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Desigr, of Simulation Ex~eriments

A simulation model is run for different combinations of its para-

meter values. Besides the effects of parameter values the effects

of different model structures are investigated, but for brevity's

sake this introduction speaks of parameters where parameters and

model structures are meant (see Sect. 1). A sizable number of

runs is necessary for validation, sensitivity analysis, what-if

questions, ontimization, etc. If the simulation model has many

parameters - as most realistic models do - then the exploratioc:

of the parameters' effects becomes problematic. The following ap-

proaches are popular:

(i) Change one parameter at a time.

(ii) Investigate all parameter combinations.

BotYi approaches concentrate on relatively few parameters, because

investigating all parameters of possible relevance is thought to

be impossible. This contribution will present designs that are

more efficient and more effective, i.e., fewer simulat.ions runs

are needed than in tl~~ approaches (i) and (ii); contrary to ap-

proach (i) interactior~s among factors can be detected; moreover,

it becornes possible - if needed - to f~xplore the pas~,ible r.ele-

vance of a great many parameters, say, a thousand parameters. Ap-

plications of tYre proposed designs are found in Kleijnen (1979)

and in tire publications referenced below.

1. Ouantitative and qualitative factors

The introduction spoke of a simulation model's parameters and

structure. The statistical literature speaks of quantitative and

qualitative factors. For example, in a queuing model factor 1 may
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be the traffic load p(- a~u with arrival rate a and service rate

,,); factor 2 may be the number of servers ( a quantitative, dis-

crete variable); factor 3 may reflect the rule determining the

order in wtiich customers are served (a qualitative variable whose

changes affect the simulation program). By definition a factor is

not constant in tlie experiment but changes over the simulation

runs. This contribution concentrates on factors that can assume

only two vaiues or levels in the simulation experiment. For exam-

ple, the priority rule (factor 3) is either first-come-first-serv-

ed (FCFS) or smallest-jobs-first ( SJF). And the traffic load

(factor 1) is studied only at its "low" value, say p- 0.70, and

at its "high" value, say p- 0.95. Restricting the factors to two

levels means that it is still possible to detect whether the fac-

tors do nffect the simulation model's response ( apart from patho-

].ogical situations, i.e., the response curve is hill-shaped and

happens to reach identical values at the two selected factor le-

vels). Obviously interpolation or extrapolation to other factor

levels, makes no sense when the factor is qualitative. For a quant-

itative factor it does make sense. However, this contribution con-

centrates on the qualitative question: do the factors affect the

response-yes or no? In a later phase of the investigation, more

detailed questions can be asked, such as: how much does the re-

sponse change when factor 1 changes by one unit; which combination

of factor levels yields the maximum response? The techniques of

this contribution apply to these more detailed questions but this

issue will not be furtl~er discussed; see the general literature

on experimental designs, e.g., Daniel ( 1976). Text-books tailored

to the needs of simulation practitioners are Kleijnen (1975 and

19ASb). Also see the contribution by Kleijnen (19A3a)

The mataematical representation is as follows. Suppose
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the simulation experimenter distinguishes k factors. In the above

example k was only three but k may be much higher, say k- 100J.

Each factor j(j - 1,...,k) can assume only two values or levels

so that k binary variables x, are introduced: x. --1 if factorij ij
j is "switched off" in run i with the simulation model, and

x, - tl if factor j is switched on in run i ( i - 1,...,n). Forij
ínstance, if factor 3(priority rule) is FCI'S then it might be

s.~id that factor 3 is switched off; however, the association be-

tween a factor's two levels and tne values minus and plus cne is

crnnl,letely ~,rt,itrary and hence that us:;ociation may be randomly

detcrminPd (toss a coin). Consequently, x2i --1 may mean that

the number of servers is at its high level. ~1ote that if a 3uali-

tative factor would assume more than two levels, then binary vari-

ables assuming the values zero and plus one are necessary; see

Kleijnen, 1975.)

2. Three appr.oaches to the design of experiments

Using the binary variables xij three different approaches to the

design of simulation experiment are shown in Table 1, where thF

constant one is not explicitly displayed but only its sign.

(i) One-factor-at-a-time.

The first run ís made in the base position, i.e., a11 factors are

off: xl --1 (j - 1,2,3). Next each factor is changed in turn
j

while keeping all other factors at their base position: x. - tlij
and xij, --1(~ - jfl and j~ j'). This yieldsn responses yi

(i - 1,...,n) where n- ktl. Factor affects, say yj, are estimat-

ed by

yj - yi-yl ( j - 1,...,k) (i - jtl) (1)
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Note that the levelstl and -1 were associated arbitrarily so that

the sign of the factor effect has no importance, i.e., in Eqn. (1)

the absolute value could have been taken. Approach (i) does yield

valid estimators of the factor effects Y. 'Po compare this apprcach

to the otht:r approaches ttre accuracy of the estimators should be

quantified. For simplicity's sake - and in accordance with statist-

ical tradition- the responses are assumed to have a cor.stant vari-

ance Q? - a2 (i - 1,...n). Then Eqn. (1) implies that the varíancei

of the effect estimators is a constant, say oY:

a2 - 2oZ
Y

(2)

(ii) All combinations of factor levels: full factorial design.

Approach (ii) requires more runs than approach (i) does. The ad-

vantages are:

- Efficiency: the estimators of Y have smaller variance "per run"

(see below).

- Effectiveness: inter.a~:tions among factors can be estimated.

The "common sense" estimator of Y1 is obtained by averaging the

responsesobserved when f.`actor 1 is on respectively off, and taking

the difference between these two averages:

Y1 - (yZty4ty6ty8)~4 - (y1tY;tYS}Y~)~-1

In c~eneral:

(3)

' n k
Y. - E x, .y.~(n~2) with n- 2 (4)

~ i- 1 1~ 1
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Now consider the following regression model, where E represents

r.oise (capitals denote random variables):

- RG f B1. xi1t...tR..xi t...tl~k.xiktEi (5)J j

Ecln. (4) in the contribution by Kleijnen ( 1983a) shows that the

Least Squares estimates of 9, in Eqn. (~i) are equal to half the
J

y values defined by Eqn. (4): S, - 0.5y. (j - 1,...k). Since the
J J

experimenter's purpose it to detect whether the response is sensi-

tive to switching a factor on, R and y give exactly the same in-

formation,namely factor j is important if the t statistic corre-

sponding to either R, or y.is significant; see Eqn (16) in Kleijnen
J J

(19B3a). From Eqn. (4) and the assumption of independent responses

with variance oZ, it follows that

n 2 2
Y- Z F. (xi~)Z.ai - 4n - Z with n- 2k z S (6)

n i-1

Comparíson of Eqn. (6) and Eqn. (2) shows that the variance re-

duced with a factor 4 while the number of observations increased

with a factor 2. In general, tYre variance reduction becomes dra-

matic as n increases, i.e., as the number of factors increases
,k(since n - ~ ).

Approach (ii) is not only more efficient than the one-fac-

tor-at-a-time approach, it is also more effective in that it permits

the estimation of interactions among factors. Zntuitively formul-

ated, factors 1 and 2 are said to show interaction if the effect

of factor 1 also depenàs on the levels of factor 2. Graphically,

interaction means that the response curves are not parallel:

."~E(Y)~4x1 is not constant but 3epenas on x~, In mathematical sym-
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bols, Eqn. (5) is auc?w~ented with the interactions between two

factors (denoted by Sjj, with j~ j'),interactions among three

factors (5.,, ,) and so on. For example, three factors yield:
J J j'

Yi -[10 } t~l'xil t(i2.xi2 t g3'xi3 t

} ~12'xii'xi2 } ~13'xil~xi3 } ~23'xi2'xi3}

} ~]23.xil.xi"l.xi~ f hi (7)

Interactions among three or more factors are difficult to inter-

pretand are usually assumed to be zero. However, if interactions

are assumed to be negligible then approach (iii) becomes relevant.

(iii) Incomplete factorial designs.

If no interactions at all are assumed so that Eqn. (5) holds, theri

approach (ii) uses 23 - 8 runs to estimate only four parameters,

namely, the factor effects y, ( j- 1,2,3) and the overall effect
J

yp. These four parameters can also be estimated from the four runs

i-1 -1in Table 1 which fonn ~~ 2 deslyn (only a fraction 'l of all

23 combinations is actually simulated). The parameters are esti-

mated strictly analogous to Eqn. (3) or Eqn. (4), e.q.,

- (y2ty4)~Z - (ylfy3)~2

And Eqn. (6) still applies but now with n- ktl ~~ Zk:

2
02 - 4~ - u~ witli n- kfl - 4

y n

(8)

(9)

Comparison with Eqn. (2) shows that the approaches (i) and (iii)

use the same nurnber of runs but approach (iii) reduces the variance

by a factor 2 if k- s. This variance reduction further improves

as k increases: in Eqn. (2) the variance remains a constant while
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in Eqn. í9) n equals k t 1(more precisely, n equals ktl rounded

upwards to the next multiple of 4; notation: n-[ktl]; e.g. if

k- 30 then n- 32; see Kleijnen, 1975).

In cleueral, if the intc~ractions are asstmed t.u t~e neyli-

gible ttten k factors car. be investigated in only n-[ ktl] runs.

These designs are much more efficient than the one-factor-at-a-

time approach is, and they require fewer runs than a full factorial

design does. The designs of approach (iii) have been tabulated; see

Kleijnen (1975). They are further investigated in the next section.

3. Incomplete factorial designs

If the experimenter. has confidence in his assumption of neqligible

interactions then he can use only n-[ktl] runs. After he has

estimated the factor effects he may double-check his assumption by

simulating one or more extra factor-level combinations to validate

the (first-order) model of Eqn. (5); also see Eqn. (27) in the con-

tribution by Kleijnen (1983a). If from the beginning he has doubts

about the assumption of negligible interactions then he should

make more than n-[ktl] runs. One attractive design type requires

n- 2k runs (more exactly, 2k is rounded upwards to the next

multiple of eight, e.g. k- S requires n- 16). The latter type

yields estimators of the main effects (first-order effects) y. or
J

gj which remain unbiased even if two-factor interactions ~Yjj, or

Sjj, are important. Note that this type still requires not 2k but

only 2k runs, e.g., if k- 8 then not 256 but only 16 combinations

are simulated.

If actually interactions are important then incomplete
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factorial designs may give very misleading results. For instance,

design (iii) in Table 1 would result in an estimator of 63 with

axpected value equal to ;~3 plus the two-factor interaction ~12 (the

column corresponding to interaction B12 equals xil xiz and is

identical to xi3; also see Eqn. 7).

Many more types of incomplete factorials can be derived.

For instance, in a harbor simulation Kleijnen et. al. (1979) stu-

died six factors; not all interactions were thought to be impor-

tant; actually six of the fifteen two-factor interactions were su-

spected to be i;rportant. A design with sixteen runs yielded esti-

mates of all parameters thought to be relevant. Other types yield

unbiased estimators of all two-factor interactions, at the price

of more runs. Special designs have been constructed for optimizing

k variables, applying Response Surface Methodology (then the vari-

ables are not binary but are cardinal); also see Sect.4 in Kleijnen,

1983a).

In general, experimental design theory shows how estima-

tors of specific factor effects are biased by other effects. For

instance, design (iii) in Table 1 yields an estimator of y3 which

is biased if the interaction y12 is imoortant. The choice of a

design is based on the postulated regression model. For instance,

the simple model of Eqn. (5) leads to design (iii) of Table 1.

More on regression (meta)models can be found in the contribution

by Kleijnen (1983a).

4. Too many factors: screening

For pedagogical reasons first designs were presented for the case
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that the experimenter wishes to investigate relatively few factors.

Actually in the first stage of an investigation the simulation mo-

del usually contains a great many conceivably important factors.

The model builder hopes that of these many factors only a few are

really important; otherwise he would have to report that "every-

thiny depends on everything else" and a parsimonious, scientific

explanation breaks down.

Several approaches are possible :

(i) Simply assume that the response is insensitive to changes in

most parameters and structural relationships, and concentrate on

a few remaining factors. In this approach the experimenter will

never become aware of the limitations of his conclusions.

(ii) Vary all factors randomly. Suppose the experimenter has a

list of, say,a thousand potentially important parameters: k- 1000.

The desiqns listed in Table 1 require at least 1001 runs. Suppose

further that it is impractical to make so many runs (limited com-

puter time, etc.),i.e., a practical restriction is: n~~ k. A simple

solution is provided by a random design: sample the plus

one respectively minus one values in an n x k table (such as Table

1) with probability a half respectively. This sampling process can

be refined (make each column have an equal number of plus and

minus one values; reject column j if the correlation with column

j' is plus or minus one, where j' ~ j). Factor effects can still be

estimated by Eqn. (4). However, these estimators are no longer

Least Squares estimators' (Mathematically speaking, Least Squares

requires inversion, but the matrix x-{xij} is singular because

n ~ k.) Eqn. (4) results in biased estimators.l)
1) E(B) - E(x'.x~n) -(l~n).x'.E(x) -(l~n).x'.x.B. In orthogonal

designs, such as listed in Table 1, x'.x - n~INby definition.
Then E(B) - S. If n ~ k than not all~columns of x can be ortho-
yonal: x'.x ~ n.I so that E(B) ~~. ~
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(iii) Group the k individual factors into g groups of factors

(q~~k) and investigate these groups as if they were factors. For

example, if k- 1000 then rl - 10 groups each of 100 factors can be

formed. Suppose that the individual factors 1 through 100 are im-

portant. Changing the individual factors 1 through 100 from mínus

one (off) to plus one (on) when going from run 1 to run 2 will then

not affect the response. Conversely, if runs ] and 2 yield the

same response, then the experimenter may conclude that none of trre

first hundred individual factors are important (this conclusion

can be proved to be correct under mild assumptions; see Kleijnen,

1975). Group-screening enables the experimenter to eliminate many

factors after very few runs: n cck (since n- gtl or n- 2g where

g ~-:k). After the screening phase the important factors can be

further investigated, applying the designsof the preceding section.

Applications of group screening are rare. One explanation may be

that experimental designshave been applied mainly to physical sys-

tems, not to abstract systems like simulation models. In physical

systems it is extremely difficult to control a thousand factors

from run to run. In simulation, however, all factors are control-

led by the computer program and its input, so that group screening

should become more popular. This type of design was indeed applied

in the simulation of a strateqic airlift and a computer system;

see (Nolan and Mastroberti 1972) and (Schatzoff and Tillman, 1975).
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Table l. Experimental ~esigns for Three Factors

(i) One-factor-at-a-time

Run i

1

i - r

(ii) All combinations of factor levels

Run i xl x2

1

2 }

xj

3 - t -

- f.

t

Q t t i

(iii) An incom~lete factorial design: 23-1 design

Run ~ xl x,L x3

2 t

3

4 t t t
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