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Abstract

In this paper we study the impact of demand dispersals on the equilibrium
outcome in a two-dimensional spatial location model with two firms. The
corresponding location-then-price game is solved by backwards induction.
Standard optimization technigues however are not applicable due to the
non quasi-concavity ol the profit functions. Candidate equilibria for the
‘overall game’ (referred to as global equilibria) can be found however by
restricting the firms’ strategies as to end up in a specific demand region.
I'rom the set of local equilibria it is possible then to determine the (unique)
global equilibrium. In equilibrium firms’ locations and prices are such that
both firms face equal demands and have equal profits.

Keywords: location theory, demand dispersals, equilibrium.



Introduction

Spatial competition theory, based on Hotelling’s (1929) well-known paper,
in some sense has not evolved much since then. Although it is possible to
list many papers on this subject very little has been written on the distribu-
tion of consumers. The main assumption is that consumers are uniformely
distributed along a line segment. The only paper that we are aware of that
has dealt with non-uniformly distributed consumers and a two-dimensional
space analytically is the one of Lederer and Hurter (1986).

The main criticism to their model is that their approach is based on the
assumption of discriminatory pricing. There is no clear reason for doing this,
but the results will be quite different if we make the assumption of mill pricing
(i.e. transportation costs are not included) as was shown by Gabszewicz and
Thisse (1986). Eisselt (1991) moreover studies the situation where one of the
firms uses discriminatory pricing and the other firm uses mill pricing.

Although there is not much evidence of which pricing policy to be used,
we would argue that a mill pricing policy is much more of practical interest
than a discriminatory pricing policy. An important reason for firms not being
able to price discriminate is that they are unable (or perhaps unwilling) to
customise the product to the individual consumer’s desires (see al-Nowaihi
and Norman (1992)). Mill pricing consequently leads to sales maximization,
whereas discriminatory pricing leads to minimization of transportation cost
(see Gabszewicz and Thisse (1986)).

Our approach to model non-uniformly distributed consumers will there-
fore be based on the assumption of mill-pricing. The main problem with
competitive location models is that they are often too complex to deal with
analytically. In this paper we restrict ourselves to a situation where two
firms are located along a single line. The situation with m firms in a two-
dimensional space remains future research.

In this paper we study the situation in which consumers are distributed
piecewise uniformly. Essentially there are two reasons for representing de-
mand dispersals in this way. The first reason is that we want to model a
broad class of demand functions, without requiring concavity, and the sec-
ond reason is that the data available for practical applications usually is of
this kind (think of density per metres square for example).

The determination of all possible location-price equilibria is done in the
spirit of Hotelling’s approach. First the firms choose their locations and after



that the firms choose their prices, given the locations. The corresponding
two-stage game is solved then by backwards induction!.

The basic problem in general is that the profit functions of the firms
are not differentiable everywhere due to the fact that demand is kinked. It
seems however that there is little difference with the situation where demand
is defined as a uniform distribution, in which case it is obvious that there is
a unique indifferent consumer. Intuitively we expect the same for a situation
where demand is defined as a piecewise uniform distribution. Because the
exact location of the indifferent consumer is determined completely by the
location choices and the price policies of the firm, it is a hard task to maximize
firms’ profits directly. The main reason for this is the (in general) non-quasi-
concavity of the firm’s profit function (see Gabszewicz and Thisse (1986)). In
a companion paper we study the profit function more rigorously (see Webers
(1993a)).

In this paper we try to overcome the difficulties arising from the non-
quasi-concavity of the profit functions by using the following two-step analy-
sis. First we determine a solution for the situation where the location of the
indifferent consumer is restricted to one of the subintervals of the line seg-
ment. This is possible with standard first order techniques because the profit
function is piecewise quasi-concave. A solution to the overall maximization
problem can be found then from the solutions for these subintervals. We will
show that the firms’ location and price choices are such that both firms face
the same demand in equilibrium. Each firm’s location and price choice is in
other words determined completely by the demand distribution. We thereby
assume that both firms are in the market.

The paper is organized as follows. In Section 1 we present the model.
In Section 2 we define the equilibrium concept. In Section 3 and Section
4 we characterize the equilibrium and give some equilibrium properties. In
Section 5 we present a slightly modified model in which the locations of the
firms are restricted and in Section 6 we conclude.

'Anderson, de Palma and Hong (1992) compared the simultaneous price and location
game with the two-stage location-then-price game and suggest that equilibrium locations
are further apart under the second game and that profits are higher then, since firms
internalize the harmful price competition effect of moving close to each other. However
they note that if prices are less costly to adjust than locations, then a two-stage location-
then-price game is deemed the relevant equilibrium concept, as was also suggested by
Tirole (1988) for example.



1 The model

We consider a market region described by the interval M = [0, 2] in R', for
some positive integer n. In the economy there are two types of agents, sellers
and buyers. We assume that there are two sellers in the market. These
scllers, which we will also refer to as firms, produce the same, single good
with unit production costs c¢. The buyers, the consumers, are characterized
by their location along the line segment M. The consumers have identical
preferences and wish to purchase a single unit of the good. The implicit
assumption made here is that the consumers have an infinite willingness to
pay.

In contrast to most of the existing literature on spatial competition we
allow for geographical demand dispersals, i.c. consumers are not necessarily
distributed uniformly along the line segment. The distribution of the con-
sumers along the line segment is modeled in the following way. On each
interval 1,7 + 1] with 2 € {0,...,n — 1} consumers are located with density
d;4y > 0 such that

n—1
Z d'+| = l
1=0

The demand distribution will be denoted by the tuple < dy,d,,...,d, >
with n € N. Note that we have the standard uniform case when n = 1 or
diy1 = 1/n for each i € {0,...,n — 1}. The requirement that d;;; > 0 for
each 7 is needed to side step the difficulties arising when firm 1 strives to get
the consumer located at ¢ and firm 2 strives to get the consumer located at
t+1. The locations that firm 1 and firm 2 choose will be denoted by a and b,
respectively, and their prices by p; and p,. We will allow for location choices
outside the interval M and refer to this situation as ’locations outside the
city’. As Tirole (1988) already noted the possibilities for horizontal differen-
tiation will be greater then. Furthermore this assumption avoids technical
"corner’ difficulties as in the original Hotelling model, as was noted by Salop
(1979) among others.

The optimal locations of the firms are determined by two effects, a direct
effect and a strategic effect. With the direct effect we mean that a location
that is more close to the centre leads to a greater market share and therefore
higher profits for a fixed price. With the strategic effect we mean that the



price competition is higher when the firms are closer to each other. The
outcome of the trade-off between the positive and negative effect of clustering
is not clear in general.

The transportation cost the consumers will have to pay are assumed to
be quadratic. As d’Aspremont, Gabszewicz and Thisse (1979) show, this
assumption ensures the existence of a price equilibrium (when demand is
distributed uniformly), whatever the locations a and b may be, because this
assumption prevents discontinuities in the profit function?. Anderson (1988)
studies the existence of equilibria for the more general case that transporta-
tion costs are ’lincar-quadratic’, i.c. a quadratic function form representation
(with a constant term equal to 0). It is shown that the parameters of the
quadratic and the linear term have to satisfy very stringent conditions in
order to sustain an equilibrium.

The final assumption we make is that a < b, i.e. firm 1 locates to the
left of firm 2. We thus ignore the difficulties arising from the coordination
problem the firms face. For a detailed discussion on this problem see Bester,
de Palma, Leininger, von Thadden and Thomas (1991). There it is shown
that there will be less differentiation in such a case, due to the fact that each
firm has a positive probability of ending up "left to the middle”.

The indifferent consumer, i.e. the consumer indifferent between buying
from firm 1 and buying from firm 2, is located at = equal to

a+b -
z(a7bvp1,p2):%+2p(2b—_12_)" (1)
given the location a of firm 1, the location b of firm 2, the price p; of firm 1
and the price p; of firm 2. We assume that 0 < z(a,b,p;,p;) < n and that
in equilibrium both firms are in the market.

If both firms anticipate that the indifferent consumer will be located in
the interval [z,7 + 1] (due to their strategies) then the (anticipated) demand
of firm 1 can be written as

D;l(awbaph’b) = (do S ahCh o d') + d.~+1(3:(a,b,p1,p2) i l)

?Another way to restore equilibrium (see for example Lerner and Singer (1937)) is to
assume that firms are unable to cut their rivals’ prices (frequently called the no-mill-price
undercutting restriction). The shortcoming of this procedure however is that one of the
basic (and probably most important) ingredients of price competition is eliminated.



and the (anticipated) demand of firm 2 can be written as

D;(a7b7p17p2) =1- D;(a7bap11p2)

with dy = 0. For simplicity we denote D; = dy + - -- + d;. The costs ¢ are
normalized to zero. Given a,b,py,p2 and 1 the (anticipated) profits of firm k
with & € {1,2} are II}(a, b, p1,p2) = prDi(a, b,p;,p2).

2 The equilibrium concept

To study the behaviour of the firms with respect to their location choices and
their price policies we consider the following two-stage game with complete
information. In the first stage firms choose locations, afterwards they become
aware of these locations. In the second stage firms choose prices (and receive
profits).  As in Shaked and Sutton (1982) and Lederer and Hurter (1986)
the set of Nash equilibria for this game is very large and very difficult to
characterize. We use the perfect equilibrium notion of Selten (1975). In our
setting a tuple of strategies is a perfect equilibrium if the price strategies
in the second stage of the game form a Nash equilibrium and the location
strategies in the first stage of the game form a Nash equilibrium, given these
cquilibrium price schemes. The concept of perfect equilibrium captures the
idea that, when firms choose their locations, they explicitly take the impact
of their location decisions on prices into account.

It can be shown that there will exist only a perfect equilibrium when
both firms coordinate on the same interval. This is caused by the fact that
in equilibrium both firms face the same indifferent consumer. When both
firms do not coordinate on the same interval of M, then either no price
equilibrium exists or one of the firms anticipates the indifferent consumer to
lic in one interval and the other firm anticipates the indifferent consumer to
lie in the next interval. As a consequence the indifferent consumer will be
located at the common endpoint. Then a price equilibrium exists but one
of the firms can increase (or keep) its profits by coordinating on the same
interval as its opponent.

Therefore we assume that both firms anticipate that the indifferent con-
sumer is located in say the i** interval of M| ie. 1 < z(a,bypr,p2) <i+1. We
refer to the competetive game where the indifferent. consumer is assumed to



be located in the i** interval as I". A meaningful noncooperative solution for
the location-then-price game is the local location-price equilibrium concept,
which in fact is the perfect equilibrium concept for the (restricted) game I".
Recall that a < b by assumption.

Definition 2.1 A local location-price cqualibriwm (LLPE) for the game 1
s a quadruple < a*,b*,pi(a,b), ps(a,b) > such that il is a perfect equilibrium
for T, ie.

(1)  pi(a,b) and py(a,b) is a Nash equilibrium in the second stage of the
game for all a and b

(i1) a* and b* is a Nash equilibrium in the first stage of the game given the
price schemes in the second stage.

Our purpose now is to determine from the set of local equilibria a global
equilibrium for the ’overall’ game which we will refer to as I'. Note that the
local equilibrium concept is very strong, in the sense that optimal behaviour
with respect to location choices and price policies is possibly restricted by
the assumed location of the indifferent consumer. In a global equilibrium
however, location choices and price policies will be reached without restricting
either of the two firms. As we will see the perfectness condition (ii) requires
the price policies to be unrestricted. For a global equilibrium we therefore
need that the prices and the locations of an LLPE are chosen freely, i.e. not
restricted by the boundary conditions, in one of the intervals. We call this
an unconstrained LLPE. With this notion we can define a noncooperative
solution for the location-then-price game I'.

Definition 2.2 A global location-price equilibrium (GLPE) for the game T

is a quadruple < a*,b*, pi(a,b),pa(a,b) > such that

(i) this quadruple is an unconstrained LLPE with respect to some I with
i€ {0,...,n—1}

(i1) for both firms profits are mazimized over all unconstrained LLPFEs.

It will be shown that there is at least one and at most two unconstrained
LLPEs. In case of two unconstrained LLPEs these equilibria are paired, i.e.
the resulting indifferent consumer is the same. For both firms profits are
highest if they coordinate on the interval with the lowest demand density,
which means that there will be a unique GLPE.

6



3 Characterization of local equilibria

In maximizing profits firms choose locations in the first stage and price poli-
cies in the second stage that are optimal in the sense of Nash, given their
expectations with respect to demand. Let ¢ € {0,...,n — 1} be fixed. The
two-stage game I is solved then by backwards induction. In the second
stage of the game both firms maximize profits with respect to their own
price (given the price of the other firm and given the locations a and b) sub-
jeet to the condition that the indifferent consumer lies in the 2% interval, i.c.
¢ < a(a,b,py,p2) < i+ 1. For firm 1 this yields price py(a, b,p;) given by

p2+(b—a)(a+b—2) if pp < @
pi(a,b,py) = %Z+(b—a)(gi‘%+%) fa<p,<a+4(b-—a) (2
pp+(b—a)a+b—-2i—2) if p >a+4(b—a)

with @ = 2(b—a)(i — %b + ID:), and for firm 2 this yields price py(a, b, p1)
given by

prt(b—a)2i+2—a—b) ifp <p
pala,bp) = B+ (b-a)(B5= 4+ 0 i F<p <BHa(b-a) (3)

=g -a—4 if pr > pB+4(b—a)
w“h5:2(b—a)(—l—2+%—b+{i“_‘px)

i+1
I'rom the price schemes given by equations (2) and (3) we can determine the
cquilibrium price schemes for every a and b. There only exists a Nash equi-
librium in locations however when prices are given by the interior solutions,
le.

pi(a,bypy) = B + (b— a)(245% + 2

pa(a,b,p1) = B + (b—a)(257=2 + 7).

Therefore, given a and b the equilibrium price schemes are given by

pia,b) = (%5%)(a + b — 2 + Z2%)

p2(a, b) = (”:-_‘“)(22' —a—b+ 2D

d|+|



under the restriction that o < py(a,b) < a+4(b—a) and 8 < py(a
B +4(b—a), which is the same as requiring that i < z(a, b, p;(a, b), ps(a,
T4+ 1.

When a and b are such that : < z(a, b, p;(a, b), p2(a,d)) < i +1 the second
order conditions guarantee a maximum but for z(a,b,p:(a,b), pz(a,b)) = i
and z(a, b, pi(a,b),pz(a,b)) =141 the second derivative is equal to zero. We
come back to this later. From (1) and (4) we see that z(a, b, p;(a, b), p2(a, b))
equals

,b) <
b)) <

(5)

r(a,b):é{a+b+4i+2—4pi}.

dit1

The condition 7 < z(a,b) <74 1 can be written then as

D, —2 , 4D, —
: <a+b<%i+6+ s

2t +
i+1 dipy

(6)

The next step is to determine the optimal locations, given the equilibrium
price schemes from equation (4) and given the location of the other firm.
Firm 1 thus maximizes IIj(a, b) = IIj(a, b, p1(a,b), p2(a, b)) with respect to a
subject to condition (6). From

. b— . 242D; ;
1} (a,b) = {( a)(a+b—21+ : )} {D; + dit1(z(a,b) — 1)}
i+1
we get
Wmb =l cp w2 )y 5wy 2L
da 18 dig i+l

The first term of the righthand side of (7) is of course strictly negative.
The sccond term is strictly positive because according to (6) it holds that
a+b—21+ (2 + 2D.')/d,‘+| =a+b—-21 + (2 — 4D()/d§+| + 6D,‘/d,'+1 =
6D;/d:+1 > 0, with both equality signs for z(a,b) =7 = 0. However a and
b must be such that z(a,b) will be greater than zero in equilibrium because
both firms have to be in the market. The third term is zero for

2+ 2'D§}
di ’

a=%{b+2i— (8)



It can be verified that the second order conditions for a maximum are satis-
fied. With condition (6) we get that firm 1’s profit maximizing location a(b)
is given by

2+ P2 p ifb<y

a(h) = ([)+2 zv++z) ify<b<y+? 9)
22+—‘+— b+6 ifb>y+3

. _ ;4 14D,—4
with v =7+ et

Firm 2 maximizes [15(a, b) = Ily(a, b, pi(a, b), p2(a, b)) with respect to b sub-

ject to condition (6). From

4 —2D;
o

tya.0) = {154 —a -+ )} {1 = Di — i (a(a,b) — )

we get

Olly(a,b)  —dip . 4-9D, . 4-2D;
= b—2: — —3b42 .
55 8 a+ 22 - a—3b+2: + e (10)

The first term of the righthand side of (10) is strictly negative. The second
term is also strictly negative because according to condition (6) it holds that
a+b—2i—(4-2D;)/diyy =a+b—2i+(2—-4D;)/diyy + (6D; — 6)/diyq <
6+ (6D; — 6)/d;y < 0, with both equality signs for z(a,b) = 7 + 1 = n.
However, r(a,b) will be smaller than n in equilibrium because both firms
have to be in the market. The third term is zero for

1 . 4=9D,
b—g{a+2z+ i } (11)

Again the second order conditions guarantee a maximum. Combination with
condition (6) yields that firm 2’s profit maximizing location b(a) is given by

21+——:—3—a ifa<é
ba) =4 $la+24+0=2) fé<a<b+] (12)

B4+ Tt —at6 Hozdsd



. _ .+, 14D,—10
Wlt,h 6 =1 + W;'F—l—

From the reaction functions (9) and (12) it can be shown that there are
different types of location equilibria, determined by the demand distribution.
If a* and b" are such that a* = a(b*), b* = b(a*) and letting z* = z(a*,b*) we
get the following. Whenever D; > % of D; i <& % then either firm 1’s location

or firm 2’s location is restricted. If D; > % then a* =i+ 24—3‘:—‘4, b =i+ %“‘—“
- i+

and o =4 W Dpy < % then a* = 7 + g 4 Mﬁ:ﬁ;'o, =4 5’ + %ﬁ and
z* = i+ 1. In both cases we get corner solutions and the corresponding
equilibria are referred to as restricted equilibria. It is obvious that these
equilibria cannot be a global equilibrium for the overall game.
If 2 is such that both D; < % and D;y, > % then we get an unrestricted
cquilibrium given by equations (8) and (11). This yields
¥ B 144D,
8 =i- g
(13)

g 5—4D;
b _z+———44dl+l.

Substitution of (13) into (4) gives the equilibrium prices

3
2,

P =P = (14)
with p} = pi(a*, %) and p; = p(a*,b*), and substitution of (13) into (5)
gives the equilibrium location of the indifferent consumer

1-2D;

it 2d; 4.

(15)

Note that condition (6) indeed is satisfied for a* and b* given by (13) because
Di< % and Dy, > %

Corollary 3.1 Let ¢ be such that 0 < (1 —2D;)/2d;yy < 1. Then the equi-
librium outcome for the game I'' consists of location choices a* = i — (1 +
4D;)/Adiyy and b* = i+ (5 —4D;)/4di41 and price choices p} = p; = 3/2d?, ;.

10



Proof This follows immediately from Definition 2.1 and equations (13) and
(14).

.

The following lemma states what the equilibrium profits are.

Lemma 3.2 Let 1 be such that 0 < (1 — 2D;)/2d;y; < 1. The equilibrium
locations and prices in the game I are such that both firms face the same
demand. Furthermore both firms use the same price policies and the profit of

firm k is given by Iy = I} (a*,b%, p}, p3) = 3/(4d?,,) Vk € {1,2}.

Proof Using (15) we can write Dy(a*,b*,p},p5) = D; + diy1(z* — 1) = D; +
(1/2 = D;) = 1/2. From (14) we know furthermore that the firms use the
same price policies, p} = pj = 3/2d?,,. Profits are given then by II}* = I =
3/4d?%,, with 1T = Il (a*, b%, p}, p3) Vk € {1,2}.

O

Thus the two firms always charge the same price in equilibrium and fur-
thermore both firms will have different locations in equilibrium. This means
that the principle of minimum differentiation no longer holds. Note that
these results are equivalent to the results Lederer and Hurter (1986) found
for the situation of discriminatory pricing.

Next we need to verify what happens when z* = i or z* = i + 1. To
check whether profits are indeed maximized at the corner solutions z* = i or
z* = 1+ 1 we need to compare the profits achievable in the interval at the
left to the corner solution and the profits achievable in the interval at the
right to the corner solution. Suppose that 2* = 7. Then z* is either in the
(i — 1)* or in the i** interval, ic. i — 1 < z* <iori < z* <i+ 1. There is
a maximum for z* in the i** interval if and only if for both firms profits are
higher than for z* in the (z — 1)* interval and there is a maximum for z* in
the (i —1)** interval if the opposite holds. From Lemma 3.2 we see that there
cannot be a situation where one of the firms has maximum profits for z* in
the (i — 1)** interval whereas the other firm has maximum profits for z* in
the i*" interval. It is easy to see that II}y* > H;;_l' is equivalent to d;y; < d;
and I} < Hf'”* is equivalent to d;;; > d; Vk € {1,2}. So if z* = i the first

11



order conditions give maximum profits, no matter what d; and d;,, exactly
arc. For 2 = 1 + 1| there are again two possibilities and the result is the
same.

The existence of an unrestricted LLPE for the game I'* is determined
completely by the demand distribution. The condition 0 < (1-2D;)/2d;4, <
1 can be rewritten as D; < 1/2 and D;;; > 1/2. Moreover we know that D,
and D;;; cannot both be equal to 1/2 because of d;;; > 0V: € {0,...,n—1}.
It is obvious that there will only be an unrestricted LLPE for I if 7 satisfies
very stringent conditions.

In the following lemma we prove that there exists an unrestricted LLPE
for at least onc ¢ € {0,...,n —1}.

Lemma 3.3 For each demand distribution < dy,d,,...,d, > withn € N
there is al least one I withi € {0,...,n— 1} for which an unrestricted LLPE
exists.

Proof We prove this by contradiction using an induction argument. Let V;
be defined as {0,...,7} with z < n —1 and 7 € N. Suppose that there is
no unrestricted LLPE for I'" with 7 € V. From Corollary 3.1 we know that
the condition 0 < (1 — 2D;)/2d;4, < 1 doesn’t hold for ¢ = 0 then. With
Dy = 0 this can be rewritten as 0 < 1/2d; < 1. Clearly 0 < 1/2d, always
holds, therefore it must be that 1/2d; > 1 or equivalently d; < 1/2. Next we
suppose that there is no unrestricted LLPE for any I'* with 7 € V. If there
is no unrestricted LLPE for T'! then the condition 0 < (1 — 2D,)/2d, < 1
doesn’t hold. Because there is no unrestricted LLPE for I'® we furthermore
know that d, < 1/2. But then the condition simplifies to 1 — 2d, < 2d;. For
this condition not to hold it must be that d; + d2 < 1/2. By induction we
see that there is no unrestricted LLPE for any I'* with ¢ € V,_; if and only if
dy +dy+ -+ d, < 1/2 which contradicts dy +dy + -+ - + d,, = 1. Therefore
there exists an unrestricted LLPE for some I'* with 7 € {0,...,n — 1}.

O

As was noted before the local location-price equilibrium concept is very
strong and the question arises if there is possibly a unique unrestricted LLPE,
i.e. whether or not there is only one value of ¢ for which there exists an
unrestricted LLPE for T'". If there is a unique unrestricted LLPE for I'* this
is necessarily the unique GLPE for T'.

12



Lemma 3.4 For cach demand distribution < dy,d,,...,d, > withn € N
there are al most lwo 1" with © € {0,...,n — 1} for which an unrestricted
LLPE cxists. If there exists an unvestricted LLPE for " and 17 with 4,5 €
{0,...,n — 1} and 1 < j then necessariy 3 =1+ 1.

Proof In Lemma 3.3 we proved that there always exists an unrestricted
LLPE. So there exists an ¢ such that there is an unrestricted LLPE for
some . As we have scen this is equivalent to requiring that D; < 1/2
and Dy > 1/2. Now suppose that there also exists a j > ¢ (without
loss of generality) such that there cxists an unrestricted LLPE for IV, thus
D; < 1/2 and Djy; > 1/2. But then Djyy > 1/2 > D; > Diyy 2 1/2
which means that D;;; must be equal to 1/2 and j be equal to 2 + 1. It is
casy to sce that there are at most two equilibria. Suppose to the contrary
that there exists a third equilibrium for say I'™ with m > j then we get
D,, > Djy1 =Dj+djy1 > 1/2+djyy > 1/2 while Dy, < 1/2 is required.

O

I'rom this lemma. it is clear that there can be only two unrestricted LLPEs
when the demand distribution is such that for some ¢ it holds that D; = 1/2.
But above we have seen that when z* is a corner solution then on one of the
intervals of which z* is an endpoint, the equilibrium outcome is dominating
unless the demand is equally distributed on both intervals. This leads to the
following corollary.

Corollary 3.5 For each demand distribution < dy,ds,...,d, > with n €
N there exists a unique unrestricted LLPE, i.e. there exists ezactly one
i € {0,...,n — 1} for which an unrestricted LLPE for I'* exists, whenever
D; # 1/2. Otherwise there is an unrestricted LLPE for both T"=' and I'".

If there are two unrestricted LLPEs, one for I'""! and one for I, then
Lemma 3.2 says that profits are equal whenever d; = d;4,. In case d; < di}4
then the unrestricted LLPE for I'"~! yields higher profits for both firms and
in case d; > d;;, then the unrestricted LLPE for I yields higher profits for
both firms. This leads to our main result.

Theorem 3.6 For ecach demand distribution < dy,ds,...,d, > withn € N
there exists a unique GLPE.
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Proof First we consider the case for which there is a unique unrestricted
LLPE. Let 2* € {0,...,n — 1} be the value of 7 for which the unrestricted
LLPE for I exists and denote this equilibrium by < a*, b*, p1(a,b), pa(a,b) >.
Of course the conditions for < a*,b*,p;(a,b), p2(a,b) > to be a GLPE are
satisfied then. Next we consider the case for which there is not a unique
unrestricted LLPIL. In this situation there are two subsequent values of 7
such that there exists an unrestricted LLPE for I, say for i = i* — 1 and
for i = ¢*. If d;+ # d;-4, then there is a unique value of 7 for which profits
for both firms are maximized. Otherwise for both values of i profits are
maximized. We have to show now that the location and price choices are
identical for + = :* — 1 and for : = 7*. We will only do this for firm 1, for
firm 2 the procedure is analogous. For ¢ = i* we get from (13) that a* =
i*—(144D;0) [4dis 41 = i* —(144Dje_ +4d;2) JAd;e = 1*—1—(1+4D;s_,)/4d;,
which is also the optimal location of firm 1 for 2 = 2* — 1. Furthermore we
see that py(a,b) = 1/3(b—a)(a+b— 21"+ (2+ 2D;. [dieyy) = 1/3(b— a)(a +
b—2(:*— 1)+ (2 + 2D;-_, /d;») and analoguosly for py(a,b).

O

4 Properties of location-price equilibria

In this section we will discuss some basic properties of location-price equi-
libria. These are mainly properties related to the degree of differentiation
(the distance between the two firms). First we relate the degree of differ-
entiation in a situation of uniformly distributed consumers to a situation of
non-uniformly distributed consumers.

Lemma 4.1 Let < a*,b%,pi(a,b),pa(a,b) > be an unrestricted LLPE for
I, Ifdiyy > 1/n then b — a* < 3n/2 and if diy; < 1/n then b* — a* >
3n/2. In particular if the consumers are distributed uniformly (i.e. d; = 1/n
Vi € {0,...,n —1}) then b> — a* = 3n/2. Furthermore in the uniform case
a* = —n/4 and b" = 5n/4.

Proof Because < a*,b%,pi(a,b),ps(a,b) > is an unrestricted LLPE for I

we know that a* and b are given by equation (13). But then we can write

b —a* =i+ (5—4D,)/4diyy — (i — (1 +4D;)[Ad;y) = 3/2diyy. H diyy > 1/n

14



then b —a* < 3/2n and if d;y; < 1/n then 6" —a* > 3/2n. Sofor d;y, = 1/n
the equality sign holds. In the uniform case D; can be written as D; = i/n.
Substitution in (13) yields a* =i —(1+4D;)/4diyy = 1 — (1+4(¢/n))/(4/n) =
—n/4 and b* =1+ (5 —4D;)/4diy1 =1+ (5 —4(i/n))/(4/n) = 5n/A4.

0

This lemma says that the degree of differentiation only depends on the
demand distribution. If demand is concentrated in the centre for example
both firms will locate nearer to the centre. If demand is concentrated at the
endpoints both firms will locate further away from the centre. In the uniform
case we see that it is optimal for both firms to locate outside the city, more
precisely at a distance of n/4 from the endpoints.

Lemma 4.2 Let < a*,b*,pi(a,b), pz(a,b) > be an unrestricted LLPE for I'*.
Then it holds that a* < i < z* <1+ 1 < b*, i.e. the indifferent consumer is
located to the right of firm 1 and to the left of firm 2.

Proof From Corollary 3.1 it follows immediately that a* < 7 because both
D; and d;4, are non-negative. Remains to be proved that i +1 < b*. The
other inequalities hold per definition. Rewriting b* =i + (5 — 4D;)/4d;, as
b*=i4+1+4(5—4D; —Adi41)/Adiyz1 =1+ 1 + (5 — 4D;41)/4d; 41 shows that
b* > 7+ 1 because 5 — 4D, is non-negative.

a

This lemma formalizes Smithies’ (1941) notions of ”competetive region”
for the region [a*, b*] and of "hinterlands” for the region (—o0, a*] and [b%, 00)
with respect to either of the two firms. It is obvious that the size of the com-
petetive region depends crucially on the demand distribution. Nevertheless
the demand dispersal is irrelevant for the size of the market arcas of the firms
as we saw in Lemma 3.2. A natural consequence is that their market areas
are equal if the consumers are distributed symmetrically along the line.

Corollary 4.3 The search for the GLPE for T, is equivalent to searching an
i for which D; < 1/2 < Djy,. Searching iteratively fromi =0 toi =n — 1
leads lo a unique value 1 for i whenever div # disyy in case D; = 1/2.
Otherwise there is an 1* such that both 1 = * — 1 and ¢ = 1* salisfy the

15



condition D; < 1/2 < D;yy. For bothi = 1* — 1 and 1 = * the equilibrium
locations are a* =1 — (1 + 4D;)/4d;yy and b* =1 + (5 — 4D;)/4d;y, and the
equilibrium prices are p] = p; = 3/2d?,,

Proof This follows immediately from Corollary 3.1 and Corollary 3.5.

O

This corollary is very helpful in determining the equilibria for the two
stage location-then-price game. Once we have found an ¢, starting from zero,
for which D; < 1/2 < D;;; we know the GLPE.

Example 4.4

We will illustrate the search for the equilibria of the two-stage location-
then-price game for the situation where n = 3. The demand distribution is
given then by < dy,d;,d; > with d; > 0 Vi € {1,2,3}. Corollary 3.1 says
that there is an unrestricted LLPE for the game I'¥ whenever the condition
0 < (1 —2D;)/2d;41 < 1 holds. Writing out this condition for i = 0 yields
Dy <1/2,dy >0 and dy > (1/2)(1 — 2Dy). For i = 1 this yields D; < 1/2,
dy > 0 and d; > (1/2)(1 — 2D,). For i = 2 this yields D, < 1/2, d3 > 0 and
d3 > (1/2)(1 — 2D;). Substituting Dy =0, d3 = 1 — dy — dy, D; = d; and
D, = d, + d, simplifies the conditions to d; > 1/2 for : = 0, d; < 1/2 and
dy+d; > 1/2for =1 and dy + d, < 1/2 for ¢ = 2. In figure 1 we see that
there are at most two equilibria. It is furthermore obvious that there is a
unique equilibrium for all demand distributions < dy,d,,d; > with d; # 1/2
and d; +d; # 1/2.

First we consider the situation where demand is distributed uniformly, i.e.
< dy,ds,d3 > equals < 1/3,1/3,1/3 >. Then there is a unique unrestricted
LLPE for z = 1. In equilibrium it holds that a* = —3/4, b = 15/4 and
P = p; = 27/2 according to Corollary 3.1. From (15) we see that z* equals
3/2 so equilibrium profits are I1}* = I1}* = 27/4.

Next we consider a situation where demand is concentrated near the cen-
tre. Let < dy,d;,d3 > be equal to < 1/5,3/5,1/5 > for example. Again
there is a unique unrestricted LLPE for ¢ = 1. In equilibrium it holds that
a* = 1/4 and b* = 11/4 and p} = p; = 25/6. Equilibrium profits are
3 = TIL* =25 /12.
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Figure 1: Equilibria for n = 3

5 Equilibrium solutions for restricted firms

As Horstmann and Slivinsky (1985) argued the most important feature of the
line segment representation is not its linearity but the fact that it posseses
endpoints. Due to these endpoints the set of possible solutions is smaller
and the search for equilibria should be easier. Nevertheless, as noted before,
the equilibrium characterization becomes more difficult because the best re-
sponses of the firms now also depend on the restrictions on their locations.

The idea of restricting firms’ locations comes from geograhic considera-
tions at the one hand and from the anology with restrictions on the con-
sumers’ willingness to pay on the other hand. In a situation of inelastic
demand firms have a smaller incentive to differentiate (horizontally) because
the probability that demand declines increases. Due to this fact the firms
will not choose locations that are further than some arbitrary lower bound
or upper bound.

In this section we study the same problem as before, but now with the
additional constraints that @ > a and b < b with a a lower bound on firm
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1’s location choice and b an upper bound on firm 2’s location choice. We
assume that @ < b. In particular we are interested in the effects on the
equilibrium locations that we have found before. Tirole (1988) shows that
the outcome for the uniform case is given by ¢* = 0 and 6 = n when a = 0
and b = n. Recall from Lemma 4.1 that the result for the unrestricted case
was a* = —n /4 and b* = 5n/4.

For the restricted case we see that the third term in (10) is positive for
a+2i+(4—-2D;)/diy1 > 3b and that the third term in (7) is negative for
b+ 21 — (24 2D;)/diyy < 3a. We denote T; = 21 — (2 + 2D;)/d;y, and
S; =2i+ (4 —2D;)/d;41. The optimal location choices a(b) and b(a) can be
given then by

BT if b+ T; < 3a
“(")—{ (b+T)/3 ifb+T: >3a (16}
and
_f (@a+8)/3 ifa+S;<3b
g = { b if a+ S; > 3b. (17)

From equations (16) and (17) we can determine immediately the Nash
equilibrium locations, which will be denoted by a** and b**.

Corollary 5.1 Let i be such that D; < 1/2 < Diyy and let a and b be given.
The Nash cquilibrium in localions is given Lthen by

l.a*=aandb*=bif T;<3a—band S; >3b—g;

2. 0" =aand b* = (a+5:)/3 if Si+3T; <8aand S; <3b—a;

% a*=(b+T)/3 and b =b if T; > 3a—b and 3S; + T; > 85;

4 (Si+37:)/8 and b = (35; + T;)/8 if S; + 3T; > 8a and 3S; 4+ T;

o @ =
< 8b.

The equilibrium characterization is analogous to the unrestricted case and
we do not discuss that in detail. For each situation in Corollary 5.1 the equi-
librium prices p}* = pi(a**, b**) and p3* = p2(a**,b**) can be calculated from
equation (4) and the indifferent consumer z** = z(a**, b**) can be calculated
from (5).
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As an illustration we briefly look at the situation where n = 2, a = 0
and b = 2. This means that firms are not allowed to locate outside the
city. First we look at the game I'°. With To = —2/d, and S, = 4/d, we
see after some calculation that @™ = 0 and b** = 2 if 1/2 < d; < 2/3 and
a = 0 and b = 4/3d, if 2/3 < d; < 1. Next we look at the game I'!.
With 7} = —4d,/(1 — d,) and S; = (6 — 4d,;)/(1 — d,) we sce that a** = 0
and b = 2if 1/3 < d; < 1/2 and ™ = 2 — 4/3(1 — d,) and b** = 2 if
0<d <1/3.

In figure 2 the optimal location choices as a function of the parameter
d, are depicted for both the restricted case with @ = 0 and & = 2 and the
unrestricted case.

a,b
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Figure 2: Equilibrium locations of the firms
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We see that both firms adjust their strategy when there are restrictions on
their locations. If one of the firms is restricted the other firm moves further
away in order to avoid strong price competition. Nevertheless restrictions on
the firms’ locations will always result in a lower degree of differentiation.

Although you might argue that firms being restricted in their location
choice will have lower profits because they are more restrained to competition
and therefore have smaller "hinterlands”, the above results show that the
opposite effect, i.e. the other firm moves further away in order to avoid
competition, will be dominating if the demand dispersal is large enough.

6 Some concluding remarks

This paper describes how the problem of maximizing non-quasi concave profit
functions in two-stage spatial location models can be solved analytically. The
advantage of this is that we do not need to make (very) strong assumptions
with respect to the demand function and we need not to turn to simulative
techniques, which ensures that the impact of demand dispersals can be traced
explicitly.

Iquilibrium behavior seems to be determined completely by the demand
distribution. "This results to a ’fair’ solution, i.c. both firms set equal prices
and face the same demand. In other words, none of the firms is worse of by
being labeled firm 1 or firm 2.

To test our analytical results we did some numerical calculations using the
well known Newton-Raphson method (see Webers and Webers (1993)). The
results confirmed our thoughts that our (simple) analytical results are very
useful for people who have to do the same type of calculations, because this
numerical method is very time consuming in a situation of strong demand
dispersals (and is strongly dependent on the starting values).

The fields of interests that come from this analysis are the following. An
important step is to extend the analysis to a two-dimensional space while
allowing for more than two firms. Furthermore we feel the need to weaken
the assumption of an infinite willingness to pay. In Webers (1993b) a first
altempt in this direction is made by showing the effects of a finite willingness
to pay in a situation of uniformly distributed consumers. These results need
to be generalized for the case of non-uniformly distributed consumers, before
being implemented in the two-dimensional framework.
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