

Tilburg University

Pseudorandom number generation on supercomputers

Kleijnen, J.P.C.; Adams, N.

Publication date:
1989

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kleijnen, J. P. C., & Adams, N. (1989). Pseudorandom number generation on supercomputers. (Research
memorandum / Tilburg University, Department of Economics; Vol. FEW 378). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/5ef11890-90b4-43ee-90cb-256b1090d339

I!IIINI IIIII IIIIII IIIIIII'!IUIIIIII Ilnl INI!III

PSEUDORANDOM NUMBER GENERATION ON
SUPERCOMPUTERS

Jack P.C. Kleijnen and
Nabil Adams

~ 378

PSEUDORANDOM NUMBER GENERATION ON SUPERCOMPUTERS

Jack P. C. Kleijnenl)
and

Nabil Adam2)

February 1989

1) Department of Information Systems and Auditing, School of Business and
Economics, Catholic University Brabant (Katholieke Universiteit Bra-
bant), 5000 LE Tilburg, Netherlands. FAX: 013-663019. E-mail:
T435KLEI~HTIKUBS.

2) Graduate School of Management, Rutgers University, The State University
of New Jersey, 92 New Street, Newark, New Jersey 0~102. USA.

PSEUDORANDOM NUMBER GENERATION ON SUPERCOMPUTERS

JACK P.C. KLEIJNEN
Department of Information Systems and Auditing

School of Ausiness and Economics
Catholic University Brabant (Katholieke Universiteit Brabant)

P.o. Box 90153
5000 LE Tilburg, Netherlands

and

NABIL ADAM
Graduate School of Management

Rutgers University
The State University of New Jersey

92 New Street, Newark
New Jersey 07102. USA

Pseudorandom numbers generators are essenttaZ in Monte Carlo símu-

latton. On supercomputers these numbers should be generated in

parallel. Several procedures are evaluated, and one practicaZ

procedure is developed.

C R Categories and Subject Descriptors: D. 3.3 [Programming Languages]

Procedures, functions and subroutines, G. 1[Numerical Analysis] Parallel

Algorithms, G. 3[Probability and Statistics] Random Number Generation G.

4 [Mathematical Software] Efficiency, Portability.

General Terms: Algorithms, Experimentation, Performance.

Additional Key Words and Phrases: Simulation, Monte Carlo.

1

1. INT'RODUCTION

Random numbers are the basic elements of stochastic simulation and Monte

Carlo models. Examples of such models are simulations of queuing networks

and Monte Carlo experiments on location estimators. Such models have been

widely used since the advent of computers. In practice, computers do not

use truly random numbers. Znstead the computer generates pseudorandom

numbers, that is, a deterministic algorithm generates outputs which behave

as if these outputs were random numbers. This article concentrates on one

class of algorithms, namely linear congruential generators. These genera-

tors are most popular in management science, mathematical statistics,

computer science, and many more scientific disciplines; see Park and

Miller (1988). (So Fibonacci and Tausworthe generators are not covered

here; see Fishman (1978), Ito and Kanada (1988), Petersen (1988).)

The problem is that, by definition, pseudorandom generators are

suspect, that is, deterministic algorithms are surmised to produce non-

random outputs. A well-known example is the IBM SYSTEM~360 generator

RANDU; see Park and Miller (1988, pp. 1194, 1198). So a particular genera-

tor is used only until some researcher develops a practical generator that

more closely simulates a truly random number sequence; see Bratley et al.

(1983), Fishman (1978), Ripley (1987). Moreover, when new generations of

computers are introduced, new generators must be developed. For example,

8-bit personal computers cannot efficiently use algorithms developed for

32-bit machines. More specifically, supercomputers such as the CYBER 205,

might employ generators developed for "classical" machines, but such a

practice is very inefficient, as we shall show.

2

2. PSEUDORANDOM GENERATORS ON SUPERCOMPUTERS

Control Data Corporation (CDC) produces the CYBER 200 series computer

hardware, which runs FORTRAN 200; see CDC (1986). The FORTRAN 200 language

is a superset of standard FORTRAN. This means that standard algorithms can

be utilized, but they do not take advantage of the vector or pipeline

facilities (these facilities are discussed in the next section). Classical

or scalar computers usually employ generators of the linear congruential

type:

x~}1 -(a x~ t c)mod m(J - 0,1,2,...) (1)

wt~ere the multiplier a, the constant c, and the modulus m are integers.

When c is zero, the generator is called multiplicative congruential. Ob-

viously x~~m lies between zero and one: 0 5 r~ - x~~m ~ 1. An efficient

algorithm results if m- 2w where w depends on the computer's word size;
for example, CDC's Fortran 200 uses m- 247 (see CDC, 1986),whereas IMSL

(developed for classical computers) uses m- 231-1. However, there are

other considerations than efficiency.

Pseudorandom number generators should yield results r~, which are

statistically independent; that is, the observed sequence ro, rl, ... rn

should not provide any information about the next sequence rntl, rn}2, ...
It turns out to be extremely difficult to meet this requirement, as many

authors show; see Bratley et al. (1983), Fishman (19~8), Park and Miller

(1988), Ripley (198~). It is possible to derive necessary conditions

3

which, however, are not sufficient. For example, if for computer efficien-

cy a modulus m- 2w is selected, then a constant c-0 means that a multi-

plier a-3 (mod 8) yields a cycle length or period (say) h-m~4- 2w-2, where

a ep riod h means that if the generator starts with "seed" x0 then xh-x0

and hence xh41- xl, and so on. Because these conditions are not suffi-

cient, statistical procedures are applied to the empirical results (r0,

rl, ...) to test if several types of statistical dependence are absent

indeed. For example, two-tuples (r0, rl), (rl, r2), (r2, r3) ... should be

uniformly distributed over the unit square.

These considerations explain why in practice users do not specify
their own parameters a, c and m; instead they rely on well-tested genera-
tors. Examples are the IMSL routine which uses a-168o~, c-0, m-231-1
(a-16807 is the default value; two other multipliers are 39~204094 and
950~063~6). In Europe a popular generator is provided by NAG (Numerical
Algorithms Group, United Kingdom) with a-1313, c-0, and m-259 (double
words). Textbooks on simulation discuss other parameter combinations. Let
us now return to the CYBER 200 series.

In FORTRAN 200 a scalar function called RANF, is available which

uses the multiplicative congruential generator with m-24~ and multiplier

a-oooo4c65DA2c866D (hexadecimal); see CDC (1986). To generate a vector of

pseudorandom numbers, we can use the subroutine VRANF. Though the documen-

tation on this subroutine is very meager, it is obvious that VRANF does

not use the special (pipeline) architecture; that is, VRANF is just a

convenient way of programmering a DO-loop that calls the scalar function

RANF. For example, generating 50 numbers using RANF and VRANF takes 21 and

4

35 microseconds while generating 50,000 numbers takes 16,505 and 18,51~
microseconds; see An Mey (1983). Next we consider the pipeline architec-
ture in more detail.

j;. PIPELINES AND VECTORS

n
We start with an example, namely the innerproduct of two vectors, vl v2-ï

1
vlj v2j. This computation requires n scalar operations vlj v2j; these n
multiplications can be done in parallel because the product v v doeslj 2j
not need the product v v The pipeline architecture of super-1(j-1) 2(j-1)-
computers means that the computer works as an assembly line; that is,

efficiency improves drastically if a large number of identical operations

can be executed, independently of each other; see Levine (1982).

All we need to know about pipelining in pseudorandom number gene-
ration, is that supercomputers like the CYBER 205 can use their pipelined
architecture to improve their efficiency drastically, only if the number
of basic operations (such as multiplication) is "large", say n) 50, and
if these operations can be executed independently or in parallel, which
means that recursive statements are not suited to pipelined computers.
Unfortunately, the linear congruential generator is recursive: equation
(1) shows that to compute xjtl its predecessor xj is needed.

There is a growing literature on algorithms for vector computers
which solve recursion problems in linear algebra (for example, y. - x. -i i
ai yi-1 can be solved by so-called recursive doubling). The recursion

problem in pseudorandom number generation, however, has gotten less atten-
tion. We shall survey several solutions that have been proposed, and pre-
sent our own solution.

5

4. PARALLEL PSEUDORANDOM GENERATORS

Suppose that a given simulation experiment requires N pseudorandom numbers

in total, for example, N-1,000,000. Number theory gives the period h of a

given pseudorandom number generator. The generators that are used in prac-

tice, have a relatively long period (for example, h-230 ~)N) so that, in

most cases, the magnitude of N does not need to worry the user.

On a vector computer, however, results should be computed in

parallel. In our case, it means that the N pseudorandom numbers should not

be computed recursively. Instead (say) J numbers are to be produced in

parallel. The literature and manuals suggest that J should to at least 50;

otherwise the "assembly line" or vector architecture is inefficient and it

is better to use the computer in scalar mode (FORTRAN 200 as a superset of
FORTRAN, does permit scalar mode). There is also an upper limit: J s

65,535 because the CYBER 205 uses 16 bits for addressing; see SARA (1984,

p. 26). So the computer should generate J pseudorandom numbers in parallel

with 50 ~ J 5 65.535; hence an experiment requiring N numbers, must call

this parallel routine [N~J] times where we use [] for "rounding upwards
to the next integer." For example, if N-1,000,000 and J- 65.535 then 16

calls are necessary. So we may imagine an IxJ matrix of pseudorandom num-

bers, where J numbers should be generated in parallel and I calls are made

to that vector routine. We now survey different solutions to this problem.

6

5. DIFFERENT MULTIPLIERS

We can generate J pseudorandom numbers in parallel, using J multipliers
and constants in the linear congruential relationship; that is equation
(1) becomes

xifl.~ -
a~ xi~ t c~ (mod m)

(J-1,....J) (i-1,2,...,) (2)

So the vector of old numbers xl -(xll, x12, ... , x1J)' yields the vector

of new numbers x2 -(x21, x22, .. , x2J)' or in FORTRAN 200:

XNEW (1;J) - A(1;J) M XOLD (1;J) t C(1;J) (3)

where X(1;J) denotes a vector called X, with J elements starting at

address 1; see SARA (1984). After the modulus operation, realized in vec-

tor mode by the VMOD function, we put

XOLD (1;J) - XNEW (1;J) (4)

We emphasize that the elements within x2 or XNEW are computed independent-

ly (in parallel, in vector mode).

Unfortunately, it is a problem to find J multipliers a~ and con-
stants c~. We have seen that necessary conditions for the parameters a and

c have been derived. These conditions are so weak that, for example, we

can choose from roughly one million multipliers: for m- 2~3 (half preci-

sion on CYBER 205) the following parameters meet the conditions listed in
Knuth (1981):

a- 2,901 t 8 kl with kl - 0,1,2,...,104~851 (5)

and

c- 1,~~5,001 t 2 k2 with k2 - 0,1,2,...,2499 (6)

An Mey (1983) proposed sampling a snd c from (5) and (6). (We would add

that these values should be sampled without replacement; see the next

section. Note that for m- 231-1 (a prime number) there are more than 534

million multipliers that yield a full period {h-m-1); see Park and Miller

(1988, pp. 1194, 119~). Unfortunately, the conditions (5) and (6) are

necessary but not sufficient, so that the statistical behavior of a gene-

rator with random parameters is very suspect!

So we prefer to stick to well tested parameters; that is, we pre-

fer existing generators implemented under IMSL, NAG, SIMSCRIPT, and so on.

We shall limit the next discussion to multiplicative generators (c~-0),

but our discussion can be extended straightforwardly to c~ ~ 0. So equa-

tion (2) becomes

xi41 - a xi (mod m)
J J

ÍJ-1,2,...,J) (i-1,2,...) (7)

8

6. A VECTOR OF SEEDS

A simple solution is to sample a vector of J seeds (these J seeds are
sampled in scalar mode using, for example, RANF in FORTRAN 200). Storing
those seeds in XOLD means that equations (3) and (4) become

XNEW (1;J) - A N XOLD (1;J) (g)

XOLD (1;J) - XNEW (1;J) (9)

Unt'ortunately, such sampling may result in (say) a second seed x12 identi-
cal to (say) the third value generated in the first columm: x31 - x12'
Such an event means that parts of the "matrix" of numbers are identical

(x31 - x12 implies x~l - x22, .. , xll - x(1-2)2), and this violates the
statistical independence assumption; this assumption is made for the gene-
rator and used in the simulation model.

Frederickson et al. (1984) launched a different idea, namely sam-
ple the seeds, using a second special generator, say the generator

y~;l - b y~ t d(mod m)

J - 0, 1, 2,... (10)

This generator is used to sample seeds for the orginal generator of equa-
tion (1). Now there are five parameters (a, c, b, d, m) to be selected.
Unfortunately, correlations among pseudorandom numbers remain; see Bowman

9

and Robínson (198~). Moreover, this approach has been worked out for spe-
cific generators only; the approach does not cover a generator with (say)
m- 231 -1, recommended in Fishman (1978); see Park and Miller (1988) for
other recommended parameters. This critique leads to the following idea.

Fishman (19~8) proves that, given an initial number or "seed" x0
and I calls to the "scalar" generator (see equation 1 with c-0), the re-
sulting number xI can be derived without knowing the intermediate numbers

(xl' x2' " ' xI-1)'

IxI - a x0 (mod m). (10)

So if we want to generate J numbers in parallel (such that I~ J Z N),
then we should start with the following vector of seeds:

xl -(x0, a1x0 (mod m), a2Ix0 (mod m), ..

a(J-1)Ix0 (mod m), „ ~ a(J-1)Ix0 (mod m))

Unfortunately, this mathematical solution cannot be implemented straight-

forwardly, since overflow occurs when computing a(~-1)I. The overflow

problem in pseudorandom number computation is also discussed in Park and

Miller (1988, p. 1195)-

7. A PRACTICAL SOLUTION

We proposed to stick to generators that have been tested extensively, and

in which the user has faith. Such a generator may be part of a statistical

10

package as offered by, for example IMSL and NAG. In the near future,

(scalar) generators should be developed that use the full word size of

supercomputers; our solution immediately applies to these new generators,

as we shall see. We also wish to guarantee the statistical independence of

the pseudorandom numbers. This latter condition implies that "streams" (or

columm vectors in the I x J matrix formed by xij) are non-overlapping;

that is, these vectors do not contain identical elements.

Fishman (1978, pp. 481-487) has tabulated 400 seeds spaced 100,000

apart, for three different (scalar) multiplicative congruential genera-

tors; also see Bratley et al. (1983). These three tables, each with 400

seeds, have been developed in order to decrease the variance of simmula-

tion responses obtained on classical computers. For example, if two queu-

ing systems are to be compared, and one system has the first-in-first-

served priority rule while the other system has the smallest-jobs-first

rule, then arrival times can be simulated from seed sl and service time

from seed s2; if fewer than 100,000 customers arrive then two successive

seeds from Fishman's tables suffice; otherwise non-consecutive seeds are

used.

We might use Fishman's tabulated values for parallel generation of
pseudorandom numbers! Fishman's seeds sj (j-1, .. , 400) imply

s2 - x100,000 - a sl (mod m) and s3 - x200,000 - a s2 (mod m), and so on.
So suppose we use an initial vector of seeds with these 400 seeds: XOLD -

(sl, s2, ~~ ' s400)~ also see equation (8). We can then call the vector-

ized pseudorandom subroutine 100,000 times before we return to the initial

vector. In other words, if the total number of pseudorandom numbers (N) is

11

smaller than (400 x 100,000 -) 40 million, then this approach yields 400
numbers in parallel. Now we discuss some practical issues and extensions,
labeled (i) through (v).

(i) Fishman gives tables only for three specific generators
(SIMSCRIPT II, SIMPL~1-LLRANDOM, and m-231-1 with a-39~204094). The user
may prefer a different generator, for example, NAG's subroutine. We shall
solve this problem below.

(ii) Even if one of these three generators is desired, keypunching
400 numbers, each consisting of up to 10 digits, is a slow and error-prone
process. Instead we sample one seed from Fishman's table, and have the
computer generate the remaining 399 seeds. So the computer uses equation
(1) initialized with this particular seed, and after 100,000 calls, the
computer stores s2 - x100,000 - a M x99.999 (mod m), given specific para-
meters a and m. In total the computer must generate 399x100,000 pseudoran-
dom numbers! Fortunately, the computer has to do this job only once: all
future simulation experiments can use the internally stored table with 400
seeds. Obviously if a particular experiment requires vectors with fewer
than 400 elements, then that experiment uses fewer than 400 seeds. Note
that storing all 39,900,000 numbers and retrieving them later on, would be

impractical: too much space and time would be required.

(iii) If we have the computer generate the seeds to be stored in

the initial vector, we are no lonRer limited to Fishman's three tables! We

can then take any generator we like; for example, we can take the genera-

tor used in experiments run on a scalar computer; these experiments are

12

necessary to debug and verify the program that will be run on the super-

computer; also see SARA (1984, p. 5). In the future we can take a genera-

tor specifically developed for the supercomputer (see below). Moreover we

are no longer limited to a vector length of 400. Sections 3 and 4 showed

that the longer the vector is, the more efficient the supercomputer works.

So we propose taking the maximum vector length, namely J- 65.535- Then

the computer must generate all h different numbers xj with J- 0, 1, .

h and known period h; the computer must store 65,535 numbers, namely sl,

s2. s3, ...,
s65535

with s2 - xI}1 and I- Ch~65,535]-1, s3 - x2If1 . and

so on. So nearly the whole cycle is excecuted (namely from x0 through

x65.5341)'
This initial vector can be generated on a scalar computer or on

the supercomputer in scalar mode.

(iv) At the end of a simulation session the user should store the

last vector of pseudorandom numbers x or r- x~m; all digits need to be

saved; see Kleijnen (1986, p. 16). To continue this particular simulation

run, the user proceeds from the vector saved at the end of the previous

session. If the user wants to execute an unrelated simulation experiment,

he or she can take either the last vector or the initial vector provided

by the computer center. So on scalar computers the user needs to store a

single pseudorandom number; on supercomputers a whole vector must be

saved.

(v) Efficiency can be improved by developing generators which take

advantage of the wordsize m of a particular supercomputer; that is, new

parameter value become relevant for the modulus m. The cycle length h

increases as the modulus m increases. For the new modulus, a new value for

13

the multiplier a needs to be found, applying number theory and mathemati-
cal statistics. Finally, a new vector of seeds is to be generated, for the
user community. We note that double precision should be avoided on super-
computers since double precision excludes vector mode; SARA (1984,

PP. 6,26).

8. CONCLUSIONS

Pseudorandom number generation is a problem that requires the joint ef-

forts of computer scientists for efficient implementation, number the-

orists for necessary conditions for the generator's parameters, and sta-

tisticians for ex post empirical tests. On a supercomputer, the generator

should be vectorized in such a way that parallel computation becomes pos-

sible. The choice of the generator's parameters is crucial; that is, the

sampling oF different multipliers yields unacceptable statistical beha-

víor. So the user wishes to stick to well-tested parameter values. Sam-

pling a vector of seeds may result in dependent vectors of pseudorandom

numbers. A practical solution is to have a computer generate 65.535 seeds

such that independent vectors result. This requires one long run by the

computer center, which is an investment to the benefit of all users.

ACKNOWLEDGEMENTS

The first author (Jack Kleijnen) was sponsored by the Supercompu-

ter Visiting Scientist Program at Rutgers University, The State University

of New Jersey, during July 1988.

14

REFERENCES

An Mey, D., Erste Erfahrungen bei der Vektorisiering numerischer Verfah-
ren. (First experiences when vectorizing numerical procedures.)
Computer Center, Technical University, Aachen (Germany), July
1983.

Bowman, K.O. and M.T. Robinson, Studies of random number generators for

parallel processing. HYPERCUBE MULTIPROCESSOR 1987, edited by M.T.

HEATH, SIAM, Philadelphia, 1987, pp. 445-453.

Bratley, P., B. L. Fox and L. E. Schrage, A GUIDE TO SIMULATION, Springer-

Verlag, New York, 1983.

CDC,Fortran 200 Version 1 reference manual. Publication no. 60480200,

Control Data Corporation, Sunnyvale, California 94088-3492, Decem-

ber 1986.

Fishman, G. S., PRINCIPLES OF DISCRETE EVENT SIMULATION. Wiley-Inter-

science, New York, 1978.

Frederickson, P., R. Hiromoto, T. L. Jordan, B. Smith and T. Warnock,
Pseudorandom trees in Monte Carlo. PARALLEL COMPUTING, 1, 1984,

pp. 175-180.

15

Ito, N. and Y. Kanada, An effective algorithm for the Monte Carlo simula-
t,ion of the Ising model on a vector processor. SUPERCOMPUTER, May
1988, pp. 31-48.

Kleijnen, J.P.C. Selecting random number seeds in practice. SIMULATION,

~, no. 1, 1986, pP. 15-1~.

Knuth, D.E., THE ART OF COMPUTER PROGRAMMING, VOLUME 2. Addison-Wesley,

Reading, Massachusetts, 1981.

Levine, R.D., Supercomputers. SCIENTIFIC AMERICAN, January 1982, pp. 112-

125.

Park, S.K. and K.W. Miller, Random number generators: good ones are hard
to find. COMMUNICATIONS ACM, ~, no. 10, oct. 1988, pp. 1192-1201.

Petersen, W.P., Some vectorial random number generators for uniform, nor-
mal, and Poisson distributions for CRAY X-MP. THE JOURNAL OF SU-

PERCOMPUTING, 1, 1988, pp. 327-335.

Ripley, B.D., STOCHASTIC SIMULATION. John Wiley ~ Sons, New York, 1987.

SARA, CYBER 205 USER'S GUIDE; PART. 3, OPTIMIZATION OF FORTRAN PROGRAMS.

SARA (Stichting Academisch Rekencentrum Amsterdam, Foundation
Academic Computer Center Amsterdam), Amsterdam, November 1984.

~ N N

IN 1988 REEDS VERSCHENEN

297 Bert Bettonvil
Factor screening by sequential bifurcation

298 Robert P. Gilles
On perfect competition in an economy with a coalitional structure

299 Willem Selen, Ruud M. Heuts
Capacitated Lot-Size Production Planning in Process Industry

300 J. Kriens, J.Th. van Lieshout
Notes on the Markowitz portfolio selection method

301 Bert Bettonvil, Jack P.C. Kleijnen
Measurement scales and resolution IV designs: a note

302 Theo Nijman, Marno Verbeek
Estimation of time dependent parameters in lineair models
using cross sections, panels or both

303 Raymond H.J.M. Gradus
A differential game between government and firms: a non-cooperative
approach

30~1 Leo W.G. Strijbosch, Ronald J.M.M. Does
Comparison of bias-reducing methods for estimating the parameter in
dilution series

305 Drs. W.J. Reijnders, Drs. W.F. Verstappen
Strategische bespiegelingen betreffende het Nederlandse kwaliteits-
concept

306 J.P.C. Kleijnen, J. Kriens, H. Timmermans and H. Van den Wildenberg
Regression sampling in statistical auditing

307 Isolde Woittiez, Arie Kapteyn
A Model of Job Choice, Labour Supply and Wages

308 Jack P.C. Kleijnen
Simulation and optimization in production planning: A case study

309 Robert P. Gilles and Pieter H.M. Ruys
Relational constraints in coalition formation

310 Drs. H. Leo Theuns
Determinanten van de vraag naar vakantiereizen: een verkenning van
msteriële en immateriële factoren

311 Peter M. Kort
Dynamic Firm Behaviour within an Uncertain Environment

312 J.P.C. Blanc
A numerical approach to cyclic-service queueing models

11

313 Drs. N.J. de Beer, Drs. A.M. van Nunen, Drs. M.O. Nijkamp
Does Morkmon Matter?

314 Th. van de Klundert
Wage differentials and employment in a two-sector model with a dual
labour market

315 Aart de Zeeuw, Fons Groot, Cees Withagen
On Credible Optimal Tax Rate Policies

316 Christian B. Mulder
Wage moderating effects of corporatism
Decentralized versus centralized wage setting in a union, firm,
government context

31~ Jbrg Glombowski, Michael Kriiger
A short-period Goodwin growth cycle

318 Theo Nijman, Marno Verbeek, Arthur van Soest
The optimal design of rotating panels in a simple analysis of
variance model

319 Drs. S.V. Hannema, Drs. P.A.M. Versteijne
De toepassing en toekomst van public private partnership's bij de
grote en middelgrote Nederlandse gemeenten

320 Th. van de Klundert
Wage Rigidity, Capital Accumulation and Unemployment in a Small Open
Economy

321 M.H.C. Paardekooper
An upper and a lower bound for the distance of a manifold to a nearby
point

322 Th. ten Raa, F. van der Ploeg
A statistical approach to the problem of negatives in input-output
analysis

323 P. Kooreman
Household Labor Force Participation as a Cooperative Game; an Empiri-
cal Model

324 A.B.T.M, van Schaik
Persistent Unemployment and Long Run Growth

325 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktíestructuur doorgelicht.
Bedrijfstakverkenningen ten behoeve van regionaal-economisch onder-
zoek

326 J.P.C. Kleijnen, J. Kriens, M.C.H.M. Lafleur, J.H.F. Pardoel
Sampling for quality inspection and correction: AOQL performance
criteria

iii

327 Theo E. Nijman, Mark F.J. Steel
Exclusion restrictions in instrumental variables equations

328 B.B. van der Genugten
Estimation in linear regression under the presence of heteroskedas-
ticity of a completely unknown form

329 Raymond H.J.M. Gradus
The employment policy of government: to create jobs or to let them
create?

330 Hans Kremers, Dolf Talman
Solving the nonlinear complementarity problem with lower and upper
bounds

331 Antoon van den Elzen
Interpretation and generalization of the Lemke-Howson algorithm

332 Jack P.C. Kleijnen
Analyzing simulation experíments with common random numbers, part II:
Rao's approach

333 Jacek Osiewalski
Posterior and Predictive Densities for Nonlinear Regression.
A Partly Linear Model Case

334 A.H. van den Elzen, A.J.J. Talman
A procedure for finding Nash equilibria in bi-matrix games

335 Arthur van Soest
Minimum wage rates and unemployment ín The Netherlands

336 Arthur van Soest, Peter Kooreman, Arie Kapteyn
Coherent specification of demand systems with corner solutions and
endogenous regimes

337 Dr. F.W.M. Boekema, Drs. L.A.G. Oerlemans
De lokale produktiestruktuur doorgelicht II. Bedrijfstakverkenningen
ten behoeve van regionaal-economisch onderzoek. De zeescheepsnieuw-
bouwindustrie

338 Gerard J. van den Berg
Search behaviour, transitions to nonparticipation and the duration of
unemployment

339 W.J.H. Groenendaal and J.W.A. Vingerhoets
The new cocoa-agreement analysed

340 Drs. F.G. van den Heuvel, Drs. M.P.H. de Vor
Kwantificering van ombuigen en bezuinigen op collectieve uitgaven
1977-199G

341 Pieter J.F.G. Meulendijks
An exercise in welfare economics (III)

1V

342 W.J. Selen and R.M. Heuts
A modified priority index for Gtinther's lot-sizing heuristic under
capacitated single stage production

343 Linda J. Mittermaier, Willem J. Selen, Jeri B. Waggoner,
Wallace R. Wood
Accounting estimates as cost inputs to logistics models

34~~ Remy L. de Jong, Rashid I. A1 Layla, Willem J. Selen
Alternative water management scenarios for Saudi Arabia

345 W.J. Selen and R.M. Heuts
Capacitated Single Stage Production Planning with Storage Constraints
and Sequence-Dependent Setup Times

346 Peter Kort
The Flexible Accelerator Mechanism in a Financial Adjustment Cost
Model

34~ W.J. Reijnders en W.F. Verstappen
De toenemende importantie van het verticale marketing systeem

348 P.C. van Batenburg en J. Kriens
E.O.Q.L. - A revised and improved version of A.O.Q.L.

349 Drs. W.P.C. van den Nieuwenhof
Multinationalisatie en co~rdinatie
De internationale strategie van Nederlandse ondernemingen nader
beschouwd

350 K.A. Bubshait, W.J. Selen
Estimation of the relationship between project attributes and the
implementation of engineering management tools

351 M.P. Tummers, I. Woittiez
A simultaneous wage and labour supply model with hours restrictions

352 Marco Versteijne
Measuring the effectiveness of advertising in a positioning context
with multi dimensional scaling techniques

353 Dr. F. Boekema, Drs. L. Oerlemans
Innovatie en stedelijke economische ontwikkeling

354 J.M. Schumacher
Discrete events: perspectives from system theory

355 F.C. Bussemaker, W.H. Haemers, R. Mathon and H.A. Wilbrink
A(49,16,3,6) strongly regular graph does not exist

356 Drs. J.C. Caanen
Tien jaar inFlatieneutrale belastingheffing door middel van vermo-
gensaftrek en voorraadaftrek: een kwantitatieve benadering

V

357 R.M. Heuts, M. Bronckers
A modified coordinated reorder procedure under aggregate investmentand service constraints using optimal policy surfaces

358 B.B. van der Genugten
Linear time-invariant filters of infinite order for non-stationary
processes

359 J.C. Engwerda
LQ-problem: the discrete-time time-varying case

360 Shan-Hwei Nienhuys-Cheng
Constraints in binary semantical networks

361 A.B.T.M. van Schaik
Interregional Propagation of Inflationary Shocks

362 F.C. Drost
How to define UMW

363 Rommert J. Casimir
Infogame users manual
Rev 1.2 December 1988

364 M.H.C. Paardekooper
A quadratically convergent parallel Jacobi-process for diagonal
dominant matrices with nondistinct eigenvalues

365 Robert P. Gilles, Pieter H.M. Ruys
Characterization of Economic Agents in Arbitrary Communication
Structures

366 Harry H. Tigelaar
Informative sampling in a multivariate linear system disturbed by
moving average noise

367 Járg Glombowski
Cyclical interactions of politics and economics in an abstract
capitalist economy

V1

IN i989 REEDS VERSCHENEN

36i3 Ed Nijssen, Will Reijnders
"Macht als strategisch en tactisch marketinginstrument binnen dedistributieketen"

369 Raymond Gradus
Optimal dynamic taxation with respect to firms

370 Theo Nijman
The optimal choice of controls and pre-experimental observations

371 Robert P. Gilles, Pieter H.M. Ruys
Relational constraints in coalition formation

372 F.A. van der Duyn Schouten, S.G. Vanneste
Analysis and computation of (n,N)-strategies for maintenance of a
two-component system

373 Drs. R. Hamers, Drs. P. Verstappen
Het company ranking model: a means for evaluating the competition

374 Rommert J. Casimir
Infogame Final Report

375 Christian B. Mulder
Efficient and inefficient institutional arrangements between go-
vernments and trade unions; an explanation of high unemployment,
corporatism and union bashing

376 Marno Verbeek
On the estimation of a fixed effects model with selective non-
response

377 J. Engwerda
Admissible target paths in economic models

I IIII I II W IÍÏÍkÍY IÍW ÍÍIÍ ÍI IÍIÍIÍV IÍI IÍV II

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27

