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Introduction.

Setting up a capacity model, measuring the long run growth
possibilities of a certain economy, it might be instructive to
formulate various production models for that economy and select one
or some of them on the basis of available prior information about
growth characteristics and/or of available sample information for the
near past.

An impcrtant purpose of this and a subsequent paper is therefore to
construct alternative production models and to test their validity
for the postwar Belgian economy (1948 - 1967). The models will vary,
besides the characteristics of the underlying production function,
according to the prevailing market conditions (perfect/moncpolistic
competition) and the entrepreneurial objectives((expected) profit
maximization, revenue from sales maximization, cost minimization),

supposed to exist for the aggregate (non public) economy .

Since the underlying study is merely concentrated on time series

analysis, much attention has to be paid to the inference of technical
change, which may be:

- disembodied in the sense of applying equally and alike to
all resources of labour and capital or embodied;

- neutral in the sense of leaving undisturbed the balance

(x)_

between certain economic variables or nonneutral

(%) Introdu01ng t as an index for the state of technology ia the
followlng homogeneous production function:

(1) @ = F(L,K,t), we may distinguish, in general, the following
four classes of neutral technological progress, basel upon the
invariancy between certain variables:

a) Product augmenting t.p. as e.g. Hicks-neutrality:

(2) @ = P[A(t)L, A(t)K] = A(t) F(L,K), labour additive or capital
addltlve where the increase in production is proportional to
the amount of labour, resp. capital used.

b) Labour augmenting such as Harrod neutrality:

(3) @ = F[A(t)L,K ] and labour combining:

(L4) Q F[A(t)X + L,K] where the augmentation of labour, measured
in efficiency units, is proportional to the amount ot capital
used

c) Capital augmenting such as Solow neutrality:




Obviously, the notion of "elasticity of substitution" between
labour and capital, defined as the percentage change of the capital-
labour ratio with respect to a one percent change of the marginal rate
R of substitution of capital for labour, will play a central role in
the following discussion. Mathematically, the elasticity of substi-

tution is defined here as the following nonnegative number:

(7l o= g io § L vith marginal rate of substitution:
og

R:_gzaal‘ =& hh .
a, 2Q/3K 3L ° which 1s assumed to

decrease as substitution proceeds, or R decreases as K/L decreases.

It has to be stressed that the factor inputs are supposed to be
changed in such a way (represented by R) that output is kept constant.
So, o can be studied as a property of the isoquants on a production
surface. In this respect, only variations along these isoquants will
be studied but at the end this approach will be enlarged by taking
variations into account both along the constant production lines and

along the production expansion line (a ray from the origin).

The plan of the paper is as follows:

- In the firstvsection, alternative production models are briefly
analyzed when the underlying production functions show unitary,
constant and varying elasticity of substitution during the sample
period. A monotonic transformation of the above homogeneous pro-

duction functions is studied in a final paragraph.

- In the second section, the impact of technical progress will be
studied, e.g. within the framework of a C.E.S. vintage model of

production, while

- In the final section some preliminary statistical estimations will
be discussed in order to check the production models presented on
their relevance for postwar Belgian economy. A more thorough
comparison between various statistical estimations will be reserved
for a subsequent paper.

= (5) Q=F[L, A(t)K] and capital combining
d) Input decreasing: labour and capital decreasing where the

reduction in labour, resp. capital input is proportional to
output.
The above classes are discussed in detail by M.J. Beckmann and R. Sato,
[2] and [ 3]; this discussion also includes important combinations such
as factor augmenting technical progress:

(6) @ =T1A(t) L, B(t)K] .




1. Some neo-classical production models with

disembodied technical progress.

According to the four paragraphs of this section, the underlying

production relationships of the models under discussion are:

a) Cobb- Douglas (C.D) production function:

e)‘t where

= a
(11:1) Q, —ALtK

B

t +

A is a parameter denoting the scale on which an economy is

operating (scale transformation of inputs Lt and Kt into

output Qt)

a and B are the labour and capital coefficients whose sum,

representing the degree of homogeneity of the function, can

show:

- either increasing returns to scale (a + B8 > 1) so that
output is increased by a larger proportion than a given
proportional increase in all inputs (economies of scale).

- or decreasing returns to scale (a + 8 < 1) where output
is increased by a smaller proportion (diseconomies of scale)

- or constant returns to scale (o + B = 1) where output is

increased by the same proportion as inputs.

A is a parameter resulting from disembodied technical progress.
In fact,a and B are the partial elasticities of production with res-
pect to their respective factor inputs, which becomes clear from the

(positive) marginal products of labour and capital:

2Q Q
t a=1 B At
—= = a? kP M= o2
BLt t t Lt
(1.2)
3Q Q
%) a B-1 At %
== = g KL K e =8 .=
aKt it t Kt
or
; : aQt/Qt 3 log Q, aQt/Qt 3 log Q
1.3 a = = and B =
aLt(Lt 3 log Lt aKt/Kt 9 log K



&l =

so that « + B measures the total percentage change in output for a

given change in labour and capital.

b) Constant Elasticity of Substitution (C.E.S.) production function(t):
N b - 2 At
(1.0%) B =A[(1=-8) 1% sP)" P e where
t t b
A 5 - "
At = Ae b denoting efficiency of a certain technology t for

the combination of labour and capital (variations
in At are indications of Hicks neutral technolo-
gical progress)

8 distribution parameter indicating the degree to
which the technology is capital intensive and
defined over the interval 0 < § < 1 (the larger
this capital intensity parameter is, the larger
the K/L ratio for all factor prices).

o substitution parameter which can be written as

1 : = g .
p = 5~ 1, with o the elasticity of substitution

(7) measuring the ease with which the technology

5 s 5 xx
permits labour to be substituted for capltal.( )

() Function (1.4) with (1.1) as a special case (p = 0) will be derived
in appendix A.

(%xx) As was the case for the C.D. function, it is easily seen that the
(positive) marginal product of each factor is proportional to its
average product, because, by differentiating:

=B _£ _Apt
v v -0 ~D v 0 a
€159 Q = A [(1 - 8) L~ +6K"]e with respect to L :
Apt
o -'%_1 R N % 5) -p-1 - ?
- = —= A - 1-0)L or
(1.6) v % oL, [- o g .) &
Apt +
0 £ S B2 Jpn)
z;L—t = (1-8) vA e Q VL,
17
Apt
e - A
== 0V A e Q K , which shows that, under
BRt it t

constant returns to scale (v=1), the proporticnality factor is a
function of t, 8§,A,X and p.



) Modified C.E.S.-functions allowing for changing returns to scale and

variable elasticity of substitution (V.E.S.)

-v/p
(1.8) QE = ™ pli-8] 1% 6K with Qf a deflated or

-p
t

inflated value of Qt when the returns to scale function is assumed

to depend on output.

Various production functions with variable elasticity of substitution
may be defined. Almost all are based upon the empirical behaviour
of ¢. 8o, if o is assumed to be linearly dependent on capital

intensity:
(1.9) g, = 1*65

the V.E.S. production function under constant returns to scale

becomes:
S C
At 1+c b 1+c (=)
. = + —
(1.10) Q, = e’ K (Lt v Kt)

When an underlying theory is introduced (say profit maximization or
cost minimization), it may be assumed that, for homogeneous production
functions of degree one, the output labour ratio is dependent on the

relative price ratio and on the capital-labour ratio; then the P f.

becomes:
At Kt -mp _-p -p -%
(1.11) Q=4 e""[(1-5) (q) Lo+ 6K ]
Q K
with m = o if =% does not depend on i (%)
Lt Lt

d) Homothetic production functjons:

[i:12) Qt =G [F(Lt’Kt’t) ], where G is a monotonic transformation
of a homogeneous C.E.S. or V.E.S. production function F of finite
degree. Through such a transformation, the interpretation of the

elasticity of substitution is enlarged to a class of convex isoquants,

(%) Derivztion: see appendix B.



varying only in scale not in shape (so same ¢ from iscquant to
isoquant). These constant production lines will constitute a homo-
geneous field on the production surface.(t)

To derive alternative production models, use will be made of some
general assumptions regarding the market conditions. Indeed, in
order to start as general as possible, it will be assumed that there
is "imperfect" competition (monopolistic competition, oligopoly or
pure monopoly) on both factor markets and on the product market.
Therefore, prices of production and factor inputs are assumed to
depend on the quantity of products supplied and on the quantities

of production factors demanded. These dependencies are formalized
in a demand function for the product and in supply functions for the
factors of production, which, for simplicity, are supposed to be
loglinear, only involving own-prices, i.e. the demand for production
depends only on the price of production itself and not on the prices
paid for any of the factors and similarly, the supply of each factor
depends only on the price paid for that factor and not on the price

of the product or the price paid for any other factor.

So, the aggregate demand function for production and the
aggregate supply functions for labour and capital may be expressed
conveniently as homogeneous functions where the degrees of homo-

geneity are equal to the (constant) elasticities of demand and

supply (**):
n
o
(1.1%) Qt = ko Py
n n2 .
Lt = k1 L and Kt = ky r, with

(%) This homogeneous field of production isoquants emerges because, for
given factor prices (perfect competition), the capital labour ratio
at period t remains constant irrespective of the production level
on which the economy is situated or

3 log (K /L)
(1.13) ——————— =0 See derivation of (1.12) in appendix C.
9 log Qt )

(2x)For simplicity, the price elasticities of demand and supply are sup-
posed to be constant over time so that they are invariant for changes
in product demand and factor supplies (or elasticities are in fact
mean elasticities). This assumption can, however, easily be released
by providing the n's in (1.14) with a subscript t.



N,s N1s Ny the constant price elasticities of demand and supply

(n, 2 0; ny,np 2 o)

¢» Ty resp. the price of production, the wage rate of labour and
the cost of using one unit of capital services (prices

pt’ w
expressed in indexes){x)

From (1.14), the total revenue from scales of the production and

the total expenditure on factors L and K may be expressed as:

1 1
— — + 1 3
1 M n o
& —) O (o] =
By Q. = c)) Q so Q (2, = 1)
L, &%
1., n1 m ba
(1.16) W, b = ( kl) L =s; L (g = 1)
%_ %? b 2
1,2 2 %
r K, = () K =5, K, (2, > 1) (=)

(%)

where the relating li (i = 0,1,2,) is equal to one if there is

perfect competition in the corresponding market.

Since the degree m of monopoly (monopolistic power) for a certain

economy may be measured by the inverse (absolute) price elasticity

(see Lerner), or m, =|;—T (i = 0,1,2), all kinds of market structures
i

ranging from perfect competition (mi = 0 as |ni| = ») to pure mono-

polism (mi == asn.= o) might be represented as a point on the non-

negative half-line. But since price formation under short run mono-
polistic equilibrium (marginal cost equal to marginal return) is

generally r?flected By . 5
(1.15) m. = = PElte = Bavgnual sosf the upper bound of m
. i |ni| price » 124 -4
is generally given by m, =1, i.e. |ni| = 1, otherwise there exists

a negative marginal cost. Then, "perfect" monopolism corresponds to
a value m, = 1 (o & m, <1 or |ni] 5 1),

(%x)Ideally, it would be preferrable to consider the rental price (return)

of a unit of capital, say r', , defined as

t



With help of the above three quantity - price relationships, we shall
discuss now alternative production models, varying (besides the under-
lying production function) according to the objective the producing

economy has in mind i.e.

1. Maximization of deterministic profit

2. Maximization of median profit in comparison to maximization of
the mathematical expectation of prpfit

3; Maximization of total revenue from sales (oligopolistic indus-
tries)

4. Minimization of total factor costs (regulated economies)

é Cobb= Douglas Modelgé

§ A 1. Classical Profit Maximization

For each period of time, the economy is placed before the

(%),

following situation
(1.17) max m = pQ - wL - rK subject to

AL KB eAt

Q

which leads to the following necessary profit maximizing conditions
(equilibrium conditions in the short run), utilizing equations (1.16):

*

9 y
ag = Zop - u=o0 (n* = Lagrange function and
x y = Lagrange parameter)
R - S
aL 1 L
(1.18)
s St . L P
oK K
x
am =ALaKBeXt - =G
du
€1 97) ré = PE (i + d), where i and d are the interest and depreciation
rates, in stead of PE =Ty the cost of using one capital unit (price

of equipment). This would not complicate matters however since the
total expenditure for capital, r K, in (1.16), is simply substituted

5 N
by re Kt then.

(%)For ease of notation, we dropped the index t whereever possible.



From system (1.18), it follows immediately that:

QIWL Q,zl'K

(1.19 a = and g = —— so that the partial elasticities of
) 209 ipq P

production with respect to labour and capital are precisely equal to the
shares of resp. nominal wages and nominal capital in total nominal
production if there exists perfect competition on all markets or if all
Qi are equal (x).

Sufficient conditions for a maximum of model (1.17), implying
a decrease of the marginal products as each factor changes, can be
derived from the usual second order conditions for maximum and the

(strict) convexity of the production function:

x x '
327 _ 32n~ _ Q
o1z = P (loa -21)% Oy g S pnos(zos -5) k2 <© and

(1.209)

> (2 at B)2 & (xx)
(0 (o]

_ TRy -
Zoaﬂ,oﬁ (R,O(J. 21)(11'08 22) L2K2 L2K2

from which it follows that only decreasing returns to scale (a+B8<1) are

compatible with profit maximization under conditions of perfect com-
petition in all markets and a strict convex production function

(see convexity of isoquants).

When imperfect competition, a decision regarding the economies
of scale is not so easy to make because, from the sufficiency conditions
(1.20), it follows that, for £;,% > 1,a,8 > o and for o < sLO =
(RO should be nonnegative, i.e. the demand for production should be
elastic because otherwise output will be restricted until either the
production ceases or the demand for its product ceases - see also foot-

note on p. 7 regarding emerging negative marginal cost):

(%) From the marginal productivity conditions (1.2) itis also clear then

that the marginal products are equal to the relative prices ; and 5’.

(%%)Note that the first and third conditions of (1.20)*are equivalent to
the (strict) concavity of the Lagrange function T (positive definite-
ness of the matrix of 2nd order derivatives of - 1),



g By X %
(1.2 ) a € — 5 B = and o — + B 9. « » Or at the minimum

o o 4 %2

level (perfect competition on factor markets : 1= o= i) e

1 %
(n.22) @t BB T » SO that for the case of perfect competition on
o
the factor markets and monopolistic competition con the product market
(which is an often occurring situation, especially since most industries
are established in the neighbourhood of large consumption centres like
regions with a dense population, etc.) there will be always possibi-

Iity for non-decreasing returns to scale.

To specify the imperfectness and the unreliability of profit
maximization, i.e. the incapability of the entrepreneurs to adjust
inputs to satisfy the necessary conditions for profit
maximization, random disturbance terms Ty and v, are introduced in-
to the equations for derived demand for capital and labour (economic
disturbances corresponding to managerial capacity, relevance of per-
fect profit maximization in a certain period, etc...), while random
disturbance terms ut are super-imposed to the production function
in order to reflect factors as exogenous effects (foreign strikes,
war...), will, effort, special technical knowledge etc. which
are characteristic for a certain time period.

So, the randomnization of the production médel, involved in (1.18),

may be carried out, rewriting the necessary conditions as follows:

- a B At
Qt = ALt ht e
21 Q,o O.QOSO
(]‘23) Lt = Qt llsl

b B, BLA,

& t L5585,

; or in the above mentioned stochastic specifi-

cation:



log Qt = log A + a log Lt + B log Kt + At + E

t
ILo 1 c“.Loso 1
.h = — + — + —
(1.24)  1log Lt 7 log Qt i log Eon 7 L™
L BL s
o) 1 o O 1
= — — — v
log Kt %, log Qt + %, log 2,5, %, 2t

(; T

(%)

Note that if u =e

from which it is clear that the random disturbance terms are introduced
in exponential form into model (1.23). They are supposed to be serial-

(x)_

ly independently distributed with finite moments

Passing, it may be interesting to note that a set of equations
basically similar to (1.2L4) is arrived at if the disturbance terms
and v

together with other ones, v do not possess the inter-

Y14 2t® -
pretation given previously, but represent the imperfections in the
specification of the demand and supply equations (1.16) (e.g. other

influencing prices than own-prices, relevance of exogenous components,

et v vy )’
= o B Xt
Qt = A Lt Kt ut
s
- '
B, =8 R ot
2,
= '
25) tht sy Lt ¥ie
22 i
TeKy = s2 Kp Vo

or transforming to model (1.23), we get the same specification as the

log-transformed model (1.24), except for the error terms, which become:

T . . 5
2 with et a NID - disturbance term with zero mean
and constant variance o2, the mathematical expectation of u, is

. Y
o o
E F == : g
E(ut) = e (Et) 2 =e and its median: M(ut) = eM(Et) = 1. We

Ni—w

say that u, is lognormally distributed. The lognormal p.d.f. shows

t
12
positive skewness since M(ut) = E(ut) ot 2 E(ut) so that equality

only holds if the producer has exact a priori knowledge about his
technical(production) relation (then o2 = o and equivalence with
anticipated profit maximization: see A2). In general, if E(e,) = o,
E(ut) = ¢(1) where¢(.) is the moment generating function of €y



(1

.26) v., = - log (—i—) and v__ = - log (;——

|
=
n
()

Vi Vot (%)

1 ’
Vot b ot
In the light of the above interpretation of the error terms

u, v and v__, it is pretty clear that log Lt and log Kt are, in

Y CI% 2t
fact, not completely independent of log u, = € since each input is

a function of all disturbances of the sysg;m. Therefore, classical
least squares of the production functicon parameters are biased and,
in general, even inconsistent. Requiring the assumption that Rk and
v,, are normally distributed, independently of €,» mEy still yield
consistent maximum likelihood estimates, while, if there exists per-
fect competition on all markets, the factor shares method even devises
unbiased and efficient estimators of the production function para-
meters. Discussion of further estimation problems is postponed

until the final section and a subsequent paper, but it may be clear
from the above reasoning that there are both statistical and economic
reasons for accepting an alternative objective where probabilistic
elements, being beyond the control of the producer, and mainly regard-

ing the stochastic nature of production, are introduced.(xx)

§ A 2. Maximization of anticipated versus expected preat it

Assuming that the prices depend on output demanded and factor
inputs supplied as given by equations (1.16), we may consider, as an

apparently valuable hypothesis, that the producer (the economy ) wants:

(%)

For maximum likelihood estimation of model (1.24), we assume that

all disturbance terms ut, vit are lognormally distributed with

1, 2) and finite variances. Note also that,

are supposed to follow (mutually independent)
vl vl

lognormal distributions, then so will their ratios —%E and ;EE do

(Theorem 2.1 of [ 1] ). Yot ot

i g
mean e (=

= O,
] ] ]
if vot’ vlt and v2t

(%xx)These stochastic components of production include factors as weather,

unpredictable variations in machine or labour performance, etc.....
Although a disturbance vector u has been intoduced into the C.D. -
function, we derived all properties of the previous modei as if
production were non-stochastic with Wy, = 1 (Vt).



- elther to maximize the anticipated profit for period t( ) or

- to maximize the mathematical expectation of this period's profit.

The difference with the previous problem lies in the two following

assumptions:

(1) Entrepreneurs are maximizing anticipated, resp. expected
profits instead of actual profits

(ii) A stochastic production function is directly introduced into

the maximizing behaviour.

According to either objective, entrepreneurs are faced with the

following model:

max Ht = (p,Q,) - (tht) - (rth)

e

_,Q.O _21 __ %
(1.27a) = (s @ ) - (s1Ly ) = (spK ) - EE

max E(Ht) = E(tht) - E(tht) - E(rth)
%0 2, 2,
(1.27b) = IE(SOQt ) - E(let } = E(sth )
subject to
_ o B At

(1.28) Q, =&AL, K e u,

where a - above the variable (s) indicates "anticipated value" (xx)

(%) Which might be the case if the producer had exact knowledge about
his technical and commercial functions. Obviously, it may and
generally will diverge from real profits (e.g. imperfections in
anticipited profit maximization).

(xx) Notice that we do not introduce a priori the rather unrealistic
assumption that P, (or wt,rt) is statistically independent of the

production function disturbance u, nor that there should exist
perfect competition on the factor” markets as in fact did A. Zellner,
J.Kmenta and J. Dréze [21], p. 787, for a cross-section model. See
also D.Hodges[9], who relaxed, for the case of C.E.S.-functions, the
strong requirement for perfect competition on the product market

but left the other assumptions untouched.



(1.

€

The difference between the two submodels (1.27) can be re-
duced, under certain general assumptions, to the difference between
conditional median functions and conditional mean functions.
Indeed, if the production function disturbance terms log B = €,
are assumed to be independently normally. distributed with zero mean
and finite variance 02, we know, from properties of the resulting
lognormal distribution of u, , thzt:

- the anticipated value of SoQ © can nicely be defined by its

conditional median value or:

Ly L % L, e BL LAt Lo
29a) (soQt ) = M(soQt )y = soM(Qt [Lt,Kt) =s4 L K e M(e )
% % & (%)
— o e_ oL
ot

4
- and the mathematical expectation of soQto can be defined as the

conditional mean value:

ko L 5 8.0 & B LML 52202
29v) E(s Q") = s_ E(Q |Lt,Kt) =wmh L K = e
1922 o W
- Qlo 822 o ost
o t
Remark that the two models are only identical if o2 = o, i.e. if the

producers exactly know their production factor combinations ex ante
(also identity between anticipation and expectation in the probabi-
lity 1limit). Obviously, this will seldom be the case. Therefore, we
shall derive, for both models, the profit maximizing conditions and

tiue reduced form equations in order to check whether Lt and_Kt are

(%)

Where it is assumed, initially, that u_ is statistically independent

of Lt,Kt because ut does not occur in the supply equations for
factor inputs. This assumed independency will be verified later on.
Notice also that the anticipated values of the nominal factor
values can be put equal to their imperfectly competitive equivalents

2 2

1 2

SlLt and sth » where evt. error terms regarding the imperfections
in the specification of these supply functions are cancelled out.



|
=b.
n

I

really statistically indeperdent of u, (so that consistent and even
v

unbiased estimators for the production function parameters might
be obtained).
From the profit maximizing conditions:
all ol AE(T AE(M
(1.30) SEE = o and SEL = o resp. EL\ t) = o and SRL_El =16,
t £ t t

we find for the "anticipations" model, after introducing error terms
Bix (i = 1,2) standing for differences between anticipated and
realized prices, imperfactions in the (anticipated, resp. expected)

profit maximization (managerial inertia, ignorance....):

iog A + alog LT + Blog Kt + At + &

log Qt = .
1 Soic 2o Qo
1.31a) S ¢ e HiE= L - — *
(1.376) 2168 LL 5 log Jslﬂ; % og Qt 1 € Vie
] sol; lo RO
e O | _ o 4
log Kt 7 log BSz‘: 25 log Qt %, Vi

which is,

apart from the error term contents, equivalent to (1.24).

The reduced form equations for the endogenous variables of the

production mcdel are:

log Qtj! E - = 8 log A A 1
|
L
(1:32) | Tog L 1= L& 1 o Kk o t
£ 1 9,1 1 +
i L
Llog K*‘l I o] 1 ko o
t ?
i T r
1 -a -B Et T
+ EE 1 0 EQ €, ®Y
2, £i 76 1
g A
— o] 1 —Z e, +
) J L-Qz t 2t |




s 2 s %

. 1 © o o O
+ = —_— —— = —
with kj % log a 512, and k, log B8 oLy or
1 Eo o)
1 = + + + + - — - —
og Qt 2 = log A + ok, Bk, + At (1 7 o Z, B) e,
] ] 2
(1—= a—8)
1 22 |
* avlt +‘Sv2t
1 i L L %,
= = -83—)k;+ B— k, o
log L. 2 E 7. log A+ (1 Slz)kl BR1 k, + i A+
(1-=2 a—=2 B)
1 %
(1.33) q
12'O 9‘0
+ - B— + B—
(1= B0V * B Vau
5 L 20 2 L
= _— — —— -_— +
logKt Z 7 lzlogA+a22kl+(1 R)k9+22 At o+
(1= a2 8)
21 2,
2 %
+ + - a—
iy Vit (1 “ } Vo ’

while the structural equations for the "expectations model ", intro-

) (x):

ducing the same kind of error terms Vit (i = 1,2

log Qt = log A + a log Lt + B log Kt + At # Et
A 1 Jloso 2o 220 Qo
= — @ = $ = 52 S + '
log Lt 2 lognz:g; %; log Qt 221 o} 7 € Vlt
3 18, A 120 L
L = —_— L o == * S— 2. e * i
B By OB S, T, B T AT O Gy s

(%) Remark that we treat the expected nominal factor vziues in tne same
way as the anticipated nominal factor values. Differences are sym-
volized bij de different error terms vit (1 = 1,2)



= 17 =

which, apart from the constant and error terms, is equivalent to

Cm-31al.

1 2oso 1 220
ti k! = — + === 2
So, putting 1 % log allsl 2, o and
1 2oso 1 JL2002
A T o —
k2 942 log 8 2,252 2 2.2 2

we find reduced form equations for Qt
replacing k;, k, andvlt, vztby k; § ké and Vit

» L, and K, similar to (1.33),
s Vou -

Since the production function disturbance does not enter
into the reduced form equations (derived demand equations) for in-
puts, our initial hypothesis about independency between u, and Lt’

Kt is confirmed and simple least squares estimators of the production
function parameters are consistent if

E(st v .) =2EBle, v.. )= Ble, v

' = ' = 1
” b W % lt) E(et v ) o. Simple least

2t

squares estimators of A, a,B and Aare also unbiased if Vigs L
vit, vétare statistically independent of et.Further estimation

problems regarding this model will be discussed in the final section

and in a subsequent paper.

§ A 3 Maximization of total revenue from sales.

The objective function is now the commercial function being
predominant in industries with a rather considerable degree of mono-

poly. The problem is to maximize

(1.34) Yt =pr, Qt subject to
% % 2,
(1.35) & minimal profit level ”2 =50 -sL, - K (see 1.16)
a C.D.- production function Qt = AL: Kf e)\t

which, for a certain period t, results in the following system of

necessary conditions:



&

3Y 5
= + B i s
J\;, LOP U]‘Q’OP Ho (o)
Y
5T = —up Wt Uy oo % =0
.36)
*
3Y
5K = H1%ar * up B % =0
. *
C S ?Y * = o0 (restrictions 1.35)
du) SLn

where r* is the Lagrange function and uj and u, the Lagrange para-
meters. From (1.36) it follows that the partial elasticities of

production with respect to labour and capital are respectively:

{1.37)

41 il wL
1= —
‘v+< O
2 1 PQ
22 = rK
Bl === == F
+
RO T+u, PpQ
K1

which are, apart from , Similar to (1.19) (deterministic

T+1,
profit maximization).

Also the 2nd order stability conditions are similar to the deter-

ministic profit case. .
1
the elasticities of

Since © < £ < 1y Lys8s > 1 and <1

¢ — = T+py ?

production are always smaller than the factor shares if there

exists perfect competition or if all 1's are equal, while they
1

may be greater than or equal to the factor shares depending on

the values of Qi (i =0, 1, 2) and p;.

Model (1.36) may stochastically be specified in the same way
as (1.23) and (1.24), so from (1.36), (1.37) and substituting with
(1:16)z

log Qt = log A + a log Lt + B log Kt + €
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£ L s u
o 1 o 8 141 1
; ¢ St # = 0 T =
(1.38) log Lt % log QL ” log a ITT = + 2 ¥ix

2 2.8 Uy +1

= o 1 o O 1

leg K, = =— 16 *® == 1 . B =y
TR T ks L e 1 2, ‘2t

Obviously, instead of deterministic sales revenue maximization,
also the expected value of total revenue from salws could be maxi-
mized. Since, however, the derivation of the production model is
completely similar to (1.38) and (1.31b), it will not be discussed

here.

§ AL Minimization of total factor costs.

This managerial goal, especially relevant for regulated indus -
tries where the producer knows,ex ante, the production demanded so
that production can explicitly be fixed at an exogenously determined
level, leads to the following model:

(1.39) 1 = +
(1.39) min Ct tht rth

subject to a C.D.-function determining the combination of production

factors in order to yield the partly exogenously fixed production(*?
The industry has to find the optimal requirement for factors of

production, which may be realized by deriving the equations for

their derived factor demand.

(x) The above problem of cost minimizationis equivalent to maximization
of the profit function:

(1:40) 0T, =9 @q = LA Lt_ rth subject to the conditions that

t B
\ _ a 8 A6
(1a2i4) Q= ALt K. e
Qt = Q: (fixed volume of production), which leads, under perfect

competition, to the property that the marginal return is equal to the
Lagrange parameter (equal to the marginal cost)(see also (1.45) ).
Compare this property with the previous case of sales revenue maxi-
mization which can be brought back to the maximization of the follow-
ing Lagrange function:

8

o
s )

x o Xt [o)
(1.42) Yo =p, (ALt K e ") - Ce # U(tht RE « 6
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These reduced form equations may be derived from minimization of

2, £,
1k =wlL +rK = + 5
( 3) Ct w. L r K SlLt sth (1.16)
subject to
_ X - & B Ak
Qt = Qt u, ALt Kt e ut = whe?e

Q* is the systematic ("exogenous", non-stochastic) part of production
(i.e."planned" or "fixed" production)

u, is a random error term with finite mean and variance.

The necessary conditions for the minimum of the Lagrange function:

L, 22

(1.4k) Cf = let + sth = u(ALzKE eAt u, - Qt) are, besides the

stochastic production function:

ack Q

- = W, - ua - =0

aLt t Lt

(1.45)
ac* Q
—E = Lor uB'—E =0
=2, = = 5

aKt t Kt

which are similar to the deterministic profit maximizing conditions
(1.18). In fact cost minimization is equivalent to deterministic

profit maximization regarding to the equilibrium conditions (1.18)
and (1.45) because it becomes clear from the footno%e on p. 19 and

aC

from (1.18 - 1.4L) that producer's marginal cost L. is equal to the

output price times a constant EO , measuring the degree of monopo-
listic competition on the product market, or, from the cost minimi-

zing conditions (1.45) total factor costs become:

where is has been assumed that the economy can only spend a certain
amount of cost, say C ,per period. Perfect competition now leads to
.the marginal equilibrium condition u = 1 which becomes clear from the
necessary maximum conditionsof (1.42).
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L &
R P T

(1.k46) 7, %,

. ®wd }a

and the marginal productivity conditions (1.2) for the non-stochas-

tic portion of output, provided with an error term v

incomplete cost minimization, may be rewritten as:

aQt/aLt 5
BQt/BKt

x
aQt/BLt aKt

(1.47)
%
3Qp /3K,

(%)

supposed to have finite 1st and 2nd moments.

t

wh
ere Vt

reflecting

is also

Substitution of the C.D. production function into (1.47) and

solution for the endogenous variables L and K leads

demand equations of the "production" model, where production

to the derived

itself,

the wage rate and the capital interest rate (return on capital) are

treated as exogenous variables:
1 A a
(3 K 2o T _— =t =
St ol 1 g I
t %18 W, t B W, A O
(1.48) " " A
. Qza) atB , o+B “(a+s)t(££)
BRI ¢ W
. t
a 1 A
) LB — —— ———t
£ 18w, i 1B)a+B o+B _“(a+g) (KE)
& 2ra rt t t Lro Ty

JBC L Bl
atf ~xa+B _a+B

Q

% t
o I o
a+f Q* a+B a+B
t Ve

(%) Remark also the striking similarity between the above cost minimization

model and the expected profit maximization model under § A 2.

Indeeq,A

one could argue that entrepreneurs attempt to minimize the costs of
producing an expected level of output since, in fact, output is a

stochastic variable.
above cost minimization problem by replacing
condition (1.47) is equivalent for both models.

(%% )Rewriting the reduced form equations (1.48) as:
a

The problem is easily solved_ in terms of the
Q by E(Qt) so that

1 - e 1 8
— w,o+B r, o+ ,——
- o B At a+B it 1 xa+Bf a+B
(1.48b) L= (2p0) |A(2,a)%(2,8) e ] v Q w
a B
— ey ol B
- g at| o+ VeotP TiovB - L oB +8 -1
K= (218) [A(aza)" (2,8)" e 1 - Q O vt“ LA

t

(%x)
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Notice that, if we replace Q: by Qtu;1 in (1.48), the factor quanti-

ties are no longer independent of the production function disturbances
so that, in general, neither an unbiased nor a consistent estimate of
the production function itself can be obtained. The production func-

tion parameters have to be estimated from (1.48) and (1.49) then.

Up to now, we have discussed a theoretical framework for C.D.
production function models. In the stochastic specification (s) of
each alternative model, we have introduced error terms in a multi-
plicative form. This has been done to provide convenient estimability
properties. It may be noticed, however, that other ways of introducing
error terms, say in additive form, might be considered. But this
complicates the estimation of the various production models without
any real gain in analyzing capacity unless we have strong prior belief
that the error terms should be introduced in that particular form.

In the paper announced, "multiplicative" and "additive" production

models will be compared upon their estimating performance.

and substituting into (1.39), we obtain the derived total cost function:

: 1 o B R
Sudell & ® (oo 2) A(2,0)° (2,8) eMEI a+B  a*B OB % o+B a+h
: g & 2 A 2 1 t % £ =

and by duality between cost and production functions(see also following
section: II A), there is a unique relationship (one to one correspon-
dence) between the empirical cost function (1.49) and the underlying
production -function in (1.43). Consequently, the production function
parameters might be estimated from (1.L9).



In the previous paragraph, it was assumei, by the unitary
hypothesis for ¢, that eventually occurring changes in the relative
supplies of factors did not affect the relative factor shares, so
that a relative change in (weighted) factor prices was éssumed to
be automatically compensated by a same movement, in opposite direc-
tion, of the production factors. Consequently,the factor shares of
lavour and capital in the total value added are supposed té remain
constant. It is generally know, however, that labour's. share in
national income has considerably increased in most developed

(x)_

countries So, there is strong evidence for a more general

framework.

In first instance, we shall restrict ourselves to C.E.S.-
functions, while in the next paragraphs homogeneous prodfctions
functions with variable elasticity of substitution and changing re-
turns to scale and homothetic production functions with C.E.S. or

V.E.S. functions as underlying p.f.'s will briefly be discussed.

Since the models to be derived under alternative economic
goals are very similar to the corresponding C.D. - models, we shall

only briefly summarize two cases:

(i) deterministic profit maximization under imperfect competition
with derivation of the relating cost function and the derived
reduced form equations for production and factors (see similari-

ty between profit maximization and cost minimization under § A);

(ii) maximization of the expected (n anticipatea) value of profit

under imperfect competition.

(%) The formerly accepted belief (during prewar and early postwar period)
that labour's share was indeed constant, was partiy caused by the
intervenience of various compensating effects as technical progress,
imperfect competiticn, etc... and/or oy the fact that factor shares
are often pretty insensitive to moderate variations in o (due to fac-
tor augmenting technicel change, to changes of the capital-labour
ratio, etc....), so that their constant character seemed to be consis—
tent with a rather Large number of o's # 1.
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§ B 1. Deterministic profit maximization under monopolistic competition.

The problem is to maximize for each period t:

%, 2, Sy
(1.50) I=pQ-wL -rK-= sOQ - s;L - s,K (see (1.16) )

subject to C.E.S.-function (1.&),which yields the first order con-
ditions:
= Eo L = = o

% £ et By
— = -gw +u (1-8)va e VY q i =0

x B ARE g8

-2, r+udvA Ve Qe Yk = o0

(1.51)

an*

v
= 517
5: = A EK g (1-6) L {] ekt -Q=o0

Substituting u = lop (= producer's marginal cost) into the middle

two equations, we obtain the relative factor shares:

i _ o {1 = B) 55 A“t v L P
pQ = P i Q
(%)
(1.52) £ Aot p
rK lo _v Ty V) =
= = — §vA e Q K

P 2y

(%) From (1.7) and (1.52), it becomes clear that the marginal productivi-
ty conditions may be written as:

L, w 9Q,

%
(1.53) —=— — and — =
8Lt EO pt aKt Qopt

L1,

or the marginal rate of sub-

stitution equilibrium condition(for period t) amounts to (see (7) ):

dK 3Q, ,9L LW W 2
(1.54) Rt == EEE = EEELSKE = Ei—£-= Z;E with 2= El 5
t iy 2% t 2

so that the parameter 2 is a proportionality constant between the
factors' relative contributions to production and their relative
rates of remuneration. If 2; < &, (& < 1) labour is being exploited
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or

(1.55) ==

The equations (1.52) imply that the share of labour (resp. capital)

in the total product is proportional to the elasticity of production
with respect to labour (capital), where the constant of proportionali-
ty is composed of the elasticities of product demand énd labour
(capital) supply (see (1.7) ). Moreover, it is noticed that both
labour's and capital's elasticities of production aré;vafiable in
contrast to the constant elasticities in the C.D.-case (1.19) (*).
Remark also that the shares of income accruing to labour, resp.
capital are equal to their production elasticities if the competitive

degree is the same; i.e.lo =47, Qo =4,.

The second order conditions for maximum profit, requiring

a2n* < 0, should satisfy (see (1.20) ):

relative to capital since the marginal product of labour relative

to the marginal product of capital is less than their relative price
ratio, conversely if 2> 1; if &; = 2,(2= 1) either both factors are
subject to inequity in the same degree or neither is at all.

(%) But under the assumption of product exhaustion 5 dises af

(1:56) w. L. + . K, =9,.Q (total revenue = total cost),
£t 7

tt
and a homogeneous production function of degree v, implying (Euler):
BQt 9Q,
(1.57) vQ =1L —— + K - with marginal productivity conditions
t t BLt 7 3Kt

(1.53) we find that the partial elasticities of production w.r.t.
labour and capital are no longer variable unless the elasticities of
demand (for output) and/or of supply (for labour and capital) are
variable:

3Q L 21 (2 -vz ) 0Q, K, L, (& -vzo)
(1-58) e w & ee——————— gfd = = = e —
L Q 2, (g =2y) 3K, L, 2, (2 - %)
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a2n* a2n*

Lz v 0 Kz =~ ®©
(1.59) and

a2nr* 2p* N (azn* 2

aLZ K2 3LoK’ °

which reduces to the stability conditions for the production elas-

ticities (see (1.21) ):

11+p
%% % ( =a for C.D.) <
g +£
o v
L2, +p
K 2
(1.60) 2 X (=g rorcup.) < i,
9K Q P
L+
%
£ i o)
9 L [L* v, s ok [tV |
L Q &4 + o 3K Q e+ p >

where the last equation states that the weighted sum of the produc-
tion elasticities should be less than one in order to satisfy a
stable equilibrium in an imperfectly competitive C.E.S.-world. The
weights themselves include the elasticities of product demand and
factor supplies, as was also the case for the imperfectly competitive
C.D.-model, but also the elasticity of substitution between labour
and capital (for p = % - 1) and the returns to scale parameter v.
From the stability conditions (1.60), it is clear, once more, that
increasing returns to scale are compatible with a profit maximiza-
tion model only if there exists imperfect competition on product or

factor markets.

For a stochastic specification of the profit maximizing
production model, random disturbances may be introduced into the
production function (technical disturbances) and into the profit

. maximizing conditions (1.52) representing imperfect profit maximiza-
tion, or alternatively, into the product demand and factor supply
equations (see (1.25) ) representing imperfections in their specifi-

cation (economic disturbances).
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As was already indicated previously (see § A 1), the profit maximi-
zing conditions can then be written in various, mutually equivalent,

specifications as e.g.

B 1.1 3 from (1.52)

5 . £ AME B o4

EL w 2 fyagivaY e ¥ oy Vv 3. T

tht 27 t A ¢
(1.61)

A0t

Bty g A

L= EE svaYe u Q. K , Where

tht 2

, with, as before,

t

v
(1.62) @q,= Q: W = Aext EK-D+ (1= &) L;D] P u,

Qx = Qtu;1 the non-stochastic part of production ( ~ anticipated
production)

B 1.2 : from (1.51) and (1.62)

o i o T S o
i (_)p A P (1—(5) O\) De\) P (_) (o] vl 1+p - v o}

Q
Lt 20 pt t %
(1.63)
Q e 8 11 apt | =0 (1-v) o
t _ 220+t ,v(14p) T 14p 140 v(1+p) ,_t,1+p v(1+p)  v(1+p)
= (E—J A 8 v e (=) Qt uy
t o pt
B 1.3 : from a combination of the two equations of (1.63) (division)
1 1
K 9,1 E— w ==
£ +1 ) 41 t.p+1
(1.64) —= (IL—)D ('1_—6)0 (r_)p
& 2 t
or

B 1.4 : from (1.55) and the marginal productivity relationships (1.7):

* -
2 K, =(p#+1 L7 3 3K 21 9 3K 2 oL )
(1.65) r_t=_1(i) (_t) (e )= (_1_Q;/__t___ (_I)L =(_1 i TP -
.t 18 I, R2 3Q./ 8L, | %,'9Q. /3L, %, BK_ LR,
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The above profit maximizing equations can be utilized to derive
an estimate for o
- from (1.63) by assuming that the prices (w,r,p) are independent

S - R
# i 3
v(1 p)vand of the 1mperfections

of the disturbance vector u
in profit maximization denoted by the multiplicative disturbance

v

- from (1.6L4) by assuming that the prices w,r are only independent
¢f a multiplicative error v for imperfections in profit

maximization

- fvom (1.65) on similarly introducing a multiplicative error term,
¢ay vi, also representing incomplete profitmaximization or, for
this particular case, incomplete cost minimization. (%)

The derived supply function for production and the derived demand
equations for factors of production may be obtained from the cost
function and the equality, at the equilibrium state, between margi-
nal cost and price (times Ro).

So, from (1.63) and the definition of total factor costs:

by Wl BN
(1.66) ) = 2 + 2 =
Prlog PR Peyg
o el " p(1-v) -p
v
=I} (=T o p, (| gyiTe) VO] aen
t t t t
t t
By ol i 1 1 =t
a, = (+) p+1 ,v(1+p0) (1-g) 1P J1*P V(1+0) il
(o]
- . 3
b, = () p+1 ,v(1+p) g VB e V(1+0)
(6]

so that from the Lagrange function:

(%) According to the causality principle however, we have to stick to
(1.6L4) where the economy is assumed to react to current (and past)
changes in relative factor prices by altering the factor proportions
in order to achieve minimal cost or maximal profit.
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x _ A pep -y e
(1.67) Ct = tht + rth =3y [A e (th + (1-<5)Lt ) u, Qt ;

the producer's marginal cost can be derived as (taking account of

the demand function in (1.1Lk) ):

* p p p(1-v) -p
- v+p Vi 140 Tt T+p v(1+p)  v(1+p)
(1.68) —=—=q = (=) ""F% By (—) Q u
+
aQt v(14p)%t t'p, tpt 5 it
vV (1+P)+pN (1=V)
o~ g B - o P
1 " Mg t\1+p £5 T+p NV (T+p T v(1+p)
+ 7 ko at(—) bt(—) Qt ut
o pt t
o o v+p —p(14v)-v 5
Y 1+p Ty 1+p v(1+p) v(1+p) Y
~ sl e 1% It oI Q Uy 3q,
t £ t
Supposing that there exists perfect competition on the output
market ([nol = »), the marginal cost (1.68) can be set equal to the
output price P, s SO that we obtain the derived supply function in
implicit form from (1.68) (replacing Qt = Q: u, and cancelling the
last term of the r.h.s. in (1.68) ):
L S % 1
t, 1+p t,1+p *v( 1+p 1+p v(1+p)
. = + o= =
(1.69) Et =R ey, ] u, Rl
T t
so that the reduced form equations for Qt’ Lt and Kt are, under the
above assumed perfect competition on the product market, directly
: - +
derived form raising (1.69) to power - ﬁ%%—%% (see also (1.63) ):
B o ] ),
el Ty Gy T T
t t 'p t Py t
: (p+v)
_ v(1+p) . Ve 140 V140 ; Tt T+p p(1-v) 1-v
(1.70) Ly = “Toaad ™ (—) al (=4 mgi=—] u,
o] Pt Pt
1 o a | Shety 1
r, — W r p(1-v) ey
_ v(1+p) o fobn B L o it I v i By %0 1-v .
B" T (Pt) &t (pt) * B (pt) My WLTH
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< 30 =

R ol i, = 8 P
at v(1%p) at and bt o 135 ) bt

Since the production function disturbances enter into the two
derived demand equations (because cost analysis is based upon (1.63) and
not upon (1.64) ), only Full - Information - estimation methods may
conveniently be applied on (1.70) in order to obtain consistent and

asymptotically efficient estimators.

It may be remarked from system (1.70) and from (1.69) that, for
constant returns to scale, supply is perfectly elastic at a price:
B L L
T+p T+p T+p
+ .
t BTy ) W

So, there are two major disadvantages to the previous approach:

(i) in general, neither consistent nor efficient estimators for the
production function parameters can be obtained from direct estima-

tion of the production function itself;

(i1) there is degeneracy forv= 1.



2. Maximization of the expected value of profits.(x)

(1.72)  max. E(Ht)

The underlying model can be defined as:

E(tht = tht - r K, )

£t
N * *
= Elp,Q) ~w, L, Ty K
2 2, 25
e o (%x)
= E(SOQt ¥ = SlLt - s5K

subject to the stochastic production function (1.62), where
log u = e, is assumed to be normally distributed with zero mean
and variance g2.

Similarly to the C.D.- case, the economy has to determine the optimal
combination of production factors so as to maximize, per period t,
the mathematical expectation of profit or

12002
= - 11 22

lo 2 o't

(1.73)  max E(@I,) = 5.Q, e - 1Ly - spK,  subject to:

t t

Q = A [GK;" + (1-8) LE"]"’/" ¥ ¥ which vields the Folliwe

ing maximizing conditions with respect to factor inputs:

3E(T, ) 220 - b5 3 Q 2q-1
Si;_"_ = B, 18 s_f; - slllLt
£ ot —(p+.1) L4y %1802_(% ey, Ly-1
(1.7%) = 8l W84 Ye Vi q," e - L, =o
9E(T, ) -2 ‘Af’)t -(p*1) £ap 20%-(Teg)e, 2,=1
-—SE;—-= solovéA e Kt Qt e -szgth =0

(%)

Since the maximization of anticipated profit follows along similar
lines (only constant terms of resulting reduced form equations have
to be redefined: see C.D.-case under § A 2), we shall only derive
the most general model here, i.e. maximization of the mathematical
expectation o profits.

As is also implied for the C.D.-model § A Pis S1,S2,2;and %, may be
different from the original constants in (1.16).
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and after introducing error terms v., (i = 1,2) representing

it
occurring differences between expected and realized prices (mis-
specification of demand and supply relationships),imperfections in

the profit-maximization, etc..., we find:

Vv T - -0
= + = - C o
log Qt log A + At 5 log IéKt‘+ (1-8) Lt | €y

so o —% Ap (% +£o)
14 log L, = lo 1-8)A "= t + log Q, +
(4750 By T e E slilv( ) v(2,+p) (2,+ p) t
4252 (& +2 )
P - IR S I
2 (2,40) (21+ p) 't t
e
§.8 2 (F+2 )
o 1 [elie] - _ Ap PRk, o &
log Kt Ta%p log 5,0, vSA v(22+p)u (£2+o)log Qt
2.2 £
+ 1100 - (V +£O) €, + vV
#(2o%p) (2% p) 't 2t
Putting
1 i lo _% 230
k) = log =2 v(1-6) A ¥ + }
P = 228 Tk, (1-8) } gy e
(1.76)
s 2 £ 22g2
ky, = ! log =22 ysa ¥+l = =
% Lo+p sy8s (2,4p)

we may derive, in a way similar to (1.32-1.33), the reduced form
equations for the endogenous variables. Since, also this time, and
in contradiction to profit maximization or cost minimization (see
(1.70) ), the production function disturbance €t does not enter in-
to the derived demand equations fog inputs, the inputs Lt and Kt

are statistically independent of e s (provided also that E(ztvit)=o),
so that at least consistent estimates of the C.E.S.- functiocrn para-
meters can be obtained by direct non-linear least squares or maximum
likelihood methods (Marquardt, Scoring: see next paper) or by O.L.S.

to some linear approximation to (1.62), say about p = o.
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elasticity of substitution.

Ci1 Changing returns to scale (see appendix B 1)

If we write the left-hand side of (B 11) as £(Q) and 1f, in

general jthe marginal productivity conditions hold:

2w

H

3Q _ t _d9 3
(.11 3 L. p,  af 3

and the same for capital,

=

o can,under conditions of profit maximization or cost minimization,

be estimated from:

1=
Q oao . v
(1.78) log — =01 (——J Sl 1-0)2—t + o log (—%) +
g B, og (-o)a, +( o)ao o log (Pt)
+ &; (1—0)(ao—1) log Q, +alog de L &
(1—0)(ao—1)
+ il log [ B; log th—a1|+ B8y, log |Qt-a2[]+ Et

o

which implies that, if equation (1.63) is used toestimate o and there
are in fact changing returns to scale as a decreasing quadratic function
of output, one commits a specification error in omitting the two last

terms of (1.78) which does not lead to a very bad estimator if

log Qt’ log dgé ) and the last composite variable are very strongly
interrelated.

Obviously, the difficulty of changing returns to scale can be
overcome by estimating ¢ directly from (1.64). Only, if all production
function parameters have to be estimated, the quadratic function

(B 7) has to substituted for vin all C.E.S.-models discussed.
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(1.79)  q =AK " (L +—=K

2

Variable Elasticity of Substitution Models.

A specification error regarding the fundamental property of
C.E.S.-functions, i.e. the assumed invariancy of the elasticity of
substitution w.r.t. evt. occurring changes in factor proportions,
could occur as long as we stick ourselves to a constant o. As
put forward in appendix B2, this is a hardly tenable hypothesis.
Also, for problems of business-cycle analysis, a preassumed constant
value for o is irrelevant because in recessions, output falls more
than capital stock so that the output-capital ratio decreases and
capital's share falls while in boom periods latour's share is
falling and through the inverse relationship between labour's share

and average productivity of labour, labour productivity invariably

decreases in recessions and increases sharply when the upturn begins.

A rise in o permits more capital (the plentiful factor) to be sub-
stituted for labour (the scarce factor) at each capital-labour com-
bination, which implies a reduction of labour's relative income

share (capital using/labour saving).

If o supposed to be a linear function of the capital-labour
ratio with a, = 1, the V.E.S.- production function is (see B 32):

1 B c
1 )1+c u, with marginal products:

t t t 1+e % t

aQ, e llw

o
=3
(2]

of

(1.80) '— = — L -

(1:81) 52 = (532) 2+ ()
t

3K K a on

3Q, Q a 2w Lyr

t =
1+ [
= opt lopt

aKt 1% from which the prior
a

coefficient T+c » hecessary for estimation of the V.E.S. function



(1.82) log Q= log A + At - % log L(1—<S) ey L,:°+ GK;p] + e

n

(1.83) 2.9 F_ MY osq_do oF

(1.79), could easily be estimated if 2, = &, = QO (same degree of
competition on all markets).
Starting from the profit maximizing conditions (1.63) for v= 1, we
might introduce the V.E.S.-function (B 43) into some production
function model, with the constraint that equation (B38) is already
fixed. The production function pafametefs involved in:

- K,

L

+ t

may then be estimated from such a model, where prior estimates of
m, p and 6§ may be obtained from the profit maximizing equations

(see also appendix B 2.2), derived in a similar way as under § B.

As these types of models are also analyzed in the appendix (C),
we shall quickly overlook some particular relationships w.r.t. the
underlying economic theory. By the property of inter-isoquant
invariancy, there is only one isoquant map, establishing the nature
of the relating elasticity of substitution, required. Returns to
scale are related to the curvature of the production surface.

For the whole function, there is only one important a priori
assumption: i.e. the p.f. should be homothetic, which implies that
the "initial" neo-classical production function should be a homo-
thetic function (always satisfied since it is assumed homogeneous)
and that along a ray from the origin crossing the isoquant map all
the isoquant slopes are equal, so that only iso-elastic transforma-

tion are possible.

Specifying the returns to scale function as (C 5) with correspond-
ing homothetic production function (C 8) and assuming that factors
are remunerated according to their weighted marginal products

(profit maximization : (1.53) ):

Qlw 221‘

oL dF 3L zop 9K dar 3K Rop



factor shares car i< exXpressec as:

2
o

wL o F dG L JF o h(Q) L3 g, I aF
_— = — - — = — = — _ —_— = — _— = e b L
>e B, QAaFFOL %, v FOL & (Ml Fap (frem (8))
(1.84) E fg (1 ~ Q) E 2 which.leads for
' PQ % ¢’ F K ®
(i) a C.D.-function for F to
£ £
wl o 9, rK e} Q
i . - 2y B 1O _
(1.85) oG 21(1 o)a and o2 Jz2(1 c)s,
so that the factor shares for a homothetic p.f. with underlying
C.D.p.f. are variable, in contrast to (1.19).
(ii)a C.E.S.- function for F to:

2 PR £ 4 (
"’—;=1—°(1-%)A"vm-a)L'oF”:—fU ) "7'6)}(_, and
¥ ) ) f T (1-8)#8(3)7F

o
(1.86) 3
_1‘_K_=_O(1_Q\ vé
pQ 12 Cl k]

( 1—6)(%)-%6

from which it 1s clear that factor shares

-3

and fall as @

of p).

and K/_ resp. L/K, increase

can rise, reach a maximum

{depending upon the value

Equations (1.85) and (1.86) can easily be utilized to derive

explicit functions for log Q, log L and log K

C.D.- and C.E.S.-mode.s ).

(in analogy with
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II. Embodied versus Desembcdied Technical Frogress.

In general, the economy may be faced with a homogeneous pro-
duction function of the form F(ELL, EKK, t) or some monotonic trans-
formation there of (homothetic production function). ELL and EKK
represent "effective" labour and "effective" capital, with L and K

the measured inputs and E_ and EK the relating "augmentation para-

L

meters". All four quantities L,K,EL and EK are a function of time.

The discussion in this section will be threefold:
a) an optimal technology (besides optimal levels of factors of pro-
duction) will be derived under most general conditions of maxi-
mization of a discounted profits stream over an indefinite but

certain future and of a homothetic production function;

b) the functional form in which any kind of .technological progress 1is

allowed to be introduced will be determined, and finally

¢) a vintage model of production, based on C.E.S. vintage functions,

will be studied in a "putty-putty" sense.

(%)

Remembering that factor augmenting technical progress (t.p) is in
fact a combination of Hicks and of either Harrod or Solow neutral t.p.
(an improvement highly specific to labour, resp. capital may be

reflected in EL or E_or both), all technical progress may be viewed

K
as factor augmenting, evt. split up regarding its effects specific to
labour or capital and/or to a general increase in efficiency (non-

specific factor augmenting t.p.), so that we may define a homothetic

production function as:

(2.1) Q= G(F(ELL, EKK) ), with a continuously differentiable under-—
lying production function F, assumed, for the following analysis, to

be homogeneous of first degree.

(%) This paragraph is based upon an illuminating article of Kamien and
Schwartz, see [11].
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An expression for the optimal direction of and the optimal
rate of expenditure for factor augmenting technical progress will

be derived under the assumptions that:

i) the production function is described by (2.1) and G-1(Q) exists;

(ii) there exists perfect competition on the factor markets;

(iii) the cost function, describing the opportunities of technical
progress, is based on a Kennedy innovation possibility frontier;

(iv) the economy selects rates of factor augmentation to maximize

the discounted stream of profits.

1. Factor augmenting technical progress transforms the isoquants towards

the origin because:

3
3

D

- 4G 3F 8Q _ 4G oF —
A = IF BEL > o and aEK aF BEK > o , which might be

(2.2)

&3]

illustrated by the following figure:

Figure 1. Isoquant transformation.
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from which it is clear that there is an isoelastic transformation

; " dEL dEK
of the basis isoquant if EL = EK (or if EEEZ = EEE; 1f labour and

capital are not expressed in the same units), i.e. if there is Hicks

neutral technical progress.

2. The change in the slope of an isoquant of (2.1), through any given
point (T:, K),due to factor augmenting t.p. is determined from
utilization of def. (7) of the marginal rate of substitution

(= absolute value of the slope of an isoquant ):

ey SR L gy & UL e oogo 5B s Ty
i dt - at " 4L’ = 4t ‘E_F, dt LY K 9E_dt 3E, dt
LK K L K

where use has been made of the property that, along an isoquant, the

production is kept constant,or from (2.1):

oF

aG z oF
dX = o with F; = == and Fy, =3
3(E.L) 3(E.X)

dG

K

The r.h.s. partial derivatives of (2.3) are:

casy A Befeta * EIFY - BRI,
(FoF) - F1,EKF, - E LF|Fy) FoF) - F ,F
E,F3 E F?
) (FF]Z 1 Fi (1_0) s
2 & . [—— - = e — (— and, similarly:
EF, F\F, EF, "o .
E = -
(2.6) X - 2812 - BFaFy - EFIEK Fap
' 3E
K (B F2)?
= E%‘. iz (1= FIFZ) = EL -Fl 1_—0) where use has
B Lrs a1 (gg2Fz o 7
K
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been made of

(&) the definitions F = _EEE__ F = —EEE—— Fi1,=F,,= 82F
1= a(ELL)2 s “22 < a(EKK)Z’ 12=521* a(ELLSaZEKK)

(ii) the property that F is homogeneous of degree one, or by Euler's

theorem:

(2.7) FlEL+F, EX=F,

where the "effective" marginal products F; and F, are homogeneous

of degree zero or

(2.8) F“EL+F12EK=OandF21ELL+F22EK=O

L K K

(iii) the definition of the elasticity of factor substitution:
FiF,
FFp;

Substituting (2.6) and (2.5) into (2.3), we observe that the change
in the slope of an isoquant of (2.1) is dependent upon the elasticity

of factor substitution and upon the proportional rates of factor

augmentation:
1 Al
(2.9) L. - [ QE) = ELEL iE:ll.(E_E = E_K) with E'. = EEL and
dt dt dL E,K EKFZ o EL EK L dt
El =.dE—K
K dt

3. From the above result, it might be true that factor augmentation

may lead to a change in the optimal capital - labour ratio. Therefore,

the optimal capital-labour ratio itself (and conditions for satis-
fying it) has to be determined, which might be done by deriving the
optimal cost function and relating factor shares in total production
cost. Under hypotheses (i-ii), the cost function is the solution of
the minimization of wL + rK subject to (2.1), where Q is kept fixed.
at an "exogenously" determined level.

Since F is assumed to be homogeneous of degree one:



= 4T =

ELK EKK )

(@ ¢ (q)

(2.10)  F( = 1 because G'1(Q) = F(E/L, EX),

the problem:

wE_L rE
(2.11) min vL + rk = G~ '(Q) L_1 + KY_:
: E G (Q) EG (Q)

L,K

subject to (2.1)

is equivalent to the problem:

(2.12) min G_1(Q) Fﬂ + r_K_J subject to F(f.,}z) = 9,

E E
L,k | L K

which has a solution of the form: ¢ (;—,E—r), or the solution of (2.11)
LK

corresponding to the homothetic p.f.G is:
w r -1 W r
(2.13) @ g g) =6 (@) ¢ (- F) »
L K L K
which is a homothetic cost function (see duality between cost functions
and production functions: footnote on p.21) with ¢ a homogeneous
function of degree one.

Expressing the solution values for L and K as:

.3 %= 1¥m, & ) and k* = k% (q, 3= ) » the optimal cost
L K L K
function (2.13) may be rewritten as:
f f P "
(2.15) ClQ; ;—, ;—') = wlL (Q, ;—, %—) + 7K (Q, ;—, ) » Wwith partial
L K L K L EK

derivatives w.r.t. w and r as (see also (2.13)):

¢ £ £
aC _ -1 P 5L, 3K
(2.16) b G (Q) —EL L +w -——+aw P and
_ ' 'y #
C _ g lq) 2o f o ¥OL , POK



= kB =

a0 (=, =) T T
= = - and ¢, = L K
a3 3(x)
B Y E
L, K

Since the output is still kept constant, the partial derivatives of
(2.1), where the optimal values in (2.1L) have been substituted for

L and K, w.r.t. w, viz. r are zero or:

£ f £
3K 3 dG oL 3K
A,y - 8, aF (1B 5 — + FyF

£
9q _ dG 3L |, g = 9K
(2.17) (FyE W 2% o ar L ar K or

ow dF

and taking account of the necessary maximum conditions for (2.11)

(besides (2.1)):

F,E and r =y B (u= Lagrange parameter),

(2.18) w= u L IF

F,E
27k

we find from substitution of (2.18) into (2.17):

f £ b if £
(2.19) w %%— +r %%— =W %%— +r %%— = 0, or the equations in (2.16)

can in view of (2.14) and (2.19) be rewritten as:

- b2
(2.20) 2w NG = td gmd =g ) =—=1* ssa tne
w EL or EK

optimal capital-labour ratio amounts to:

( K op By
2.24) zx = o1 E

K

The conditions for satisfying (2.21) may be derived from the
optimal cost function (2.15) taking account viz. of (2.18) and of
(2.20):

4G - _ 4G _=x
wip (FE, L* + FoE K') = u 2 F

(2.22) ¢ =wi¥ + k¥ (see (2.7))

6T + 82) = g7T(q) ¢ (see (2.13))
L K

) =0,
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and the relating optimal factor shares, taking account of (2.22),

(2.18) and (2.20):

x FELY wg FoE KX rg, (%)

oy aathia il oL g EE_ R

7 F E K 3 x 9,

or the conditions are (from(2.23)):

EF
(2.25) ¥= ELF; = X(E;, E., L, K) (see (2.3)), so that the time path
K

of the optimal capital-labour ratio (2.21) can be studied from the

total change in the r.h.s. of (2.25):

dE 4E
(p.o6) X _3X "L 38X K 3XdL

+
dat BEL dat BEK dt oL dt

g
&5

[o%)

which should be equal to zero since the factor prices, and hence the

))(n)

ratio % in (2.25), are kept constant (ass. (ii

Slnee o shd S are already given by (2.5) and (2.6), only £

JE 3E oL

L K
and %% have to be evaluated, which is done yet in a way similar to
(2.5) and (2.6):
2 1
ox _ F2P2 Fii - EFIE R, FoE F1,7 EK + E F1E Fy)
(2.27) - —{p (see (2.8))

E, F3 E, F3

(x) It is obvious from (2.13) , (2.22) and (2.23) that factor augmenta-
tion tends to reduce the cost of producing at any given rate because:

* T2
3e - 3¢ ~1 wéq_-wL ilel =
(2.24) —— =G '(Q) = -G (Q) —2—‘=—<0and—=-c (Q) =
3B 3, Ef T E. 0E, EK2
- E < s
K

(%) The “wo last terms in (2.26) do not vanish, as was the case in (230,
veczuse_this time the chang- of the slope of an isoquant in a given
prirt (L,K) is not measured, but rather the total change in
E.F-

when L and K are optimzlly adjusted to changes in EL and E_.

EF K



v

it

= == i ( 2 ) S g ( ( ) )
= F,EK + F E L sSee 2.
L} F

= ?_Efzg and analogously:

3% 1‘/;,LF12 = ELF1F22 ELFle ELFl
VAE) g ¥ T EKFE B K0

so that substitu-

tion of (£.5), (2.6), (2.27) and (2.28) into (2.26) yields:

3 1 v
~ ax _ ¥l gy B, T BN g s
228 i s ‘gt g = o
K 2 ¥ K

it is assumed, as everywhere else in this note, that the economy

operates in a static © and certain world (no lags, or always
% & (&) dK dL
L =1 d K =K 0o S Vo= S
an ) and K Frs and L at

From (2.29), it is immediately found that the time rate of change

in the optimal capital-labour ratio is related to the elasticity

of substitution and the proportional time rates of labour and capital

augmentation by:

1 '
aix aLx k'L El B (%)
(2.30) =—— - - =y —~ = (i) & R
dt L dt

4
=

L. Finally, the optimal direction of technical change and the optimal

rate of expenditure for factor augmentation are determined utilizing

the following definition for the maximum net revenue obtainable for

certain values EL and EK of factor augmentation:

(2.31)  N(E_, Ey) = max LP(Q)Q - c(a, %L E—K)] = p(e%)Q* - c*({_f—L i)

(2) In the subsequent paper announced, deplacements from equilibrium
values (principally regarding the factors of production) will be
briefly studied for some previously discussed production models.

(xx) Note that if o = 1 (C.D.), factor augmentation cannot influence
the (optimal) capital-labour ratio and is Hicks - neutral in effect.
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where CX (%— : §~) denotes the cost of producing at the optimal level
L K

Qx for given technology (EL, EK)

Introducing the rate M of expenditure for technical advance, we
may assume in general that feasible combinations of proportional
rates of factor augmentation are given by a (smooth concave) invention
possibility frontier, implying that the greater the rate of expendi-
ture for technical change becomes, the more rapid technical advance

proceeds but with decreasing marginal returns or in general:

= -

"
(2.32) 5. = e&le) h(M) and = eh(M),

=
tlj't'fj

K

with e > 0, g(e) >0, g'(e) <0 and g''(e) < 0,
El

where e is equal to 5 for a particular given rate of spending on
K

technical advance and h(.) is a nonnegative, monotone increasing

convex function of M

4\

=~

gle)

o —>

figure 2 Kennedy's impossibility frontier

The optimal direction eX of factor augmentation and the optimal
rate of expenditure M* on it are then found from the application
of Pontryagin's maximum principle, a necessary condition for fulfil-

ment provided by the existence of continuous functions u;(t) and po(t)
such that the Hamiltonian:

(2.33) H=eit E“EL’EK) . ]+ by B, ele) (M) + u, B en(d)

K

be maximum at every point O < t<  with Hamiltonian canonical

equations:



=g =

ON(E EK)

du 9H -it L®
oo duy _ _3H s DF K.
(2.34)  ui at °F e Y3 u1g(e) h(M)
it L
po By M s PR
L at 3E, 3E, bz >

where 1 is an appropriate positive rate of discount.

From (2.31) and (2.13):

N(E. ,E.) _—
r M -1 5 =, 5
(2.39) —5p—= = - 7@ 3 E(q”) e 2" @* - a7 QY Jﬁ

and since the bracketed term on the r.h.s. of (2.35) is the first

order condition for a maximum net revenue ((2.31) partially derived

wirsts Qx):
aN(EL’EK) -1 % 3 3C
(2.36) S - G (™) 5%— = - op ond
L L L
ON(E, ,E,) s (B 2 .
9E 3E 3E 2
K K K

the rate of change of maximal net revenue N(EL,EK) due to factor
augmentation is equal to the rate of cost reduction at optimal output.

Combining (2.36) and (2.2L), we find that the nominal factors amount

taoi:
ON(E. ,E,) oN(E. ,E. )
£ W= e B ——2 T o T = = B, i
L oE K oE
L K
E! E!
which substituted in (2.3L), replacing EL and EE for the coefficients
L K
of u; and u, (see (2.32)):
E u' + B! u = - e_it E M = - e_lt wL
Ty T P L 3E
L
(2.38)
T R -it

Ecup +Ef up =-e VR —Ht St =_ e " g



(2.

{[los}

.39) ELu1 = { e wldt and EKu2 =

= U7 =

and taking account of the transversality conditions 1im u. (t) =0
t > o

(1= 1,2):
T ﬂf g N rKdt, so that the
X
optimal direction ex of technical progress and the optimal rate M
of expenditure for it are found from the first order conditions for
maximum of the integral of the Hamilton function (2.33), taking

account of (2.39):

x
g'(e?) = —— and

Lo)

' (M%) SO

5 * - © -1 >
E(e ) f: e " wids + oF ft e T rKdr:l

where the first solution equation becomes exactly the classical
expression for optimal direction of t.p. (with magnitude of the slope
of the innovation possibility frontier being equal to the ratio of
factor shares) if capital and labour do not change (also equilibrium

value for eX: then Hicks neutral technical progess

E' E'
i o or e = g(e) ).
L K

Tne_specification of t.p. in the ageregate p.f.: !Impossibility

(x)

The theorem says that, under conditions of:
- constant returns to scale ( so also output exhaustion with output
price as numeraire)
- perfect competition on all markets

- profit maximization or cost minimization

(%)

See its formulation in M. Nerlove [17T]> pp. 92 - 100, originally
provided by K.J. Arrow. '



(2.41) q-= F(E];L, E

- b -

we can define more than one neoclassical production function consis—
tent with any given set of observations if either of the following
situations occurs:
1) the elasticity of factor substitution is equal to one and
there is specific factor augmenting t.p.;
(ii) there is both capital and labour augmenting t.p. and non-
specific factor augmenting t.p.;
(iii) there is only specifically capital and labour augmenting

technical change being expressed in non-smooth form

This serious identification problem of production functions regarding
the impact of any type of technical progress will now be made clear

following lines similar to Nerlove [ 17 ).

First, two neoclassical production functions F and G are called to
be "consistent with the data" if and only if:

F

Ko B = G(EEL,EGK,t),where E; and E; are the aug-

K

mentation parameters specifically due to labour, viz. capital
(3 =75 2

Second, the three (crucial) above called assumptions imply for (2.41):

3G G 3G
L

(Bkz) f =20 EFL+LE§K=——EL+— EK = g 4 8

G L G

a(EiL) a(E}I;K) B(ELL)

F F G G " X ”n " "
where ELL, EKK’ ELL and EKK are the "effective" or "true" factor

inputs and SL and SK the total payments to labour and capital.

Third, differentiating (2.41) w.r.t.t, taking account of (2.L2):

(x)

Note that these parametes E_ en E, are different from those appearing
in (2.1), because here, an Improvément specific to labour viz. capital
is interpreted to be reflected only in E_, resp. E_. The present
model is also different from the previous one in t§at it analyses the
form of t.p. in the context of a basis p.f. only, there is difference

in economy goal and imperfect competition on the product market is
not allowed.



= NG =

F F
dE dE
a F L . _F dL 3F K . _F dK aF
(2.43) . (L vEl dby G (o K, gFAK,  4F
F
at 8 2°L) at L at (550 at K dt at
% K
c G
dE dE
3G i ¢ e G dK 4G
= el Sl =" gi) e c. (K df i
a(ELL) B(EKK)

Fourth, setting the rates of specific labour and capital augmentation

equal to:
;9 "
(2.kk) g =g and e, =— (fori=F, G)
E;dt Eidt

and for non-specific factor augmenting (purely disembodied) t.p.:

F dF G 4G

(2.45) A == and i = » which quantities (percentage changes)

may vary or remain constant during the sample period.

Then (2.43), making use of (2.42), becomes:

ke[ I B F F
(2.46) 4= s, (eL +2) + Sy (eK + k) + A
=s_ (e +2) +s, (e’ +k)+ AG
L K
S S
: = 4L - 9K = et S
with g = Lat ° k Kat ° sL Q and SK a 1 SL
Or from (2.46):
‘ F G F B P B
(2 ) L (eL - eL) + 101 = SL)(eK - eK) B2 =3 =20,

so that 1dent_A¢cat10n of either type of t.p. is fully p0551ble iy

= & TG F_ B
of only if eL = eL, B eK and A A
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(i) If o= 1, the relative factor shares remain constant and (2.47)
is satisfied for an infinite number of technical progress rates,
unless there is no capital and labour augmenting t.p. (all e's = Q)
This confirms the will known result that specific factor augmen-
ting t.p. cannot be di?tinguished from purely product augmenting
*

t.p. in the C.D. case. So, the p.f. is not identified and,

moreover, the bias of technical change is indeterminate.

(ii) It is clear from (2.47) the p.f. is not identified if both types

of t.p. occur, even if ei and e; are assumed to be constant. If all

rates of t.p. are assumed to be constant, we find from (2.47):

F F & & F_ . F g . 8 :
(2.49) S EEL - eK) - (eL - eKﬂ + (eK + 1) - (eK + X ) = 0, which
implies:
. F-:F_ B 6 F, .F_ 8. .6
(2.50) € =e =8 = e, and g * X —eK+)\ 5

so that the bias of technical change is determined uniquely but
neither the technical change itself (and so) nor the production

function is (provided o # 1).

(iii) a. If there is no specific factor augmenting t.p.

F__F__G__G_ F_F_ G_ G_ .
(or EL = EK = EL = EK = 9 a;d soFeL =g, 58 ey 0y 25
is clear from (2.47) that A = A and the p.f. is completely

identified.

b. But, if there is only specifically factor augmenting t.p.
the p.f. is not identified unless a smoothness condition 1is
imposed on technical change, say in terms of exponential

growth (provided of course that o # 1). Indeed, if

(%) Note in this respect that the only p.f. which is both Harrod and
Solow neutral, and so, at the same time Hicks neutral, is the C.D.-
function with constant returns to scale:

At 1- .
(2.48) Qt = Ae Lz Kt % with = ma for (constant) Harrod neutral rate

m, Solow neutral rate m'= m{g; and Hicks neutral rate m'' = ma.



(2

AF = AG = 0 and all e's are constant percentage values(x)

it follows immediately from (2.47) that for non-constant
G F

and e = eG and the p.f.

B o
factor shares (o # 1) By S " K

is identified.

Conclusively it may be said that specifically factor augmenting
and purely product augmenting t.p. may occur simultaneously in a
production model with g# 1, only, and probably under: very strong
restrictions, if at least one of the three pre-assumptions for the

. . o g xx
1mpossiblility theorem are not fulfllled.( )

Various types of C.E.S. vintage models may be defined:
(1) only product-augmenting technical change per vintage T:

Y
- auAttut -p P
54} Qt,T = Ae E1—6)Lt + 6Kt’_r]

(ii) pure product augmenting and specific  capital and labour augmen-

ting t.p. per vintage

Which is so if there is smooth exponential growth in the effective-
ness of measured labour and capital inputs. Note,however, that
exponential technological change is a sufficient condition for
identification.

(x%x) The Diamond- Mc. Fadden conditions given above are unduly restrictive

if the growth equation (2.43) is supposed to be sectionally continuous,
i.e. if it can be subdivided into a finite number of parts
("technological epochs") in each of which F and G are continuous

and have finite limits as the arguments spproach either endpoint of

the subinterval from the interior. So, only smooth specific factor
augmenting t.p. is supposed to occur within one epoch and non-smooth,
structural breaks of the growth equation occur between two epochs,

So that different p.f. may be estimated for different technological
epochs (identification conditions fulfilled within one subperiod)

(see M. Brown, [6] , pb: 194 = 4789,
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(2.52) g = 4T |(1g) (y1(0)L, )7+ cS(yz(T)Kt’T)] ’

(if at least one assumption of the impossihlity theorem is not fulfilled
or "technological epochs"), or less general cases, as the following
one which will be discussed here.

As is often made in the recent literature since Solow, all
technical improvements embodied in new physical equipment IT is assumed
to be capital augmentive, so that the production planned to be brought
about by means of capital invested in year 1 and still in operation
at year t and labour associated with this capital stock may be
specified by:

Vv

- =p ) =] ¥
(2.53) Qt,T = At [kT—é) Lt,r+ S(e Kt,T) J where

A = Ae” " symbolizes disembodied technological progress specifying
that there are some increases in efficiency which tend
to increase the productivity of labour regardless of
the capital associated

Y > 0 influence of technical improvements embodied in the

gross investment of yeart by means of:

(2.54) K =D, I , where D

is a given survival function (D =1),
tsT t-1 1 t-1 o

representing the deterioration of physical equipment of vintage T at

period t.(x)

For further analysis, we shall assume that the marginal productivi-
ties, under profit maximization or cost minimization, and the market

conditions are the same for all vintages, such that we find from (1.53):

(£) If capital is assumed to depreciate exponentially at rate d (so, average
life time of capital is 1/d), the survival function is formalized as:
(2.55) Dt—r= e-d(t-T) , which becomes zero only if t-t grows indefinitely.

Therefore, in finite time series analysis, D is usually put equal

t-t
to zero if t-1 exceeds the maximal life time of capital, say g, or

D =0 if t-1 > ¢
t—-1
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6) sz*l =% LI sz or from (1.7)
t,t  oFt %
Q 1
; _ ottt v(1+p) ]
7) L = (/) L., which says that, under constant returns
T Qt t

to scale, equal marginal products of labour imply equal average
products of labour for all vintages (C.E.S.- case is different with
C.D.- case because equal marginal productivities always imply equal

average productivities for the latter).

For ease of derivation of the aggregate production function corres—
ponding to (2.53), we shall also assume constant returns to scale.(*)
Then, if total output and total labour supply at period t are
obtained from integration (summation) over all vintages:

t (%)

8) Q, = ft Q dtr and L, =/ L dr
‘—o i} =g t,T

and if it is assumed that labour supply is homogeneous and optimally
distributed over the capital vintages (i.e. cutput is at a maximum
requiring that the marginal productivity of labour is equal for al.
vintages: see (2.56) ), we obtain the aggregate production function
for period t, corresponding to (2.53), in a way similar tc the C.D.

case, utilizing (2.57) and (2.58) for v = 1:

(2.59) Q = A, [(1-6) L;o + 6 J;Q] ot with the "effective" capita>
stock:
(xx)
= 78 _¥F = b oyt
(2.60) Iy I = Kt’T dr I e D,_, I, dr

(%)

(xx)

Notice that, although we allow for monopolistic competition cn the
markets, there is not any identification problem w.r.t. the
aggregate p.f., even if everywhere perfect competition, because
there is no labour augmentive t.p. assumed. Neither case (ii) nor
case (iii) of the impossibility theorem is valid for this model.

Integration or summation from t-6 to t if the maximal life —ime
is ¢ periods.



Taking the marginal product of new capital as the numeraire,
we finally get:
1

A - -p| P ” .
(2.61) Qt = Ae % [Z1—6)Ltp + G(eYth) I , where Kt is the capital stock.

It is now possible to estimate disembodied and embodied technical
progress simultaneously. As was already indicated before (see foot-
notes on p. 44 and p.50 ), this is not possible for the C.D. case,
which might be illustrated by the following variable returns C.D.

vintage model:

£ : .
(2.62) Q, = Aex i (e'" D 1 )B with a and B the elasticities of
t LT g AP ¢ =T T

. .
e B
Qt,r Wyt %1 and (e Kt,r

), where, taking account of the equality

for all vintages of the marginal (and average) labour productivities
and of the aggregate output and labour input equations (2.58), the
aggregate production function is immediately derived as:

S

with J, = ft ("D, I )1—a dt as effective
t - t=1t 71

N At Sa.1=0
(2.63) By, = Ae™" L J,

capital stock or equivalently:
A+ t 1- i t 1-
(2.64) Q= pe{A+BY) Lz K, ™% with K, = /e o D

as net stock of capital, from which it is clear that, unless an inde-
pendent estimate of either technical progress parameter is given, it
is not possible to estimate the other one (not even under constant
returns to scale). As indicated previously, this problem of under-
identification of the C.D. model results to the fact that only (A+By)

and a can be estimated, but not A and By separately.

However, both parameters of either technical progress may be

estimated in a C.E.S.-model. Indeed, from (2.59) and (1.63), we find:

Q . (1) o k-t "
fe.85] L= ) a1 Tpg gy T HTHIE _LyP
Lt 2o pt



from which relationship, given data on Qt’ Lt’ w

e and Py the sub-

stitution parameter p(from o) and the disembodied technical progress

parameter A can be estimated, while, from (2.61) and (1.6L4):

r K El
(2.66) tht = =
t 1t 2

Lt

s vt St
s ¢ (=) the embodied t.p. parameter y

can be estimated if data on w _, r

¢ £ Lt and Kt are available.

Up to now, it has been assumed that together with the capital
embodied t.p., there is only Hicks neutral disembodied progress.
Owing to the often important quality changes of labour input however,
it may be desirable to express the labour input in efficiency units
so that disembodied t.p. is split up in a Hicks neutral part (\) and,
say a Harrod neutral part standing for factors as the increased
education level (rate n), reduction in working hours (g), changes
in the age-sex distribution of the labour force (z). Then, the
aggregate labour input may be expressed as:

| (2.67) L{ = Lt e<n_£+C)t and the exponent in (2.65) becomes:

(A+n-g+z)(1-0) t instead of A(1-0)t and in (2.66) -p(y-n+E-z) t

instead of -ypt, from which it follows however that, by lack of any
other data, only the results of various influences can be measured,

i.e. the combined effect of all factors influencing labour qualifi-

cation or the sums (A+n-£+z) and (y-n+£-z) are estimated, so that

| in fact, the p.f. is not (fully) identified at all (see also

snpussibidity Heorm) )

(%) It may be significant to consider both capital and labour embodied

t.p., where effective labour force M, and effective capital stock J

: p % p t
bring about (potential) aggregate output:

(2.68) Q= F(M,, Mt

technological change may now be estimated from (2.68).

Jt’t) = Ae F(Mt’Jt)' The relevance of disembodied
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III Some empirical results for postwar Belgian Economy

With the help of macro data about the sample period 1948 - 1967,
some of the previous production models will be statistically tested
on their empirical relevance for the postwar Belgian economy.

In general, two (extreme) approaches are open:

() either total available labour and capital stock are combined
to yield maximum production

(ii) or real production is yielded from combination of (utilized)

labour and capital services

The underlying production function of the first case is in fact
a production capacity function since the economy is assumed to operate
at full capacity, while the second case is based upon the empirical
explanation of realized production, brought about by labour employed
and capital utilized. Although the latter case is not in full
agreement with the neo-classical full-employment assumption, most
empirically tested production models are founded upon it. The sole
difficulty is the evaluation of capital services.
But since in principle idle capital cannot emerge as long as a
particular smooth production structure shows substitution possibili-
ties (0 > 0) and the marginal product of capital is positive, a two-
fold approach is left open to us:
- either the underlying production function is estimated from
observed employment of labour and total available capital stock
- or it is estimated from labour employed and capital utilized
(implicitly assuming that idle capital arises in periods of
recessions and depressions, often accompanied with a rather low

elasticity of substitution).

The relationship between both approaches can easily be established
from specification analysis. Indeed, suppose that the p.f. of the 2nd
approach represents the "true" relationship but that it is estimated

(since utilized capital stock is not easily measured) by the p.f. of



the first approach. Assuming that the p.f. can be conveniently
linearized, the "true" p.f. can be written in the standard linear

form:

(31 y = X8 + e with E(e) = 0, E(ee') = o2 I, and

the columns of X be independent of ¢,

while, say through lack of data, we can only estimate:

x x, e D
e ') oA IT and

(%)

(3.2)  y=x%%+e* with E(c¥) =0, E(e
the columns of X* be independent of ¢

The mathematical expectation of the S.L.S.estimator of Bxis,utilizing

(3.1) and (3.2):

(3.3 E@%) =1 X x84+ )] =LA (x*x) 18 = P8,
where (Xx')(*)_1 (x*'x) is the matrix of regression coefficients of
the explanatory variables in the "true" (second) model on the

explanatory variables in the "misspecified" (first) model.(x*)

Under the above assumptions, it follows immediately from (3.3)that:
(1) B’ is a biased estimator of B with specification bias:

(3.4)  bias (8%) = EGY) - 8 = (p - 1)s(**®)

(%) Noticg that for our production models, the only difference between X
and is that utilized capital stock occurs in the former and avail-
able capital stock in the latter observation matrix.

(%%x) From E(X*'a) = 0, it does not follow necessarily (unless perhaps

asymptotically) that E [(X*'Xm)_1 X*'e]= 0 (because X* may be
stochastic).

(%xx) For the C.D. function in (1.24), the parameter vector of the "true"

log

model is y = % » So that the "bias" of the S.L.S. estimator of
A

the parameter vector based on capital stock is:
SpoB
518
(sp-1)8
S3 _____

(3.5) "bias" (;x) = s si(i =0, 1, 2, 3) being the regression
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-~

(ii) g” is an inconsistent estimator of B , with specification

inconsistency given by:

(3.7) inc. (é*) = plim E* = B= (M-1 M -1I )R , where it is assumed
T >0 XX *- n

that both the (asymptatic) 2nd order moment matrix of the "misspeci-

fied" variables,

L
B © plim 1555521 , and the (asymptotic) cross moment matrix
T
1
between '"misspecified" and "true" variables, M_ = plim —Erz-,
A

exist and n is the number of explanatory variables in X.

It will be interesting to keep the above specification analysis
"in mind when interpreting the following results, representing
empirical estimates of various production models under alternative
market structures. Estimations have been performed, each time with
the capital variable expressed as total capital stock and as utilized
capital services. The data are adjusted Dulbea-data 1948 - 1952 and
N.I.S.-data 1953 - 1967, and may be obtained, together with various
unpublished regression results, upon request to the author. The
sector considered is private non-farm industry, exclusive residential
structures. End of period capital stock is constructed recursively as:

(3.8) K = (1 - o.oSh)Kt_

+ + It’ where It is gross investment of the

1

.efficients in:

(3.6) 1nK =s_+s InL +s;1In Kf + 53t +n, , with K the

(utilized) capital services and K: the total capital stock measured

at time t. Since usually, s; > O and sp; < 1, the production elasti-
city of labour is likely to be larger for the 1st than for the 2nd
model while the reverse is true for the production elasticity of
capital.

(%) Tf the matrix P as defined in (3.3) exists and if the elements of

(Xx'_xx)—1 (Xx'x) follow (at least) the weak law of large numbers,

- 5 s 5 ~% . » : %
P = M*; M* and the specification bias of B~ coincides with 1ts

specification inconsistency.



relating sector during the year t and it is assumed that aggregate
capital stock deteriorates linearly at a mean depreciation rate of
8,4% (mean life time of postwar Belgian non-residential, non-farm
capital stock is about 12 years; see balance sheets of A.S.L.K.).
Following various authors investigating the evaluation of Belgian
capital stock (see Kirschen, Lamfalussy, Sandee etc....) three
observation series for Kt have been constructed varying according
to the hypotheses about the initial capital-output ratio for 19L8;
1.6 C¢Rh8 = 1.15; C¢Rh8 = 1.25 and C¢Rh8 = 1.375 '(C¢R67 each time
about 1.20).
It was assumed that the degree of underutilization of capital stock
is equal to the unemployment rate, so that capital services K are
defined as deflated capital stock figures:

(3.9) K: = Kt (1 o= ut)’ with u, the unemployment rate at period t.

In the following table, the estimations for the stochastic C.B. =

function are reproduced: three versions for capital stock and three

i P ; b3
versions for capital services. (2)

(%) The estimated regression coefficients are accompanied with their
standard errors, the relative contribution of the explanatory variable
xj into the "explained" standard derivation of the dependent variable

y Or

» and the computed F values testing the signifi-.

(3.10) e s
j£1lsjl°xj

cance of the squared multiple correlation coefficient between an
explanatory variable, say X;, and all the other x-variables:

R2
XX
(3.11) F.%T_n) = —— B (o4, 2,...,n) to Find out the multi-
i(n-1) 1-R2 n-1
XX

1

collinear subset, the Durbin-Watson statistic, the corrected first
order autocorrelation parameter (5= p+ T),the corrected R? and
the performance index:

(3.12) =T = L7y The computed F statistics of (3.11) are only

reproduced if they are larger than one.
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To avoid multicollinearity as much as possible, S.L.S. estimation

has been carried out, wherever necessary, on relative first differences
instead of on simple log transformed variablesfx) For this reason,
little attention has to be paid to the sometimes low RZ values.

What really matters is strong parameter estimates.

(%)

If first order autocorrelation seems to be present, the results of
one autocorrelation correction (type Cochran-Orcutt), according to

§ are also given (between brackets), together with the DW-value of
the transformed model.

Finally, original variable values are denoted by a sign + and relative
first differences without any complementary sign. This is done to
avoid confusion in notation.

Note that by differentiation transformation, the error terms of the
original log-model are transformed according to a perfectly positive
autocorrelation scheme (which might be somewhat realistic owing to
the trend component involved in the log model).




: )
o e

d on total capital stock.

i 1 2 3 il
| 5 1 B 2 & . 1 & 0 ; B 3, P B L oa
! i \ mM | 1 il | mM ; 1 1 [ mw , il
” 4 _ _ w S
et 1.69(2.34%) , 1.18(1.50) “ - 2.05(2.52) " o.@mﬁd.wmv“ - 2.34(2.73) 1+ 0.81(1.20)1 -
I 0.72(1.01) " 0.27(0.25) H 69(81) | 0.72(1.01) “ 0.27(0.24 ) T1(79) 0.73(1.01) | ©.27(0.24), 73(77)
! 0.38(0.28) 1 0.32(0.37) 1 31(19) ! “ " "
2 : : 0.31(0.28) | 0.29(0.35)1 29(21) “ _
i3 “ " " | 0.26(0.29) | 0.26(0.33), 27(23)
DW = 1.4k2 5 =i0,38 DW = 1.38 5 = 0.39 DW = 1.35 5 = 0.41 ”
B? = 0.33 I=0.39 R2 = 0.32 I=0.39 R? = 0.32 I =0.40 _
(DW = 1.86€) (DW = 1.88) (DW = 1.90) m
Based on capital services. g
B m 5 _ Hq B “ i _ M F :
By ) By ' B 1% B; N § % N
I | T ] | T
_ | 2.59(2.44)10.83(1.33) | - | 2.71(2.62)10.70(1.20)| - |
i 0.67(0.86)10. 150.29) | 78(66) 6. | 0.69(0.85) 0. 34(0.20) B
_ _ - “ o
,mw n o.gmﬁo.w:v_o.won.wm\" 22(3h) 6.- u i |
<43 ! ; : | m 0.13(0.36)0.25(0.34) | 21(36), 5.80
DW = 1.30 5= 0.43 DW = 1.28 5 = 0.LbL DW = 1.27 5 = 0.4
R?2 = 0.29 I = 0.4 R2 = 0.29 I=0.40 R2 = p.29 I=0.4o
(DW = 1.89) (DW = 1.92) (DW = 1.94)
lubie 3.1 Cobb- Douglas functions with cupital resp. as capital stock and capital services.




In order to obtain approximate values for the population regres-—
sion coefficients in (3.6), we computed three S.L.S.- estima{ions
on the relative first differences of the explanatory variables in the
first model. The resulting values 0.60, 0.59 and 0.58 for s and
0.95, 0.98 and 0.99. for s, implied that the difference between the
two production models is much greater as might seem from the bias-
expression (3.5). This becomes clear when comparing the estimates
in the above table. Contrary to the a priori belief, the production
elasticities of capital are even larger in the first model than in
the second. Moreover, the higher the initial capital-output ratio,
the lower the production elasticity of capital.
Provided that the elasticity of factor substitution be unity, there
seems to be no reason to reject the hypothesis of constant returns
to scale if the factor capital is represented by capital stock. If
capital services are considered, there is even much to say for
decreasing returns. But if a first order autocorrelation correction
is performed, increasing returns are strongly favoured. One should
however be careful with interpreting the S.L.S.estimations of the
2nd model, since the F-values computed indicate intercorrelation
between labour per man year and utilized capital stock (critical
F-value with 1 and 17 degrees of freedom is L4.L5 for a 95% confidence
interval).
None the less, a general result seems to be that "disembodied"
technical progress amounts about 2 & 2,5% per year for the postwar

Belgian economy (significantly differing from zero).

Incorporating an underlying optimizing theory, we may estimate
derived demand equations for labour and capital inputs. They show
optimal combinations of factors depending upon the assumption of the
economy goal. Comparing models (1.24) from deterministic profit
maximization or cost minimization,(1.31) from anticipated and
expected profit maximization and (1.38) from maximization of total

. = v
revenue from sales, we remark that the coefficients for log Qt are
% 2

each time the same, i.e. viz. Eg and EQ-. The only difference
1 2

between the above mentioned models resists in the contents of the

constant and error terms. So the assumptions about the market
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structure may be directly tested from statistical estimation of the
relating models. Although the models are highly interdependent,
only S.L.S. estimates are presented in this paper, irrespective of

possibly considerable simultaneous equation bias: (%)

a) Derived demand for labour

(3.13) log E = 3.67(3.52) + 0.31(0.33) log Ezt DW = 1.35 5 = 0.32
(ag.) (0.17) (0.23) (0.01) (0.02) R?2 = 0.97 I = 0.002
= (DW = 1.46)
b)(i) Derived demand for capital stock
(3.14) 1log ké= 0.89(0.46) + 0.94(0.97) log at DW = 0.90 5 = 0.57
(aé_) (0.29) (0.57) (0.02) (0.0k) R2 = 0.99 I = 0.002
= (DW = 1.7L)
(3.15) 1log k§= 2.20(1.35) + 0.84(0.90) log at DW = 0.60 5§ = 0.72
(8§_) (0.34) (0.82) (0.03) (0.06) B2 = 0.98 I = 0.002
€ (DW = 1.76)
(3.16) 1log kg= 3.71(2.37) + 0.72(0.83) log 3t DW = 0.38 5 = 0.8k
(0.43) (1.31) (0.03) (0.10) R2 = 0.96 I = 0.002
(DW = 1.61)
(ii) Derived demand for capital services
u]
(3.17) 1log kt = - 0.03(-0.73) + 1.01(1.06) log 'c?ét DW = 0.78 5 = 0.50
(0.33) (0.44) (0.03) (0.03) R2 = 0.99 I = 0.001
- (DW = 1.71)
(3.18) 1log kt = 1.29(0.22) + 0.91(0.99) log &t DW = 0.60 § = 0.56
(0.38) (0.46) (0.03) (0.0k) R2 = 0.98 I = 0.002
iy (DW = 1.81)
(3.19) 1log kt = 2.80(1.08) + 0.79(0.92) log 5t DW = 0.43 5 = 0.66
(0.46) (0.56) (0.04) (0.0k) R2 = 0.96 I =0.002
(DW = 1.81)

(%) Also the production function parameters should be estimated simultaneous-
ly. Only, if the economy goal is maximization of anticipated or
expected profit, consistent and even unbiased production function para-
meters may be obtained under the assumptions mentioned in §A2. Then,
the degree of monopolistic competition may conveniently be estimated
by S.L.S. of the derived demand equations (1.31).
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L
The estimated value for Eg-in (3.13) shows that L is2
1
substantially lower than £, and compared with a mean estimate of IQ
2

of about 0.90, it follows that the price elasticity of supply of
labour has been significantly lower than the price elasticity of
capital supply (n; < 1 and n, > 1) for the postwar Belgian economy.
This is confirmed by direct estimation of the supply and demand
equations (1.14), which yields ﬁo = 1.8u(*), n,= 0.22 and np= + 1.20.
This experience implies that perfect competition is far from realis-
tic for postwar Belgian non-form, non-residentialprivate industry,
particularly for the labour factor market. The results about the
derived demand for capital, involved in equations (3.1L4) until (3.19),
Ehow that there exists an inverse relationship between the ratio

—2 and the initial capital-output ratio a&d, compared with the
egtimated C.D.-functions, we remark that E% should depend in some
positive way upon the elasticity of output w.r.t. capital (irrespective
of course, of evt. occurring specification errors regarding ¢...).

The above results also indicate that the impact of the price elasti-
city of production is somewhat similar to that of the price elastici-
ty of capital. '

But since labour's share in total nominal production of the

Belgian private non-farm non-residential industry has considerably
increased during the postwar period: L6% in 1948, LT% in 1955,
L9% in 1960, 52% in 1965 and 53% in 1967, there is a serious reason
to investigate whether the production structure of the corresponding
industry has known an elasticity of substitution significantly lower
than unity or not.

Assuming profit maximization or cost minimization, o has been

estimated from (1.6L) in two ways:

(%) ng is positive, s%n?e for postwar time-series analysis, there always
seems to be a positive relationship between total output and the
relating price index. As long as own prices instead of relative (e.g.
w.r.t. the wage rate) or composite prices are considered as the price
variable, real demand functions can hardly be constructed for time
series analysis (intrinsically inflationary character of postwar
demand relationships). Therefore, ZO will generally be greater than
unity.
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(i) bty simple least squares where,due to imperfections in the opti-

mizing behaviour of the economy, multiplicative error terms
v
e @ are introduced in (1.6k4) with E(vt) = 0 and E(V%) = ci.

Since, however, these error terns are in general dependent upon
the relative factor price ratioc, consistent estimates of ¢ may

be obtained

s . : s g v .
(11)by’1nstrumental variables wutilizing log Qt as an 1nstrumental
N
W

variable for log - , which might be very conceivable if there
. t
exist fluctuations of aggregate demand (reason for p.f. estimation)

so that the output of the economy may be ¢onsidered as indepen-
dent of the random effects occuring in the profit maximizing (or
cost minimizing) conditions (1.51). Then log at is assumed to
be independently distributed of Vs and since it is, in general,

W

(positively) correlated with log —E, it might act as a valuable
t

instrumental valiable for it. Then consistent estimates of o

are obtained using the general formula:

(3.20) E = (Z'X)_1 Z'y with estimated variance-covariance matrix

Y 1

(3:81) I 52 (z'x)'1 (z'2) (2'X)” , with Z the matrix of instrumen-

A =
g8
tal variables, consisting of the constant vector and the observation

vector for log at'

These estimates yielded the following results:
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All estimations show an elasticity of factor substitution signi-
ficantly below unity. The mean value fluctuates around 0.60. It
is higher for utilized than for available capital stock. Autocorre-
lation correction considerably decreases the value of 0, while by
computing instrumental variable consistent estimates, o slightly
increases w.r.t.S.L.S., with a mean value of0.61 for available
capital stock and 0.69 for -utilized capital stock.

It strikes however that the value of ¢ is heavily dependent
upon the hypothesis made about the initial capital - output ratio:
if the initial C.0.R. increases, o strongly decreases (an increase
of about 20% in the initial C.O0.R. corresponds, in our case, to a
decrease of more than 30% in o). Therefore, it might be interesting
to compute ¢ without taking account of a capital variable. This may
be done by estimating the first equation of (1.63). Although the
occuring error term, together with an additional error term for.
imperfections in profit maximization, is not independent of the
explanatory variable &, some idea might be obtained be applying S.L.S.
(although being neither unbiased, nor consistent) on the relative

first differences transformation:

w .
(3.22) *t = 0.08(-0.17) + 0.59(0.62) 53 +0.37(0.36)Q, DW= 2.46 F=-0.20

t
) (0.89)(0.67) (0.12)(0.07) (0.16)(0.13) R2=0.65 1I= 0.26
(DW = 1.85)

Although there is no multicollinearity present in (3.22), the
value of the constant term (certainly for the autocorrelation

A(1-0) , seems to be underestimated (perhaps
v

correction), standing for
also due to simultaneous equation bias). But the value of ¢ (0.60)
confirms the previous findings, and although it is neither unbiased
nor consistent, there is much evidence for saying that the average
elasticity of factor substitution for postwar Belgian non-farm,
non-residential industry amounts about 0.60 (interval 0.50 - 0.70).
Combined with the significant positive coefficient for Q,, (3.22)
implies that there should be increasing returns to scale.

This might be verified from a direct estimation of C.E.S. function

(1.62) either by non-linear least squares (Davidon, Hartley, Marquardt)
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or, assuming that log u, = e be normally distributed with mean zero

and finite variance, by non-zinear maximum likelihood methods
(Scoring). This problem will be thoroughly discussed in a following
paper, where both single equation M.L. and F.I.M.L. estimates

for the non-linear equations involved in ‘model (1.75) will be presented.
In this pabei,“oﬁly S.L.S.- estimates of a linearized C.E.S. function
and of the derived demand equations in the anticipated or expected
profit maximization model (1.75) will be discussed irrespective of
some possibly occurring specification error involved in the lineari-
zation of (1.62) itself and of inconsistent estimates due to simul-
taneous equation bias. The only purpose is to get some preliminary
idea about the value of various parameters.

Following Kmenta [ 12 ], we may rewrite C.E.S. function (9.62) as:

(3.23)  1log ét = log A + A\t - %f(p) + e, with

(3.24) £(p) = log [cSI%’_D

AR RN | 0 4

t

and expand vf(o) in a Taylor series around p = 0 (C.D.-case):
(3.25) flp) = - p[ 6 log kt + (1 - 8) log tt] + 3p2 8(1 - 8)(1log kt— Log’I\:t)2

- % p38(1-8)(1-28) (log kt— log ﬁt)3+ higher order terms

Considering terms only up to the 2nd order and substituting into

C.E.S.-function (3.23):

(3.26) log at = log A + At + vélog kt + v(1-68) 1log L A 8 (1-8)

n oy
_ By ot - ¢ 2
(log K, - log Lt) + g with el = e + neglected

higher order terms in (3.25), and differentiating (326

K
= 2
(3.27) Q = A + voK, + \)(1-6)Lt— ¥ 65 8) s (log m—t) + 4 e}
5
%

If we assume that A €' = n, is stochastically distributed with

t t
mean zero and constant variance we may apply S.L.S. upon (3.27).

The results are presented in table 3.3.
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. Available Capital Stock

ik ( 3
B g 'e. 1 F, B. i 0 L B | o i - B
Qt By | cei 1 e x" B; ! 8 I e, | Bi ! oBi I ey : i
T ] T | T T T ]
ct 1.68(2.64) |1.21(1.59) | 2.07(2.81) 1 1 1(1.hh): ! 2.40(3.08)1 0.84(1.29)
| | | | | |
L, 0.65(0.88) 10.37(0.29)IST(57)1 7.63 0.65(0.93)" 0.33(0.26)'55(59):14 06 | 0.69(0.99), 0.29(0.24)l 5T(61) 1.k2
! | | ' !
Kl 0.46(0.4k) 10.43(0.k4) 134(24)( 6.61 : L | ! :
! I | | |
K2 ; ! : 0.41(0.42) | 0.37(0.11)' 32(2k); 5.53 | | !
! ] | |
K3 : ! : ' : ! 0.34(0.38) 1 0-31(0.38)1 29(24), 3.50
|
i | ] | o | b b
[
8(1log EE)Z 0-02(-0.05)/0.07(0.06) 9 (1 ); 9.55(-0.03(=0.05) 0.07(0.06) 13(17), 6.2k |-0.03(<0.05) 0.06(0.06), 14(15),3.00
t .
DW = 1.L3 5 =o0.k2 DW = 1.39. 5 =0.43 DW = 1.36 5= 0.4k
R% = 0.29 I=0.39 R2 = 0,29 _ I=0.39 R% = 0.28 I=0.39
DET = 0.42 x3= 8.90 DET = 0.52 X3= 11.98 DET = 0.68 x3= 18.43
(DW = 1.8k4) (DW = 1.88) | (DW = 1.90)
1
[B. Utilized Capital Stock ;
3 Il i | | 3 s | : 3 i e ! |
% B L B R AL & AT
4 + . L o ‘ | ' i ; .
ot 2.32(2.72) .1.08(1.56)| | 2.57(2.99) ! 0.86(1.46)! : 2.74(3.22) | 0.73(1.34)) i
| | | |
L, 0.50(0.66) :o 5(0. h1) L( 39) 24,5 0.61(0.76) | o.h5(0.3u);60(b6)113.2h 0.66(0.83) | 0.38(0.30):67(50).7 01
| | I | |
i 0.37(0.57) '0.60(0.53), 39( hoi 45.69 | .I : : | ;
|
K:z f : : 0.24(0.49) | 0.L6(0.45 :30(37) 27.89 : : :
| |
Ky? ! L : | : 0.18(0.44) | 0.35(0.40)| 25(36) 15.38
. I |
kuJ 3 : | : I ' { I | |
a(1og =2 ) -0.04(-0.08) 0.12(0.11) 16(21) 20.41]|-0.03(-0.07) 0.11(0.09) 10(17) 12.66| -0.02(=0.06) 0.10(0.08) 8(1}) 6.71
i;'c
DW = 1.28 = 0.L48 DW = 1.27 5 =0.49 DW = 1.26 p = 0.49
R? = 0.25 = 0.k40 R? = 0ok 1=0.40 R? = 0.24 = 0.Lo
DET = 0.15 x§= 2.61 DET = 0.22 X§= L.os DET = 0.33 x§= 6.57
(DW = 1.84) (Dw = 1.88) (Dw = 1.93)

Table 3.3 Linearized C.E.S. functions for available and utilized capital stock.
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Since the effect of multicollinearity seems to be strongly
aggravated by the introduction, w.r.t. the C.D.-function, of the
second order variable, also the determinants of the correlation
matrices of the explanatory variables and a x2?- test on its depar-
ture from a zero value (perfect dependence):
1 - |R]

(3.28) X;= =[T = 1= l-(2n + 5)] log , with m = 3n(n-1) the

6
degrees of freedom of the x2 -distributed value (3.28) and n the

number of explanatory variables, the constant vector excluded, are
given in table 3.3.

Compared with the x2 critical values for 3 degrees of freedom,
being 7.82 at a 95% confidence interval and 11.34 at a 99% confidence
interval, we may conclude that significant overall multicollinearity
is present for the C.E.S. functions with capital as utilized capital.
At the1%- "inconfidence" level,overall multicollinearity seems also
to be present in the first C.E.S. function with the capital input
expressed as available capital stock. As indicated by the F-values
in those equations, intercorrelation is principally relevant between
the capital-input variable and the gquadratic variable (critical
F-values for 2 and 16 degrees of freedom are 3.63 at a 95% confidence
level and 6.23 at a 99% confidence level). Due to this multicolli-
nearity, one has to be careful with the interpretation of the para-
meter estimates of C.E.S. function (3.27), particularly w.r.t. the

estimates involving a capital services variable.

Nevertheless, estimates of v, §,p and o will be derived from

the estimation of the vector B =(BO, B1s By, B3)' =

[A, v6, v (1-8), = 3 vps§ (1-6)]" , while the corresponding (asymptotic)
variance-covariance matrix may, in general, be computed from the

approximation formula for functions of random variables. So, if

é_:f, (B,El,.....,éh) (hi 3)’
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(3.29) var (5;) = I (—) 5 var (3) +

h h af 3fi
+ I I (= B B
s S (as )e ek(asl)el g (8, By) ana
k#L
(3.30) @, 3= B et = 3
.30 cov (6. ) = F = -
1997 2 Ggls =3, G5, )8, = R "
» w Bf of
* % I (=—==) _ (=) _ =~ cov (B B.) ()
co gm0 B B =B 98, '8= B, ) .
k#2

-

with i,j = 1, 2, 3, 4 and 8= (v, 8, 0, o),

or the (asymptotic) standard errors for the ai - elements are easily
computed from (3.29), utilizing the definition of the E— vector, as

the nonnegative roots:

1

(3.31) S.E. (V) = (B1+ By) = [var (By) + var (B,) +2 cov (B18,012,
(3.32) S.E. (8) = S.E. ( By ) = ! [B2 var (B,) +
. . . . . Al + §2 (él + ézyz 2 1

*+ B, var (By) - 2 ByBycov (8,8,)17%,

(%) No confusion should be made between the various notations. Indeed,
for clarity, we denoted here, in contradlctlon to the previous
tables, the variances by var (B ) and var (0 ) in stead of o% and o%

i

is reserved for theelastlc1ty'gfsubstltutlon and the standard error

o
Gg will be denoted by S.E. (8).
i



a -28 8 & 82 -
(3.33) S8, (B = 88, [ 2, @; ) 1 =2 [‘.31 var (B;) + 3 var (Bp) +
-~ 8 2 -
d (—Béqé-';;é—ze-%-%— var (83) -(%3%-—)-2 cov (Eléz)

28(B, + B sos 15,5 2Ba(B1+ Bo) = = el
= e B1B3) - =3 = cov (B,B3)]
8% B2 5:23 B
and
P < W & = 1 pe
(3-3]4’) S.E. (G) = B.E. (1 5 5) S TR S.HE. (8)s

The S.L.S.and autocorrelation corrected parémeter values for X, v, 8,
o and o, together with their asymptotic standard errors (based upon
the estimated variance- covariance matrix of the S.L.S. estimators)
are gathered, for all six C.E.S. equations involved in table 3.3,

in the following table:

1 2 3 L 5 6

T T

Est. S.E. Est. S.E. Est. _ , S.E. Est. 5.E.

| «.68(2.6u) "1.29 | 2.07(2.81) 2.40(3.98) 1 0.8L | 2.32(2.72) ' 1.08 | 2.57(2.99) ' 0.86 | 2.7k(3.22) 10.73
I

| . |
T *0Be, (5.3T | 10(1.35) €.35 [ 1.03(7.37) Q.34 0.87(1.23) " 0.30 | 0.85(1.25) | 0.30 { 0.8k(1.27) (0.29
|

(6}

0.59(C.€7) '0.33 | 5.6:(0.69) 0.32 |£.€700.72)1 0.25| 0.57(0.5k) " 0.6k | 0.72{0.61) | 0.51 | 0.78(0.65) 40.k0

1 '
0.51 | 2.23(2.35)" 0.51 |3.29(C.36)1 0.50| 0.42(0.52)  0.99 0.30(0.47) " 0.99 [ 0.29(0.42) 11.10
1 '

| ' 1
5.39 | G.B1(C.Th)1 ©.34 {0.78(0.74)+ 0.30| 0.70(0.66) | 0.49 [ 0.77(0.68) 1 0.59 | 0.78(0.70) I 0.67
o ! 2 | |

Tav.e 3.4. Coefficient estimators and (asymptotic) standard errors for C.E.S. parameters.
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As was also indicated for the Cobb-Douglas models, there seems
to be no significant departure from constant returns to scale.

Point estimations based on available capital stock models indicate
increasing returns while S.L.S.- estimates based on utilized capital
point to decreasing returns, which is however corrected when account
has been taken of the significant autocorrelation embodied in S.L.S.-
estimation.

Due to the large standard errors of the estimated substitution
parameter §, there is even no significant departure from the unitary
elasticity of substitution hypothesis, although all point estimates
indicate values of o below unity. Compared with the pretty reliable
estimates (irrespective of possible simultaneous equation bias) of
the equations in table 3.2. and equation (3.22), the estimates for o,
in table 3.4, seem to be a little exaggerated-due to the multicolli-

nearity involved.

A remarkable fact is that & seems to increase if the initial
capital-output ratio also increases and if the capital input variable
is expressed as utilized capital. This again is probably a conse-
quence of multicollinearity, being particularly strong for the models
with utilized capital stock, so that estimates of o for these, and
likely also for the available capital stock models, are preferrably
obtained from table 3.2. rather than from table 3.L.

Only the disembodied technical progress parameter (and as stated
above, also the returns to scale parameter) seems to be rather

reliably estimated (in the neighbourhood of 2% - 3% per year).

The simple least squares estimates(together with autocorrelation
corrections) for the derived demand equations of C.E.S. model (1.75),
transformed to relative first differences to avoid multicollinearity

between t and log 3t, are given in the following table:
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. . - : 23 T %02 K3
[_ = Ky L] "'z 'f"' l: t of
3 T z = T Ta, B 3 i T T ER 8 0%
! = 5 5 O : i g + “i x LY = S B ! ! B ! i I
~5.67(-0.61)6.63(5.57)z.6€" - '-Fc,m'v.:'::.ez!L.avro.E;{‘...c\“.u-'s.\hm.77(7,nzl,V.:i-’:.:9)0.#1!0.69)!.'zul?J?)ﬂ.éa(an)|.o|(2.57¥|b.9t(’1”‘! i

3
] N N i |
! C.eb(0.49) 0.15(0.12)0. 2L (2. 0z 0. 113,080 25(3.C2 M0 167,07 )P-26(2.02)6.18(0.07}|j0. 441, 32)0.19(0. 12)0.45(5. 37 ¥0.20(2. 11 0. bE(2.30)p.22(5. 1) |

U ' i 1 ¥

i J ) |
| DW = 0.60 5 = 0.50 DW=0.68F =056 W =058F=cC6 |

59 B2 w207 =02 B2 = Ci8 1048 % w0161 = 057

e

DW= 1.27.5 = G.29 DW =066 F =079 DW=2.53% =
i 52 20.36 1 =0.6y B2 =151 =34 F2=0.081=

i (DW = 1.51) (Tw-= 1.55) (D = .62} (DW = 1.67!} (oW = 1.43) {Dw = 1.LB) (DW = 1.uB)
! L I I L 1
fable 3.5. £.Z.5 arnd coprectes .1JT. estimates Tur tha €.t l. derivea 2omand eguations {1.75)

The small negative constant in the derived demand equation

for labour, standing for - ;TEA%—;) s W.r.t. to the high, but positive
X
('), value for - A , confirms once more that & is much larger
V(2 +p)

than %;(smaller price elasticity of labour than for capital: see
direct and C.D. estimates). This is also verified from the estimated
coefficient for the relative first differences of production, the

theoretical conténts of which are

—2 yipg ——2 But the tangential S.L.S. coefficient for
L, +p Ly + p

Qt is about the same for labour and utilized capital input, which
is explained by the decreasing returns to scale for the C.E.S. model
with the -latter capital variable (see table 3.4 and also lower
constant values for "utilized capital model" than for "available
capital model" in table 3.5).

It is also remarked from table 3.5 that the hypotheses about
the 1nitial capital output ratic have a strong influence upon the

. disembodied technical progress parameter (see decrease of the constant

values) but in contradiction to the C.D. models (see eq. (3:13)=(3.719) ),
not so very much on the parameters RO and &;(together with p and v).
This might be a consequence of the erroneous specification regarding

the elasticity of substitution there.

The only assumption still to test regarding this elasticity of

substitution is its constancy over the sample period. This might



be done in the way described in section I. C. and appendix B.
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In

the subsequent paper announced, a more penetrating analysis about

estimation, also inclusive homothetic production function models,

will be given.

A preliminary test about the variability of ¢ during that

sample period will now be given in the form of S.L.S. and corrected

S.L.S. estimates of the profit maximizing or cost minimizing

relationship (B 37), expressed in relative

A. Available Capital Stock.

first differences.

T = = : T = T = T
Q/L, Bs v %, Do 83 i By o CH B3 TR
¢ 1
vt/pt 0.75(0.76) '0.09(0.08) : 88(92) |0.76(0.77) ; 0.09(0.07); 88(93) ©0.78(0.78)! 0.08(0.06), 90(9k)
| |
ki/L, |0.17(0.10) 10.18(0.17) 1 12( 8) ' | i H
[l ' i ' i
K2/L, ) ; 0.16(0.09) | 0.19(0.17) 1 12( 7) ; .
] i ) !
KL ; ! ' : 0.13(0.08) ' 0.19(0.17): 10( 6)
e 1 i | ' -
DW = 2.40 5 =-0.17 DW = 2.35 - §=-0.15 DW = 2,29 $=-0.13
R2 = 0.53 I= 0.3 B2 = 0.52 I= 0.3 R? = 0.52 I.= 0.32
| (DW = 2.05) (oW = 2.07) (oW = 2.09)
B. Utilized Capital Stock
[ - T X . a -
] Bi : aai E e 8; : aéi | e ai i ugi | e
I ' | | T ! —
M /P, | 0.77(0.73) ; 0.11(0.09) | 93(90) [ 0.78(0.74) | 0.10(0.08); 95(89) 0.80(0.75): 0.09(0.08): 98(89)
1 ¥
k““’/x.t 0.11(0.18) | 0.23(0.19), 7(10) i ; : A
' A i I I
:2/“: ' ! 0.08(0.17) 1 0.23(0.20)!  5(11) 1 i
i 1 | ]
K3/, s : i | 0.03(0.16) i 0.23(0.20% 2(11)
i DW=2.25 p=-0.13 DW = 2.21 P=a<o0.12 DW = 2.16 5 = -0.09
i R2 = 0.51 I= 0.3 f2 = 0.51 I= 0.3 K2 = 0.50 I= 0.32
' (DW = 2.19) (DW = 2.23) (DW = 2.26)

Table 3.6

Test for the "indirect approach" of V.E.S.-functions (B 37).



- 76 =

This experiment reveals that, according to the indirect
approach for V.E.S. functions, the elasticity of factor substitution
is not significantly varying since not any coefficient of the
capital-labour ratio seems to differ significantly from zero at a
95% confidence level, provided of course that the inconsistency,
often implied in the S.L.S. estimation of (B 37), does not play a
too considerable role. Since all F-values for multicollinearity
(see (3.11)) were below unity, this certainly represents no problem
at all. It is clear, however, that a more thorough analysis is
required. This should presumably be performed from a "direct approach"
where it is assumed that the elasticity of substitution is some
function of the capital intensity (see appendix B 2.1), while a
suitable general framework would be the class of homothetic production

models. More about this for a next opportunity.



Appendix A Derivation of the Class cf C.E.S. Prcduction Functions.

In this appendix, function (1.4) will be derived from
definition (7) of the elasticity of substitution o and it will be shown
that three very known production functions can be derived from it as

(x):

special cases

o -1 0 m
o ® 1 0
C.E.S. Linear Production Cobb-Douglas Leontief
Function (fixed proportions)

Considering the general two-factor production function supposed to exist
at a certain period:

(A1) Q = F (L;K) , Where
Q can be kept constant, say at a level Qx, so that K can be
expressed as a function of L alone (without Q* since it is kept

constant on an isoquant level):

(A 2) K = f (L) , where the marginal rate of substitution is:
9K — % 5
(4 3) R = 5 = f' (L) and the elasticity of substitution

(A L) 0=_d§K_/L)M_f.(L)._

[y L(dK/daf'(L)) - K(dL/4f'(L))
a e L)L) T K

L2

pp). b MEULIENLY) = KO/ELD)

L

(x) The derivation is based on Appendix A of [L4].
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2 5 _— v
(A 5) (L) = %ET = §E§ = £ (L). dfdéL)

so that a non-linear second order differential equation is cbtained:

(A 6) oLKf"(L) = L[ f'(L)]2 - Kf'(L) , where solution will be the
equation of an isoquant containing o as a parameter and two arbitrary

integration constants.
From the solution of (A6), three types of production functions,
all of them are spectial cases of a C.E.S.-production function, will be

derived.

a) o = 0 Fixed Proportion or Leontief Production Function (input-output

analysis)

If 0 = 0, from (A6): either

(& 7) f'(L) = 0> K = f(L) = k (integration constant) or
g - dKk _ K =
(A 8) Lf'(L) =K =0 -+ 9L = 1 ~ log K + log k) = log L + log k; so that
kp
K= +—1 (k1, ko are integration constants) , which says
1

that, if the input of one factor increases, the input of the other

factor must also increase so as to hold output constant. Consequently,

(A 8) does not have to be considered since it implies a homogeneous

production function of degree zero.

Function (A 7), being the Leontief production isoquant, shows that,

given the output Q, the input of K is uniquely determined. An

occurring change in factor prices has no effect at all on the

capital-labour ratio (%) so that the factors combine in a fixed

(%) If there exists perfect competition on the factor markets or if
the price elasticities of supply for factors are equal (so £,=
2,), the marginal rate of substitution is equal to the ratio of

factor prices under profit maximization or cost minimization
so that the elasticity of substitution becomes:

(7 bis) o= 410K K/L
d log w/r



proportion and substitutability of one factor for another is im-

possible.
L M }
\\ \-
\\ \
\ .
YA
N
N
\\ i
N\
s b o =0 (Leontief)
AN
I e e
: N e drd BLE [EAES)
1 \\
) g o o-7(CD)
; T LS.
) : r, .
K, A

°

T: oo (Z/‘nea/'r /b/)

(%)

Figure 1 CES-class of isoquants

So, if o = 0, the isoquants can be written as:

n
=g

(A 9) L for K > Ko (excess capital)

K=K for L5 L (excess labour)

which are right-angled curves where the profit maximizing economy

produces only at the corner point P.

(%) The isoquantsin figure 1 are symmetric because capital intensity
is supposed to be equal to labour intensity (8 = 0.5). For
8§ # 0.5, each isoquant with o # 0 and « will be asymmetric w.r.t.
left upper and right lower parts.



(A

(A

(A

(A

(A

b)

- B0 -

and

If o >0, (A 6) has to be solved, which can be easily performed as:
g _ h . dh _ -h  d%nh _ -2h
Substitute L = e with an, e, iz = -e
2K 3 =
10) %f? = £l Tl _p(ple™E, o thet awtiveeisg in (& &)

and eliminating =B

T1)

and substituting for g

12}

taken with respect to h.

Since h does

order differential equation by setting f'(L) =

(A 12) becomes:

ds

ds _ -2 =

13) oK an Ks (1 o) s 0
df'(L) _ds dK _ ds

14) dh ~ak an " ak 5> (A 13)

15) oK %% # K(1 —0g) —s=0

Utilizing K_VO

order differential equation is:

16) s = 3K . e

dh (e =

g = 1 Cobb- Douglas Production Function

as follows:

dh

and because

becomes

oeK _f"(L) g f'(L)e-gﬁl = e Pe(L))2-k [£'(L)] P

GRE" (L) -+ B2 (L) (1 =g) = [f'(L)]2 = 0, with derivatives

not occur explicitly in (A 12), we can reduce the 2nd
dK

= By 80 that

as the integration factor, the solution of the first

integration constant).

If o = 1, the first order differential equation (A 16) can be solved



(A

(A

(A

(A

(A

17, —==1(1+c)dh »log K= (1+c)h + ¢ (¢ = constant) or

(1 +¢)n

. . h =
K=ke with k = el and since L = e , we find

18) k=x5l1*c)

as the equation of the constant production line.
Deriving a homogeneous production function of degree v, we may write:

(1 # ¢}

19) Q= F(L,K) = F(L /K) = F(z) (z =) and by
Euler's theorem:
(1 +¢) (1 + ¢)
=1 99 99 _ L 4 L 49
R W|ELpEE® (1 +wel K az K dz
= cz %% , which has as solution:
+ 5 :
81 Q= k(L(1 c)/K)\)/C (k = integration constant) which is
equal to the Cobb- Douglas function:
Vo, Y
c X + x
22) @ =kL K ‘= kL%® with o = X2¥C g == and a+B = v (%)
o = any constant value: CES - Production Function
Rewriting the first order differential equation (A 16) and utilizing:
4K _dKkdh _dK -h _ aK _ haK _  dK . 5
2k ) 4L " an'dl " an © or gn = 3o L aL > ve find:

(%) Note that C.D.-function (1.1) is obtained if A = Ae)‘t is substituted

for k in (A 22). Note also that the unitary eEasticity of
substitution of (1.1) can directly be derived from the marginal pro-
ducts (1.2) and application of the definition (7) of o:

d log Kt/Lt d log Kt/Lt d log Kt/Lt

23) o= el = =1,
d log aKt/oLt d(log a/8 + log Kt/Lt) d log Kt/Lt
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& _ iy o oy — K AL
(A 25) LdL—K+cK or = L

K(1 + ck’ )

1S

The implicit solution of this Bernouilli differential equaticn

amounts to:

1 s 1
o
(A 26) K - kL = z (both k and z are integration constants)

Q=

according to the produce for the C.D.-function (see A 19), a homo-

geneous C.E.S.-function of degree v can be written from (A 26) as:

)

= %) LY = i- 1 -0
F(K - Il ) = F(z) and since p =

(A27) Q

FEK© = k1™?)

(A 28) Q

Applying Euler's theorem for homogeneous production functions of

degree v on (A 28):

(A 29) vQ=L g—% sdas MW g™ ¥ e seiutics

oK 3z
(A 30) Q = c}/o Z—v/p = c}/o (K_Q - kL—p)-v/p (c1 = integration
constant) which can be written as:
Ak
(& 31) Q=% [ (1 -8 1 -v/e putting c; ' = 8k; °  and
e; Yk =-(1-28)k; ¥, which ensures that 0 < § < 1

since the arbitrary constant is negative (slope of a convex isoquant

z 1s negative), so that (A 31) is exactly the previously defined

C.E.S.-function (1.L) with k; = Ae’®.



(A

= g3 =

if g » ©: Linear Production Function.

From the definition of isoquant (A 26) it is clear that it tends to
a straight line if o tends to infinity (see also figure 1); in the
limit:

32) Z* = K - kL

Transforming to the production function:

33) Q= F(z*) and applying Euler's theorem once more, we find:

34) Q@ =ky[ 6K+ (1 - §)L] V' so that a linear isoquant is always
attained, but a linear production function only is if there are
constant returns to scale (v = 1), at least when production is

(%)

expressed in original dimension 5

Finishing this appendix, it might be clear to stress that all
previous production functions show constant elasticity of substitution,
or changes in relative factor inputs and prices do not alter the
elasticity. The value of the elasticity is determined by the under-
lying technology and changes in the underlying technology effect
variations on the elasticity for every level of the factor inputs
and prices. So, the constancy of the elasticity refers to its
invariance with respect to changes in relative factor supplies and

not to transformations of the underlying technology.

(2) Indeed, by convenient "normalization" of the production data, a

linear production functionis always obtained, also if v # 1.
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Appendix B Production Functions related to C.E.S.: changing returns

s

(B

(B

(B

(B 5) h(Q) =a_ +a,Q+a,Q% + .... +aQq

to scale and variable elasticity of substitution

C.E.S.- function with changing returns to scale.

From (A 26) and (A 31), the equation of a C.E.S. isoquant can be

written as:

1) o= (1 =6) T % ggP

where z is an arbitrary constant (different from z in A 26), & the
capital intensity parameter and p = % - 1 the substitution

parameter.

Supposing now that returns to scale of the general production
function(A 1) are a function of some changing variable(s), say a
(decreasing) function h of total output, then Euler's theorem on

homogeneous functions may be rewritten as:

2) Q@ n(q) =1L %% + K %% and since p (so o) and k must take

the same values for each isoquant, z in fact numbers these isogquants

so that Q can be written as a function of =z alone:

_ d9 ez L, 3z K
3 n(e) = X LSL.Q+3.Q] -

__ 4 [ A §_°]=_Q5
boon@=-e g2 |0-8F +eg st e

For a specified form of h(Q), the production function is derived

from the solution of differential equation (B L4).

Quite generally, h(Q) may be represented by a polynomial, say of
. (%),

degree n, 1n Q b

n
o n

(%) Other functions for h(Q), depending on a known and constant returns

to scale parameter of the underlying production isoquant, will be
discussed in the next appendix. Note also that for n = o, h(Q) =
a = v and solution of (B 4) yields the usual C.E.S.-production

function (1.4).



(B

6) %%67_6 = - % Q; » which involves an expression in all n

(real or complex) roots of polynomial (B 5). Since many arbitrary

functions can be conveniently approximated by a quadratic:

7) h(Q) = a, +aQ+ a,Q? with real nonzero roots (ad- haoaz > 0),

differential equation (B 6) may be solved by partial fraction with:

1 _ 1 ] -
8) (ao F3 alQ 3 aZQ‘zj = az(Q = al)(Q — (12) with a) and Qg:
-a; + YaZ - haoaz
9) Q) ,0p = Zos so that
0) 1 (e ,loele-al logle-aply 1,0,
aj a; as aj (Ql— (12) Qg —(G.Z = 0.1) P

with ¢ an arbitrary integration constant.

o vV

Since @) ap = — = — _ (B 10), using (B 1), can be rewritten as:

&3 ag
1) Rl - & 1P g = ag)P? = &° [(1 =~ &L ¥ 5K’°:l U g it , vine

QlQ - o]®1 [Q - 0, |B2 = £(q) = QP

12) f = et

02 (11
and B, =
Qa2

B = production function (1.8)

a)=-ajs _al’
emerges.

The term |Q - allsl e - aZIBZ acts as a deflator if the actual

returns to scale imply a higher level of output than that implied

by unchanging returns to scale and in the opposite case, it acts as

an inflator.
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V.E.S.- production functions.

In this appendix, only the variability of the elasticity of substi-

tution of homogeneous production functions of degree one will be

analysed. The discussion of more general V.E.S.-production functions
will be deferred to the next appendix. In general, it may be
noticed that, if the capital-labour ratio varies due to changes in
the factor price ratio, it is possible that the elasticity of sub-
stitution will vary (i.e. if the marginal rate of substitution does

not vary in a same proportion). Two approaches are clear then:

(1) either o is supposed to depend, in a certain way, on the capital
intensity or

(ii) a theory of production is introduced (say profit maximization
or cost minimization) where the output-labour ratio is not
only depending upon the relative wage ratio (see 1.63) but also
upon the capital-labour ratio.

It is obvious that both approaches, the "direct" and the "indirect"

one, are based upon empirical relevance.

B 2.1 o is an explicit function of K/L (direct approach) (%)

(B

(B

(B

(B

To derive the explicit production function in this case of
varying o, we have to solve the differential equation involved by
definition (7) for the first degree homogeneous production function:
K

)

FlL:E) = L @ (1,3

13) Q =5 f(k) or

14) g = £k} with gq = % and k =

ol =

, the capital intensity.

The marginal products with respect to labour and capital are:

15) %% = f(k) + L Qgihl. %% = (k) - % £ (k) = g = kq' and
39 _; 4 f(k) 3k _ — . _ dg
16) 5K L 3k 5K £ (k) q with q' ™ s

(x) The idea of this appendix is based upon the work of R.Sato [18].



or the marginal rate of substitution is equal to:

(B17) R = %%é%% = %,— k , and the elasticity of substitution

(according def. (7)):
(B 18) g = %%%% = 0 (k) so that the (2nd order) differential equation

&R _ dk

R ko (k)

(B 19) with R = g, -k

has to be solved. This yields (in 2 steps):

= dlogk _ g _ , _4adk _
(B20) R=cexp [ 5T == e k and
dk <
(B 21) qQ = c; exp » where c and c¢; are arbitrary
k + ¢ exp ng%E%—E

positive constants of integration.

To work out the integral term in the r.h.s. of (B 21), we have to
specify the function o(k). Empirical relecance has shown(x) that,

for most economies, o will first increase to a certain level (above
unity) if the capital labour ratio increases, and then will decrease
(until a value below unity) if capital accumulates faster than labour.

This dependence implies a parabolic function:

(B 22) o(k) = a + a1k + ayk?, where a, is the form parameter denoting
nonlinearity of (B 22) (xx)

(2) See e.g. Wise,J. and Y. Yeh : "Econometric Techniques for analyzing
Wage and Productivity Differentials with application to Manufacturing
Industries in U.S.A., India and Japan", presented at the 1965
Econometric Society Meeting, Chicago.

(x%)In view of the integrations involved in (B 21), it is already clear
a priori that explicit forms for o(k) other than polynomials are
quite dif?}gult to handle. If o(k) 1s e.g. an exponential function
of type k , the integrand on the r.h.s. of (B 21) becomes

dk

k + ¢ exp(-ak
In the case of polynomials, no exponential terms appear in the
integrand and expcnential and log terms are nicely "compensating"
each other.

7 which seems a very difficult term to integrate.
.y
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Substitution in (B 19) and partial fraction yields:

|5

- dk b dk
R k(ao + a1k -a,k?) ask(k - a;)(k - ap)

(B 23) under the

condition that

(B 2k) a2; > haoaz (ay, ap are the positive real roots of B 22)

a
. e} :
Since aja; = o, W obtain:
2

1 5 £

a @
(825) R =0k"% |k - 0;|% |k - 0p]™ with ¢ > o, 8, = oy end
1 = Ry

!

B = Qg =ty

Taking accout of (B 17), we finally get (see B 21)

dk
By 8
I # Ck1/aolk - ullao'k - 02|ao

(B 26) qQ=c; exp [

Even if a, is set equal to one, the term on the r.h.s.of (B 26) is
an almost hopeless task to integrate, unless B;,B, would be very

simple numbers, which obviously implies a too strong assumption.

Therefore, it will be assumed a priori that the parabolic has
in fact a very flat top such that ap, of (B 22) may be somewhat neglected.
The basis of this reasoning is that the elasticity of subst.tution only
starts decreasing when the capital stock is being accumulated at an

exceptional high rate. So, (B 23) becomes:

dR____dk = _dk _ 2y _dk ; _—
(B 27) R~ Ela_ + ajk) i = fa_ + ak) with solution:
) () ) o
_ g - k 1/ag : :
(B28) R = ~ k =c (;——:j;ﬁ;) so that the production function

(B 26) becomes:
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{ ax
1/a

k (@]
+ _—
k C(a h i a1k)

) 3

(B 29) qQ = c; exp (ey, & > 0)

To perform the integration on the r.h.s. of (B 29) analytically, we
have to assume simple values for a_:

(i) say for &, =1

Then the integrand of (B 29) is simply rewritten by partial fraction as:

(B 30) dk = (1 + a k)dk » dk g cajdk
k k(1 + a1k + ¢) (1 + o)k (1+c)(1+ajk+c)
k + cf )
1 + ajk
(B 31) q = cy exp (T_:—g log k + TE e log (1 + a1k + c) + c5)
—_— _C
1# + o ! ;
S ey k o (1 + a1k + c)1 e or for the original production
data:
i1 e
+
(B32) Q@=c3k '™ [(1+¢c)L+aK]"™C
. &
_ 1+c a 4c . . .
= c5K (L + —L— K) which is precisely the V.E.S.
3 1 + e

function (1.10).

[¢]

(ii) say for a_ = 3.

Then rewriting integrand (B 29):

415)2 i+ ajk + a?)k?

a G .
)2 k(z + ajk) + ck? k(g + (ay+c)k+a? k2)

(B 33) and

k
4 —
= c(§ * alk

since (a; + c)? > azlis always satisfied, we may apply partial fraction

to solve the differential equation. Consequently, (B 26) becomes:

1 1 a a2 aq
O T e e )

14y log-op) (@y=ap )  (ay-asp)

(B 34) q= cok| k-aq] s o

2
Ly P ., T
a%) bay(ay-1) o= ap-ay
| k-ay|
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with

-(ay + c) *+ /(a; +c)Z - aZ;
282 1

(B 35) a1,y =

B 2.2 Empirical V.E.S. production function based on profit maximization

(%}

or cost minimization ("indirect" approach)

Under profit maximization or cost minimization, the marginal

product of labour is equal to:

=

(B 36) %% = —%l ,S0 that, because of (B 15), the assumed relationship
o

Le}

between log q, log %%l and k may be written as:
o
(B 37) log q = log a + b log (q - kq') + g log k or

= _ 1 4a\b g _ 2 dz\b g _ . N
(B 38) = a (g - k dk) k- = alg dk) k® with z

o =

Rewriting the differential equation (B 38) in terms of z and k as:

. (B 39) k(1-g_2b)/b dk = a1/b z(1-2b)/b dz and integrating:
k(1—s-b)/b 1/b Z(1-b)/b
(B ko) fE o = a S + ¢ (c = arbitrary constant of

integration).

Substituting for z = %, the final V.E.S.-production function is

obtained:
i =17 _b
(B 41) q=|{=P) 1/bk'g/b-°—(—11—;—;’—)k 5 it
(1 -g=-"1a b a
_1
= (a i k_p) with

(x) The V.E.S. production function treaded here is that of Liu and
Hildetrand. Ser Nerlove [17].




=G =

P - T T T ¢ ¢
b 1-b (1—g—b)a1/b

B = :EL%?%l— » Wwhich is equal to the constant returns
b a

to scale C.E.S.-function if m = o (i.e. if g = o) (x)

To obtain the final expression for the elasticity of substitution,

the marginal rate of substitution formula of (B 17) may be utilized

so that:
(B Lk) Q_lgﬁ_ﬁ_ = é%%%T - %; = - E%%ETEETT with q' = gﬁ and q" = %;%—
and the elasticity of substitution becomes:
(B 45) o =-9iéﬂi%9ll where, for V.E.S.-function (B L1),
(B46) o' =4q"" Emk =Ll ek'(”o)] (x%) and
(B 50) q" =opm %%i £ (14p) %é %%l such that:
o

(B 51) 0 = —————  vwhere use has been made of (B 48).

e

(1+D)' pm kq’

(%) The V.E. S.-production function, expressed in original production
units, is directly obtained as:

1 o -
(B L42) Q =[; p(%) 0 5 8K ] P and setting a=(1—6)Atp, B= 6Ato

and providing a time subscript:

K 1
(B 43) Q=4 (1_6)(_3)-mp L.° + 6k.°| To , which is precisely equation
t t LE t 7
(1) el At = Ae t.
(%%) The contents of (B 37) may Re formalized by raising (B L41) to power
-p and multlplylng with q s

(B 47) q= q1 P (ax™ + gk “P) and from (B 15),(B 36) and (B L46):

(B 48) gq - kq's= %%l = q1+p a(1-m) k™™ or
o
P | [ Wi mp
(B 49) 1logq o log a(1-m) + i log TR + T log k.



Since
9
(B 52) P
g
(B 53) Py
(B 54) o

Wi, Wi
P2 .- pa
kq' K rip
L pQO

=T 23
Sk S

§
(140) - £2

, With s

K

+ i Ly =
Krs 1 and 1f 24
Qpi

the share of capital, or
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Appendix C Homothetic Production Function. (%)

Ir general, it may be said that a certain neo-classical
production function F(L,K) of an arbitrary degree of homogeneity v
and with constant or variable elasticity of substitution may be mono-
tonically transformed to a neo-classical production function as (1.12)
which is homothetic and has a changing returns to scale parameter,
varying according to a preassigned relationship to the output level.
Such transformed production functions are also called "generalized"
production functions ( see[ 22] ) and are characterized by the
property that all expansion paths are along straight lines through

the origin.

o =>
K

Figure 2 Homothetic Production isoquants.

So, for a returns to scale function h(Q), we may apply the generalized

Euler's theorem for homothetic functions:

(%) This appendix is based upon the work of Clemhout [ﬂ and
Zellner-Revankar [ 22] .
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(€ 1) h(g). @ =L %% + X %% with positive marginal products:

2Q _ 4G 3F
€2} 3% u *°
3 _d6 3F _
oK dF 23K 2
3 daG s oF 2oF
since o < F(L,K) < o or % °° (monotonic transf.),—f, K %
or
dG oF aF dG " -
c = — —_— —_— ) = — '
(€ 3) h(Q) Q aF (L ot ¥ K aK) aF F by application of Euler's

theorem on the homogeneous production function F of degree v.
Rewriting (C 3):

(¢ L) %% = E%%j_a , we notice that its general solution is given

by production function (1.12).

Since the elasticity of substitution of G (or Q) is the same
as that associated with F(because both functions have the same marginal
rate of substitution: quotient of both marginal products in (C 2)),

o is constant for all isoquants along a ray but not necessarily
constant along one isoquant (because F may be a V.E.S. function). So,
the isoquants only differ in scale but not in shape so that they are
parallel to each other (figure 2). It is the curvature of the pro-
duction surface which indicates the type of returns to scale. This
curvature can be formalized in various ways. In general it may be
said that returns to scale diminish if the output level is increased.

A. Zellner and N. Revankar [ 22] investigate three expressions
for h(Q):

(1)
(¢ 5) h(Q) = v(1 - %) with o < Q < c or substituting in (C L):

.(C6) &F __d4q9 _dq _dlc -q)
Flqud 8 c-a

or solving, we find the homothetic

production function:
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(¢ 1) Q = (c - Q) Fe, = :—F_CTF% or for the arbitrary positive
€1

constant c¢; = 1:

(c 8) Q = 2 = £ = < so that Q and log F are inter-
1+F -1 —log F
B+ e +1

related by a logistic function.
(ii)
(c 9) h(Q) = vl_or* %] with F = G_1(Q), a,8 > o or substituting

into (C 4) and solving:

-1
gg_dF(a+sF)=adF+egF -

(c 10) g = 7 =
B

(C11) Q=c; F e , With c¢; an arbitrary positive constant

(1ii)

(C 12) n(Q) =v + a(s;,(g) with o < a < v

Again substituting into (C 4):

arF aqQ_ aq 1 (a-v) dq :
(g 13) = = s dend and solving:
Fv ) (v+a)Q b (a+v) b-Q
Q v+a(b+Q) v+a(b+Q€|
2¢
(c 1) Q {(14c) b+(1-¢) Q} il ¢ FI*® vith ¢y, a positive constant

of integration and ¢ = -
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