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Simplicial algorithms for finding stationary points, a unifying description.

by

G. van der Laan and A.J.J. Talman

]. Iritroduction.

In the past decennium a large number of simplicial restart algorithms for
finding a zero of a continuous function f from Rn into itself has been developed.
Besides the well-known alqorithm of Merrill [IS], many variable dimension
alqorithms have been proposed. These met.hods allow for a start at an arbitrary
point from which one among several directions (rays) is followed to leave this
point. These rays define a collection of cones of variable dimension in which
the search for an approximate fixed point takes place. In each cone movc~ment
occurs through simplicial pivotíng. This class of inethods has been initiat.ed
by Van der Laan and Talman 18, '3, 10, 121 and Reiser [16], who proposed
algorithms with ntl and 2n rays. Later on algorithms with 2n rays (Wright
[24]) and 3n-1 rays (Kojima and Yamamoto [5,6]) have been proposed, whereas an
algorithm with 2 rays has been developed by Saigal f17] and Yamamoto [25].

Several authors have given an interpretation of the variable dimension
algorithm in one way or another. An interpretation as tracing zeroes of a homotopy
function from an affine function on the zero-level to the function of interest
on the one-level has been given by Todd f20,21], Todd and Wright 1231, Wright
C24] and Van der Laan and Talman f.13]. In Van der Laan [7J and Talman f18], it
has been shown that if an algorithm works in a t-dimensional cone, the function
value lies in an (ntl-t)-dimensional "dual" set. Operating in cones of varying
dimensions, a path of points is followed which terminates with a zero of f.
This is closely related to the work of Kojima and Yamamoto f5,6], who developed
a basic theory for designing variable dimension algorithms by introducing the
concept of a primal-dual pair of subdivided manifolds.A similar unifying theory
has been proposed by Freund f3].

In all references mentioned above it is necessary to be familiar with
concepts like simplicial subdivision, píecewise linear approximation and
complementary pivoting. Kojima f4] states that, we quote, "Understanding such ,
technical texminologies .... often causes difficulty in findinq out a basic idea
of the vd algorithms . The author feels that this has been an obstacle to vd



algorithms beinq popular though they have been attracting much attention"
(pp. 200-201). To make the basic idea clear, Kojima describes the variable
dimension algorithms in the framework of homotopy continuation methods (see
for an overview Allgower and Georg C1]). In this paper we will follow this
approach to give a general description for the limiting paths of the algorithms
mentioned above. To do so we rewrite the zero point problem as the problem of
finding a stationary point. Then we give a procedure to find such a point.
This procedure is a generalization of the method given in Eaves [2] for
finding a stationary point of an affine function, and generates a path of
stationary points of the function restricted to an expa.~ding convex set. Taking
this set in an appropriate way, we will show that there is a close relation
between the path of stationary points and the limiting paths of the simplicial
restart algorithms.

This paper is organized as follows. In section 2 we develop the basic
framework. In section 3we discuss the (ntl)-ray algorithm, in section 4 the 2n-,

2n- and (3n-1)-ray algorithms, and in section 5 Merrill's algorithm and the
2 ray algorithm. Finally in section 6 some concluding remarks are made.



2. Computinq stationary points.

Let f be a continuous function from Rn into itself and suppose we want to
w t f

find a zero point x of f. Clearly f(x )-0 if and only íf x is a stationary
point of f, i.e.

x~f(xt) Z x f(x~) for all xeRn, (2.1)

~
More general we have that x is a stationary point of f in S~Rn if

~ ~ ~
x f(x ) 2 x f(x ) for all xES . (2.2)

Eaves Í2] proposed a method to find such a stationary point of an affine function
f(x)~Cxtc on the polyhedron A-{xeRnlAxsa}. To do so, he adapted Lemke's algorithm
by introducing auxiliary constraints B(t)-{xeRnlBxsbtte}, where es(1,...,1)T and
t varies over (0,~). The mxn matrix B and the m-vector b are such that for ta0
some arbitrarily chosen starting point v is the unique solution to AxSa and Bx~.

Now, let us consider the points (x(t),t) such that x(t) solves (2.2) for

S~AnB(t). Since AnB(0 ~{v},itfollows that (v,0) is a trivial solution. Moreover,

with deleting the technical details, we have that the set of solution points

(x(t),t) is a disjoint union of curves (1-dimensional manifolds) in RnxRt, assuming

that some reqularity conditions are satisfied. Since v is the unique solution

for t30, the path starting in (v,0) cannot return in Rnx{0}. Since AnB(t).is

bounded for any t and the path (x(t),t) starting in (v,0) cannot stay in a

bounded set, t must go to infinity. Clearly, if x(t) solves (2,2) for SaA then

x(t) ís a stationary point of f on A. When A is bounded we have that AnB(t)eA

for t sufficiently large and a stationary point can be found by following the

path of points starting in (v,0).

Zangwill and Garcia (26] have discussed the possibility of using path
following procedures for establishing existence of equilibria. They apply such
a procedure to an exchange economy model. To be more specific, letting z(p)eRn
be the vector of net demands given the price vector peSn-1z{peR}IEj~lpjal}, a
path of points (p(t),t) is followed where p(t) solves

find p~ such that p~z(p~) 2 pz(p~) for all peSn-1(t) (2.3)

where Sn-1(t)-{peSn-1lpzQ-(tte)e}, e~0 very small, OSt51, and Q some~arbitrarily
chosen initial price vector. So, p(t) is a stationary point of z: Sn-liRn on
Sn-1(t). Let k be the unique index for which zj(Q), j~l,...,n is maximal.



Clearly, then for e sufficiently sm~tll, in Sn-1(0) there is a unique solution
0
p, namely

0 0 -
pk - ~k}(n-1)e and pj - Pj-e j ~ k.

0Followinq the path of solutions (p(t),t) starting from (p,0) an equilibrium is
reached at t-1.

Clearly, this approach is very close to the idea of Eaves. In fact, the
only di.fference is that z is not necessarily an affine function and that B(0)
has been replaced by Sn-1(0) on which (2.3) has a unique solution which can
easily be found.

In Van der Laan and Talman (14] it is shown that the path of points
(p(t),t) fs the limiting path of the simplicial variable dimension algorithm

introduced in Van der Laan and Talman C8] if the labelling rule and the under-
lying triangulation are chosenin an appropriate way.

In this paper we will use Eaves' idea to give a unified framework of

describinq the limiting paths of simplicial restart algorithms to find a zero
of a continuous function on Rn. Therefore we return to the problem (2.1). To
solve this problem, let v be some arbitrarily chosen point and S(0) some "arbitrarily
small" n-dimensional convex compact subset of Rp containing zero in its interíor.
With arbitrarily small we mean that for xeB(0), ~~x1~2 Se for some arbitrarily
small positive e. Finally, let 8(t)-(ltt)B(0) -{xeRnl(ltt)-1xeS(0)}. Now,

let (x(t),t) be a pair such that

x(t)f(x(t)) 2 xf(x(t)) for all xeS(t), (2.4)

where S(t)-{v}tB(t). Then again we have that under some regularity conditions

the set of points (x(t),t) is a disjoint union of loops and paths. Since S(0)

is arbitrarily small, we may assume that for t-0, there is a unique solution
x(0). In fact, this will be the case for v almost everywhere. Then the curve
starting in (x(0),0) cannot return to the zero level. Furthermore it cannot be
a loop. Since B(t) is bounded for any fixed t, we must have that going along the

paih starting in (x(0),0), t goes to infinity. Clearly, x(t) solves (2.1) if

x(t) e int S(t). So, following the path, a solution x(t~) to (2.1), and hence
a zero of f has been found as soon as

~ ~
x(t) - x(t ) e int S(t) for t~t .



Since 0 e int B(0) we have that B(t) and hence S(t) expands to infiníty,
i.e. for each bounded set C we have that CcS(t) for t sufficiently lazqe. In the
next theorem we prove that a condition originally due to Merrill [15] is
sufficient for guaranteeinq that x(t) is bounded. Let B(w,v)-{xeRn~ ~~x-w1~2 5u}.

Theorem 2.1. Suppose there exist wERn and u~0 such that foz all x(B(w,u), f
satisfies

f (x) (x-w) ~ 0.

Then the path (x(t),t) starting in (x(0),0) is bounded in x.

Proof. Let t be so large that B(w,L) c int S(t). Now suppose that the path is

not bounded. Then the projection of the path on Rn crosses bd S(t) in some

solution x(t). Hence x(t)(B(w,u). Therefore

f(x(t))(x(t)-w) ~ 0

However, since x(t) solves (2.4) we also have that x(t)f(x(t))2xf(x(t)) for all
xeS(t). Since weS(t) a contradiction is obtained.

Theorem 2.1. says that if Merrill's condition is satisfied a zero of f will
be reached followinq the path of points (x(t),t) starting in (x(0),0).

In the next section we will show that by choosing B(0) in an appropriate
way there is a close relation between the path of stationary points and the
limiting path of the simplicial restart algorithms. For simplicity, in the
following the path g denotes '~e projection on Rn of the path (x(t),t) startinq
in (x(0),0). We will see that the path x coincides with the limiting path
except that the latter starts in v instead of x(0). Recall however that x(0)
lies arbitrazily close to v.

Before treating some particular choices of 8(0) we first consider the
general case. So, let B(0) be some compact convex set containinq 0 in its
interior and let x(t) be a solution to (2.4). Then either x(t) E int S(t),
implying that f(x(t))-0 and hence x(t) is a zero of f, or x(t) e bd S(t).
In the latter case it follows from (2.4) that

S(t) c H(f(x(t)), x(t)f(x(t))),
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where for some peRn`{0}, ceR, H(p,c)-{xeRnlpx-c} and H(p,c) is the half space
below the hyperplane H(p,c), i.e. H(p,c)s{xeRn~pxsc}. So, as illustrated in
figure 1, S(t) is in the half space below the hyperplane through x(t) with
normal f(x(t)).

Fiqure 1. S(t) ~ H with H the hyperplane through x(t) with normal f(x(t)).

For B(0) being an n-simplex the path X is illustrated in figure 2. Observe
that t does not increase monotonically moving alonq the path. For tat1, y is
the unique solution to (2.4). However, for tat2, (2.4) has three solutions,
namely x1, x2 and w2, which are all lying on the path x(t) startinq in x(0).In x1 and x2 we have that H(f(xl), xif(xi)) contains conv(w1,w2). For w2,
we have that w2 is the only point of S(t2) in H(f(w2), w2f(w2)). Goinq along
the path, t increases until z1 is reached, t decreases from z1 till z2 and
increases again after z2 has been passed. A zero is obtained at x~.

Figure 2. The path X for B(0) being an n-simplex, n~2.
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3. The (ntl)-ray variable dimension algorithm.

In this section we show that if B(0) is chosen in an appropriate way,

the path X is the limiting path of the (ntl)-ray variable dimension

algorithm of Van der Laan and Talman [9,10], when using the UK-triangulation

with U a nonsingular nxn matrix with diagonal elements equal to 1 and off-
diagonal elements equal to -a-1, a~n-1 (see [11]).

To do so, we first give the limiting path of the algorithm. Therefore, we

define for T~Intl' the sets A(T) by

A(T) - {xeRnlx-~tEjeT~ju(J), aj~0},

where u(j), j-1,...,n is the j-th column of the matrix U and u(ntl)-Ei-1-u(i).

Moreover, let R: Rn-~Rnx{0} be defined by R,(x)-(f(x)T,0)T. Finally, for T~Intl'
we define the sets C(T) and H(T) by

C(T) - {xeRnikk(x) - maxjRj(x), keT},

and H(T) - A(T)~C(T). Observe that for T with ITI~O, ntl, A(T) is a

~TI-dimensional set, whereas C(T)is(ntl-ITI)-dimensional. So, under some

regularity conditions, the set of points xeRn with xeH-UH(T) is a collection
T

of paths and loops with endpoints the set of points x in {H(T)IITI-0,nt1}.

A(1)

Figure 3. Two examples of the limiting path of the (ntl)-ray algorithm.



Clearly,when ITI-O, we have T-~ and hence by definition of A(T), v is the
~unique endpoint for T-~. For all other endpoints x we have that T-In}1 and hence

x~EC(Zn}1), which implies that for all kEIn, fk(x~)-Rk(x~)-~nt1(x~)-0, i.e. x~
is a zero of f. Now, as shown in C7, page 103,4] the limiting path of the (ntl)-
ray algorithm is the path of points of H starting in v. Clearly, as illustrated
in figure 3, this path either goes to infinity or ends with a zero x~.

i , ntl -1 -1T 1 ntlNow define w-u(i), i-1,...,n and w -(-a ,...,-a ) and let a(w ,-...w )

be the convex hull of w1,...,wn}1. Then we will show that taking B(0) -

ea(w1,...,wn}1) for some arbitrarily small positive e, the path of points x(t)
which solves (2.4) starting in x(0) coincides with the limiting path described

above. Therefore, observe that A(T) can be written as

nA(T) - {xER Ix-vtaT(W ,jET), a?0},

where t(w~,jET) is the convex hull of the points ew~, jET. Furthermore, from the
definition of u(i) it follows that

B(0) - {xERnIBTx~}.

where B is the nX(ntl) matrix B-[e,-I] and b is the n-vector with

b1-e(1-(n-1)a-1) and bj-ea-1, j-1,...,n. Observe that b1~0 by the fact that

a~n-1. The set B(0) is pictured in figure 4.

Figure 4. The set B(0) for n-2, e-1.

Let (x(t),t) solve (2.4) and suppose x(t)~int S(t). Then for some Tcintl'
x(t)E{v}t(ltt)T(w~,jET) and hence x(t)EA(T). Moreover we have that

(ltt)T(w~,jET) c H(f(x(t)), x(t)f(x(t))).

So, by considering the structure of B it follows immediately that



and

fk(x(t)) - max fj(x(t)) keT nt1~T
j

fk(x(t)) - 0- maxjfj(x(:.i) keT`{ntl} if nt1ET,

implying that kk(x(t))-maxj:.j(x(t)), keT. So x(t)eC(T) and hence x(t)eH(T).
Reversely if T~Intl, then xEH(T) implies that

xf (x) ? xf (x) for all xeS (t) ,

with t such that x e bd S(t). Finally, x(t) e int S(t) iff x(t)eH(Intl). So,

x(t) solves (2.4) iff for some T, x(t)eH(T). This shows that the limitinq path

of the (ntl)-ray algorithm coincides with the path X, with the remark that

the latter starts in x(0) in stead of v. As a further result the next corollary

follows immediately from theorem 2.1.

Corollary 3.1. Let f satisfy Merrill's condition. Then the limiting path of the

(ntl)-ray algorithm with rays u(i), i-1,...,nt1 is bounded.

For the simplicial path this result has also been proved in ~lOJ. There it

is also shown that the proof does not hold for the K-triangulation. Here we

come to the same conclusion. We obtain the K-trianqulatión by letting a go to

infinity. Then wntl becomes 0, and b becomes (c,0,...,0)T. Hence 0 e bà B(0),

implying that B(t) does not extend into the -e dir.ection, so that not each

bounded set C lies in B(t), for t l.arge enough. This implies that for the

K-triangulation the limiting path cannot be described by the path of solutions

x(t) to (2.4) and hence corollary 3.1 dces not follow. However, as has been

observed by Todd (private communication), when using the K-tiiangulation,

convergence is obtained by choosing an appropriate system of equations with

which the algorithm starts. In the framework described above convergence

is obtained by taking B(0)-eo(wl,...,wntl) with wi-e(i), i-1,...,n, where e(i)

is the i-th unit column and wnt1--e. Then it can easily be shown that the

path X is the limiting path of the (ntl)-ray alqorithm using the K-triangulation

if k is redefined by R(x)-(f(x)T,-E~fj(x))T. Observe that this has been done by

Talman f18J and Kojima and Yamamoto C6J. In this case, Merrill's condition is

sufficient for convergence. The just defined k is the limiting case for

k(x) - (f(x)T, n-a E.f.(x))T (3.1)lta ] 7
when a gces to infinity. For the optimal triangulation with a-nt~ (see [11]) Todd '

C22] showed that (3.1) is optimal for using in zero point algorithms. in general,
for (3.1) the limiting path of the (ntl)-ray algorithm is the path X with
wntl replaced by wn}1 - u(nti).



4. The 2n, 2n and (3n-1)-ray algorithms.

In this section we consider some algorithms which can be seen as elements

of a class of algorithms. In partícular we show that the 2n-ray algorithm

[10], [12] and [16] and the 2n-ray algorithm [23] are extreme cases of a class

of (3n-1)-ray algorithms. .

Firstly we give the set B(0) depending on n-1 parameters. By special

choices of these parameters we get one of the above mentioned algorithms. Since
n

the class of (3 -1)-ray algorithms given by Kojima and Yamamoto [6] depends on

one parameter only, the class of algorithms we will describe is considerably

larger.

To characterize B(0), let al,...,an be positive numbers such that

i-1 ~ ~ ai-lai-2
a1-1 and iai-1 ai- 2ai-2-ai-1

(4.1)

n
with a0-1. Now, for a sign vector sER with sie{-1,0,1}, let sl be the number

of nonzero elements. Then for Isl?1, we define w(s)eRn by

w.(s) - s, a ,
i i ~s~

i-1,...,n.

Hence Eilwi(s)I-lslalsl. The set B(0) is now defined by

B(0) - e conv {w(s)I~s~?1}.

The restrictions (4.1) yield that all vertices w(s) are in bd(B(0)). More

precisely, in case of strict inequalities all vertices are extreme points..
11

For n-2, e-1 and a2-~a, B(0) is drawn in figure 5. For n-3, e-1, and a2-}, a3 ~20

B(0) is drawn as far as B(0) lies in R}. Observe that for a2-~, (4.1) implies
3 3

~y5a3~ ~5. For a3-~, D is the centerpoint of the 2-simplex ABC, whereas for a3- ~5

~e(3)

Figure Sa. n-2, i;-1, a2-~a.
'e(2)

Figure 5b. B(0)nR}, n-3, e-1, a2-~i, a3-11~20.
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D is the intersection point of the three planes through e(1),A,B; e(2), A, C

and e(3), B, C.

Now for some O~y~l~n, set

`~k - 1-(n-k)y '
1-(n-1)y k-1,...,n. (4.2)

Clearly, these a's satisfy (4.1) with a2-{1-(n-1)y}{1-(n-2)y}-1 and the upper

bound of (4.1) for ak, k-3,...,n. Then the path X starting in x(0) is the
n

limiting path of the (3 -1)-ray algorithm given in C6] where Y is the parameter

introduced by these authors on page 16. This equivalence follows from the fact

that x(t) solves (2.4) iff y-f(x(t))~E]If~(x(t))I satisfies the conditions in

[6, page 17] for t, I, J chosen in an appropriate way. Instead of doing this

technical exercise we will consider some interesting cases.

-1 k-1,... n, implying that B(0) becomes theFor y-1~n we have ak- k , .
n-dimensional octahedron {xERnl Ilxll l~e}. For s a sign vector, let

n
X(s) -{xeR Ixi-O if si-0, and xisi?0 if si~0 .

Then x(t) solves (2.4) iff for some s, x(t)eX(s) and

fi(x(t)) - si max~~f](x(t))~ if si~0.

and

Ifi(x(t))~ ~ max]~f](x(t))I if si-0.

which shvas that the path X starting in x(0) is the limiting path of the

2n-ray algorithm.

On the other hand for y-0 we have ak 1, k-1,...,n, implying that B(0) is

the n-dimensional unit cube {xeRnl Ilxl~ m5e}. This case is dual to the above

mentioned case and it can easily be shown that the path X is the limiting

path of the 2n-ray algorithm. So, both the 2n and 2n-ray algorithms are extreme
n

cases of the class of (3 -1)-ray algorithms. For y-1~n and 0 the paths X

are illustrated in the figures 6 and 7.
By (4.2) the a's are related by the single parameter y. However, given

the restrictions (4.1), al,...,an can be chosen arbitrarily. An interesting

case to investigate should be

ak - k-~ k-1,...,n,



n
Figure 6. The 2n-ray algorithm, n-2, B(0)-{xER ~ IIx~I15E}.

f (xl)

Figure 7. The 2n-ray algorithm, n-2, B(0)-{xeRnl Ilxllmse},

which results in lying all points w(s) on the ball {xeRnl Il xll 2-1} (see fig. 9). To
conclude this section, observe thatfrom ttieorem 2.1, it follows that Merrill's condition
is sufficient to prove the convergence of the class of (3n-1)-ray algorithms,
including the 2n and 2n-ray algorithms.
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Figure fl. The (3n-1)-ray algorithm, n-2, a~- 1~~2.

5. Merrill's algorithm and the 2-ray algorithm.

To see how Merrill's algorithm fits in the framework developed in section

3, notice that this algorithm traces a path of zerces to the homotopy function

h(x,a) - af(x)t(1-a)A(v-x), OSa51,

where A is some positive definite matrix. Hence, for a solution (x(a),a) we have
that

f(x(a)) - 1~~ A(x(a)-v).

So, for A the identity matrix f(x(a)) and x(a)-v are parallel to each other,

i.e. for each solution (x(a),a) we have that f(x(a)) is a positive multiple
of x(a)-v.

Since A is positive definite, there exists a matrix P such that PTP-A. Now,
for some small e, define B(0)-P-1B2, where B2-{xERnl ~~xll Z5e} and
P-iB2-{xeRnlPxeB2}. Then, it can easily be seen that for some positive a a f~oint
(x(t),t) that solves (2.4) satisfies



f(x(t)) - aA(x(t)-v)

and hence the path x(t) starting in x(0) is the limiting path of Merrill's

algorithm. It follows again as a corollary that Merrill's condition is sufficient

to prove convergence. For A-I, the path X is shown in figure 9.

Finally, let us consider the case that

1 0 . . . 0

A -

0 Y
2

Y

. 0

0 . . . 0 Yn-1

Then from the discussion above it follows easily that the path of points starting

in x(0) becomes very close to the limiting path of the 2-ray algorithm of Saigal

[17] and Yamamoto C25~ if y goes to zero. However, the limiting case Y-0 cannot

be described by this theory, so that it does not follaw that Merrill's

condition is sufficient for the convergence of the 2-ray algorithm.

f (x)

n
Figure 9. Merrill's algorithm, n-2, B(0)-{xER I IIxII2 5e}.
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6. Conclusions.

In this paper we showed that simplicial restart algorithms for finding

zeroes can be seen as generating a path of stationary points with respect to

a convex set expanding from the starting point. By specifying this set

several restart algorithms fit in this framework. It should be noted that this

approach can also be applied to the nonlinear complementarity problem. If in

formula (2.4), S(t) is replaced by S(t)nR}, a path (x(t),t) with x(t) solving

(2.4) can be generated. A solution to the NLCP x?0, f(x)50 and xf(x)-0 is found
n

as soon as x(t) lies in R} n int S(t). For the linear complementarity problem

Talman and Van der Heyden (19] adapted the 2n-algorithm. Clearly the algorithm

allows for an arbitrarily chosen starting point. The piecewise linear path
n

coincides with the path of stationary points of f with S( t) -{xe R{ I Ilx-v II 1 5( ltt) c}.

Considering Merrill's algorithm, we have that for A-I, the limiting path

is obtained by taking an expanding ball with center the starting point v. For the

variable dimension algorithms we take sets which can be seen as approximations

to the ba11. In case of the (nfl)-ray algorithm, B(0) is an n-simplex. For the
i

optimal UK-triangulation with a-nf~1 (see [11]), we have that with w-u(i),

i-1,...,nf1, all vertices of the n-simplex B(0) are on a ball with center the

origin. Furthermore for the 2n-ray (2n-ray) algorithm B(0) is an n-octahedron

(n-cube), i.e. B(0) is a"2n-point approximation" (2n-point) to the ball.

Finally taking ak-k-~,we have that for the (3n-1)-ray algorithm all 3n-1 vertices

of B(0) are o n a ball. So, we can conclude that the limiting paths

of the variable dimension algorithm become. closer to that of Merrill's algorithm

(with A-I) íf the number of rays increases. In this view we can say that Merrill's

algorithm is a"super-variable dimension" algorithm. In our opinion the mean path

length decreases if the number of rays increases. On the other hand following

the path by simplicial approximation we have less lower-dimensional pieces if

the number of rays increases. In particular there are no lower-dimensional

pieces for Merrill's algorithm. Further numerical experiments with the algorithms

is necessary to obtain some insight in the number of rays which will be optimal.

We should not be surprised if numerical experiments will show that for the

2n-ray algorithm the ratio between the length of path and the piece which can be

followed by lower dimensional simplices is optimal.

Finally we remark that the approach given in this paper is closely related

to the homotopy interpretation of Kojima and Yamamoto [6, page 6], see also

[47. In fact their homotopy function is obtained from,the Kuhn-Tucker conditions

for a solution to (2.4).
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SIMPLICIAL ALGORITHMS FOR FINDING STATIONARY POINTS, A UNIFYING DESCRIPTION

by

~
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ABSTRACT.

In this paper we consider the limiting paths of simplicial algorithms

for finding a zero point. Therefore we rewrite the zero point problem as the

problem of finding a stationary point. The latter problem can be solved by

generating a path of stationary points of the functi~n restrictc,d to an

c~x},andin~7 c~c~nvcx sa~t. 7'hi limiting lrrrt.h of a simp]icia] nlrlc,rit-t~m to find ~t

zero is obtained by choosing this set in an approl~riate way. So, alrnost all

simplicial algorithms fit inthis basic framework. Using this framework

it can be shown very easily that Merrill's condition is sufficient for

convergence of the algorithms.

hEY I40RDS: zero point, stationary point, simplicial algorithms, limiting path,

Merrill's condition.
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