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aEGRr.SSION ESTIMATORS 1N SIMIJLATION

by

ANTON C.M. HOPMANS
(T)r. Ir'eher Laboratorium, PTT, Leidschenda.m, Neth. )

and

JACfi P.C. KhFIJNEN
(Kc~tholieke }Iogeschool, Tilburg, Nct.herlands)

rlbstract

Dividing a simulation run into subruns yields average input values
per subrun which deviate from their known Pxpectation. This inform-
ation can be used to improve tne estimated simulation response:
control variates or regression sampling. 'Co derive the statisticsl
}~roperties of the new estim~itor, regres:;ic,,, ~Lnalysis .is ,~xa.mined 1'or
s'ochastic ~ndcpendent vnriables and. mic.:;~„~c.ified regres~ion rnodeLs.
I: is showr, that the usual, crude estimator is biased.
Assuming a local linear approximation, the crude estimator remains
biased "ex-pcst", whereas the regression estimator becomes unbiased.
tiloreover, the variance of the regression estimator is smaller under
each of three intuitivily acceptable conditions.

1 . IidTROPUCTION

In this sectior, we sha11 briefly describe the "background" problem
that lead to our interest in control variates, and define control
variates and it.s equivalent, regression sampling. Control variates
i~ a procedurP that was applied "spontaneously" by one of the aut't,ors
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FIG. 1. Estimated blocking B versus crrival intensity A
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in a simulation expariment with a service n.et.worY. ( called a"gradir,g")
as experienced in PTT telephone-exchange systems; see Bear (1976) for
4 description of such systems. The purpose of the simulation was to
estimate the steady-state probability cf blocking, i.e., a telephone
call ( customer) finds all lines ( servers) occupied. To estimate the
accuracy ( reliability) of the simulated blocking probability, the
standar3 deviation a(standard error) of the simulation response is
nc:eded. One approach for estimating this Q i s to cut the total simula-
tion run into subruns of predetermined lengt.h. (Assuming independence
or testing for i.ndependence of subrun responses, straightforward
calculaticn of the estimate o is ther, possible; see Kleijnen (1977) for

details on this procedure and alternative prucedures-) rontrol variates
arise as follows.

Per subrun the average arrival rate of customersl) can be com-

puted, denoted by A(stochastic variables are underlined to distinguish

them from the values they can assume). The value A in a subrun aill

not be exactly equal to the theoretical, expected value, say a. This

expected value is known as the simulation program samples from a known

distribution of interarrival times (known input.). Note that we are

iiaerastcd in estimating the blocking probability for A- a(desired

input value), n~t for A- Á(accidental.ly sampled value).If in subruu

i(i - 1,...n), relatively many customers arrive (Ai s a), then we

expect this ~ubrun to have a relatively high estimated blocking pro-

bability, say Bi. Hence, we may regress b7.ocking probabilities Bi on

traffic intensities A., as in FIG. 1. In order to estimate the block-i,
ing percentages at the value we are interested in (A - a), we can use

the regression model

Bi - SO t B1'Ai } ui

App.lying the least squares procedure to estimate B~ and R1 yields

~ - ~ f ~1.a (1.21

Note that the regression model (1.1) is extremely simple, except for
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the fact that the independent variable itself is st.ochastic (since the

simulation progrt:m yields stochastic traffic ii.tc~nsities per subrwi).
7"ne reY;ression sampling c~timator B of (1.~) can also be represet~?.--a

ed as a so-calle~l control variate estimator; as we sha11 prove next.

Define the control variate estimator B as

B - B } R (a-Á)

with the standard definitions

n
B - EBi~n , Á - EAi~n

1

and B being a correction coefficient to whicY. we shall return. B is the
c -

standard (crude) response of the siunilation rwi when not using regression

or control variates (overall mean of all subruns). If, for instance,

a~ Á(too low A), then intuitiveiy we wish to correct ~ suc:h that
B~ B. This is realized by selecting a positive value for the correction

coefficient Rc. It is simple to derive,see Kleijnen (1975, p. 140), that

the variance of B is minimized by selecting the optimal value

S~ - P oB~aA

where a~ and oB ~ire the variances of A and B, an3 p is the correl~t.ion

coefficient between A and 13.

However, thu optimiLl correction coeffieient in control vari.ates S~ is
identical to the least squares coefficient ~i1 in the regression model
(1.1), as can be verified in any textbook on regression aiialysis. Hence,
we use as an estimator2)

(1.6)

But then it is simple to derive that both estimators, optimál control

variates an3 regression sampling, are identica.l; From the least squares

precedure it follows that tkie regression line passes through the "center

of gravity"; see Johnston (1972, p. 1E). In other words, if A- Á, then
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E-~, or

BA - ~ } s1.á - B (1.7)

This implies that the intercept B~ satisfies

B~. -B- f31.À

Substitut.ion into (1.2) yields

B~ -(B - S1.Á) f k~1.a -~ t S1(e.-Á) - B

(1.8)

(1.9)

where the last equality follows from ( 1.3) and ( 1.6). The above
derivations are well-known in the literature on variance reduction
techniques in simulation, and in other forms of sampling experiments
such as sample surveys. However, the statistical properties of the
control variate estimator are not well understood, even though the
technique has been applied in a number of simulation studies; see
Kleijnen (1975, pp. 138-1b4). In the remainder we shall examine the
possible bias and the vnriance of control vai~istes. We shall also
discuss an aspect much neglected in the literature, namely how to
construct. confideuce intervals for the new estimator.

?. 3ome preliminaries

We mentioned that the regression model (1.1) is extremely simple except

for the stochastic character of the independen~ variable. It can be
found in, e.g., Johnston (1972, p. 40; that

2 2var (Èo) ' var ( B~A - a) - ov {n f (a-A }
- E(Ai-A)2

Note that the variance of B increases as we move away from the center

of gravit.y. What. nr~ tlie assumptii,ns of (~'.1)'?

First, cun:,i~i~~r the t,envral model
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wnere matrices and vectors are denoted by -r. It.s least squares estima-

tors are

-. -r -~ -r -~ -.

G - (X'X)-1 X'~ - W ~ (2.3)

where we ;ntroduced the Ghort.land notation W-(X'X)-1 X~. In Scheffé

(1964, p. ó) the following general result can be found. If we have a
~

stochastic vector ~1 with covariance matrix S~1 then the linear trans-

formation ,-~~2 - Á y1 has covariance matrix SZZ - A 521 Á' . Hence the
~

variance-covariance matrix á of S is

~S - W ~Zy W~

The r.~redicted value of ~ for, say, the row vector of independent

variables x' - xp , is

-~ ~
~ - xp .~.

Hence, similar to (2.4), we have

~ T -i -i 1 -~ -)

var (~~x - x0) - x0 ~S x0

(2.5)

(2.b)

Returuing to (~.1) we conclude that this variance expressien does not

depend on the following assumptions3). -
-~ 4 )

(i) Normality of the observations ~.

(ii; Correctness of the fitted (linear) regression model. Obviously

the bias of ~ does depend on this assumption5).

Eq. (2.1) is based on the next assumptions.

(iii) Non-stochastic independent variables, since (2.4) follows from
~

(2.3} assuming a deterministic W.

(iv) Constant variances ai - a~,where

~
vsr (B~A - Ai) - ai - a~ (i - 1,...,n) (2.T}
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where a2 is the v~.riance of B around the (unkn.~wn) true mcdel, say,i -

B - f(A) (2.FS)

So, we have to distinguish between v, the noise of the true model, and

u, tlie noise of the assumed (linear) model ('.1), which noise may be

biased, i.e. ~(u) ~ 0. See also FIG. 2.~ the model is correctly

specified, then w~~ can estimate the variance au by the mear. squared

residuals e(- B-B):

Qe - i (Bi-Bi)z~(n-2)
1 -

(2.9)

Next we turr. to our ~inal problem where the independent variable is

stochastic and the rngression model may be misspecified.

If subrun i has one specific value Ai for its traffic intensity, then

the blocking percentage ~ can still assume various values (depending

on ttie order in which "customers" arrive, and other stochast~c factors).

Each subrun is subject to the same probability law so that we can write

A- - A ar.d B. - B. As FIG. 2 demonstrated, we have-i - -i -

f(F~A - A) - f(A)

By defi?iition th~ unconditional expectation sat.isties

~(B) - ~{í~(BIA - A)} - ~{f(A)}
- A -- A -

Unless f(A) is linear, we know that

; {f(A}} ~ f{E;(A)} - f(a)

(3.1

(3.2)

(3.3)
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FIG. 3. Bias of crude estimator B
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J.1. The cru3a c:,timator I;

Consider t.li~~ fir~t estimator ~, i.e., the "crude~" estimatur defined in

(1.'a). Obviously

~(B~A1,...,An) - ~(EBiInIA1,...~An) - n E~(~~A1) (3.4)

where the last equality holds since the B. are supposed to he independ--i
ent after dividing the total simulation rt~n into n subrlins of appropriate

length; see secti.on 1. In other words, ~ does not depend on Aj (j ~ i).
Substituting (3.1) into (3.4), and defining Á-(A1,...,An), yields

~(A~A) - n í'f(Ai) t f{E(Ailn)} - f(Á) (i.5)

We also refer to the .illustration in FIG. 3 where n- 2. From (3.5)
and (3.2) we derive

1 n 1 n~(B) - A{n i f(,A~)} - n E~{f(Ai)}

- F{f(A)}

~ i'{~(A)} - f(a) (3.61

In other wurds, even the simple e~Limater B is a biased estimator,

sinc~~ the traffic intensity per subrun A. is stochastic instead of
~

being controlled at the level a. See also FIG. 3(where we use as an

illustratior. a situation where a~ Á). This figure illustrates the

intuitive notions that the bias reduces for

(i) increased subrun-length so that the subrun traffic intensities

Ai tend to be closer to a-~(A),

(ii) more subruns so that the probability of "many" A-values far from

a, decreases. Then we can better approximate f(A) locally by a

linear function.

Given the simulation esperiment, the (ex-post) bias follows from

(3.5~ and is



A~ A2 A p~ q3
FIG.4. Bias of crude estimator B versus bias of control,. -

variate Ba



~ 13ias (B~A) - n ï.f(Ai) - f(x)

Bef.re the simuïation run is executed, the (ex-ante) bias is

Bias (É) - ~(f(A)} - f(a)

3.2. The regression estimator B--a

(3.7)

(3.8)

Next we consider the regression or optimal controle variate estimator
Ba define3 in (1.9). its relation to the crude estimator B is illustra-
ted in FIG. ~, where we eliminated the noise terms v and took n~ 2 so
that the linear approxi.mation does not give ~~xact fit. In general, we
have

Bias (~I~) -~(~ t S~ a~1) t. ~

- (B~ f R~a t d~) - -d~ (3.9)

wnere d~ denotes the deviation between the true value f(a) and thea
linear approximation based on the observed Á-(A~,...,An), evaluated
at the point a. In (3.9) we use the definitior.s

S~ - ~(~~~), BA - ~(S~ ~Á) (3.1G)

PTote tl:at given Á~many Bi-values remair. possible (see eq. 2.7), which
may yield many values for SG and S~. FIG L also shows the crude
estimator B, which equals B evaluated at Á. Hence, this estimator has
bias because f(A) is approximated linearly, and hecause we measure at
A ir.stead of a(see also FZG. 3). Since the formula~ of this section
do r.ot provide further insi.ght, we shall use a linear approximaticn
to f(.A) in the next section.

1~, Linear approximation to f(A)

In tY.is sectioa we assume that ~(BIA) - f(A) can be approximated by a
linear flinction "locally", i.e., in the neighbourhood of the point of
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interest a. Hence, we assume

~(BIA) - f(A) - B~ t S~.A

provided A is the neighbourhood of a, say

t
a- ~ A ~ a (4.2)

Note that such a linear approximation is not a drastic símplification

when compared to the usual s?tuation in experimental design. In such

designs a factor ].ike A is varied over a wide range in order to detect

whether A has any effecT, on the response. In uur case the expect.ed

value for each A. remainsa, and the longer the subruns are, the cleser
~

the A. are to a. In the remainder of this paper we assume that only A-
i

values satisfying {4.2) are used; practically speaking we assume that
the experimenter rejects "obvious" outlying observations ori A.
The formulas derived for a general function f(A) in the preceding
section, are Lhen replaced by the following results.

4.1. The crude estimator B

Eq. (3.3) is replaced by

~{f(A)} - ~(B~ t R1 A) - R~ t S1 a

i?~~ . ( ~ . ` ) 1`r`i'~~nlc~.

~IH~Á) ~ n E(S~ } S1A1) - 8~ } S1 h

Eq. (3.6) is replaced by

(lc.3)

(4.4)

~l3) -~{f(A)} - ~{~O t g1 A} : go t R1 a (4.5)
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Hence (3.7) becomes

Bias !,DIÁ) - f(Á) - f(a) - B~.(Á-a; (4.6)

so that in generai ex-post bias will remain since Á~ a. However, the

ex-ante bias is zero since eq. (3.8) becomes

P.ias lB) -~{f(A)} - f(a) -~(RO t R~ A) t

- (RO f R~a) - R~ ~(A) - R~.a - 0 (4.7)

4.2. TYte regression estimator B~

In order to see how the estimated regression coefficients ~ and S1
~

depend on the independent variables A, we return to the ger.eral case,

especially eq. (2.3). This yield~

-r -~ -r -s -~ -r -~ -r -~ 1-~ -~-r -~

~(~~x) - ~(w y~x) - w ~(.~~x) - (x~x)- x~.xR - s (4.8)

where W ís not stochastic as X is given. So if the assumed model is

correct then any realization of the independent variables yields un-

biased estimators (X is assumed to be non-singular}. In our case this

means
f(~~Á) - BO ~ ~(~,~~) - R~ (4.y)

Consequently

~(B~~~) -~(~ t R~ a~~) - RO } R~.a

Summarizing section 4, ttte regression estimator B has no bias whereas
~,

the crude estimator B 3oes show ex-post bias B~(A-a), assuming f(A) can

tie appraximtited linearly.

`Che variat:ce uf P and B
a
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Ha~ing examined the bias in the precedinf; twc.~ sections, we next

proceed to the variance ~f the two compet.ing estimators. W~ ~hal7.
consider ta~o cases in this section, nwn~~ly the generaJ. case f(A) and

t~ie special case ef its linear approximaticn. We ~hall use a basic

formula t.hat can be found in, e.g., Keep~ng (i962, pp. 398-399):

var (x) - y{var (x~Y)} t vyr{~(x~Y)} (5.~)

5.1. 'Phe crude estimator B

Remember that the ~ were supposed to be independent because of the

wa,y subrur.s were formed. We further assuRied that the ~ have

cons:.ant variance a~; see eq. (2.7). Hence

-~ 1 I n
var (B~A) - var (nE~l~) -„ E var (R ~Ail

- n` 1

- 2 E var{f(Ai) t vi} - 2 E var (vi) - av~n
n a -

(5.2)

In other words, since the Ai-values are fixed, B1 and hence B can

vary only because of the noise v,

Applying eq. (5.1) yields

var (B) - Á{var (BIÁ)} t v~ {~(B~I~)}

- ~{ov~n} t v~{~(nEBil~)}
A A

- aV~n t va~r{xi~~(~~Ai)}

- o~~n t ~ v~r{E f(A)}
n

- a~~n t var{f(A)}~n (~.3)



where the last two equalities hold since the A- are identically
and independently distributed. The Yirst compcnent of (5.3) cor-

responds ~-ith the variance around f(A) given A, and the second

component corresponds wit,h the variation along the curve f(A).

ïf we assume a linear approximation to f(A), then (5-3)
becomes

2var (B) - av~n } n var {(3o t~~ ~}

- avln } f32.var (A)~n

Observe that (5.4) could have been derlved as follows. If we do
not condition on the Ai-values, then the ~ are identically

distributed with varisnce aÉ. Hence

var (B) - var (E~~n) - aB~n

If we use the liriear model

BA - so f s,A t.,

(5-5)

(5.6)

then it can be found in, e.g., Fisz (1958, p. 89) that (evPn if
A is stochastic)

a~ - aB(~-P2)

Remember that

(5.7)

8~ - PoB~aA (5.8)

Substitutmg (5.7) and (5.8) into (5.L), it is simple to prove

that (5.~) and (5.5) are identical.

Returning to eq. (5.~) we see that var (B) increases when the

traffic iatensity A can vary much from aubrun to subrun, or when



T-l T ~ ~
A, A; c~ A z A;
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FIG.S Variation in ~3o t~3iA when Á is replaced by Á'
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the blocking probability B reacts stror.g,ly to changes irr A(high

~31 ). '1'his is an intuitively plausible re~.ult:

5.2. The regression estimator Ba

Applyir,g er~. (2.1) yíelds

var (B ~~) - a2 {1 t (a-Á)`}-a v n E(Ai-Á)L

Usí.ng (5.1) and (1.?) results in

var

t var ~g(~ t sl.al )I~}
~ 1

a2~n t aL~{ - ,~} t
v v E(A.-A)`~

t var { ~ t ~,~.a }
Á

(5.9)

(5.10)

Lei us try to compare this result to eq. (5.3)- If n~ Á then

the second term of (5.10) will be small. In (5.3) B can move along

the curve f(A). In (5.10) the variance term refers to changes in

the regression parameters SO and S1, as Á-(A1,...,An) changes.

See FIG. 5. More insight c3n be gained by approximating f(A)

linearly.

If the true model f(A) is linear, then the regre~síon model

is corrected specified. In section 4.2 we proved that in that

case the regression estima,tor B~ is unbiased for any Á.Consequently

r
} (a-Á)2}~ t

E(Ai-Á)2
(~) - ~ av{n

~

(a-A)~

4(~ t g1 a~~) - RO t 61 a (5.1i)
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Heuce the variance component in (S.É~} hec~mes zero. So

(a-Á)L
var ('~ )- a~~n } a~ .~ { 2 i

n.sA

where sÁ is the estimated variance of A. !'omparing (5.12) and

(5.~) shows that P~ has smaller varisnce, íf

(i) the uverage Á is close to n, or
(ii) the variance of A is large, or

(iii) the blocking probability reacts strongly to changes in A.
These are intuitively acceptable conclusions:

6. Oonclusion and application

Above we proved that the simple, crude estimator B is biased
"ex post" (i.e., after the subrun traffic i.ntensiti.e~ A. have beeni
sampled), even if ae assume that the blocking probahility B reacts

linearly to the.traffic intensity A in the neighbourhood of the
true input value a- g(A). The regression estimator B is unbiased- ~
ex post (and kience also ex ante) assuming such a linear approxi-
mation. The variance of the regression estimator is also smaller

than that of the crude Pstimator, if at least one of three in-
tuitively interpretable conditions is satisfied. See also Table i.

Observe that in the crude estimator procedure the point estimator

is based on the realized Ai-values, so that the bias is the ex post

value S1(Á-a). Concerning the variar.ce, we have to realize that in

a new experiment not only the v change, but also the A. Hence the

variance is based on the ex ante value. (In a new experiment the

A-values change, and the crude estimator does not account for this

effect.) .Applyin~ (5~5) and (5.7) to Table 1, it is easy to

show that the bLSE of the regression estimator becomes the smaller

MSE, when p` approaches one (MSE - Mean Squared Error - variance

plus squared bías). :Votice that even if a- Á, the crude estimator

has higher MSE since the regression estimator can utilize the

reactions of B to varying individual Ai.
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Crude
B

a2~nv

Regression
B

0
2n

~x aute (over a]1 Á)

Bias

Variance

0

,,
G

r'~ - ~~Í 1

n - n (1-p21

n 1 t 2 }

sA

aV (a-Á)
-n {1 t ~ 2 }

s~

Table 1: Bias and variance of two estimators, assuming linear

approximation near A - a.

In our simulation experiment illustrated l~y FIG. 1 we obtained the

following numerical results: aB - 0.364 and 6v - 0.179

so that p2 - 0.757 or p- 0.870. Since a- n8.700, Á- 28.819 and
sA - O.L25, we can estimate tne vari.ance of Ba as

2
vr~r (B~) - av { 1 t(a2A 2}

sA

(a-A)2

I

?- 0,~32 {1 t o.180) } - 0.0023 (6-1)
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so that its standard deviation is 0.048. Note that in this rat,her

complicated simraation experiment, the service network was designed

such that tiie bl.ocking prohability was hopecl t.o equal 1~. 4ctualLy

B- 1.5Z5 (ir, prucents) Frith c? - 0.364 so ?.hat ~T~ - 0.09~{. Hence the

simulation response is significantly wnrse t,hat the desirc:d value.

I'ur the re~f;r,~.::~. i~~n estimator we uhtai n

l~ct - ~;~} } Ot.a -

- --'O.t98 t o.754 (28.7) - t.44t8 (6.2)

with its estimated stanàard deviation 0.048 so that this more accurate

estimator also implies that the desired blocking probat,ility is

significantly exceeded. Note that narrow confidence intervals are

desired since in future expPriments different networY, structures will

be compared.

The efficiencp gair, of regrr'ssion sampling may be measured Ly tlre ratio

var (i~)Ivar (Nc~) or by its square root if ihe standard deviation is

taken as crit~~rion. When fixing Lhe sampl.e sizc~ n we are intcre:;tc~d

in the length of the coufidence interval and hence in the standard

3eviation. When a prespecified confidence interval length ("accuracy")

is desireà, we are interested in the number of subruns needed to

raalize this accuracy. This number of subruris depends

on the variance; see Kleijr~n (t975). In the above exampl.e we have

vár ',B)~vê.r (R~) - 3.84 and its square root is 1.960.

Observe that in the literature, including Kleijnen (t975), attent-

ion is fccussed on the following regression or control variate; see

siso (1.3):

~ - r; t gt(a-q) (6.3)

If .~(f3~~) - f'l~ll ct'n be apprnximate3 by a linear iunetion in the

nc 1,S,hbUlll'I:UOii c~Y u, tl,~n we proved that ( 6.3) remains unbiased. In

the general case this could not be proved. A"trick" discussed in

?'.].eijren (t975) is to use "jackknifing" to.make B~ unbiased and to

derive ccnfidence intervals.7)
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1) The unit of ineasurement is as foliows. The number of arrivals

per time unit is multiplied by the mes~, service time, i.e., the

unit of time is the mean service time.

2) In eq. (1.5) aA is actually known since A is sampled from a known

distribution. If we use the known oA in the estimator ~, then
(1.5) does not hold any more. However, it is convenie:nt to apply

the least squares algorithm. it may even be optimal to use (1.6,1

if errors in aB are compensated by errors in áA; see Kle-ijnPn

(1975, P. 148).

3) In (2.1) we have ~' - {RC, ;1), X - (1, Ai), v - {Bi) .

4) In the textbooks on regression analysi; the normality assumption

is used to derive the distribution of ~; whicYi is needod to

derive the standard t- and F- tests.

-. -. -. -. -. i -ti -~ -, ~

5) ~(~~x~ - XJ) - X~o ~(aÍ - Xó .(X~X)-1 x~t~(~)
provide3 X i.s not stochasti~ (or if X i.s stochastic, y is not

stochastically dependent on X). Hence
-~ -s ~ -~ a ~ -a -f-~ -r -~

~(:~IX' - Xo) - Xo . (x~x)-1 x'(x~) - X~.R
. -~ .

providc~d Y'~(~) - X.~ is indeed a correct model.

c) In h]eynen (1~~'j5} the control variate c~st.imator wus derived t~,

show bias in general and hence jackknifing was suggested). How-

ever, there g(E) was standard whereas here ~(B~A - a) ís of

interest.

(i) {i) (i)
7) Ccr.sider B - 5 t S (a-A.) where (? is the usual estimstor

-rx - -1 -1 1

of the slupr d] but estimated from aï] pairs (B., A.) except
J -.1

}~ciir ~i - i. Hence ~3 ~ i) is indeJiendc~rrt ~:f A~ so that f, (~ 1( i) ~

~ti(;,~')). ~~(11i) - n .:~(~~i). Then it immediately fo-tlows that
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~(~1))- ~(B). So this "jackknifed" regression estimator has

the same bias as the crude estimator. Its variance is, hope-
fully, smaller since it accounts for the reactions cf B to
3eviations of A from a. See Kleijnen ( ~975) for more details.
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