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PSEUDORANDOM NUMBER GENERATORS REVISITED

Jack P.C. KLEIJNEN and Ben ANNINK
Department of Information Systems and Auditing

School of Business and Economics
Catholic University Brabant (Katholieke Universiteit Brabant)

P.O. Box 90153
5000 LE Tilburg, Netherlands

When splitting the cycle (of length h) of a multípticative generator into

two parts, the pseudorandom numbers across parts (xi and xíth~2 wíth t-
Z,...,h~2-1) turn out to Zie on only two parallel Zines. These "Zong

range" correlations have consequences for classic and for parallel com-

puters. For supercomputers stmple alternative generators are presented.

These generators are more efficient than the standard subroutines (RANF

and VRANF) available on the CYBER 205.

Simulation, Monte Carlo, parallel algorithms, random number generation,
software

1. Introduction

Is there really a need for any more research on pseudorandom number gene-
rators? Isn't it like beating a dead horse? But no: new properties of old
generators are still discovered, and new generators must be developed to
accommodate new architectures of computers, especially pipelined supercom-
puters and parallel processors, as we shall see. Recently some interesting
results on pseudorandom number generators have appeared; unfortunately
these results have been published scattered over various journals that are
not easil,y accessible to readers of this journal, we think.

We concentx~ate on one class of generators, namely linear congruen-
tial generators. These generators are most popular; a recent critical
survey is Park and Miller (1988).

This paper is organized as follows. In ~ 2 we summarize basic
results for linear congruential generators that we need in the sequel. In
~ 3 we split up the full cycle of the multiplicative generator into equal
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parts, first into two parts (~ 3.1), then into 2k parts (~ 3.2), showing
that the pseudorandom numbers lie on two and on no more than 2k-1 parallel

lines if k s 2 and k z 3 respectively. We briefly consider antithetic
pseudorandom numbers in g 3.3, and in g 3.4 we study the conditional vari-
ances and the correlation coefficient of the pseudorandom numbers paired
across two kparts (of the 2 parts). Finally ~ 3.5 summarizes the disadvan-
tages of splitting a pseudorandom number stream into parts. Therefore g 4

gives alternative generators for supercomputers. First we briefly explain
the 'assembly line' architecture of supercomputers such as the CYBER 205.

Next ~ 4.1 gives one situation requiring computation of J multipliers (a.
J

- a~ mod m), and ~ 4.2 gives a related parallel algorithm requiring compu-

tation of a single multiplier (aJ mod m) and initializing a vector with J
successive numbers. Finally ~ 4.3 compares these two generators to the
standard scalar routine RANF and the standard vector routine VRANF on the

CYBER 205. At the end ~ 5 summarizes conclusions.

2. Linear Congruential Generators

Linear congruential generato~s have the form

x~tl -( a x~ t c)mod m (J - 0,1,2,...), (2.1)

where the multíplier a, the constant c, the modulus m, and the seed x0 are
integers. When c is zero, the generator is called multiplicative congruen-
tial. The generator has a specific cycle length or period h; which means
that if the generator starts with seed x0 then xh - x0 so that xh41 - xl
and so on. Obviously for the pseudorandom numbers r~ - x~~m we have 0 S r~
C 1. An efficient algorithm results if m- 2w where w depends on the com-
puter's word size; for example, CDC's supercomputer CYBER 205 uses m- 24~
(see CDC, 1986), but IMSL uses m- 231-1 for 'classic' computers; NAG uses
m- 259 (double word on classic computers). However, there are other con-
siderations than efficiency.

Pseudorandom number generators should yield results r~ that can be
considered as statistically independent; that is, the observed sequence
r0, rl, ... rn should not provide any information about the next sequence

rntl, rnt2, ... It is extremely difficult to meet this requirement (see
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Bratley et al., 1983; Fishman, 1978; Park and Miller, 1988; Ripley, 198~).

It is possible to derive conditions that are necessary but not sufficient.

For example, the following lemma is well known.

Lemma 1: If in equation (2.1) m- 2w and c- 0, then the maximum cycle
length is h- 2w-2; this maximum is reached if a- 4g t 1 with odd integer
g.

Because these conditions are not sufficient, we should apply statistical
tests to the generator's output (rp, rl, ...) to see if several types of

statistical dependence are absent indeed. For example, two-tuples (r~,

rl), (r2, r~), (r4, r5) ... should be uniformly distributed over the unit
square; Figure 1 shows results for a pedagogical example that can be easi-
ly checked by the reader. We shall return to this figure.

3. Partitioning the Cycle

Kleijnen (1989) surveys several types of linear consequential
generators for supercomputers. In ~ 4 we shall discuss supercomputers; now

we mention only that Kleijnen (1989) discusses splitting up the cycle of
pseudorandom numbers into 65. 535 (- 216-1) non-overlapping parts. We now

prove that this approach is wrong? This prove reveals properties of gene-

rators also of interest for classic computers. In this section we restrict

ourselves to multiplicative generators with m- 2w, a multiplier a selec-

ted such that h- 2w-2, and a seed x~ - 1; see lemma 1. First we consider
partitioning into only two parts, next into more parts.

3.1. Partitioning into two parts

Suppose we split the cycle of length h- 2w-2 into two equal parts
of length h~2. Kleijnen (1989) assumes that the generator is tested on a
classic computer; more specifically, he assumes that the pseudorandom
numbers rj (j - 0,...,h) are statistically independent. Unfortunately, the
numbers rj, or equivalently xj, are statistically dependent. More specifi-
cally, De Matteis and Pagnutti (1988) give number theoretic results which
guide our present research.
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Let us return to the pedagogical example of Figure 1(b) with m-
26 and h- 26-2 - 16. Splitting into two parts yields a first part consis-

ting of x0, xl, .. , x,~; the second part comprises x8, x9, .. , x~5. Now
we plot the pairs corresponding across the two parts: ( x0, x8), (xl, x)9 '
.. ,(x.~, x15). So we are interested, not in first-order autocorrelation
(Figure 1), but in long range correlation. This yields Figure 2.

A more realistic generator has a higher modulus m and hence a
longer cycle h. We present plots only for m- 212 and a- 5, which are
easily obtained on a Personal Computer. In Lemma 2, however, we shall see

that the pattern shown by these plots holds for all generators considered
in this section. Figure 3 shows the plot for partitioning into two parts:

(x0' xh~2)' (xl' xh~2t1)' "'(xh~2-1' xh). Again all these h~2 pairs lie
on only two parallel lines with slope one; these lines have no overlapping
domains; a small number in the first part (0 ~ r~ ( 0.5) goes together
with a high number in the second part (0.5 C rh~2t~ ~ 1). (So the pseudo-
random numbers are negatively correlated; see Table 2 later on.) In figure
3 we display r, not x, in order to make the plots independent of m.

3.2. Partitioning into 2k parts

What happens if we double the number of parts? First, we should
notice the relationship between partitioning into two and four equal parts
respectively. Let us return to the didactic example with m- 26. When we
splitted the cycle into two parts, we plotted (x0, x8), (xl, x), .. ,
(x~, x15). Now we have four parts, each of length h- 2w-2j4 - 26~2~22 -

4, namely part N1 is (x0, xl, x2, x3), part ~12 is (x4, x5, x6, x,~), part
~t3 is (x8, x9, x10' xll)' and part H4 is (x12' x13' x14' x15). So the
pairs across parts ~I1 and ~13 are: (x0, x8), (xl, x9), (x2, x10),

(x3,
xll). But these four pairs also occured in the plot for two parts! So if
if splitting up into two parts gives unacceptable results, then splitting

up into four parts and using all parts does not help! We must split up the
cycle into more parts and use the first two parts only. Figure 4 displays

the plot for parts ~I1 and 112: (x , x ) (x , x ) .. , (x0 h~4 ' 1 h~4t1 ' h~4-1'
xh~2-1). Again all h~4 pairs lie on only two parallel lines with slope

one; these lines still have no overlapping domains; compared to splitting

up into only two parts (Figure 3) these lines shifted to the left (the
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correlation is still negative but smaller in absolute magnitude; see Table
2).

The pattern of the plots changes as me go on doubltng the number
of equal parts! Figure 5 gives the plot for the first two parts when
splitting up into 23 parts: (x~, xh~8), (xl, xh~8t1), ~~ .(xh~8-1)'
xh~4-1)' Again all h~8 pairs lie on parallel lines with slope one, but
there are now four lines and some of these lines have partially overlap-
ping domains; a small number in the first part 'goes together' with two

different values in the second part (strictly speaking, one particular
value of xj corresponds to a unique value for xhj8tj since all numbers x
are different in a multiplicative generator; we shall return to this is-
sue).

l~igure 6 plots the pairs when splitting up into 16 parts. Again
all h~16 pairs lie on parallel lines with slope one, but there are now
eight such lines with more overlap of domains. Figure 7 gives results for
32 parts. All h~32 pairs still lie on parallel lines with slope one, but
there are now more such lines, even though these lines are now hard to
distinguish because there are few points per line. And so we could contin-
ue. Actually De Matteis and Pagnutti (1988, p. 604) prove the following.

Lemma 2: Suppose the modulus of the multiplicative genetor is m- 2w with
w~ 3, the multiplier a is chosen such that the cycle length is h- 2w-2,

and the seed is x~ - 1. Divide the resulting sequence into 2k parts with k
( w-2. If k s 2 then x, and x lie on two parallel lines with slope

~ j'h~(2k)
one. If k~ 2 then there are no more than 2k-1 parallel lines.

3.3. Antithetic pseudorandom numbers

Kleijnen (1974, p. 254) proves that the antithetic pseudorandom
numbers 1-rj can be generated by starting with the seed m-x~. Hence the
antithetic numbers (say) yj satisfy y~ - m-x~ for j- 1, 2, .. , h-1, h.
Combined with Lemma 2, this means that the cycle of the antithetic numbers
yj has no eZement in common with the cycle of the 'original' numbers xj.

Note that a multiplicative generator with m- 2w has a maximum
cycle of length h- 2w-2; see Lemma 1. This can be explained as follows.
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The modulus m- 2w results in odd values only: half the cycle running from
0 through m-1 is lost that way. Another half lies in the antithetic cycle.

3.4. Statistical anal.ysis

The preceding plots illustrate number theoretic results. What are the
statistical consequences? First we see that, within the cycle, no number
xj occurs more than once, whereas the statistical analysis of simulation
output assumes that random numbers are sampled independently and hence
specific values can occur more than once. In the statistical analysis this
phenomenon is always ignored. Analogously in our analysis of the preceding
figures we assume continuous parallel equidistant lines in the unity qua-
drant. We assume that the generator does yield a uniform marginal distri-
bution; hence var(r) - 1~12. It is easy to derive the variance of
r k given rj and given a partitioning of the cycle into 2k parts (j
jth~(2 )

- 0,...,h~(2k)-1). For example, for k- 3 Figure 5 gives four lines such
that with each rj two values for rhj8tj correspond. We assume that these
two values are equally probable. Obviously the distance between two neigh-
boring lines is 1~2. Hence

var(rh,8}jlrj) - {(1~4)2 t (1~4)2}1~2 - 1~16.

This yields Table 1. This Table shows that the conditional variance in-
creases monotonically to 1~12, the variance if the second part would be
independent of the first part.

Table 1: Conditional variance of r k given rj for 2k parts as a
h~(2 )tj

percentage of var(r ) - 1~12.
h~(2k)tj

k 1 2 3 4 5 6 7
var(r ~r ) 0 0 75?: 93.75x 98.44X 99.61X 99.9~Xh~(2k)~j j

We also test the correlation coefficient between the pairs (rj,
r ). If the r were normally distributed then zero correlation would
h~(2k)tj



imply independence. In case of nonnormality this is not true; for example,
if

r k - r~ for 0 C r~ C 0.5
hI(2 )tJ

- 1-r~ for 0.5 C r~ C 1, (3,2)

then their correlation is zero. To test for zero correlation of the uni-
formly distributed r we use the "Spearman rank correlation test"; see
Churchill (1983. pp. 596-598). so if the rank of r~ is v~ and that of
r k is w k , then we compute
hI(2 )tJ hI(2 )tJ

ï (v.-w )2

R - 1 - .Í-1 J hI(2k)t~
n(n2-1)

(3-3)

Obviously mrix(Ii) - 1. 'I'hc following stntistic has the t, distribution with

n-2 degrees of freedom:

T - R(n-2)lI2
1-R2

(3.4)

We compute T for n- 1000 and a popular generator, namely m- 232 and a-
69069. This yields Table 2.

Table 2: Spearman rank correlation test for (r , r.) when partitio-
k 2hI(2k)4J J

ning the cycle into 2 parts; m- 23 and a- 69069; n- 1000.

k- 1 2 3 4 5
T - -17.94 -4.56 -1.05 0.68 -0.19

This table gives a nonsignificant correlation for k- 3. Nevertheless
Figure 5 and Table 1 suggest a strong dependence; also see the example in
equation (3.2).

If pseudorandom numbers are dependent then the simulation fed by
these numbers, gives dependent results. The statistical analysis of the



simulation outpiit assumes independence when estimating variances and con-
fidence intervals!

~.5. Summary of splitting approach

Kleijnen (1989) assumes that the pseudorandom numbers rj are truly inde-
pendent. Then it makes sense to generate (say) J numbers in parallel by
selecting J seeds such that the full cycle is split up into J equal parts.
Number theoretical results derived by De Matteis and Pagnutti (1988),
however, prove that these parts may be correlated, especially if J is
small. Acceptable statistical behavior requires that the cycle be split
into at least 25 parts and that only the first two parts be used. So of
the full cycle of length h- 2w-2 we use only 2 X 2w-2-5 numbers. The
useful part is split into J subparts for parallel generation of pseudoran-
dom numbers; see Kleijnen (1989). We emphasize that the long range corre-
lation also causes problems on classic computers if relatively many pseu-
dorandom numbers are needed. In ~ 4 we shall present generators for vector
computers that produce pseudorandom numbers not spread over the full cycle
(with the concomittant problem of long range correlation). Moreover, these
generators produce numbers in exactly the same order as generators for
classic computers do; this facilitates debugging.

4. Pipeline computers and generators

First we consider the pipeline architecture of supercomputers such
as the CYBER 205. We start with an example, namely the innerproduct of two

J
vectors, vl v2 - ï vlj v2~. This computation requires J scalar multiplica-

1
tions vlj v2j; these J operations can be done in parallel because the
product v v does not need the product v v The pipelinelj 2j 1(j-1) Z(j-1).
architecture means that the computer works as an assembly line; that is,
efficiency improves drastically if a large number of identical operations
can be executed, independently of each other; see Levine ( 1982). Such
supercomputers are efficient, only if these operations can be executed
independently or in parallel, which means that recursive statements are
not suited to pipelined computers. Unfortunately, the linear congruential
generator is recursive: equation (2.1) shows that to compute xj}1 its



predecessor xj is needed. Moreover, because of fixed set-up costs, the

'assembly line' computer is efficient only if the number of basic opera-

tions is large; the literature suggests J~ 50. There is also a technical

upper limit on J, namely J s 216-1 -65,535 because the CYBER 205 uses 16

bits for addressing; see SARA (1984, p. 26). So the computer generates J

pseudorandom numbers in parallel with 50 C J 5 65.535. Hence a simulation

experiment that requires N pseudorandom numbers, must call this parallel

routine [N~J] times where [] denotes rounding upwards to the next inte-

ger; for example, if N- 1,000,000 and J- 65,535 then 16 calls are neces-

sary. So we may imagine an I x J matrix of pseudorandom numbers, where J

numbers are generated in parallel and I calls are made to that vector

routine. Kleijnen (1989) surveys different solutions to this problem

(namely, J different multipliers mj and J additive constants cj; sampling

J seeds; selecting J seeds I apart; also see ~ 3). He rejected the follow-

ing idea because of overflow problems, but we shall show how to solve this

problem.

4.1. Vector of multipliers

Fishman (19~8) proves that, given a seed x0 and J calls to the classic
multiplicative generator (see equation 2.1 with c- 0), the resulting
number xJ can be derived without knowing the intermediate numbers (xl, x2,
.. , xJ-1).

xJ - (aJ x0) mod m. (4.1)

So we can generate J pseudorandom numbers in parallel i f we first gene-
rate, once and for all, the vector of J multipliers: a-(al, a2, .. ,

aJ-1' aJ)' with

aj -(a~) mod m j- 1, .. , J. (4.2)

This vector is multiplied by the scalar x0 to give the vector (xl, x2,

.. , xJ-1, xJ)'. Replacing the scalar x0 by the last element of the vec-

tor, namely xJ, yields the next vector (xJtl' xJt2' "' x2J-1' x2J)~'
etc. In this way the pseudorandom numbers are generated in exactly the

same order as they would have been produced in scalar mode.

At the end of the simulation run we should store the last pseudo-
random number, so that the símulation experiment might be continued later
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on, or a new (unrelated) simulation experiment can start at a seed diffe-
rent from the default x0. Also see De Matteis and Pagnutti (1988, p. 602).
We shall return to this generator, after we have discussed a closely re-
lated generator.

4.2. Vector of J successive numbers

Suppose we have available of vector of J successive pseudorandom numbers
x-(x0, xl, x2, .... xJ-2' xJ-1)~' (4.3)

This vector is multiplied by the scalar multiplier ( aJ) mod m. This multi-
plication gives a new vector identical to the new vector obtained by equa-
tion (4.2). At the end of a simulation we should store the vector of the
last J numbers.

There is a computational problem in both approaches: overflow
occurs when computing high powers of the multiplier a. (Overflow in clas-
sic generators is also discussed in Park and Miller, 1988, p. 1195.) That
problem, however, can be solved if we use 'controlled integer overflow';
see Law find KeLton (1982, pp. 219-232). We also must know that the CYBER
205 uses the 'two 's complement' representation of negative integers. The
Appendix gives the computer program for the generator based on equation
(4.3) (which will turn out to be the most efficient generator).

4.3. Comparison of four generators

Table 3 compares the computer efficiency of several generators,

using the CYBER 205. This computer can use FORTRAN 200 (a superset of
FORTRAN 77) that allows vector and scalar programming; see CDC (1986):

Generator ~il is RANF, a scalar subroutine that uses the multiplicative
generator with m- 247 and a- 84000335758957 (or in hexadecimal notation,

a- 00004C65DA2C866D); see CDC (1986, pp. 10-29). The CYBER 205 uses words

of 64 bits; 48 bits are used to represent integers, including one sign

bit; hence m- 247. Generator M2 is VRANF, a standard vectorized subrou-
tine that uses the same m and a as RANF does; see CDC (1986, pp. 11-1).

Generator iJ3 uses the vector of multipliers of equation (4.2); generator

~F4 uses the vector of J preceding numbers x~ plus the multiplier aJ; see

equation (4.3); these two generators use the same multiplier and modulus
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as RANF does. We can implement the last two generators not only in vector
mode but also in scalar mode (of course RANF is in scalar mode, and VRANF
is in vector mode). The measurements in Table 3 do not include storing the
last vector or scalar to continue simulation at the last pseudorandom
number.

Table 3: Computer time in microseconds on CYBER 205.

vector length J

Type of generator 5 500 50,000 65.535

~1 RANF o.014 0.520 51.553 67.465
~2 VRANF o.021 0.208 19.507 25.652
~3 J Multipliers 0.013 0.079 7.713 9-923

scalar mode 0.026 1.572 157.763 206.843
~4 J numbers ~ aJ 0.013 0.079 7.425 9.631

scalar mode 0.024 1.561 157.098 206.083

Our results for RANF and VRANF deviate substantially from those
published by An Mey (1983): he found that VRANF is always slower than RANF
and he found CPU times a factor 1,000 higher! Generator ~4 is slightly
fester than generator ~3 because the latter generator has to store and
fetch the last element of the vector of numbers x~. Moreover generator N3
needs two vectors, namely one vector for the multipliers a~ and one vector
for the numbers x~. So we recommend generator ~4.

5. Conclusions

Multíplicative generators show very strong 'long range' correla-
tions. Splitting up the cycle of such a generator into 2k parts results in
pseudorandom numbers that lie on no more than 2k-1 parallel lines, if k 2
3. On supercomputers, pseudorandom numbers could be generated by partitio-
ning into 25 parts and using only the first two parts. Two better ap-
proaches require the computation, once and for all, of J multipliers a~ -
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a~ mod m, or the computation of the multiplier aJ mod m and initializing a
vector with J successive numbers. These two approaches are superior to the
standard subroutines on the CYBER 205, namely RANF and VRANF.
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Appendix 1: The FORTRAN 200 program for generator E4.

PROGRAM VARIANT4
IMPLICIT REAL ( U-Z), INTEGER (A-T)
PARAMETER (N1-5,N4-65535,K-1)
PARAMETER (A1-3~~~2072~06109)
INTEGER MVAST
BIT BVAST
DESCRIPTOR MVAST, BVAST
DIMENSION T(N4), S1(N1)
DIMENSION X1(N1)
DATA MINT ~ X'0000800000000000' ~
CALL RANSET(K)
Do 5 I-1,N4
U-RANF()
CALL RANGET(T(I))

5 cONTINUE
C ! N-5
C ? SCALAR

S1(1;N1)-T(1;N1)
ZPUI-SECOND()
DO 10 I-1,N1
S1(I)-A1'S1(I)
IF (S1(I).LT.O) S1(I)-S1(I)-MINT
X1(I)-S1(I)~MINT

10 CONTINUE
ZPU2-5ECOND()
U1-ZPU2-ZPU1

C ? VECTOR
ASSIGN MVAST,.DYN.N1
ASSIGN BVAST,.DYN.N1
S1(1;N1)-T(1;N1)
ZPUI-SECOND()
S1(1;N1)-A1'S1(1;N1)
BVAST-S1(1;N1).LT.O
MVAST-S1(1;N1)-MINT
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S1(1;N1)-Q8VCTRL(MVAST,BVAST;S1(1;N1))

X1(1;N1)-S1(1;N1)~MINT

ZPU2-SECOND()
Z1-ZPU2-ZPU1

FREE
PRINT ', 'BEGIN: GEVEKTORISEERD SCALAR'

PRINT ', 'N- 5 ',Z1,' ',U1
END
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Figure 1: Plot of al.l successive pairs x2~, xlt2j with j- 0, 1, .
h~2-1 for a multiplicative generator with m- 26 and a- 5.
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Figure 2. Pairs across two parts (xj, xj4h~~) with j- 0, .. , h~2-1 for
multiplicative generator with m- 2 and a- 5.

~



i9

Figure 3. Pairs across two parts.
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Figure 4. Pairs across first two parts when splitting up into four equal

parts.
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Figure 5. Pairs across first two parts for 23 parts.
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Figure 6. Pairs across two parts for 2~ parts.

iM ~
~~ ~IY ~~

i

4

~11
~



2i

Figure ~. Pairs across two parts for 25 parts.
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