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1. INT'RODUCTION

Random numbers are the basic elements of stochastic simulation and Monte

Carlo models. Examples of such models are simulations of queuing networks

and Monte Carlo experiments on location estimators. Such models have been

widely used since the advent of computers. In practice, computers do not

use truly random numbers. Znstead the computer generates pseudorandom

numbers, that is, a deterministic algorithm generates outputs which behave

as if these outputs were random numbers. This article concentrates on one

class of algorithms, namely linear congruential generators. These genera-

tors are most popular in management science, mathematical statistics,

computer science, and many more scientific disciplines; see Park and

Miller (1988). (So Fibonacci and Tausworthe generators are not covered

here; see Fishman (1978), Ito and Kanada (1988), Petersen (1988).)

The problem is that, by definition, pseudorandom generators are

suspect, that is, deterministic algorithms are surmised to produce non-

random outputs. A well-known example is the IBM SYSTEM~360 generator

RANDU; see Park and Miller (1988, pp. 1194, 1198). So a particular genera-

tor is used only until some researcher develops a practical generator that

more closely simulates a truly random number sequence; see Bratley et al.

(1983), Fishman (1978), Ripley (1987). Moreover, when new generations of

computers are introduced, new generators must be developed. For example,

8-bit personal computers cannot efficiently use algorithms developed for

32-bit machines. More specifically, supercomputers such as the CYBER 205,

might employ generators developed for "classical" machines, but such a

practice is very inefficient, as we shall show.
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2. PSEUDORANDOM GENERATORS ON SUPERCOMPUTERS

Control Data Corporation (CDC) produces the CYBER 200 series computer

hardware, which runs FORTRAN 200; see CDC (1986). The FORTRAN 200 language

is a superset of standard FORTRAN. This means that standard algorithms can

be utilized, but they do not take advantage of the vector or pipeline

facilities (these facilities are discussed in the next section). Classical

or scalar computers usually employ generators of the linear congruential

type:

x~}1 -(a x~ t c)mod m(J - 0,1,2,...) (1)

wt~ere the multiplier a, the constant c, and the modulus m are integers.

When c is zero, the generator is called multiplicative congruential. Ob-

viously x~~m lies between zero and one: 0 5 r~ - x~~m ~ 1. An efficient

algorithm results if m- 2w where w depends on the computer's word size;
for example, CDC's Fortran 200 uses m- 247 (see CDC, 1986),whereas IMSL

(developed for classical computers) uses m- 231-1. However, there are

other considerations than efficiency.

Pseudorandom number generators should yield results r~, which are

statistically independent; that is, the observed sequence ro, rl, ... rn

should not provide any information about the next sequence rntl, rn}2, ...
It turns out to be extremely difficult to meet this requirement, as many

authors show; see Bratley et al. (1983), Fishman (19~8), Park and Miller

(1988), Ripley (198~). It is possible to derive necessary conditions
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which, however, are not sufficient. For example, if for computer efficien-

cy a modulus m- 2w is selected, then a constant c-0 means that a multi-

plier a-3 (mod 8) yields a cycle length or period (say) h-m~4- 2w-2, where

a ep riod h means that if the generator starts with "seed" x0 then xh-x0

and hence xh41- xl, and so on. Because these conditions are not suffi-

cient, statistical procedures are applied to the empirical results (r0,

rl, ...) to test if several types of statistical dependence are absent

indeed. For example, two-tuples (r0, rl), (rl, r2), (r2, r3) ... should be

uniformly distributed over the unit square.

These considerations explain why in practice users do not specify
their own parameters a, c and m; instead they rely on well-tested genera-
tors. Examples are the IMSL routine which uses a-168o~, c-0, m-231-1
(a-16807 is the default value; two other multipliers are 39~204094 and
950~063~6). In Europe a popular generator is provided by NAG (Numerical
Algorithms Group, United Kingdom) with a-1313, c-0, and m-259 ( double
words). Textbooks on simulation discuss other parameter combinations. Let
us now return to the CYBER 200 series.

In FORTRAN 200 a scalar function called RANF, is available which

uses the multiplicative congruential generator with m-24~ and multiplier

a-oooo4c65DA2c866D (hexadecimal); see CDC (1986). To generate a vector of

pseudorandom numbers, we can use the subroutine VRANF. Though the documen-

tation on this subroutine is very meager, it is obvious that VRANF does

not use the special (pipeline) architecture; that is, VRANF is just a

convenient way of programmering a DO-loop that calls the scalar function

RANF. For example, generating 50 numbers using RANF and VRANF takes 21 and
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35 microseconds while generating 50,000 numbers takes 16,505 and 18,51~
microseconds; see An Mey (1983). Next we consider the pipeline architec-
ture in more detail.

j;. PIPELINES AND VECTORS

n
We start with an example, namely the innerproduct of two vectors, vl v2-ï

1
vlj v2j. This computation requires n scalar operations vlj v2j; these n
multiplications can be done in parallel because the product v v doeslj 2j
not need the product v v The pipeline architecture of super-1(j-1) 2(j-1)-
computers means that the computer works as an assembly line; that is,

efficiency improves drastically if a large number of identical operations

can be executed, independently of each other; see Levine (1982).

All we need to know about pipelining in pseudorandom number gene-
ration, is that supercomputers like the CYBER 205 can use their pipelined
architecture to improve their efficiency drastically, only if the number
of basic operations (such as multiplication) is "large", say n) 50, and
if these operations can be executed independently or in parallel, which
means that recursive statements are not suited to pipelined computers.
Unfortunately, the linear congruential generator is recursive: equation
(1) shows that to compute xjtl its predecessor xj is needed.

There is a growing literature on algorithms for vector computers
which solve recursion problems in linear algebra ( for example, y. - x. -i i
ai yi-1 can be solved by so-called recursive doubling). The recursion

problem in pseudorandom number generation, however, has gotten less atten-
tion. We shall survey several solutions that have been proposed, and pre-
sent our own solution.
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4. PARALLEL PSEUDORANDOM GENERATORS

Suppose that a given simulation experiment requires N pseudorandom numbers

in total, for example, N-1,000,000. Number theory gives the period h of a

given pseudorandom number generator. The generators that are used in prac-

tice, have a relatively long period (for example, h-230 ~)N) so that, in

most cases, the magnitude of N does not need to worry the user.

On a vector computer, however, results should be computed in

parallel. In our case, it means that the N pseudorandom numbers should not

be computed recursively. Instead (say) J numbers are to be produced in

parallel. The literature and manuals suggest that J should to at least 50;

otherwise the "assembly line" or vector architecture is inefficient and it

is better to use the computer in scalar mode (FORTRAN 200 as a superset of
FORTRAN, does permit scalar mode). There is also an upper limit: J s

65,535 because the CYBER 205 uses 16 bits for addressing; see SARA (1984,

p. 26). So the computer should generate J pseudorandom numbers in parallel

with 50 ~ J 5 65.535; hence an experiment requiring N numbers, must call

this parallel routine [N~J] times where we use [] for "rounding upwards
to the next integer." For example, if N-1,000,000 and J- 65.535 then 16

calls are necessary. So we may imagine an IxJ matrix of pseudorandom num-

bers, where J numbers should be generated in parallel and I calls are made

to that vector routine. We now survey different solutions to this problem.
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5. DIFFERENT MULTIPLIERS

We can generate J pseudorandom numbers in parallel, using J multipliers
and constants in the linear congruential relationship; that is equation
(1) becomes

xifl.~ -
a~ xi~ t c~ (mod m)

(J-1,....J) (i-1,2,...,) (2)

So the vector of old numbers xl -(xll, x12, ... , x1J)' yields the vector

of new numbers x2 -(x21, x22, .. , x2J)' or in FORTRAN 200:

XNEW (1;J) - A(1;J) M XOLD (1;J) t C(1;J) (3)

where X(1;J) denotes a vector called X, with J elements starting at

address 1; see SARA (1984). After the modulus operation, realized in vec-

tor mode by the VMOD function, we put

XOLD ( 1;J) - XNEW (1;J) (4)

We emphasize that the elements within x2 or XNEW are computed independent-

ly (in parallel, in vector mode).

Unfortunately, it is a problem to find J multipliers a~ and con-
stants c~. We have seen that necessary conditions for the parameters a and

c have been derived. These conditions are so weak that, for example, we



can choose from roughly one million multipliers: for m- 2~3 (half preci-

sion on CYBER 205) the following parameters meet the conditions listed in
Knuth (1981):

a- 2,901 t 8 kl with kl - 0,1,2,...,104~851 (5)

and

c- 1,~~5,001 t 2 k2 with k2 - 0,1,2,...,2499 (6)

An Mey (1983) proposed sampling a snd c from (5) and (6). (We would add

that these values should be sampled without replacement; see the next

section. Note that for m- 231-1 (a prime number) there are more than 534

million multipliers that yield a full period {h-m-1); see Park and Miller

(1988, pp. 1194, 119~). Unfortunately, the conditions (5) and (6) are

necessary but not sufficient, so that the statistical behavior of a gene-

rator with random parameters is very suspect!

So we prefer to stick to well tested parameters; that is, we pre-

fer existing generators implemented under IMSL, NAG, SIMSCRIPT, and so on.

We shall limit the next discussion to multiplicative generators (c~-0),

but our discussion can be extended straightforwardly to c~ ~ 0. So equa-

tion (2) becomes

xi41 - a xi (mod m)
J J

ÍJ-1,2,...,J) (i-1,2,...) (7)
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6. A VECTOR OF SEEDS

A simple solution is to sample a vector of J seeds (these J seeds are
sampled in scalar mode using, for example, RANF in FORTRAN 200). Storing
those seeds in XOLD means that equations (3) and (4) become

XNEW (1;J) - A N XOLD (1;J) (g)

XOLD (1;J) - XNEW (1;J) (9)

Unt'ortunately, such sampling may result in (say) a second seed x12 identi-
cal to (say) the third value generated in the first columm: x31 - x12'
Such an event means that parts of the "matrix" of numbers are identical

(x31 - x12 implies x~l - x22, .. , xll - x(1-2)2), and this violates the
statistical independence assumption; this assumption is made for the gene-
rator and used in the simulation model.

Frederickson et al. (1984) launched a different idea, namely sam-
ple the seeds, using a second special generator, say the generator

y~;l - b y~ t d(mod m)

J - 0, 1, 2,... (10)

This generator is used to sample seeds for the orginal generator of equa-
tion (1). Now there are five parameters (a, c, b, d, m) to be selected.
Unfortunately, correlations among pseudorandom numbers remain; see Bowman
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and Robínson (198~). Moreover, this approach has been worked out for spe-
cific generators only; the approach does not cover a generator with (say)
m- 231 -1, recommended in Fishman (1978); see Park and Miller (1988) for
other recommended parameters. This critique leads to the following idea.

Fishman (19~8) proves that, given an initial number or "seed" x0
and I calls to the "scalar" generator (see equation 1 with c-0), the re-
sulting number xI can be derived without knowing the intermediate numbers

(xl' x2' " ' xI-1)'

IxI - a x0 ( mod m). (10)

So if we want to generate J numbers in parallel (such that I~ J Z N),
then we should start with the following vector of seeds:

xl -(x0, a1x0 (mod m), a2Ix0 ( mod m), ..

a(J-1)Ix0 ( mod m), „ ~ a(J-1)Ix0 ( mod m))

Unfortunately, this mathematical solution cannot be implemented straight-

forwardly, since overflow occurs when computing a(~-1)I. The overflow

problem in pseudorandom number computation is also discussed in Park and

Miller (1988, p. 1195)-

7. A PRACTICAL SOLUTION

We proposed to stick to generators that have been tested extensively, and

in which the user has faith. Such a generator may be part of a statistical
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package as offered by, for example IMSL and NAG. In the near future,

(scalar) generators should be developed that use the full word size of

supercomputers; our solution immediately applies to these new generators,

as we shall see. We also wish to guarantee the statistical independence of

the pseudorandom numbers. This latter condition implies that "streams" (or

columm vectors in the I x J matrix formed by xij) are non-overlapping;

that is, these vectors do not contain identical elements.

Fishman (1978, pp. 481-487) has tabulated 400 seeds spaced 100,000

apart, for three different (scalar) multiplicative congruential genera-

tors; also see Bratley et al. (1983). These three tables, each with 400

seeds, have been developed in order to decrease the variance of simmula-

tion responses obtained on classical computers. For example, if two queu-

ing systems are to be compared, and one system has the first-in-first-

served priority rule while the other system has the smallest-jobs-first

rule, then arrival times can be simulated from seed sl and service time

from seed s2; if fewer than 100,000 customers arrive then two successive

seeds from Fishman's tables suffice; otherwise non-consecutive seeds are

used.

We might use Fishman's tabulated values for parallel generation of
pseudorandom numbers! Fishman's seeds sj (j-1, .. , 400) imply

s2 - x100,000 - a sl (mod m) and s3 - x200,000 - a s2 (mod m), and so on.
So suppose we use an initial vector of seeds with these 400 seeds: XOLD -

(sl, s2, ~~ ' s400)~ also see equation (8). We can then call the vector-

ized pseudorandom subroutine 100,000 times before we return to the initial

vector. In other words, if the total number of pseudorandom numbers (N) is
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smaller than (400 x 100,000 -) 40 million, then this approach yields 400
numbers in parallel. Now we discuss some practical issues and extensions,
labeled (i) through (v).

(i) Fishman gives tables only for three specific generators
(SIMSCRIPT II, SIMPL~1-LLRANDOM, and m-231-1 with a-39~204094). The user
may prefer a different generator, for example, NAG's subroutine. We shall
solve this problem below.

(ii) Even if one of these three generators is desired, keypunching
400 numbers, each consisting of up to 10 digits, is a slow and error-prone
process. Instead we sample one seed from Fishman's table, and have the
computer generate the remaining 399 seeds. So the computer uses equation
(1) initialized with this particular seed, and after 100,000 calls, the
computer stores s2 - x100,000 - a M x99.999 (mod m), given specific para-
meters a and m. In total the computer must generate 399x100,000 pseudoran-
dom numbers! Fortunately, the computer has to do this job only once: all
future simulation experiments can use the internally stored table with 400
seeds. Obviously if a particular experiment requires vectors with fewer
than 400 elements, then that experiment uses fewer than 400 seeds. Note
that storing all 39,900,000 numbers and retrieving them later on, would be

impractical: too much space and time would be required.

(iii) If we have the computer generate the seeds to be stored in

the initial vector, we are no lonRer limited to Fishman's three tables! We

can then take any generator we like; for example, we can take the genera-

tor used in experiments run on a scalar computer; these experiments are
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necessary to debug and verify the program that will be run on the super-

computer; also see SARA (1984, p. 5). In the future we can take a genera-

tor specifically developed for the supercomputer (see below). Moreover we

are no longer limited to a vector length of 400. Sections 3 and 4 showed

that the longer the vector is, the more efficient the supercomputer works.

So we propose taking the maximum vector length, namely J- 65.535- Then

the computer must generate all h different numbers xj with J- 0, 1, .

h and known period h; the computer must store 65,535 numbers, namely sl,

s2. s3, ...,
s65535

with s2 - xI}1 and I- Ch~65,535]-1, s3 - x2If1 . and

so on. So nearly the whole cycle is excecuted (namely from x0 through

x65.5341)'
This initial vector can be generated on a scalar computer or on

the supercomputer in scalar mode.

(iv) At the end of a simulation session the user should store the

last vector of pseudorandom numbers x or r- x~m; all digits need to be

saved; see Kleijnen (1986, p. 16). To continue this particular simulation

run, the user proceeds from the vector saved at the end of the previous

session. If the user wants to execute an unrelated simulation experiment,

he or she can take either the last vector or the initial vector provided

by the computer center. So on scalar computers the user needs to store a

single pseudorandom number; on supercomputers a whole vector must be

saved.

(v) Efficiency can be improved by developing generators which take

advantage of the wordsize m of a particular supercomputer; that is, new

parameter value become relevant for the modulus m. The cycle length h

increases as the modulus m increases. For the new modulus, a new value for
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the multiplier a needs to be found, applying number theory and mathemati-
cal statistics. Finally, a new vector of seeds is to be generated, for the
user community. We note that double precision should be avoided on super-
computers since double precision excludes vector mode; SARA (1984,

PP. 6,26).

8. CONCLUSIONS

Pseudorandom number generation is a problem that requires the joint ef-

forts of computer scientists for efficient implementation, number the-

orists for necessary conditions for the generator's parameters, and sta-

tisticians for ex post empirical tests. On a supercomputer, the generator

should be vectorized in such a way that parallel computation becomes pos-

sible. The choice of the generator's parameters is crucial; that is, the

sampling oF different multipliers yields unacceptable statistical beha-

víor. So the user wishes to stick to well-tested parameter values. Sam-

pling a vector of seeds may result in dependent vectors of pseudorandom

numbers. A practical solution is to have a computer generate 65.535 seeds

such that independent vectors result. This requires one long run by the

computer center, which is an investment to the benefit of all users.
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