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ABSTRACT

We consider consistent estimation of regression models in which the exogenous
variables are incompletely observed assuming that the response mechanism is
ignorable. Consistent estimates can be obtained from complete observations only.
If the unobserved variables are related to observed variables through an auxi-
liary regression model, more efficient estimators of the parameters of interest
can be obtained by using all available sample information. In the literature

on imputed data and on proxy variables estimators several estimators have been
proposed which are based on approximations for the missing data. We

discuss conditions under which these proxy variables estimators are asymp-
toticallv more efficient than the estimator based on complete observations only
and show how an optimal proxy variables estimator for which these conditions are
always satisfied can be obtained. Moreover for a simple case, we derive the
relative efficiency of several proxy variables estimators compared with the
Gaussian maximum likelihood (ML) estimator. Finally extensions of the general
results to cases where only aggregates of the exogenous variables are observed
and to dynamic models are considered. Again relative efficiencies compared to ML

are presented for simple examples. The findings indicate that by using the
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Information provided by the auxiliary model for the regressors, it is possible
to design proxy variables estimators that are almost as efficient as the ML
estimator which in the presence of missing observations is often computationally
unattractive. When the normality assumption does not hold, the pseudolikelihood

estimator can even become less efficient than some proxy variables estimators.

1. INTRODUCTION

In applied research, it is common practice to impute the missing values of
variables which are incompletely observed. Imputation is applied to cross sec-
tion data which suffer from partial non-response (for a survey of the 1iterature
on the analysis of models in the context of non-response in sample surveys, see
e.g. Little (1982)) and to time series which are available on a high temporal
aggregation level only. In a common imputation procedure, the observations on
the incompletely observed variable are regressed on auxiliary variables. The
missing values are then approximated by the predictions from this auxiliary
regression equation. Neverth.less 1ittle attention seems to have been paid to
the implications of using proxies in a subsequent statistical analysis. In this
paper, we are concerned with the efficiency of consistent estimators based on an
imputed data set and on the set of complete observations respectively. It is
shown that a regression using imputed observations does not necessarily yield
more efficient parameter estimates than a regression based on data points for
which all variables are observed (in the sequel called complete observations).
We discuss conditions under which an estimator based on approximations for unob-
served variables is asymptotically more efficient than an estimator based on
complete observations only and we show how an optimal proxy variables estimator
can be obtained. We also consider the estimation of standard errors of proxy
variables estimators. For a simple case, we derive the relative efficiency of
several proxy variables estimators compared with the maximum 1ikelihood estima-
tor under the normality assumption. Finally extensions of the results to cases

where only aggregates of the exogenous variables are observed and to dynamic



models are considered.

The first model we consider 1s

K

=z € { % YyenwyNs 1
yi k=1 ka‘lk+ i (1)

L
e X

X d Z 4V s i =1,...,N, (2)
ik 1=1 1k il ik

k= 1,...,K,
/-'

where the regression disturbances € and vjg are i.i.d. with mean zero and
variances 02 and ogx respectively, have finite fourth moments, are independent

of the corresponding regressors and satisfy
Eejvik = 0,
EvikVi] = 01k, for i = 1,.0.,N, and 1,k = 1,..0,K, 1 # ke

Assume moreover that plim Z'Z/N is finite and non-singular where the matrix Z
has typical element zqj. We consider the case where yq and 247, (1 = 1,...,L),
are observed for 1 = 1,...,N, whereas xjx is observed if and only if the random
variable 8jx takes the value 1. The random variables 8jx are assumed to be
independent of €3, Zj) and vjj. Note that we do not exclude that some of the

regressors in (1) are completely observed and are used as regressors in (2).

If one assumes that a fraction of the observations is complete in large samples,
a first consistent estimator of B' = [B1,...,Bk] can be obtained from the

regression (1) using complete observations only. Evidently 1f only a few of the
right hand side variables in (1) are complete and these variables can be cloéely
approximated using equation (2) an estimator based on complete observations only

will not be very efficient. Alternatively the missing values can be approximated

by



L A

Xip =% z 'a
e P T e

where G1k is an estimate of ajx. If one defines
Xik = xjk 1f 8 = 1,

an estimate of B can subsequently be obtained by regressing yj on Xjj,

k =1,...,K. This procedure is known as the first order method of Afifi and
Elashoff (1966). Nijman and Palm (1986) refer to it as a proxy variables esti-
mator. Special cases have been considered by e.g. Gouriéroux and Monfort (1981)
who derived the large sample distribution of several proxy variables estimators

and by Conniffe (1983a) who considered small sample properties.

The plan of this paper is as follows. In section 2 we analyze the model in (1)
and (2) assuming that K = L = 1, and that xj1 is observed if 1 < N/2 only. This
special case illustrates very well the main issues related to proxy variable
estimators. Numerical results on the relative efficiency of these estimators
compared to the Gaussian ML estimator are presented for this model. 1In section
3 we consider the general case and show how the use of proxies can lead to an
efficiency gain over the estimator based on complete observation only. 1In sec-
tion 4 the analysis of proxy variables estimators is extended to observations of
temporal aggregates of the exogenous variables and to dynamic models. Again
numerical results on the relative efficiency of a number of estimators are pre-
sented for a simple model. Finally some concluding remarks are given in section

5. Threeappendices contain the technical details.

2. AN EXAMPLE

In this section we analyze the model in (1) and (2) assuming that K = L = 1 and
that the exogenous variable in (1) is observed if 1 < N/2 only. Deleting redun-

dant subscripts, the model can be written as



¥i = Bxy + €4 (3)

Xj = Qzj + Vj. (4)
2

The variance of vi will be denoted by o ° It is useful to notice that the model

(3)-(4) is a restricted version of a model analyzed by Gouriéroux and Monfort

(1981) who assume that zj is also jncluded in the regression equation for y,
¥y = Bixy + 822§ + €4. (3')

If normality of €4 and vj is assumed, asymptotically efficient ML estimators of

the parameter in (3) and (4) can be obtained by maximizing the 1ikelihood func-
tion

=z

Z2.62Y = 2 g2
L(a,B,0 ,ov) 21=1 Li(c.B,o ’°v)
with

2 2 o 1 2 2
Lj(a,B,0 ,ov) = C.(ov 0 0) exp{-51(y1-8x1) /20
2 2 2 2
-si(xi-uzi) /20v - (1-81)(y1-a821) /20,},

2 2 ,2
where § = o +B%0,, 6, = 1 1f x, 15 observed (1 S N/2) and §4 = O otherwise

and C is a constant independent of the unknown parameters. Note that a com-
putationally convenient reparametrization proposed by Gouriéroux and Monfort
(1981) for the model (3') - (4), no longer applies when B2 is known to be zero.
Following an approach similar to that of Anderson (1957), Gouriéroux and Monfort
reparametrize the joint distribution for y; and x4 given z4 as a product of the
marginal distribution of y; given z4 and the conditional distribution of xj
given y; and zj and they show that his reparametrization provides an immediate
solution for the ML estimator. When B2 = 0, the computational advantage of this
approach is lost. If the normality assumption is satisfied, the ML estimator

will be asymptotically efficient but in general ML estimation will be compu-

talionally cuhersome for other than siuple models, 1f the nermality does not
hold, the Gaussian ML estimator js till consistent but no
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longer efficient, a pofnt to which we will return below.

Alternatively, the parameter B can be consistently estimated by OLS using the

complete observations only

. 2
Bo = T XYi/EXgs (5)
where Z. denotes summation over complete observations (1 < N/2). In the sequel
we will also use the notation £} and Zp to denote summation over incomplete and

all, complete and incomplete, observations respectively. Intuitively there
seems to be a case for using imputed data and considering the following proxy
variables estimator

A . .2

Bp = ZaXy¥i/Zpkss (6)
where Xj = xj if 1 < N/2 and %4 is some approximation for xj if 1 > N/2. As

mentioned in the introduction, a natural choice for the approximation is

2
- A
Xy = az, if 1 2 N/2, where a = zczixilz X

The condition for consistency of the resulting estimator Bp is that

2 A~
plim EA 1wilex1 = 0 with Wy o= yi-xiﬂ = e1+8(x1-x1). (7)

In applied work it is not only important to have a consistent estimator, but
also to be able to estimate its large sample variance consistently.

Substituting (7) into (6), we have for the first order method

2 S 2=
B -B = (2 Xy + zlq z ) {zcxie1 +a leie1 + 63 2 Zyv, + Ba 2121(u-a)}

The large sample variance (avar) of ¥N Bp can be derived via substitution of (7)

into (6) and the use of the appropriate 1imiting theory
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avar (/N Bp) = (o; a* a/s’a;az)o§4 8)

2 22 2
with o, = a o, + ¥% o, Three remarks have to be made.
X

First, although the distinction between the case where a is known and that when
a is estimated could be neglected in proving consistency, it 1s essential for
the computation of the large sample variance of 3p. When a 1s known, the
asymptotic variance of'Eb (~ denotes that the true value of a fis used) 1s given

by

2 (9)

Avar(/N'Eb) - (ci o + % u2820202)0;4.
R z v

This point is often missed in the literature, but has recently been stressed in
the context of using approximations for unobserved expectations by Pagan (1984)
and by Murphy and Topel (1985). Second, as 1s obvious from a comparison of their
asymptotic variances in appendix A, Ep can be more efficient as well as less
efficient than ﬁc. a finding which also holds for the unrestricted model con-
sidered by Gouriéroux and Monfort (1981). (In remark 2 on p. 583 they
incorrectly state that'ﬁp is more efficient than E} as noted by Griliches
(1986)). Third, the formula for the standard errors in a least squares

regression does not yield a consistent estimator of the asymptotic standard

”~ ~
errors for Bp and B¢ as

plim zA(yi-’Epa)z(zAif)-l = (o? + %% )02 . (10)

A standard least squares regression of yj on Xj produces a consistent estimate
of B. The resulting standard errors, however, will be incorrect. It is obvious
from (8) and (10) that the order of magnitude and the sign of the bias depend

on the value of uzog. Some information on the order of magnitude of the bias

will be provided in table 1.
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When using a proxy variable %t for the missing values of xi, the disturbance
Wi = €4 + B(x4y - X4) 1s no longer homoscedastic. It is natural therefore to con-
sider generalized least squares (GLS) estimation, as Gouriéroux and Monfort

(1981) did for an exactly identified model, which can be denoted as

2 -1 -1 -1
B, = (R'v R) R'v y, (11)
where y = (¥1,¥2,++3¥N)'s X = (X1,%2,...,%N)' and V is a weighting matrix.
Dagenais (1973) proposed to take V diagonal with vij = 02 for 1 < N/Z and

2 2.2

> ATA

Vij =0 + B o, i> N/2, and "~" indicating a consistent estimate of the
corresponding parameter. This estimator will be referred too as fy. Although

every element of the matrix V proposed by Dagenais converges in probability to
the corresponding element of the covariance matrix of wj, Q, the matrix

N-1%'v-1R% does not converge to the same limit as N-1R'n-1R.

That the choice of the weights by Dagenais (1973) is not optimal has been
pointed out by Conniffe (1983b) who proposed another weighting matrix with
constant elements. That these weights are not optimal either can be seen by

comparing them with the elements of Q. Assuming for fhe ease of simplicity that

z; 1is nonstochastic and writing

Wi = €4 + B(xj-azj) + Bzi(u-ﬁ) if 1 > N/2
= €4 if 1 < N/2. (12)
we have
2 22 2 2 -12
wij =0 +8 o, + B zin(Zcz1) o, i=3 1>N/2
2 2 -12
=B zizj(zczi) o, 1#35 1,3 >N/2
2
=0 1i=3 1{1<N/2

=0 otherwise. (13)
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A feasible GLS estimator 39 is obtained 1s we substitute consistent estimates for
the unknown parameters in (3) and (4) and use 3 instead of V in (12).Theinversion
of ﬁ does not seem to be very attractive at first sight as it contains non-zero
off-diagonal elements. However, we can avoid direct inversion of such a matrix
by using the binominal inversion theorem that will be needed in more complex
cases as well. First we write

Q=G+ zHZ', (14)

where G is a diagonal with 92 and oF + é202 in pos1t1on 1 of the main diago-
nal for i s N/2 and i > M/2 respectively, H = -2 2(z z, ) is a scalar, Z is
a Nx1 vector with i-th element being eaua] to zero and Z:s for i = N/2 and
i> N/2 respect1ve1y The inverse of  can be obtained straightforwardly
s (6+ziz) =6 -6z v ze7 ) M2 (15)

The asymptotic variance of §g can be consistently estimated by
(x*8-1X)"1. The estimator Bg is more efficient than the first order method in
(6), the Dagenais (1973) estimator and the Conniffe (1983b) estimator.

The asymptotic variance of the estimators considered in this section will be
given in appendix A. In table 1 we report the ratio of the variance of alter-
native consistent estimators compared with the variance of the ML estimator
assuming normality of €5 and vy. From the results in appendix A, it follows

that the relative efficiency only depends on Ri = uzogo;z and
3202(3202+02) -1, where o2 = 0202 + 02. From the results in table 1,
1t appears that the OLS estimator us1ng the complete observations on1y, Bc,

is roughly as efficient as the proxy variables estimators Bd and Bg, when
N
Ri js small. When Ri is large, Bc is inferior to all proxy variables estimators

considered. This finding is plausible. When a large fraction of the variance of

x; 1s explained by zy, azj is a fairly accurate approximation of x4 and it

pays to use this information. However, when Ri is low compared to Rg' Bp

N
can well be less efficient than B¢.
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lable 1 : Relative efficiency of the ML estimator compared with alternative

consistent estimators for B.

Alternative estimators —_

R? R? 8 B 8 8 a2
x y P d g & v
(1) (2) (6) (11) (11) (5) vaz(ép)z xi

V:Dagenais| V:optimal
0.20| 0.20 1.1306 1.1161 1.1129 1.2719 1.0312
0.20| 0.40 1.3068 1.2251 1.2140 1.3315 1.0755
0.20| 0.60 1.5430 1.2675 1.2491 1.3226 1.1429
0.20| 0.80 2.0741 1.1894 1.1726 1.2043 1.2581
0.20| 0.95 5.3364 1.0546 1.0489 1.0556 1.4176
0.40| 0.20 1.0737 1.0617 1.0587 1.3845 0.9901
0.40 ( 0.40 1.2076 1.1382 1.1259 1.3761 0.9767
0.40 | 0.60 1.4517 1.2000 1.1744 1.3421 0.9575
0.40| 0.80 2.0770 1.1786 1.1471 1.2262 0.9277
0.40| 0.95 5.7154 1.0612 1.0473 1.0649 0.8916
0.60| 0.20 1.0320 1.0258 1.0240 1.5360 0.9767
0.60| 0.40 1.1033 1.0658 1.0573 1.4710 0.9444
0.60( 0.60 1.2644 1.1184 1.0962 1.3952 0.8966
0.60| 0.80 1.7420 1.1481 1.1085 1.2669 0.8182
0.60| 0.95 4.5344 1.0706 1.0442 1.0828 0.7164
0.80| 0.20 1.0078 1.0060 1.0055 1.7368 0.9814
0.80| 0.40 1.0283 1.0172 1.0142 1.6547 0.9536
0.80 ( 0.60 1.0859 1.0393 1.0288 1.5432 0.9079
0.80 | 0.80 1.3055 1.0807 1.0501 1.3733 0.8182
0.80 | 0.95 2.7544 1.0805 1.0361 1.1325 0.6624
0.95| 0.20 1.0005 1.0004 1.0003 1.9274 0.9941
0.95 | 0.40 1.0019 1.0011 1.0009 1.8922 0.9847
0.95| 0.60 1.0068 1.0030 1.0019 1.8296 0.9668
0.95 | 0.80 1.0335 1.0107 1.0048 1.6866 0.9206
0.95| 0.95 1.3274 1.0481 1.0125 1.3442 0.7660
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In column / the ratios of the variances computed using the OLS formula for stan-
A
dard errors (10) and the correct asymptotic variance for Bp in (8) 1s presented.
In a few occasions the asymptotic bias for the standard errors involved in using

the OLS formula appears to be quite important.

In order to explain the results on the relative efficiency of the four estima-
tors considered in columns 3 to 6 of table 1 we express the proxy variables

N
estimators as a linear combination of B¢ and a consistent estimator of B, ﬁhj,

based on incomplete observations only (except for the estimate 3).

~ A A
BJ = AJBC + (1- A )ij with j =« {p,d,g}.
The expressions for Bm1 and ﬁj are given below
N N
3 Bmj o
2 2 2-1 2
Pl (E1X4)  Z{X4¥4 (Zxy+21%4)  ZcXy
2= -2 2 p2 271 -2 2
di (T,%,) I Xy (o I x40 I U OEx
* - = ~2 2 * 12 2
g (le‘1.iiii.) 21”11-*1¥1- o 2 X +21w11.x x‘.) ° 2 Xy

where w1 denotes the (i,i')-th element of Q -1, The large sample variance

of Bj is

2 2
Avar (/N BJ) = AV + (1-A ) Vi3 (16)

with Aj = plim AJ, ve = Avar(/N Bc) and vpj = Avar(¥N st)
It is straightforward to verify that BJ is asymptotically more eff1c1ent than Bc
I



v -V
e Aj <1 (17)

ij + Vc
N\
and that the choice of Aj which minimizes the asymptotic variance of ¥N Bj is

t .
Agp v j(v + va) which satisfies (17)

As Ag = aAOPt | Bg is eff1c1ent re1at1ve to sc. As Ap # Agpt and

and Ad ¢ A°p , the estimators Bp and Bd are more efficient than

Bc only if 1nequa11ty (17) 1s satisfied. This will not be the case if B (or Rz)
is sufficiently large, as the lower bound in (17) tends to 1 if B increases,

while Ap and Aq are not affected by a change of B. In this case, due to subop-
A
timal weighting, the additional information on B contained in ij leads to an

A Pa)
efficiency loss of BJ compared with Bc. If on the contrary Ri is large so
that az¢ tends to be a better proxy, vmj gets close to v¢e and the proxy

N N A
variables estimators Bp and By become more efficient than Bc in large samples.

The efficiency of the ML estimator in table 1 arises from the assumption that
the distributions of €4 and v4 are known to be normal. If normality is assumed

but does not hold, the Gaussian ML estimator which maximizes L(u,B,oz,oe) above
will st111 be consistent (see e.g. Amemiya (1985), theorem 4.1.1) and the asymp-

totic distribution can be determined (see e.g. Amemiya (1985), theorem 4.1.3 and
appendix A). This estimator is however not necessarily more efficient than the
proxy variables estimators if €4 and v4y are not normal. In table 2 we present
the relative efficiency of the Gaussian ML estimator compared with the optimal
proxy variables est1mator‘§g. The relative efficiency with respect to other
proxy variables estimators can easily be derived from the results in tables 1 and
2. In table 2 we restrict ourselves to cases where

R « R and (Fed)1(EeD)? « (Evd)/(EVD)2,

Evidently the normality assumption does not have a very large effect on the
relative efficiency unless only small fractions of the variances of yij and x4
are explained by (3) and (4) and the true distributions of €; and vj have very

fat tails. For the derivation of the results in table 2 we refer to appendix A.
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Table 2 : Relative efficiency of the Gaussian ML estimator compared with the

7
optimal proxy variables estimator Bg.

2 2 4 22 4 2.2
RX.R_y Values of Eeil(Ee1) = (Ev1)/(Ev1)
2 3 4 6 10
0.2 1.1623 1.1129 1.0675 0.9869 0.8575
0.4 1.1748 1.1259 1.0809 1.0011 0.8721
0.6 1.1305 1.0962 1.0638 1.0045 0.9036
0.8 1.0672 1.0501 1.0336 1.0019 0.9441
0.95 1.0167 1.0125 1.0083 1.0001 0.9841

3. THE GENERAL MODEL

In this section we consider the general model introduced in equations (1) and
(2). As in the simple case considered in the previous section a consistent
estimate of B can be computed from complete observations only. Define yc, X
and Z. as the vector and matrices obtained after deletion of rows of y, X and Z
respectively for waich some variable is missing. The regression estimator based

on complete observations only can be written as

1

) x‘x)_ '
Be = (XeXc XeYer

(18)
In the model (1) and (2) several proxies can be throught of. A first possibility
is to obtain estimates of the ajx from regressions using complete observations
only

A w22y 1K 19
a=(Z.'7.) X (19)

and subsequently to approximate missing exogenous variables in (1) by

A1) L ~
Xip = Z1=1241 a1k 1f 84 = 0.

i p.
1fx, «x, 1if5

ik & " = 1 is defined for notational convenience, B can sub-

sequently be estimated from the regression model



- - - -
yC xC eC
= B+ (20)
A(1) (1)
Lyx A I
or === -
y = x(1)g 4+ w(1), (21)

where the subscript I in (20) refers to incomplete observations. From the
example in the previous section we know that the ordinary least squares estima-

tor

A -1 (1)'
SRR oy e X v (22)

= {X X

N\
is not necessarily more efficient than Bc. As in section 2 we have to analyze
the structure of the covariance matrix of the disturbances in order to derive a

generalized least squares estimator. Because

K (1) K
Yim Bear®ip B = 4% T84, B vyt

LK A :
o =SB (O ag) (23)
and @y - a1 is 1inear in the vy we have w(l) = € + AV for a suitable chosen

A
(NxN) matrix A and the GLS estimator B(1) can straightforwardly be computed
using (15). Moreover it is evident that 3(1) will be more efficient than ac

because Bc coincides with the IV estimator of 8 from (20), with (Z',0) being
the matrix of instruments.

N
A natural question to ask next i1s how the efficiency of Bg is affected if rele-
vant regressors are excluded from the auxiliary regressions. Partition Z as
Z = (Zy,27) where Zy and Zp are (NxLj) and (Nx(L-Lj)) matrices respectively and
assume that the regression model
L *

X =X y 4 + VvV
ik~ C1e1 " Y Vik (24)
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sti1] satisfies the assumptions that were made with respect to (2). This model

suggests the use of the proxies

(2) L1 A
X = 2 n. z ifs =0
ik 1=1 1k 11 ik
= Xy 1§ 51k |

where ﬁ1k is the regression estimate from (24). Substitution of this proxy
yields the model
y = X(2)8 + w(2), (25)

from which B can again be estimated e.g. by generalized least squares yielding

8(2) The following theorem will be useful in determining the effect of the
ch01ce of a proxy variable on the associated estimators Bél)and Béz)

Theorem

)
Assume that y = XB + € holds with plim N-1Z'e = 0 and let X and X be two proxies

for X. Consider the estimators

1. 14 A-1 -1

~ A ATEA A AT
BGLS = (X'T X) X'T yand BIV = (2' X) 1'y.

Assume that

A d AN l\-l
(1)  WN(Bg s-B)= N(0,v-1), where V-1 = plim N(X'Z-1X)
ijs finite and positive definite;

(ii) plim N-lzfi = Q is finite and positive definite;

1 'w 2'zZ 0
(" g N(0,D) where D = plim N-1

N | Z'(W-W) 0 2'sz
for some S and w and w are the disturbances associated

A ~
with X and X respectively.

Then 3GLS is asymptotically at least as efficient as'zlv.

Proof : see appendix B.
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A ~y
The third requirement is most crucial. If two proxies X and X are available, an
~ /N
1V estimator based on X cannot be more efficient than a GLS estimator based on X
if Z'w and Z'(w-w) are asymptotically orthogonal provided the regularity con-

ditions of the theorem are met.

Returning to the analysis of the relative efficiency of
~(1) ~(2)

B

g

and B let us first consider the case where the parameters ajx and nyg
are known a priori. Then it is very simple to use the theorem to show that con-
ditioning on the larger information set will yield more efficient estimates.
~ N ~ ~ . ~
Define X = X(1) and X = X(2), The disturbances in theorem are & = € + (X - X)B

and W = € + (X - X)B respect1ve1y. As i( ¥ E[x. kl 1,1 and i(z) = E[x. k| 1,]
with Ip e 1], W - W = (x - X)B will be orthogonal to w by the properties of con-

ditional expectations and the theorem immediately implies efficiency of the
proxy variables estimator based on the larger conditioning set. Unfortunately
this result does not hold true in general if ajx and njx have to be estimated.
A counter-example in a slightly different model is presented in the next sec-

N
tion. In appendix C we show that the resuit does hold for 8(1) and B(2) if
8§k does not depend on k that is if all exogenous variables in (1) are missing

when one of them is. We conjecture that more general results can be proved along

~ A
the same lines. The relative efficiency of Bél) with respect to B(2) implies
among other things that 1f a constant is included in (2), use of that auxiliary

regression model will yield more efficient estimates of B than simple imputation
of mean values for missing observations (which is equivalent to regression on a

constant only) as is often done in practice.

The theorem above can also be used to demonstrate the effect of more efficient
estimation of the ajg in (2). If prior restrictions on these parameters are
available or if observations for which some but not all exogenous variables in

(1) are observed are also used to estimate these parameters, Zellner's (1962)
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SUR estimator will be more efficient than a regressfon on the set of complete

A
observations only. If the SUR estimates are denoted by ajy and an) is defined
as

A(3) L

A
Xpe = a9z 1F Sk =l
= xik 1f 61k = 0,
we obtain
K @ L _x .
T Rig = R 1By = T B SaBin (i - - (26)
m 3 4

Using (23) with i1 and a, replaced by iik and aq

respectively. the well-known fact that y"N(cx]k - “lk) and
W(a k" ] ) (1= Leea,ls kok'= 1,...,K) are asymptotically orthogonal
because'ﬁlk is efficient (see Hausman (1978)) implies that the requirements of

the lemma are satisfied. Therefore the GLS proxy variables ¢f B will in general

be more efficient 1f the auxiliary regression coefficients are estimated by SUR

rather than OLS.
4, EXTENSIONS

In this section we will indicate extensions of the results in sections 2 and 3
to cases in which aggregates of x4 in (1) are observed and to a dynamic auxi-
1iary model. For simplicity we consider two examples. First assume that x¢ is
a flow variable which is observed every second period only, that is observations
are available on Xt = x¢ + X¢-1 if t « T = {2,4,6,...,T}. Throughout this sec-
tion, "-* will denote similar temporal aggregates. Because aggregates are
observed more frequently for time series than for cross-sections, we change the

notation for the subscripts.
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Assume that the analogues of (3) and (4) hold,

yt = Bxt + €t (27)

Xt = aZg + V. (28)

Ordinary least squares applied to the aggregate data (“a" denotes that aggrega-

tes are observed) yields

p 2 -1 &
8ac = (szxt) szxtyt (29)

- A=
which is consistent. Using the proxy Xt = azt + %(xt- azg) for t € T, and

Xy = a2y + 5(;t+1 - “Zt+1) for t € T,, where
- 2 -1 = =
@ = (B2 Iz (30)
we have
yt = kB * Wt (31)
with
Wt = €t + B(vg - ¥vg) + B(z¢ - ¥Zt)(a-a) ifteT,
= S A
W = € + B(Vg - %vie1) + B(Zt - ¥2Zpeq)(a-q) 1t t £ T, (32)

OLS applied to (31), GLS applied to (31) with V being the covariance matrix of
Wt assum1ng‘3 = a, and GLS with optimal weights, i.e. V being the covariance
matrix of wg in (32), yield the consistent estimators ﬁap. aad and Qag respec-
tively. Expressions for the asymptotic variance of the est1mators‘sac andlaﬁd
and the ML estimator have been given by Palm and Nijman (1982) where de is
called the GLS estimator. For the sake of completeness the formulae are given in
appendix A.

A simple transformation of equation (31) yields

Yt + ¥t-1 = (Xt + X¢-1)B + €t + €t teT?

Yt - Ye-1 = (Xt - Xg-1)B + wt - Wiy tAT, (33)
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From the theorem in the previous section it follows that because of the inclu-
A
sion of (Xt - Xt-1)B in the regressor, Bag 1s asymptotically more efficient than

A
Bac-

In table 3 some numerical results on the ratio of the asymptotic variance of
alternative consistent estimators compared with the large sample variance of the
ML estimator are reported. For simplicity we only consider the case where the
disturbances €t and v¢ are normally distributed. In that case the relative

efficiency depends on Ri, R§ and p = 0;2 Ez,z, ;. For cross-sections
p = 0. Column 8 of table 3 contains the relative efficiency of the ML estimator

for a complete sample with respect to that for the incomplete sample. In column

P "2 A./\ _1
9 we compare the standard errors for Bap computed by means of ow(x X)~! with
the correct formula for the variance of @}p.
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Table 3 : Relative efficiency of the ML estimator compared with alternative

consistent estimators for B.

Alternative estimators

2
o]

w

2 2 2 5 a = pr

Rx Ry # Bap Bad Bag ac BML - -5
complete bar(B )Ix &

(n (2) sampling ap

-0.95 | 5.8050 4.3690 1.2310 1.3221 0.4099 0.1210
-0.80 | 2.1353 1.7254 1.1867 1.4380 0.4889 0.3925
-0.40 | 1.3514 1.2090 1.1425 1.4689 0.6169 0.7826
0.00 | 1.2076 1.1382 1.1259 1.3761 0.6880 0.9767
0.40 | 1.1502 1.1189 1.1172 1.2643 0.7333 1.0929
0.80 | 1.1200 1.1119 1.1119 1.1585 0.7646 1.1703
0.95 | 1.1122 1.1103 1.1103 1.1218 0.7740 1.1930
-0.95 | 61.9462| 6.1713 1.1461 1.1528 0.3574 0.0305
-0.80 | 16.1162| 2.0562 1.1315 1.1532 0.3921 0.1286
-0.40 | 5.6263 1.2280 1.1048 1.1436 0.4803 0.4512
0.00 | 3.2832 1.1114 1.0881 1.1250 0.5625 0.9056
0.40 | 2.1212 1.0799 1.0767 1.1023 0.6393 1.5931
0.80 | 1.3645 1.0685 1.0684 1.0777 0.7113 2,7553
0.95 | 1.1363 1.0659 1.0659 1.0682 0.7371 3.4287
-0.95 | 1.1481 1.1399 1.0100 4.3439 0.3149 0.2984
-0.80 | 1.0386 1.0317 1.0050 4.4937 0.6291 0.6588
-0.40 | 1.0128 1.0080 1.0037 2.6205 0.8386 0.9006
0.00 | 1.0074 1.0044 1.0035 1.8003 0.9002 0.9719
0.40 | 1.0050 1.0035 1.0034 1.3671 0.9296 1.0061
0.80 | 1.0037 1.0033 1.0033 1.1011 0.9469 1.0261
0.95 | 1.0034 1.0033 1.0033 1.0261 0.9517 1.0317
-0.95 | 4.0678 3.5825 1.1726 1.5562 0.1128 0.0423
-0.80 | 2.1694 1.7660 1.0751 1.6972 0.2376 0.1672
-0.40 | 1.5549 1.1848 1.0348 1.5441 0.4941 0.4850
0.00 | 1.3209 1.0592 1.0251 1.3546 0.6773 0.7827
0.40 | 1.1710 1.0258 1.0208 1.1981 0.8147 1.0619
0.80 | 1.0620 1.0185 1.0183 1.0716 0.9216 1.3245
0.95 | 1.0281 1.0177 1.0177 1.0305 0.9558 1.4190

® o s o o o o o e o @
e o o o o o o o ® e o o s o 8 e s ° o

.
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[=lejolefeflefloflofolofelofofofelefeolelecfololelelefefeleol=]
[=lellefofololellelofoflofojlofloefolelele floles flofefefelele=l=X=]
.
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21
From table 3 we can conclude that‘%ag is fairly accurate in most instances. The
estimator‘gac seems to have a reasonable precision too. However.'i}p becomes
very inaccurate when the autocorrelation of z¢ is negative. The estimator'ﬁgd is
sometimes less accurate than‘ggc. In these cases using additional information
in a suboptimal way leads to a loss of efficiency. The estimator ﬁag is of

N AZI\I\_I
course more efficient than Bac. Finally the bias due to using ow(X'X) to
estimate the asymptotic variance of ﬁap can be quite important.

In the second extension, we consider a dynamic equation for the exogenous
variables xt. In dynamic models, the prediction of the missing observations will
usually depend on auxiliary variables and on the observed values of the variable
itself. Simple examples have been considered e.g. by Chow and Lin (1971, 1976),
and by Litterman (1983). In more complex models the classical Wiener-Kolmogorov
filtering theory or the Kalman filter can be used to derive the best approxima-

tions for missing observations, see e.g. Nijman and Palm (1986).

Here we restrict ourselves to a discussion of the relative efficiency of proxy
variables estimators for the model

yt = Bxt + €t (34)
Xt = YXg-1 + 4zt + Vt Ivl <1, (35)
where the assumptions on €t and vt are as above. Assume that xt is observed

if t € T only, e.g. because the model is semi-annual but only annual data on xt

are available.

As a proxy for xt if it is unobserved we can use

A2.-1" N A AN
it = (1+Y°) [vxt_1 + ¥Xp g + Az, - uvzt+1]. (36)
which is the expectation of xt given past, present and future information on x¢
and z¢ where consistent estimates have been substituted for a and v. OLS

applied to (34) after substitution of this proxy for x¢ is consistent for B

because (36) is an estimate of the conditional expectation which implies that
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(7) is satisfied. Note that a regression on ad hoc interpolated values, e.g.
using the method proposed by Boot, Feibes and Lisman (1967) can yield estimates
which are strongly biased asymptotically as is shown by Palm and Nijman (1984).

Estimates of a and Y cannot be obtained by direct regression because x¢ and xi.j
are not observed simultaneously. We consider the following three consistent
estimators of a and v :

First by ML applied to equation (35) after elimination of the unobserved values

of xt which can be written as

Xt = Y2xt-2 + azg + ayzg-q + (V¢ + Yio1), t €T (37)

with one nonlinear restriction on the parameters (M1).

Second by OLS applied to the unrestricted version of (37),

Xt = Y1Xt-2 + ¥2Zt + ¥3Z¢-1+ (Vg + Yvg-1), (38)

~ /\/\_1

Fay N e N
and Y = £ w” » @ =Y (M2). The sign of Y is determined by ¢3¢2 .
1 2

o e e | A A
Third, again using (38), as Y = ¢y ¥ and a = y_ (M3).
32 2
If z¢ is a white noise independent of xt.j, the expectation of x¢ conditional on
all observations on xt is given by ML from (37) with a = 0 assuming the sign of

Y to be known a priori, and this proxy can be substituted into (34) (M4).

As argued above, OLS applied to (34) after substitution of one of these four
proxies Xt will yield a consistent estimator of B. This estimator will be
denoted ?p. The error term wt = €t + B(xt - Xt) is heteroscedastic and serially
correlated, so that one is again naturally led to consider GLS-estimators, such
as proposed by Dagenais (1973), Gouriéroux and Monfort (1981) and Conniffe
(1983b) for static regression models. The estimator using the weights suggested
by Dagenais (1973) will be denoted as Qd. The estimator using the optimal
weights given by the inverse of the covariance matrix of wt will be denoted by

N
Bg. Finally, B in(34) can be consistently estimated from the complete obser-
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vations only by Bc.

Numerical results on the relative asymptotic efficiency of the consistent esti-
mators of B discussed above are given in table 4. In the last column of table 4,
we compare the SE'Ss of‘ap. with a and Y estimated by ML (see M1) with the

correct asymptotic standard errors. The parameter Y, the first order autocorre-

lation of zt, p, and the variance ratio's Rg and R2 determine the relative
efficiency of the different estimators with respect to the ML-estimator.

Computational details are given in appendix A.
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Table 4 : Relative efficiency of the ML estimator compared
with alternative consistent estimators for B in
(34), when x¢ 1s generated by (35) and the ratio of
commonly used and true asymptotic standard errors.
R | r? M1 M2 ¥3 M4 M5 | sE
e le e, 8 B e |E 6 |
P 'd g p g p gl "9 | &
=090 [~0e90 (0290|090 [1029 1226 1.20| 606 175 | 63513 1.89 ¢ 1.90 | 2019
~0e80 [-0e90 (029002902638 173 1.23| 7663 185 | 25.54 1.40 1.54 | .80
000|090 (090|090 (1032 106 103 I INF 1.98 1.12 135 | 0.97
0040 |=-0.90 [0290{0:90 (1267 126 1.02| 17.69 1.14 2420 1.07 1026 | 024
090 [-0290 [0290{0o90 221 118 1.00| 1.45 1.04 123 1.01 1.64 | 0e04
=090 | 0000 (0290099115 1214 1,12 3.62 1.57 6234 1,60 [6.66 1.51 (1,90 |0ea7
=040 | 0.00(0.90]/0.90({1028 1207 1.04| S.65 1.10 1630 1.05{4.50 1.02{1.47 |0.77
0e00| 0000290090132 106 103 I INF 1e32 1e03(2e35 1.35[/1.3% [0.97
0040 | 0200(0o90|090 (1023 107 1.03| 1.68 1.05 1020 1,04 (284 1.02]|1.47[0.7n
990 02000290090 (1+00 1200 180 1.01 101 1003 1.02 (145 1.30(1.9¢ | 0.55
=090 | 0290 (0290(0.90]1022 119 1.05| 257 117 1.24 1,08 164 | 0.08
0080 0900290090 [1o77 1031 1.02| 32026 110 2428 1.07 126 | 0.23
0e00| 0290 [0.90]090|1e32 106 103 IN  INF 198 1.12 135 | 097
0e80| 09002900290 (130 113 1.08| 1.57 1.17 1.49 1.10 1.50 [ 1,07
0090 | De90090/0.90(1480 109 1.00| 2.01 1.01 141 1.15 1990 | 2.82
0290 [~0290 (0240 /0e90(223 171 133 20236 158 [7326.75 1a61 162 0e47
=0280[=0e90(0e40/090[8.08 161 1.14[170.52 117 | 26376 1.16 1019 | 0e30
000 |=0090(080{0.90]3,28 111 1.09 I INF 3.76 109 1013 110
0090 [~0.90(0.40(090 976 127 1.09| 13.07 1,10 657 110 l1el4 | 0032
090 |=0290(0e%0(0:90(1e86 196 101 2.06 1.02 1291 1.01 150 0.08
=090 0000280 (0e90(1296 155 1020| 1591 154 7108 1.95[%<65 128|161 0.3¢
0090 Do00(0a80(090]|4e38 1026 111 6113 3113 887 112399 1.13[1.17]0.52
000 0<00(0<80(0.90(3.28 111 1,09 IW INF 3028 1.09[113 1.13{1.13] 110
0o40| 000|040 090|237 110 1.08 2245 1.09 2081 1008|226 1773|1417 0495
090 | 02000240 |0e90(1207 101 101 108 1eb2 1013 1.02[123 133|161 0.624
=890 | 0290|040 (0090|237 177 1¢23] 1020 181 0,18 1.3¢ 1.50 | 006
=080 | 0090(0e80/0e90[5«88 136 111 1101 1o12| 10.6f 1.12 lela| 0226
0.00| 0.90(0.40{0.90|3.28 111 1.09 I  InF 3.76 1.09 1e13 | 110
040 | 0.90(0.40]/0e90|2e02 108 1.08] @89 1.14 2027 1.08 119 1e04
090 | 090(0.40({0.90(106 1001 1201| 107 1.02 1.78 1.06 1.62 ] 8.98
=090 |~0+90|0090 (0401202 102 1.02| 1.39 1.28| 49.93 1.95 1.98 | 265
=0e90[-0290(0.90({0.80]/1012 111 1.09] 782 1.62 3.21 1.48 1.088 | 1.32
000 (~0290/090(0.80]1081 100 100 I INF 1.07 1.95 1080 | 095
0040 |~990(0.90 0401601 101 1.80| 2.67 1.36 1.07 1.00 175 | 035
090|=0.90|0,90 040100 100 1.00 1.02 1.02 1.00 1.00 1.9 006
=090 | 0400/090(0.90 1001 101 1.01| 1.20 1.16 191 1.26[1.48 1.16]1.90] 0.52
=0.40| 0.00(0.90(0.80|1401 101 101 1.02 1.08 1401 1.01{177 157|1.86] 0e76
0400| 0200({0.90[0-98[1.01 1,00 100 I InF 1401 1.90'2.00 1.80|1.80] 0.93
040 | De00(0.90(0.80]101 1.01 1,01 105 1.03 101 1011062 157|1.86] 076
0.90| 0400|090 |0.40|100 2,080 1.80 1.00 1.00 100 1.90({108 1,08|1.98] 053
=090 | 0.90(090({0.40(1000 2400 1.00| 1.03 1.03 1.01 100 193] 8.06
=0.90| 0.90/0.90(0.40,1292 102 1.01| @17 1.20 1.08 1,06 1.75] 0.3%
0<00| 0=90(0.90|0-40{1201 1.00 1.00 I INF 187 1.05 1.80] 0.95
0e%0| 0.90/0.90(0.40{1e02 182 1.02| 104 1.04 1.04 1,83 1.88 | 1.45%
8290 | 0290|090 ({0.40{180 1.00 1.80| 1.98 1.90 1.03 1,03 1.98] 2.71
=0290|-0.90/{0.40/0.90{130 1,10 1.09| 2.68 1.58] £39.48 1.89 1.90] 074
=090 =070 040090168 199 1.21| 16.85 1.39| 25.58 1.34 150 D37
0200 |-0498|0.40{0.40(121 110 113 1w  Iw 1.2% 1.14 1.38] 0.80
9240 [-0.90|0.40 | 0.90{1a29 1014 1.07] 31.98 111 1,40 1011 1.37] 0.39
8.90[~0.90|0.40(0.90/108 1283 1.00| 3105 1.01 104 180 182 8.11
=0.90| 0.00{0.90/0.90{1.08 1.98 1.07| 2.38 1.0 Tel2 1.70{102 1.11[1.98] 0.48
=090 0.00({0.40/0.90{1029 1220 1.13] 6.61 1.22 1271 1.16[1241 1.26] 1.48] 0.58
0200| 0.00(0.40[0.90(1o21 1,10 1.13 v Iw 21 1.13]1-38 1,38/ 138 0.80
890 0.00/0.40[0.00(2c10 107 1.06] 111 1.07 110 1.06[129 1,23 1.98] 0.60
890 | 0.00(0.40(0.90{1.00 1.00 1.00| 2.00 1.80 101 1.01[104 1,083 1.90| 8.52
=090 | 0.99/0.90(0.40{1.08 1,08 1.0 1.78 1.39 1.24 1.16 1.82] 0.10
=8908 0.90/0.40|0.90|2a34 1222 111 2.79 1.18 176 117 137] 836
880 0090/ 0.40(0.90]/1e21 3230 113 Iw IwF 1.2% 114 1.38] 8-80
8280 | 0090/ 0.90/0.00]/1.08 1.86 1.06| 1.35 1.18 1.10 1.06 198 0.89
090 | 9.90) 0.90[0.48/2:80 1.00 1.08] 1.00 1.90 106 1.083 1.90( 0a82
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from the results in table 4, 1t is quite obvious that all proxy variables esti-
mators are fairly efficient when Y and a are estimated by ML. Also, OLS applied
to complete data only is reasonably efficient in most instances. The
estimator ép can be more efficient as well as less efficient than 3}. Notice
that the asymptotic variance of ﬁ} is twice that of the ML or GLS estimate for
the case where all values of xt are observed. When a moment estimator (M2 or
M3) is used for vy and a, the relative efficiency is very sensitive to the para-
meter values. In particular, a negative value for y combined with negative
first order autocorrelation of z¢ often leads to a large relative efficiency of
ML compared with the proxy variables estimators based on M2 or M3. The Jacobian

of the transformation of the moments to Y = W? equals .5Y'1, so that when

Y = 0 (which is ignored in the estimation), the large sample variance of these

estimators cannot be evaluated. This is indicated by INF.

Evidently, more efficient estimation of a and y yields more efficient proxy
variables estimators of B, in accordance with our theorem. The inclusion of the
observatiuns in z¢ in the conditional expectation of x{ appears to improve the
efficiency of B if (34) is estimated by GLS and (37) is efficiently estimated,
which is nol sprising given the Fesults in the previous section, Note that 1t
can be more efficient to use the smaller information set if moment estimators of
a and Y are used instead of efficient estimators. Finally the last column of
table 4 indicates that the commonly used formula for standard errors can be
severely biased when proxies are used. Sign and magnitude of the bias depend on

the true parameter values.

5. CONCLUDING REMARKS

To summarize we considered several consistent estimators for regression models

with missing exogenous variables. It is not difficult to obtain proxies for the
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missing observations such that the resulting proxy variables estimators will be
consistent. To assure consistency one should preferably use conditional expec-
tations to construct the proxies. We have shown how to obtain proxy variables
estimators that are more efficient than estimators based on complete obser-
vations only. The use of more information when constructing a proxy and esti-
mating the parameters of the auxiliary equation, will usually yield more effi-
cient estimators. The asymptotic efficiency of some proxy variables estimators
is much lower than that of the Gaussian ML estimator. However, the optimal
proxy variables estimator, which can be obtained by GLS, appears to be almost as
efficient as the ML estimator which is computationally unattractive in larger
models and it can be more efficient than ML estimation if normality does not
hold. This finding should be very useful for empirical work on data sets which
are not complete. Although the computational complexity of ML estimation and
the possible deviation of the data from normality are strong arguments in favor
of using imputed data, one should be aware of the fact that consistent estima-

tion of the large sample variance of the estimators discussed can sometimes be

tricky.
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In this appendix we shall give the large sample variance for

several estimators presented in the paper. Consider first the

model presented in (3) and (4). The asymptotic distribution of

the Gaussian ML estimator of 8 = (u.oz.os,s) is given by (see

e.g. Amemiy

YN(B - 8)

where

ORI B[ Sp—

and

B=1imE ——

a

d

n

1
N
1
N

(1985), theorem 4.1.3)

-1 -1
N(O,A BA )
32 L
2098"
oLy aly

— ——, where Lj has been defined in section 2.
28 28’

22 4 22

Defining (Eey)/(Eey) =g, (Evi)/(Evy) =nm,

4 22

and E(e, + Bv,) /(E(e, + Bv,) ) =N 1t 1s straightforward to

verify that
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~2 2 2 2 2 2 i 2
witho =0 + B Oy v 0, = Ezt and 0™ Ext. The matrix

A has the same structure and is obtained if one puts

Ne = Ny -'K = 3 in (A.1). If normality holds B coincides with A
A
and the large sample variance of YN By_ 1s simply the (4,4) ele-

ment of A-1l which can be shown to be

02 ong 8202
A
var(/N ByL) = & (1-— )+
202 352 8262 +%
v
82°5 8403 + o -1
+ (1 = ) . Acz
o4 54 + of + pdot (A.2)
v

Along the lines followed by Palm and Nijman (1982) for aggregate
observations, one can obtain the asymptotic variance of consistent
estimators of B for skipped observations.

A
For the proxy variables estimator Bp in (6), we have :

2 22-2 22 -~222 2222

var (/N ap) =2(o, +a0,) (00, +0ao0, +aBoo,). (A3)

A
Similarly for B4 in (11), where the matrix of weights proposed by

Dagenais is used, one gets :

var(/N Bgq) = p + pzszazozov /! 204.

with p being the large sample variance of the GLS estimator
of B when a is known

£ ald (A.5)
- + . g
Pl "R

when the optimal weights in (14)are used, we get :
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o2 0202 82020202 "
vz

Var(N Bg) = { = + 2’ e (A.6)
202 25 2(0 +o\B 32)

Finally, when we apply OLS to the complete data, the variance is
the double of the variance of OLS in the case that no data are

missing

-2
Var(h B) = 202 o, . (A.7)

For the static model with observed aggregates of the exogenous
variable xt, the large sample variances of the ML estimator and of
the estimator VN‘B;d are derived in Palm and Nijman (1982). For
the sake of completeness, we give all formulae for the asymptotic

variances.

~
For the proxy variables estimator Bap, we have

. 22 22 222 2 2
Var (VT Bap) = 4(a G4EX ) (3 a 40 Ex + 82020252 (£Z 2)™1). (A.8)

When a temporal aggregate of xt is available, the variance of the

Dagenais estimator in (11) is

2 -1
A - . .
var(vT Bag) = p + p2a2325§o§o-4(52 ) (A.9)
_2 22
Ex a 'a’z -1 A
where p = { — + } is the variance of B4 given
402 452 a8

2
that a 1s known and G = E(z¢ - z¢-1)2. The asymptotic variance

of the GLS estimator with optimal we1ghts.'3ag, is

22 _2 2224
a o, Ex aB oy0

=1

var B = + - = .
V1) * {7+ 07 - ) (A
The variance of the OLS estimator applied to the periods for which

A
all variables are observed, Bac, is
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s -~
Var (V1 Bac) = 402 / ExZ. (A.11)
1t differs from the variance of the OLS estimator of B when no

data are missing

VT B o) = 02 1 o A.12

2 22 2
with ox =da oz 4 °v'

A
The asymptotic variance of the ML estimator BaML' is

. 2 22 222
Ex ao B 0,0
var(vT B, ) = {— + 2. 1= 2°v ]
MG TR T (g +E2 0
24 4 44
B oy (o0 +Boy) =1
+ - [1- 11, (A.13)
38 (0% + 8403 +7Y

Finally, we indicate briefly how table 4 was derived. If R¢
defined in (36) is substituted in (34) the resulting error term

has matrix variance covariance matrix
Q = Ql + W Qz W'. (An14)
oo N

where Q is the covariance matrix of the estimates v and a, W is a
(Tx2) matrix which contains B times the derivatives of Xt with
respect to a and Y in the first and second column respectively
and Q; is a diagonal matrix with diagonal element o2 in case of
an observed x¢ and &+ 8202(1+4v2)"} 1f x¢ 1s not observed. Again

v

equation (15) can be used to get the inverse of Q.

In order to derive the variance of the ML estimator for the dyna-
mic regression model in (34) and (35) we write the model in recur-

sive form as
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yt = Bxt + et
yt-1 = B(1+v2)"1{yxg + xt-2 - avzy + azg 1} + epy

- B(1+Y2)"1(yv¢ - v¢_1)  (A.15)

Xt = VZXt-Z + Az + ayZy_q * Vi YV g

for t € Tp. Notice that the disturbances in (A.15) are indepen-
dent and orthogonal to the explanatory variables in the
corresponding equation. The log-l1ikelihood function L can there-
fore be obtained in a straightforward manner, as well as the asso-

ciated information matrix.
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APPENIX B PROOF OF THE THEOREM

Using assumptions (i) and (111) one verifies that

W (Byy - 8) = N(0,0} (D11 + D22)Q'~1), where Dyy and Dz,

are the upper-left and the lower-right blocks of D respectively.
Furthermore, the asymptotic orthogonality of Z and € and assump-

tion (ii1) imply that

- = A
plim N-12' (W - %) = plim N-1Z'(X- X)B = O,

-~

for all B, so that plim N-12'X = plim N-12'X = Q. Using this
result, one obtains that

Q-1(Dy14D22)Q' -1 = plim N-1(Q-1z'- v-1x'z-1)z-1(zQ'-1-

- - -

-z-1xv-1) + plim N-1Q-1z'xv-1 +

-

plim T-1v-1x'2Q'-1 - v-1 4+ Q-1pz2Q'-1 2 v-1

which proves the result.
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APPENDIX C
PROOF OF THE RELATIVE EFFICIENCY OF THE PROXY VARIABLES

ESTIMATOR BASED ON THE LARGER INFORMATION SET FOR A SPECIAL
CASE.

Assume that (4) and (24) both hoid, which read in matrix notation as

X = Zjay + Z2a2 + V (C.1)
and
x =2+ V" (c.2)

respectively. Evidently

v¥ = Z1(a1-n) + Z2az + Vv (C.3)
and ‘
n=aj + plim(Z1'Zy)"12;' 2202 (C.4)

because E[xlzl] = Zin. Using (C.3) and (C.4) we find

p
N%(Zy'v*-Z1'v) = N%(Z21'21(a1-n)+2)' 2202421 'v-21'V) -)(g "

It is not difficult to check using the theorem in section 3
B )y ° “(2) A A(l) ~ /\(2)

that if X = X , X = X . BGLS = Bg and BIV = g a

sufficient condition for relative efficiency of 3;1) is that

N¥%z' (W - W) P, 0 which 1s satisfied when

* *

N#{Zy1" (VI-V1)B + Z1(Zc'Ze)71Zc'VeB - Z11(Z1¢'Z1¢) 12 cVB)
P
— 0, (C.6)
where the subscripts ¢ and I refer to complete and incomplete

observations as before. Condition (C.6) is satisfied because
of (C.5).
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