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REGRESSTON ESTIMATORS 1IN SIMULATION

by

ANTON C.M. HOPMANS

(Dr. Neher Laboratorium, PTT, Leidschendam, Neth.)
and

JACK P.C. KLEIJNEN
(Katholieke Hogeschool, Tilburg, Nctherlands)

Abstract

Dividing a simulation run into subruns yields average input values
per subrun which deviate from their known expectation. This inform-
ation can be used to improve tne estimated simulation response:
control variates or regression sampling. To derive the statistical
properties of the new estimator, regression nnalysis is cxamined for
stochastic independent variables and misspecified regression models.
t is shown that the usual, crude estimator is biased.

Assuming a local linear approximation, the crude estimator remains
biased "ex-pcst", whereas the regression estimator becomes unbiased.
Moreover, the variance of the regression estimator is smaller under

each of three intuitivily acceptable conditions.

1. INTRODUCTION

In this section we shall briefly describe the "background" problem
that lead to our interest in control variates, and define control
variates and its equivalent, regression sampling. Control variates

is a procedure that was applied "spontaneously" by one of the authors
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in a simulation experiment with a service neotworh (called a "grading")
as experienced in PTT telephone-exchange systems; see Bear (1976) for

a description of such systems. The purpose of the simulation was to
estimate the steady-state probability of blocking, i.e., a telephone
call (customer) finds all lines (servers) occupied. To estimate the
accuracy (reliability) of the simulated blocking probability, the
standard deviation ¢ (standard error) of the simulation response is
needed. One approach for estimating this o is to cut the total simula-
tion run into subruns of predetermined length. (Assuming independence
or testing for independence of subrun responses, straightforward
calculation of the estimate o is then possible; see Kleijnen (1977) for
details on this procedure and alternative procedures-) Control variates
arise as follows.

Per subrun the average arrival rate of customers1) can be com-
puted, denoted by A (stochastic variables are underlined to distinguish
them from the values they can assume). The value A in a subrun will
not be exactly equal to the theoretical, expected value, say a. This
expected value is known as the simulation program samples from a known
distribution of interarrival times (known input). Note that we are
interested in estimating the blocking probability for A = a (desired
input value), not for A = A (accidentally sampled value).If in subrun
i (i=1,...n), relatively many customers arrive (Ai > a), then we
expect this subrun to have a relatively high estimated blocking pro-
babilipy, say Bi' Hence, we mey regress blocking probabilities Bi on
traffic intensities A, as in FIG. 1. In order to estimate the block-
ing percentages at the value we are interested in (A = a), we can use

the regression model
= 1)
Oy = Fg* Byply + 3y (1:7)
Applying the least squares procedure to estimate BO and B1 yields

gn-go+g1.u (1.2)

Note that the regression modei (1.1) is extremely simple, except for



the fact that the independent variable itself is stochastic (since the
simulation program yields stochastic traffic intensities per subrun).
The regression sampling c¢stimator ﬁu of (1.2) can also be represent-

ed as a so-called control variate estimator; as we shall prove next.

Define the control variate estimator B as

B=38+ 8, (a-K) (1.3)

with the standard definitions

§=§gi/n 5 £=Zéi/n (%)
and Bc being a correction coefficient to which we shall return. B is the
standard (crude) response of the simulation run when not using regression
or control variates (overall mean of all subruns). If, for instance,
a > A (too low K), then intuitively we wish to correct B such that
B > B. This is realized by selecting a positive value for the correction
coeffic%ent Bc. It is simple to derive,see Kleijnen (1975, p. 140), that

the variance of E is minimized by selecting the optimal value
x _
B, = p 0g/0, (1.5)

2 2
where UA and UB

coefficient between A and B.

are the variances of A and B, and p is the correlation

However, the optimal correction coefficient in control variates Bz is
identical to the least squares coefficient 61 in the regression model
(1.1), as can be verified in any textbook on regression analysis. Hence,

2)

we use as an estimator

Ax_A
gc-_s_1 (1.6)

But then it is simple to derive that both estimators, optiméi control
variates and regression sampling, are identical : From the least squares

procedure it follows that the regression line passes through the "center

of gravity"; see Johnston (1972, p. 1€). In other words, if A = K , then



(1.7)
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This implies that the intercept EO satisfies

(1.8)
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Substitution into (1.2) yields

a=B+§ (k) =5

= (B - (1.9)

|
[
o)

B 1-B) + By

where the last equality follows from (1.3) and (1.6). The above
derivations are well-known in the literature oﬁ variance reduction
techniques in simulation, and in other forms of sampling experiments
such as sample surveys. However, the statistical properties of the
control variate estimator are not well understood, even though the
technique has been applied in a number of simulation studies; see
Kleijnen (1975, pp. 138-164). In the remainder we shall examine the
possible bias and the variance of control variates. We shall also
discuss an aspect much neglected in the literature, namely how to

construct confidence intervals for the new estimator.

2. Some preliminaries

We mentioned that the regression model (1.1) is extremely simple except
for the stochastic cheracter of the independent variable. It can be

found in, e.g., Johnston (1972, p. 40) that

P e~
var (Bla = a) = o° (L + 2Bl (2.1)

1{A,-K)°
q,

var (§u)

Note that the variance of B increases as we move away from the center

of gravity. What are the assumptions of (2.1)?

First, consider the general model



o

-=X8+

>
%
e

|=4
~
N
S
ez

where matrices and vectors are denoted by -. Its least squares estima-

tors are

> > > > > > >
B =(X'X) X'y=Wgy (2.3)
-> > > 1-)
where we introduced the shortland notation W = (X'X)™ X'. In Scheffé
(1964, p. 8) the following general result can be found. If we have a

: > . : : ;
stochastic vector y, with covariance matrix Q; then the linear trans-

. i 3 * A . > > >
formation y, = J§ yq has covariance matrix 52 = AQ, A'. Hence the
-
variance-covariance matrix & of B is
<> > >
Q, =W W 2.1
B8 y S

The predicted value of y for, say, the row vector of independent

. i >
variables x' = x

6 s 48
x * I
L=xy B (2.5)
Hence, similar to (2.4), we have
) e = > Py
var (y|x xo) X} EB X, (2.6)

Returning to (2.1) we conclude that this variance expression does not

depend on the following assumptions3):

(i) Normality of the observations y.

(ii) Correctness of the fitted (linear) regression model. Obviously
the bias of i does depend on this assumptionS).
Eq. (2.1) is based on the next assumptions.

(iii) Non-stochastic independent variables, since (2.4) follows from
(2.3) assuming a deterministic w.

3 . 2 2
(iv) Constant variances o = o where

var (B[A = A;) = o] =0 (1= Tgesusn) (2.7)
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where o? is the variance of B around the (unknown) true model, say,
B = £(a) (2.8)

So, we have to distinguish between v, the noise of the true model, and
u, the noise of the assumed (linear) model (1.1), which noise may be
biased, i.e. &(u) # 0. See also FIG. 2. Iff the model is correctly
specified, then we can estimate the variance oi by the mean squared-

residuals e(z B-B):
B s
g° = § (B;-B;)"/(n-2) (2.9)

Next we turn to our ariginal problem where the independent variable is

stochastic and the regression model may be misspecified.

3. Pessible bias cf B and B
= =

If subrun i has one specific value Ai for its traffic intensity, then
the blocking percentage gi can still assume various values (depending

on the order in which "customers" arrive, and other stochastic factors).

Each subrun is subject to the same probability law so that we can write
ﬁi = A ard Ei = B. As FIG. 2 demonstrated, we have
&(B|A = A) = £(A) (3.1

By definition the unconditional expectation satisfies

&(B) = &{&(B|A = A)} = &{f(A)} (3.2)
A A

Unless f(A) is linear, we know that

&{f(A)} # £{&(A)} = f(a) (3.3)
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3.1. The crude estimator R

Consider the first estimator B, i.e., the "crude" estimator defined in

7

(1.%). Obviously

8(B|A1,...,An) = &(zgi/n]A1,...,An) = z&(B.lAi) (3.4)

1

n !

where the last equality holds since the gi are supposed to be independ-
ent after dividing the total simulation run into n subruns of appropriate
length; see section 1. In other words, Ei does not depend on Aj (j # 1)
Substituting (3.1) into (3.4), and defining £ = (A1”"’An)’ yields

&(BlA) = - re(a;) # £{z(a;/n)} = £(B) (3.5)

1
n

We also refer to the illustration in FIG. 3 where n = 2. From (3.5)

and (3.2) we derive

&(B)

&{
A

n
If(A))=
1

M3

1
A} =~ 1 a(z(a,))

8=

&{r(a)}
# r{&(A)} = fa) (3.6)

In other words, even the simple eslimater E is a biased estimator,

since the traffic intensity per subrun éi is stochastic instead of

being controlled at the level a. See also FIG. 3 (where we use as an

illustration a situation where a > A). This figure illustrates the

intuitive notions that the bias reduces for

(i)  increased subrun-length so that the subrun traffic intensities
A, tend to be closer to a = &(a),

(ii) more subruns so that the probability of "many" A-values far from
a, decreases. Then we can better approximate f(A) locally by a

linear function.

Given the simulation esperiment, the (ex-post) bias follows from

(3.5) and is
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. e a5
Bias (B|A) = — zf(A.) - f(a) (3.7)
Before the simulation run is executed, the (ex-ante) bias is

Bias (B) = &(£(A)} - £(a) (3.8)

3.2. The regression estimator B,

Next wé consider the regression or optimal controle variate estimator
Eu defined in (1.9). Its relation to the crude est%mator B is illustra-
ted in FIG. 4, where we eliminated the noise terms v and took n > 2 so
that the linear approximation does not give exact fit. In general, we

have
Bias (B_|X) = &(
-
- By * Bla + §°) = =5 (3.9)

where Ga denotes the deviation between the true value f(a) and the

A 5 " >
linear approximation based on the observed A = (A "’An)’ evaluated

1ina
at the point a. In (3.9) we use the definitions

R_ g2 R _ez 2
By = 8(B,18), 87 = &(8,]D) (2.10)

Note that given K,many B,-values remain possible (see eq. 2.7), which
may yisld many values for 80 and 81. FIG 4 also shows the crude
estimator B, which equals § evaluated at A. Hence, this estimator has
bias because f(A) is approximated linearly, and because we measure at
X instead of a (see also FIG. 3). Since the formulas of this section
do not provide further insight, we shall use a linear approximaticn

to f(A) in the next section.

L, Linear approximation to f(A)

In this section we assume that &(B|A) = £(A) can be approximated by a

linear function "locally", i.e., in the neighbourhood of the point of
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interest a. Hence, we assume

&(B[A) = £(A) = B  + B .A (k1)

provided A is the neighbourhood of a, say
I EL M (4.2)

Note that such a linear approximation is not a drastic simplification
when compared to the usual situation in experimental design. In such
designs a factor like A is varied over a wide range in order to detect
whether A has any effect on the response. In our case the expected
value for each Ai remainsa, and the longer the subruns are, the closer
the Ai are to a. In the remainder of this paper we assume that only A-
values satisfying (4.2) are used; practically speaking we assume that
the experimenter rejects "obvious" outlying observations on A.

The formulas derived for a general function f(A) in the preceding

section, are then replaced by the following results.

4.1. The crude estimator B

Eq. (3.3) is replaced by

&{r(A)} = &(B, + B, A) =B, + 8, (4.3)

Eq. (3.9) becomesn

8(B|A) = ;- 1(8, + 8,A) = 8, + 8, ] (h.4)

Eq. (3.6) is replaced by

&(B) = &{r(A)} = &{p, + B, A} =8, + B, a (4.5)



= 1 =

Hence (3.7) becomes

sias (B|%) = £(&) - £(a) = 8,.(R=a) (4.6)
so that in general ex-post bias will remain since A # a. However, the
ex-ante bias is zero since eq. (3.8) becomes

&{r(a)} - £(a) = &(BO + 8, A) +

[}

Rias (B)
- (BO + B,0) = B, &(a) - B,.a =0 (=)

~

L.2. The regression estimator §“

In order to see how the estimated regression coefficients EO

depend on the independent variables z, we return to the general case,

and §1

especially eq. (2.3). This yields

> > > > - > > o

&(BX) = &(W y|X) = W &(x|X) = (x')"'x".x8 = & (4.8)

where W is not stochastic as X is given. So if the assumed model is
correct then any realization of the independent variables yields un-

. . 2> . - .
biased estimators (X is assumed to be non-singular). In our case this

means

&(B,lR) =8, , & 1K) =8, (4.9)
Consequently

a@nm = &(f, + B, alk) =8, * 8.0 (4.10)

Summarizing section L, the regression estimator Eu has no bias whereas
the crude estimator B does show ex-post bias 81(K—a), assuming f(A) can

be approximated linearly.

5, The variance of T and Ba
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Having examined the bias in the preceding two sections, we next
proceed to the variance of the two competing estimators. We shall
consider tvo cases in this section, numely the general case f(A) and
the special case of its linear approximation. We shall use a basic

formula that can be found in, e.g., Keeping (1962, pp. 398-399):
var (x) = &{var (x|y)}y + v?r{&(gdy)} (5.1)

5.1. The crude estimator B

Remember that the _]§1 were supposed to be independent because of the
way subruns were formed. We further assumed that the §1 have
" 2
constant variance o, see eq. (2.7). Hence
var (B|R) = var (

0¥

1% ==

n

aME

B. var (B.|A.)
=i = 151

5=

o]

1
;2— z var{f(Ai) # b=

L 2
L var {‘-!i) = ov/n

]

(5.2)

In other words, since the Ai—values are fixed, §1 and hence ]_§_ can

vary only because of the noise v,
Applying eq. (5.1) yields

var (B) = &{var (B|K)} + v%r{ﬁ(EIK)}

i
=60 o

{oi/n} - v%r{t»?.(-%‘EBi 1Z)}

ai/n + v%r{ﬁl“a(gi |Ai )}

oi/n + —; vir{z‘. f£(A)}
n

ci/n + var{f(A)}/n (5.3)



- 16 =

where the last two equalities hold since the A. are identically
4

and independently distributed. The first component of (5.3) cor-

responds with the variance around f(A) given A, and the second

component corresponds with the variation along the curve f(A).

If we assume a linear approximation to f(A), then (5.3)

becomes

|1
i

var ( 'oi/n + %—var {BO + B, A}

oi/n + B?.var (A)/n (5-4)

Observe that (5.4) could have been derived as follows. If we do

not condition on the Ai—values, then the Ei are identically

distributed with variance op- Hence

var (B) = var (IB;/n) = og/n (5.5
If we use the linear model

B, =B, +BA+ ¥ (5.6)

then it can be found in, e.g., Fisz (1958, p. 89) that (even if

A is stochastic)

2 _ 2 2

.= oB(T—o ) d { Sl
Remember that

By = coB/c’A (5.8)

Substituting (5.7) and (5.8) into (5.k), it is simple to prove
that (5.4) and (5.5) are identical.

Returning to eq. (5.4) we see that var (B) increases when the

traffic intensity A can vary much from subrun to subrun, or when
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blocking probability B reacts strongly to changes in A (high

This is an intuitively plausible r=sult!

The regression estimator By

Applying eq. (2.1) yields

-
ver (B |%) = o (L + —L2=hy (5.9)

=\ 2
Z(Ai-A)
Using (5.1) and (1.2) results in
(S
) . giB
var (éa) =8 cj{ﬁ-+ ——ig:élg} +
X £(a,-K)

% e KT
+ v%r[&(ﬁo * §_1.u| )]

2 2 (a-E)°
= OX;/Il + 0 8{——2} +
z(A.-R)
Se=h
+var{§K+§Ku} (5.10)
> =0 3" '
A
Let us try to compare this result to eq. (5.3). If o ~ K then
the second term of (5.10) will be small. In (5.3) B can move along
the curve f£(A). In (5.10) the variance term refers to changes in
the regression parameters @0 and 51, as A = (A1,...,An) changes.
See FIG. 5. More insight can be gained by approximating f(A)
linearly.

If the true model f(A) is linear, then the regression model

is corrected specified. In section L.2 we proved that in that

case the regression estimator gu is unbiased for any K.Consequently

&( alk) =g, + 8, @ (5.11)

(fe~13
L

_B_O+



Hence the variance component in (5.6) bec-omes zero. So

== o |
~ 2 2 (a-R)"
var (Ea) = ov/n + o;.&{———g-—ﬁ (5.12)
n.s,
@ % 7 . 3
where EA is the estimated variance of A. Uomparing (5.12) and

(5.4) shows that B, has smaller variance, if

(i) the average A is close to a, or

(i1) the vuriance of A is large, or

(iii) the blocking probability reacts strongly to changes in A.

These are intuitively acceptable conclusions!

6. Conclusion and application

Above we proved that the simple, crude estimator E, is biased

"ex post" (i.e., after the subrun traffic intensitien Ai have been
sampled), even if we assume that the blocking probability B reacts
linearly to the-traffic intensity A in the neighbourhood of the
true input value a = &(A). The regression estimator Eu is unbiased
ex post (and hence also ex ante) assuming such a linear approxi-
mation. The variance of the regression estimator is also smaller
than that of the crude estimator, if at least one of three in-
tuitively interpretable conditions is satisfied. See also Table 1.
Observe that in the crude estimator procedure the point estimator
is based on the realized Ai-values, so that the bias is the ex post
value 81(K—a). Concerning the variance, we have to realize that in
a new expgriment not only the v change, but also the A. Hence the
variance is based on the ex ante value. (In a new experiment the
A-values change, and the crude estimator does not account for this
effect.) . Applying (5,5) and (5.7) to Table 1, it is easy to
show that the MSE of the regression estimator becomes the smaller

2 -
MSE, when p“ approaches one (MSE = Mean Squared Error = variance
rlus squared bias). Notice that even if o = A, the crude estimator
has higher MSE since the regression estimator can utilize the

reactions of B to varying individual A

1
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i Crude L Regression
B B
= ]
. -
Ex post (given A)
Bias Bl(K—a) 0
2
o =2
. 2 v (a-A)
Vari +
ariance av/n -;#1 = }
SA
=
Ex ante (over all A)
Bias 0 0
2 2 2
i [} o ((,._A)
Variance i [ . =X {1 +8 —
- ol (I = §°
__A

Table 1: Bias and variance of two estimators, assuming linear

approximation near A = o.

In our simulation experiment illustrated by FIG. 1 we obtained the

following numerical results: SB = 0.364 and Ev = 0.179

PYa) ~ s
so that p- = 0.757 or p = 0.870. Since a = 28.700, A
B

SA = 0.L25, we can estimate the variance of o 88
il
vir ()= X g1 4 LB
=} n 2
Sp
, 2
= 0:032 (4 (0.119)" y _ 5 ogp3

15 0.180

R = 28.819 and

(6.1)




so that its standard deviation is 0.048. Note that in this rather
complicated simulation experiment, the service network was designed
such that the blocking probability was hoped to equal 1%. Actually
B = 1.545 (in procents) with & = 0.36L so that Gz = 0.09L. Hence the

B
simulation response is significantly worse that the desired value.

For the regression estimator we obtain
Ba = ﬁU i 81.u =
= -20.198 + 0.754 (28.7) = 1.4418 (6.2)

with its estimated standard deviation 0.04L8 so0 that this more accurate
estimator also implies that the desired blocking probability is
significantly exceeded. Note that narrow confidence intervals are
desired since in future experiments different network structures will

be compared.

The efficiency gain of regression sampling may be measured by the ratio

var (B)/var (Eu) or by its square root if the standard deviation is

taken as criterion. When fixing the sample sizc n we are interested

in the length of the confidence interval and hence in the standard
deviation. When a prespecified confidence interval length ("accuracy")
is desired, we are interested in the number of subruns needed to
realize this gccuracy. This number of subruns depends

on the variance; see Kleijren (1975). In the above example we have

var (B)/var (Eu) = 3.84 and its square root is 1.960.

Observe that in the literature, including Kleijnen (1975), attent-
ion is focussed on the following regression or control variate; see
also (1.3):

o -

=B+ B (a-A) (6.3)

— —-“ —_

Am)

If &(B|A) = £(A) con be approximated by a linear function in the
neighbourhood of a, then we proved that (6.3) remains unbiased. In
the general case this could not be proved. A "trick" discussed in
Kleijen (1975) is to use "jackknifing" to.mske Ea unbiased and to

derive confidence intervals.T)



NOTES

1) The unit of measurement is as follows. The number of arrivals
per time unit is multiplied by the mean service time, i.e., the

unit of time is the mean service time.

2) In 'eq. (1.5) 9y

distribution. If we use the known Ty in the estimator E:, then

(1.6) does not hold any more. However, it is convenient to apply

is actually known since A is sampled from a known

the least squares algorithm. It may even be optimal to use (1.6)
if errors in SB are compensated by errors in EA; see Kleijnen
(1975, p. 148).

3) In (2.1) we have B' = (80, 61), X=(1,A),y= (3.) .

4) In the textbooks on regression analysi§ the normality assumption
is used to derive the distribution of E, which is needed to
derive the standard t- and F- tests.

> - > > -> >

) = x' &(B) = x' . (X'X)”" x'&(y)

53 5 >
5) &(y|x' = x o &(B o

'
0
provided X is not stochastic (or if X is stochastic, ; is not

> > > > > > >

(
stochastically dependent on X). Hence
> > >
X' (xg) = x4 B

~ =
Vo N = '
&(y|x xy) =%y « (X'X)
. )-‘ _'_’- .

provided &(y) = X.B is indeed a correct model.

©) In Kleynen (1975) the control variate cstimator wus derived to
show bias in general and hence jackknifing was suggested). How-
ever, there &(E) was standard whereas here &(3|A = a) is of
interest.

F .

af 4
Censider B
=

)

3+ Eﬁl) (a-A.) where Eﬁl is the usual estimator

=~
~

of the slope 8, but estimated from all pairs (Qj, A.) except
pair j = i. Hence ﬁgl) is independent of A. so that 8(§q(1).éi) =

ﬁ(éﬁj)). &(A;) = a . S(Eﬁl). Then it immediately follows thatl



= 98, =

G(Eél))= &(B). So this "jackknifed" regression estimator has

the same bias as the crude estimator. Its variance is, hope-
fully, smaller since it accounts for the reactions of B to

deviations of A from a. See Kleijen (1975) for more details.
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