{; =0 for |/—j| > L. Now the full metric pro-
1

perty easily follows by induction. B
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This result is due to DeLsaRTE [17] (Theorem 5.6, p. 61). There is also a result dual to this theorem,
involving so-called Q-polynomial and cometric schemes. However, just as the intersection numbers pfl-
have a combinatorial interpretation while the Krein parameters qf; do not, the metric schemes have the
combinatorial description of distance-regular graphs, while there is no combinatorial interpretation for the
cometric property. For more information on P- and Q-polynomial association schemes, see DELSARTE [17]
and Bannar & Ito [3]; for distance-regular graphs, see the forthcoming book by Brouwer, Cohen & Neu-
maier.

The Hamming scheme and error-correcting codes.

Let X = QY the set of all vectors of length d with entries in Q, where Q is some set of size q. Define
R; = X2 by (x,y) € R; if the Hamming distance between x and y (i.e., the number of coordinates in which x
and y differ) equals i. This defines an association scheme, the Hamming scheme H(d,q). The Hamming
scheme is easily seen to be metric, and hence by (4.4) P-polynomial. The orthogonal polynomials involved
are the Krav¥uk polynomials K;(x).

4.5. Theorem. For the Hamming scheme H (d.q) we have
j ey AR
Py =0, =K = TD -1V QY-
k=0

See DELSARTE [17] (p. 38) or MACWILLIAMS & SLOANE [43] for proofs. From (4.5) we see that P = Q, so the
Hamming scheme is self-dual.

A subset ¥ < X of H(d,q), suchthat Y2 A R;= @ fori=1,---,8-1and Y* "R # 9 (i.e., a subset
Y such that the minimum Hamming distance between two vectors of Y equals 8), is nothing but an error-
correcting code with parameters (d, |Y|,8) over the alphabet Q (cf. the chapter of coding theory). Let
a=(ao. " ,ay) be the inner distribution of ¥. Then Y .a; = Y|, ap=1, a, = "+ =as, =0, a 20 (by

definition), and ¢Q > 0 by (3.7). Considerag, * -, 4y as variables and define

d ol
a* =1 +max ¥ a; subjectto K;j(1)+ Y aKi(i)20,j=0,-,d,and a; 20,i =30, 24k o,
i=8 i=8

Then clearly |¥| <a*. So a* is an upper bound for the number of codewords with a given length and
minimum distance. This bound, due to DELSARTE [17], is called the linear programming bound, since the
value of a* can be computed by linear programming. Of course, the above-mentioned inequalities are not
the only ones satisfied by the a;, and by adding extra inequalities to the system, one may obtain sharper
bounds on |¥|. For details and more applications to coding theory, see DELSARTE [17], MAcWiLiaMs &
SLoANE [43], BesT, BROUWER, MACWILLIAMS, ODLYZKO & SLOANE [6], BEST & BROUWER [5].

The Johnson scheme and -designs.

Let the set X consist of all subsets of size d of a set M, where |M| =m 2 2d. Define relation R; C x2
by (x,y) € R, if the Johnson distance between x and y (i.e., the cardinality of x \y) equals i. This defines an
association scheme, the Johnson scheme J (d,m). Since the Johnson distance between x and y equals twice
the Hamming distance between (the characteristic vectors of) x and y, it follows that also the Johnson dis-
tance satisfies the triangle inequality, so that the Johnson scheme is metric. Note that the graph (X,R,) is
complete for d =1, and is the triangular graph T (m) for d =2. The following result (due to OGASAWARA
[46] and YamamoTo et al. [54]) gives some parameters:

4.6. Theorem. For the Johnson scheme J (d,m) the following hold:

d-k d—i  m-—d+k—i d—=i, m—d—i

Py = "0, =Em =LY D= £ G,
Hi k=0 J £=0 J /
d m-d

m=-(0) =),

Here E(x) is a so-called Eberlein polynomial. It has degree 2; in the indeterminate x, and degree j in the
indeterminate x (m+1—x). Since P;; =d(m—1)—i(m+1-i), E;(i) indeed has degree j in P;; as required by
the definition of P-polynomial scheme.
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The graph (X,R,) of a Johnson scheme is called a Kneser graph. A subset Y of X such that any two
elements of ¥ have non-empty intersection is a coclique (independent set) of the Kneser graph. By use of
Theorem 3.7 and the above formulas, it can be deduced that

m-1
Y] <(4y)s
the famous result of Ern8s, Ko & Rapo [21].

A t-(m,d, ) design is a subset Y < X of the Johnson scheme J (d,m) such that each t-element subset
of M is contained in precisely A elements of ¥. DeLsARTE [17] (Theorem 4.7, p. 51) proved the following:

4.7. Theorem. A non-empty subset Y of the Johnson scheme J(d,m) with inner distribution
a=(ag, - ,ay)is at-(m,d,\) design if and only if

d
Za,«Q,-j=0 forj=1, =, (&)
i=0

Just as we did in case of the Hamming scheme, we can define

d
as =1+minY a; subjectto

i=1

d d
a;20fori=1, - -,d and 3,a,Q;;=0forj=1, <o, tand Ya;Q;;20forj=t+l,---,d,
i=0 i=0

where the Q;; are found in (4.6). Now we have the linear programming (lower) bound for the number of
blocks in a t-design: |¥| > g.. Using the simplex algorithm, HAEMERs & WEUG [27] showed that this ine-
quality implies the non-existence of the designs with parameters 4-(17,8.5), 4-(23,11,A), A=6,12, 4-
(24,12,15), 6-(19,9,1), A < 10, 6-(20,10,A), A =7,14. In certain other cases, such as 5-(19,9,7), KSHLER
[34] ruled out the existence of r-designs by showing that no solution of the above system of inequalities
corresponds to an actual design.

If we replace the restrictions (aQ); = 0 by restrictions g; =0 (1 Si < %5) in this system of inequali-
ties, and maximize ¥a;, we obtain upper bounds for the cardinality of codes with minimum distance 8 and
constant weight d.

We might also require both a; = 0 and (aQ); = 0 for suitable i, j, and obtain results for +-designs with
restricted block intersections, such as quasisymmetric block designs. By this method it follows for instance
that a quasisymmetric 2-(29,7,12) design with block intersections 1 and 3 cannot exist (HAEMERS [24]). For
details and more results we refer to DELSARTE [17], MACWiLIaMS & SLOANE [43], BEsT, BROUWER,
MacWiLIaMS, ODLYZKO & SLOANE [6], CAMERON & VAN LinT [15], CALDERBANK [13]. We also point out
that several results of §3 in Godsil’s chapter can also be obtained by use of the framework of Johnson
schemes.

DELsARTE [17] generalized the notion of t-designs to subsets of arbitrary association schemes satisfy-
ing (*). (Equivalently, a t-design is a subset ¥ of X such that its characteristic vector x satisfies E;x = 0 for
j=1,---,t) He shows that a t-design in the Hamming scheme is what is known as an orthogonal array of
strength ¢ (see the chapter on Block Designs). Thus, we also have a linear programming bound for orthogo-
nal arrays. More generally, one may give an interpretation of the classical concept of t-design in terms of
ranked posets in the obvious way, and then prove for each of the eight known infinite families of P- and
Q-polynomial association schemes that a subset is a classical +-design if and only if it is a Delsarte f (¢)-
design (where usually f (¢) = t), see DeLsarTE [19] and StanToN [51].

Imprimitive schemes.
In section 2 we have seen a completely different relation between designs and association schemes.

Let us give one more example. Let N be the incidence matrix of a square 2-design. Then, defining Ay =1,
0N J O
0 .l]

N 0
and A; =J—I—-A,—A,, we obtain a 3-class association scheme. It is imprimitive, that is, the union of
some of the R; form a non-trivial equivalence relation (here R, is an equivalence relation). Another

A, =

) A'g:




¥ .

imprimitive association scheme we have seen is the line graph of the Petersen graph (there having maximal
distance is an equivalence relation).

Given an imprimitive association scheme one may produce new association schemes; on the one
hand, there is a natural way to give the set of equivalence classes the structure of an association scheme
(the ‘quotient scheme’), and on the other hand, each equivalence class together with the restrictions of the
original relations becomes an association scheme (a ‘subscheme’ of the original scheme).

The group case.
We very briefly discuss some relations between association schemes and finite permutation groups.

Let G be a permutation group acting on a set X. Then G has a natural action on X 2, the orbits of
which are called orbitals. Suppose G acts generously transitive on X, that is, for any x, y € X there exists
an element of G interchanging x and y. Then the orbitals form an association scheme.

(Without any requirements on G, the orbitals form a coherent configuration (see § 3). The coherent
configuration is homogeneous if G is transitive. We get an association scheme in the sense of Delsarte
when the permutation character is multiplicity free.)

For any x € X, the number of orbitals equals the number of orbits on X of G, (the subgroup of G of
permutations fixing x). This number is called the rank of G. Thus, the number of classes in the association
scheme is one less than the rank of G. We can also transfer other permutation group theoretic terminology
and results to the theory of association schemes. For instance, the Bose-Mesner algebra is in the group
case known as the centralizer algebra, and all standard results on this centralizer algebra (cf., e.g.,
WiELANDT [53]) have their direct analogue for the Bose-Mesner algebra.

The Hamming and Johnson schemes are derived from generously transitive permutation representa-
tions as discussed above; for instance, the Johnson scheme is derived from the representation of the sym-
metric group Sym (m) on the d-element subsets of an m-set.

If a metric association scheme belongs to the group case, then the corresponding distance-regular
graph is called distance-transitive. In other words, a graph is distance-transitive when its group of automor-
phisms is transitive on pairs of vertices with a given distance. Distance-transitive strongly regular graphs
are known as rank 3 graphs. A rank 3 permutation group is generously transitive if and only if it has even
order; consequently every rank 3 permutation group of even order provides a strongly regular graph. All
such strongly regular graphs have recently been classified, see KanTor & LEsLER [35], Lseck [38, 40],
and LEBECK & Saxt [39].
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