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Abatract

[n this paper we introduce a variable dimension simplicia] algorithm on a cartesian

product of unit simplices to fiad a zero point of a contiauous fanction with special strnctnre.

The special strnctare of the function allows as to perform the linear programming pivot steps

of the algorithm in a small system of eqaations. Moreover, a specific simplicial sabdivision

of thc aimplotope nnderlies the algorithm. The path of points generated by ehe algorithm

approximately follows n piecewix smooth pnth in the simplotope. The latter path can

be interpreted as being generated by aa adjnatment process. We discuss two npplications,

an international trade economy nnd an economy with increasing retnrns to scale. In both

applicationa the zero points of the fanctioa iadnce equilibria in the economies.
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0. Iatroductimt

Let S~ denotethe!-dimensionalunitsimplexin Rttt, i.e., S~ -{x E R~~ t~E~}jrj - 1},

and tet S be the cartesian prodnct of mt 1 times Si. An element or point in S will be denoted

by r-(zp, xt, ..., x~, ), with rj -(xjt, ..., xjti~tl)T an element or point in Sr, j - 0, 1, ..., m.

A component x~t of x in S, k- 1,..., l, j - 1,..., m, is called the k-th component of rj or

the ( j, k)-th component of r. For ell j, the aet I(j) denotea the index set {(j, 1), ..., ( j, [f 1)},

and I denotes the nnion of I(j) over all j - p, 1,...,m.

Let there be given a continnoas fnnction J írom S into Rmt~ttl satisfying, for all r E S

and j c Q, 1, ., m,

ttt
E4-1fjt(r) - ~,

and

fjt(x) ~ 0 if xjt - 0.

Moreover, for j - 1,...,m, Jj(z) dependa only on zo and xj, so that we may write fj(x) -

f~ (ro, xj ). The problem is to find n zero point oí f in S, i.e., a point x' in S such that f(x' )-

0. As will be dixussed in Section 5, this kind ot zero point problems on S with special

structure of the fnnction f arises in sevetal economic applicntions, such as an international

trade model (see van der Lann [1985J) or a general equilibrinm model with increasing retnrns

to scale production (see Kamiya [1988]).

In this paper we describe an efficient simplicial varinble dimension algorithm on S for

finding a zero point of f in S. Under some regnlarity and nondegeneracy conditions, the

algorithm approximately [ollowa n piecewiae smooth path, P, in S. This path connects

an arbitratily chosen point x" in S with a zero point of f and is approximately followed

by tracing from xu a piecewiae Gnear path, P, in S. The lntter path can be generated

by per[orming linear programming pivot steps and making replacement steps in a simplicial

subdivision of S. By atilizing the special etracture o! f and taking a specific triangulation ot

S, the linear programmiag pivot ateps can be made very efficiently while pivoting is typically

performed in juat oae small ([ } 2) x([ t 2) matrix instead of in an ((m t 1)([ f 1) t 1) x

((m t 1)([ t i) f 1) matrix.

Initially, along the path P at the starting point xo the components zjt of x tor which
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f~k(r) is negative are relatively decreased while for all j the components rjk oí xj for which

f,tl r) iv p~wiliVC arr rrl:~Livr~Iy ÍnrrcMrvl. For eintplicity we pesam~ lhnl. .r" li~~,v in thr rPlalive

iut,.rior of S, i.e., r~k ~ 0 for all (j,k) E I. [n general, along the path P the cornponents

T~k of r for which fjk(x) is negative are all relatively eqnal to each other and smaller than

all other components of x, whereas for all j the components xjk of xj for which fjk(x) is

positive are all relatively eqaal to each other and larger thar. the other components of xj.

In applications the path P can be interpreted in this way av the path generated by some

adjustment process on S.

This paper is organized as lollows. In Section 1, we give a formal description of the path

P followed approximately by the algorithm. Section 2 preseats the simplicial subdivision oí

.S which will nnderlie the algorithm. In Section 3, the steps of the algorithm are discussed

iu case of snblinearity. Subliaearity occurs when for all j - 1,...,m, fj(w9) - Jj(w9-t) -

f~(wa)tf~(w'tt),incaseforsomeq, 2 Cq C t,inasimplexwithverticeswt, ..,w9, ..,w~tt

the vertex wv is replaced by ti,a. In case of sublinearity the pivot step itsel[ becomes very

simplc nnd no pivotinq is needed. In Section 4 the steps of the algorithm are qiven in cx,vc

sublinrarity does not occur. Finally, in Section 5 the applications are given.

1. Deacription of the Path

In order to describe formally the path P to be followed by the algorithm, let as consider

the srt B of points r in S for whieh for all (j,k) E!,

ó- mint~~A)Ef Zp if fjk(r) ~ 0
~! A

and (1.1)

rjk
ra - ma2~v1~

jk

r ~
ó if fjk(r) ~ 0.

~A

Clearly, the point xa sntisfies (1.1) with the minimum and nll the maxima eqnal to one.

Notice that the minimum is taken over all indices ( in !) and that each maximam is taken

separately for all j - 0, 1,...,m. Ehrthermore, for each j either fj(x) - 0 or for some

1 ~ h~ k C[ t 1, fja(r) C 0 and fjk(r) ~ 0. So, let e E R~tr~t) be a sign vector, i.e., for
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all (j, k) E I we have s~k E{-1,0, }1}. We call a sign vector a feasible if for at least one j

both aj ~ 0 and sj ~ 0 and for all other j, aj - 0. For a( feasible) sign vector s we define

!~ (s) - {(l, k) E !(j) I ajk - tl}, !}(s) - ~i-tl~ (a).

lo(s) -{(L k) E IO) ~ sik - 0}. !a(s) - ~~~i~(a),

and

!j (a) - {(~,k) E !(~) ~ !jk - -I}, !-(s) -V~~ll~ (I).

for a feasible sign vector s, let the snbsets A(s) and C(a) be defined by

A(s) -{x E S ~ ó- mint,,A~E~ ró if (~, k) E I-(a), and
x~k xfA

ók - maxA-i. ..ti~ IpA if (7~ k) E I}(s)},xjk xjA

artd

C(s) - C!{x E S ~ sgnf( r) - a},

where CI denotes the closure and sgn is taken componentwise. Clearly, a point z E S satisfies

( l.l ) if and only if for some feasible siga vector s the point x liea in the intersection B(s) of

A( s) and C(s), i.e., B is the union of B(s) over all feasible sign vectors a. Assuming regularity

and differentiability of f, each nonempty set B(s) is a smooth 1-manitold, consisting of a

disjoint set of smooth loops and paths. Ench path has two end points, each end point x

lying in the boundary o[ A(s) or having fjk(x) - 0 for some (j,k) Q!o(s). Asanming

nondegeneracy, an end point of a path in B(a) is either the starting point xo, or a zero point

of f, or an end point of exactly one other path in some B(s') where a' differs from s in

only one or two components. Moreover, the starting point xo is an end point of jast one

path in some B(sa), where so-sgn f(xn), whereas each zero point of f is an end point of

also just one path in some B(s), where s is aniqnely determined by the set A(a), in which

the zero point lies. Hence, tàe nnion B of the sets B(s) over all feasible a conaists, ander

certain conditions, of piecewise smooth diajoiat loops and paths with two end points, one

end poinl being xo and all othen being uro points of f. The path P is then the piecewise

smooth path in B which connecta xa with a uro point of f. All other paths, if any, connect

two different uro points of f. Notice that an end point of a path in A(s) canaot lie in the
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L,,un~lxry- uf S sinct~ for a point r in ehc intcrsection uf A(a) and th,. b~~nnJxry c,f S w,~ hxvc
that íor all (j,k) E I-(s), ri~ - 0, implying that fi~(x) is positive and not negative for
these indices.

As described below the path P can approximately be followed by a simplicial variable

dimension algorithm. This algorithm traces from xo a piecewise linear path ts of points
r satisfying ( 1.1), witA f replaced by a piecewise linear approximation, f, with respect to
some subdivision of S into simplices. This simplicial subdivision is such that it subdivides
each subset A(a) into t-dimensional simplices, where t is the dimension of A(a). For a point
x in some t-dimensional simplex in A(a) with vertices wt,..., w't~, i.e., x- E~t~a;w' for
some unique nonnegative numbers a, summing up to 1, the piecewise linear approximation

of f at x is defined by

~(x) - EiÉia,f(m').

The piecewise linear path FS connects xo with a zero point of f and can be generated
by efticient linear programming pivot steps, in order to trace a linear piece of the path in

a simplex, and by replacement steps, in order to move from one simplex to an adjacent

simplsx rontaining the next ( linear) piece of P.

2. Tbe Simplicial Subdivision of S

The simplicial subdivision which will underlie the algorithm in tracing the piecewise

linear path P in S is snch that for any feasible sign vector e it triangulates the set A(a).

This triangulation of A(a) consists of a collection of t-dimensional simplices, where t is the

dimension of A(a) equal to

t- ~~u(a)~ - ~{J~ai - ~}~ f 1,

with ~. ~ denoting the number of elements. In order to deacribe the triangulation of A(s),
whose union over all feavible s will give the desired triangnlations of S, we fitst subdivide
A(a) into 1-dimensional sabsets. For j - 0, 1,..., m, let Tj be a subset of I~ ( a) such that
Ti - I~(s) if ai ~ 0, and Tj - ~o(s) `{(j,kó)} for some index (j,kó) E I(j) if si - 0.
Clearly, the union T of Ti over all j consiata of t- 1 elements. Next, for all j let

7i (Ti ) - ( (j, ki ). ..., (j, ~U ) ) )
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be a pennutation of the t(j) elements of T~, and let

7(T) - (7o(To)....,1',.~(T )).

Nurther, for all j let the index set Z~ (a) be defined by Z~ (a) -!~ (a) if a~ ~ 0 and

Z~ (s) -{(j, kó)} i[ a~ - 0, and let Zt(a) be the unioa of Z~ (s) over all j. Then for any

subset ot indices L of ! we define the projection r(L) of xo by r~(L) - x~ if Ln!(j) - B

andifLtl!(j)~B

r~t(L) - xoklE(i~A)ELxo~, for (j,k) E L,

-0 for(j,k)QL,

i.e., r(L) is the relative projection of the atarting point ro on the face S(L) of S defined by

S(L)-{xES~xit-0 if Lf17(j)~Band(j,k)~L}.

Now the t-dimensionnl sabset A(a,ry(T)) of A(s) is defined by

A(a,7(T)) - {r E S ~ x - xo t a(0)9(0) f E[,',~)ETa(7, k)9(7. k),

with for all j, 0 f a(j,k;~)) C... G a(j,ki) G a(0) G 1},

where q(0) - r(Zt(s)) - xo and fot (j, k) E T

q(7, k; ) - r(Zt(s) U {(7, ~),..., (A k; )}) - r(Z}(s) U {(7, ~),..., (7, k;-t)})-

Clearly, the collection of A(a,y(T)) over all permntation vectors y(T) and sets T is a snb-

division of A(a). The simplicial anbdivision of S is now obtained by sabdividing each set

A(s,7(T)) into t-dimensional simplices.

Let n be a positive integet, then n-t will be the grid siu oí the triangalation. Each

subset A(a,y(T)) is triangulated by the collection C"(a,y(T)) of t-simplices o with vertices

w~,...,w't~ ia S auch that

1) wt e re f a(0)n-~q(0) f Et;,t,)ETa(~, A)n'tq(i, h) for certain integers a(0) and

a(~, h), (i, h) E T, such that for all j, 0 G a(7, ki~)) C... G a(j, ki ) C a(0) C n- 1;

2) w'tt - w' t n'tq(x;), i- 1,..., i, with r-(rt,..., xt) a permntation of the element

0 and the t- 1 elements of T snch that q~ q' if a(ra) - a(x',) and one of the
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following conditions holds:

i) xQ~ - 0 nnd xy - ( j, ki ) for some j;

ii ):y. -( j, k~-t ) and xa -( j, k~ ) for some i, 2 G i C t( j) and some j.

The union C,'(a) ot C"(s,ry(T)) over all permutation vectors y(T) and sets T is a

triangulation of A(a). Finally, the union C` of G"(s) over all feasible sign vectors a indnces

a triangulation of S with grid aize n'~.

9. The Algorithrn on S in Case of Sublinearity

[n S, the algorithm follows the piecewiae linear path from xa of points x satisfying

(LI) with f replaced by its piecewise linear approximation f with respect to C". Ench

point r on this path lies in A(a) for some feasible sign vector a with ao - sgn fa(x) and

a~ - sgn J~(ro,x~), j- 1,..,m. So, tor some ry(T), let o(wt, .,w'tt) be a t-simplex in

A(a,ry(T)) contnining T , then there exist anique nonnegative numbers a;, i- 1,...,t } 1,

wiUi ~;t~a, - I such that x- S;:ia;w' and hence fo(r) - E;tiA~lo(w') and fi(xo,r~) -

E;t~A;fj(wo,w'i) for j - 1,..,m. Since ao - sgn fo(x) and aj - sgn fi(xo,xj), ~- 1,..,m,

there also exist nonnegative numbers pik sucó that fjk(s) - p~aaj~ for all (j, h) E I. Hence

a„ i- 1, ..., t} i, aad ptb, ( j, h) g lo(a), are a solution to the system ot (m } 1)((.} 1) -}. 1

equations defined by

fo(w~)
fi(wó, wi) j l j l

E~}i~; : - Eti,r,)[to(qutaain I e(Qh) 1 - I O 1 .(3.1)

f,x ( wó, w;, )
l l

1

where the (j,h)-th unit vector e(j,h) in Rt~t~)(tft) is defined by ela(j,h) - 1 and 0 else-

where. When, tor some j - 1,...,m, aJ - 0 holds, we obtain that E~'~Jia(wó,w~) - 0

for all i, and hence the rank of the j-th part of the matrix in (3.1) is not full, i.e.,

rank ~J~(wó, w~ )... fi(wó}t, w~f~ )j -!. Similarly, when ao - 0, we also have rank [fo(wt )...

fo(w't~ )) - f. Therefore, if for some j - 0,..., m, st - 0 holds, we delete one of the eqnar

tions in the j-th part of the system ( 3.1), e.g., the ki-th eqaation. So, for a given feasible

sign vector a and a permatation ry(T), let fi(ro,xi) - Jt(xo,zi) if af ~ 0, j e 1,...,m, and



lo(x) - lo(r) i( ao ;E 0, and let

J(ro.x )-(i 1 ro,r .,f~ ro,x f. r x r x. T! j j( J),.. J(4~-1)( J). J(4it1)( 0, j)....,Jj([tl)( O, J))

if aJ - 0, j- 1,...,m, and

io(r) - (fol(x),...,lo(4i-1)(r),ÍoR,t~)(r),...,fo(tfl)(r))T

if ao - 0. Now the variables a;, i- 1,..., t t 1, and yj4, (j, h) ~!o(s), are a solation to the

system of (m t 1)[ ~ ~{j~aj ~ 0}~ .} 1 eqnations

Io(w')
Iilwó~wi) 1 ( 1

E,fl.t, : - "(l.4)ftlo(~)l~j4aj4 ~e( Óh)J - I O1 , (3.2)

f.~(wó~w~)
` l

i

where each e( j, h) is of appropriate length. System (3.2) has juat one variable more than there

are equations. So, assuming nondegeneracy, system (3.2) has a line segment of solutions, i[

any, corresponding to a line segment of points x in c with x - E;}~ a;w' and satisfying (1.1)

with J replaced by j. At each of the two end pointa of the solution set of (3.2), exactly

one of the vnriables a„ i- 1,..., t f 1, and yj4, (j,h) ~ lo(s), is eqnal to zero. The set oí

solutions to (3.2) can be generated by making a linear programming pivot step with one of

the variables being uro at aa end poiat. Aftet the pivot step, one of the other variables has

bernme zero, yielding the other end point of solntions. The variable which is zero at this end

point determines the adjacent aimplex in which the next line segment of points satiafying

(I.1) with reapect to j lies.

In order to perform an efl'iáent pivot step in (3.2), we make ase, ia case so ~ 0, of (ut 1)-

vectors d(k), k- 1,...,1 } 2, where u-(m f 1)(( f 1) - ~{i~a; - 0}~, an ([ t 2) x(L .} 2)

matrix P'1, and, for j - 1,...,m, an (! t 1) x(f t 1) matrix D~ t if aj ~ 0 and an 1 x L

matrix D~ 1 if aj - 0. If ao - 0, we will make nse of (u t 1)-vecton d(k), k- 1,...,[ -F 1,

aa ([ t 1) x((t 1) matrix P-t, and, for j- 1,...,m, matrices D~ 1. From these vectors

and matrices the solntioa at a new end point is calcalnted. The pivoting steps need only to

be made in P'1 and sometimes also in one or two of the D~ 1rs. We only describe here the

case ao ;E 0(the case so - 0 is the same except that the dimensioa of the d(k)'s and P-t is
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one less). !f by a linear programming step the variable ay for some 1~ q G t f 1 becomes

0, then the point x with x- E~t~a;w' Ges in the facet r of o opposite to the vertex w9. If

the facet r dces not lie in the boandary of A(e,ry(T)), then there is exectly one t-simplex

o(u~~,...,w9-t,w9,w9t~,...,w'~~) in G`(s,7(T)) sharing the facet r with o(w~,...,w`{~).

The parameters of ó are obtaiaed írom Table I, where a becomes a t e(x~) (a - e(x,))

means a(x~ ) becomes a(x~) ~ 1(a(x~) becomes a(x,) - 1) and the other a's do not change.

w~becomes x becomes a becomes

9-1 wtfn-~9(x~) ( x7,...,xi,x~) afe(xi)
1 ~ q C 1 f 1 wt ( xt,...,xnxv-~,...,x,) a
q-tt1 w~-n-~4x~) ( x~,xt,...,x,-t) a-exi)

Table l. Replacement Step with Vertex w4

In particular, when 2 C q G t and xy-t -(j,k) and xy -(j',k') for some (j,k) and

(j', k') E T witó j, j' ~ 0 and j~ j', then r does not lie in the bonndary ot A(a, ry(T)). In

this case, we can exploit aublinearity in order to mnke an l.p. pivot step in (3.2) with ehe

variable corresponding to the new vertex ti~ of ó if at the other end poiat of the solution

set of (3.2) with rmpect to o nlso one of the a;'s, say aa~, was equal to zero. Sablinearrity

is due to the fact that

[-(w~) - [-(wvtt) t [-(wa-t) - l-(ura),

where. for x E S, [(x) -( [o(x),[-(x)) with [a(x) - fo(x) and h(x) - Íi(xo,xi), j-

1, ..., m. In Section 4, the cases are diacassed when there ia no anblinearity. Let (xitt, . .., x~)

be a permutntion of the elements aot in lo(s). Thea for k- 1,...,lt 2, the (ss t 1)-vector

d(k) satisfies do(k) - 0 and

E.~i ;tad:(k) ([- jw')) - E~sitzds(k)a.~-~ (e-(
~-t)1 - r~l

when k-[ t 2 or (0, k) E T, and d(k) - e(k' -} 1) with k' auch that xk~ -(0, k) when

(0, k) ~ T and k~[ f 2. For k - I,...,[ f 2, the k-th colmm~ of the matrix P is eqaal to

p(k)- I if(O,k)ETork-lf2,6(k)
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where 6(k) - E~tid,(k)Co(w') - E~t~~zda(k)".4-,eo(xA-t), and

p(k)- 0 if(O,k)QTandkG[}2.eo(0, k),

Lemma 3.1: [.et ~ E R~t~ be eqnal to P'te(l), where e(1) -(I,O,...,0)T E R~t~.

Then (3 - [d(1)..-d([ } 2)JF solves the system (3.2) with ay - 0.

Lct [I~ -{i ~ x; -( j, k) E T} for j - 0, ... , m, and let io be the index for which r;a - 0.

Then the system (3.2) is equivalent with the system of eqaations

a~o (C(w~ott
) - C(w~o )) } E~Eno ~~(C(,w;tt ) - C(w~ )) - E(o k)Qró (AWoeaoa e(0, h)

~
~Co(w~tt)-Co(w~)

I0

i~ a~..; E tt,
0

Ci(w~tt)
-Ci(w~)

0

- EU,h)Qf"(.)ui~sihe(7. h) - -C(wt),(3.3)

l ` 0 Í J
with I 1 a~ 1.-. ~ a( ~ 0 and pja ~ 0 for all (l,h) ~!o(a), where a~ - E'tt 1, i-~-~tt ~~

1,...,t } 1. For j - 1,..., m the columns ot Di are the vectors li(w'tt) -[i(w') for i E IIi

and the unit vectors ei(j, h), (j, h) ~~(s). If for some j the colmm~s of Di are not mutually

independent, we replace some of the colmm~s by vectors Ci(w'tt)-Ci(w') with í E IIo or

i- io in order to make each Di nonsingnlar. Such a choice is always possible becanae the

matrix ot colamn vectors in system ( 3.2) is assnmed to have tnll rank. The matrices D~ t

are needed in the nonsnblinear cases to perform an l.p. pivoting step.

In the rest of this section we descibe how to perform a pivoting step in the snblinear

case. So, let 2 G g C t and xy-t -( j,k) and x~ -(j',k') for some ( j,k) and (j',k') E T

with j y[ j' and j, j' ~ 0, and sappose that a~~ ia 0 at the other end point o[ the solution set

to (3.2). For the facet r oppaaite w9, let d(h), h- 1,...,[.} 2, be as given above. Let r' be

the facet of o opposite to w9~ aad let d'(h), h- 1,...,[ } 2, be these vectors corresponding

to r'. Next, let h' be snch that d'(h') ~ d(h) for all 1 C h C l} 2, and let R be the

(u } 1) x(u } 1) matrix defined by
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R-

1

I

with the -1 in the q-th column. Farther let L; be the matrix defined by

L; C-(w~) ... ~'(witt) -s.,.,e-('itt) .. . -e,.e-(x.)
- 1 ... 1 0 ... 0 , '

By the sublinearity, L; - L~ R and L~ RRd'(h') -~ ~~. Now let d(0) - Rd'(A'), so that

` tG; d(0) - ~ 0 ~, then we define (- d(0) -[d(1)... d(! t 2)]P- p(0), where p(0) -( D 0)()
with

b(~) - E~}id.(~ Ko(w~) - Ei~etadh(~)s:.-,eo(xti-~)-

Clearly, L'( - 0, where

L~ - ~~~w~) ...
[(w~) ... !(witi) -s.,.,e(rati) ... -ar.e(x.)~.

1 ... 1 0 ... 0

With the vector ( a ratio-test now can be performed. Snppose that a9, becomes equal to

zero then the new d(h)'s and P-' which correspond to the íacet r' oí ó opposite to the

vertex tut' are calculated as follows. At the end of thia section, we reíer to the case that u~~

becomes zero for some ( j, k) ~ Io(a). Fitst choose aa d(A) sach that dy,(A) ~ 0 and dt,(0),

then for all A- 1....,1 t 2, d(A) is taken eqnal to d(A) - ct,(d(0) - d(h)), where

d4,(h)

cp - d~.(0) - d9.(A)

We remark that if, for some A with (0, A) E T or h- tt 2, max;-t,.,,,it~ ~d;(h)~ becomes

too large, then we can take

bd:(A)-f(1-6)á:, i-1,...,ti.1

for some small 6~ 0, where a; is the new solation valae of a;.
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For h- l, ..., C} 2, ji(h) is then equal to p(h) - ch(p(0) - p(h)). Therefore P't can be

oLtained fmm the matrix P'~ sa follows. Let Q be the ([ } 3) x(! } 2) matrix defined by

Q- [p~,,

let tl, - ~- f,-ltp(~) ~, and for h- 1, ..., C } 2, let the (( } 3) x([ } 3) matrix Ca be defined

by

C~ -

1 -cA

1 ,

cA '.
1

where -cA is in the first row aad h-th column and c~ in the À-th row and the h-th column.

IYext, let Q- C~ tTI~~~Ck ~Q, and ~- Cà tllA~kC~ t~, so that we have [p(0), P]Q - I

and ~p(0), P]yi - 0. Consequently, the h-th row of P't is equal to the (h } 1)-th row of

the rnatrix Q- ~yQt~~,~, where Qt is the first row of Q. This completes the description of

a linear proqramming pivot step in ca~e of sublinearity and in case after the ratiotest with

( some aQ becomes zero.

Finally, if after tAe ratio-test with the vector ( some y~F,(j,k) ~(o(s), becomes zero,

then we cannot utiGze sublinearity to compute the new d(h)'s and P'~. In this cn-ve, we

first construct a vector d(0) as in the case ( a)-(i) in Section 4. Then we compute the new

d(h)'s and P't corresponding to o as discnssed at the end oi Section 4.

4. The Algorithm on S ia Case of Non-Sublinearity

In this section we describe the steps of the algorithm when snblinearity cannot be

utilized or dces not occur. In each case we describe how to calculate n vectot d(0). Unless,

througó the ratio-test, for some (j, k) x le(s), yjk becomes zero, we can obtain d(h),h -

1,...,[ } 2, and P-t for the next step from d(0) in the same way as described in Section

3. The case that pti for some (j,k) ~ le(s) becomes zero is discnssed nt the end of this

section. In general only a pivot step in one of the matrices D~ t is needed in each case.

First, we consider the cme for which, after a pivot step in (3.2) for some o in A(s, ry(T)),

a~ - 0 and the facet r opposite w4 does not lie ia the boundary of A(a,ry(T)). This inducea

the subcaaes:
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(a)2~q~t

(i) xa-t -(j, k) and xq -(j', k') witó j, j' ;E 0 and j;E j', and at the other

end point ot the solution aet of (3.2) not ay. - 0 for some q' ;E q

(ii) xy-~ -( j, k) and xq -(j, k') with j ;E 0

(iii) xa-t -(j, k) with j;E 0, and xy -(0, k') or 0

(iv) x~-t c(0, k') or 0, and xo -(j, k) with j ;E 0

(v) xa-t -(0, k) or 0, and xy -(O,k') or 0;

(b)q-1

(~) x~ -O. k). 1 át ~

(ii) x~ - (0, k) or 0;

(c)q-t}1

(i) x~tt - (j, k). j ~ ~

(ii) x~tt - (0, k) or 0.

In all these aubcases, there is exactly one t-simplex ó in C'(a,y(T)) adjacent to 0

sharing r. The parameters of ó can be obtained from Table 1. Let w4 be the vertex of ó

opposite to r. In order to calcalnte ['(wa), in general jast one [j(wa) needs to be evalaated.

In cave (a)-(i), let D~ ~ be the matrix obtained from Dj by deleting the colpmn corresponding

to i- q- 1. Let B~ be the mntriz defined by

Bh - I[h(w,ott) - [s(w~a), [~(w.tt)- [a(w'),i E [Ip], h - 1,..,m.

We choose any colamn ot Bj, say Bjk., to make the matrix (Bjt., D~k ) nonsingnlar. Let

U~,~ be tàe matrix obtnined írom D~,t by replacing [~~(w9tt) -[j~(w9) by [j~(w9tt). In

order lo determine d(0), let the vector c-(co,ct,...,c,,,) with co E R'tpltt if sp ;E 0(

coER~ttiísp-0),cjERt itsj;EO(cj Eli-tif ej -0),qER~ttifs;~EO(c;ERrif

s, - 0), be defined by cp~, - 1 for h;E k',

cj~ - ~~,t([j.(tis) - [j~(wt) - Bj~cp),

(coR.,(cJ)T)T -IBj~',Ujkl-t([J1Ta~)-[J(wt)-B~k.c~k.), (4.1)
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wh..re B~ k~ is thr submatrix oí Bi by deleting its k'-th column and có k- is the subvector

~d,„ by dcletinK ila k'-lh ~omponent, and for i~ 0,7,~',

!. - D; '(l,(w') - l.(wt ) - B.co - c~,k,l,(wvtt)). (4.2)

Afler some subtruaions and permutations and having added uros, we easily obtain from

lhc v,-ctor r a v.~ctor d E H`}~ such that

L~d- (C-(wQ)~,
` 1

Then d(0) can be chosea to be eqaal to

d( 0) - d(1) ,} d- e( q).

W ith d(O) a ratio-test is performed and the new d(h)'s and P-t can be obtained as described

in Section 3. To obtain the new D~ t, one pivoting step is made in [Bik., D~ k]-t to replacing

Bj4- by (i(wa}~ )-li(w9). The new D~,t is obtained by making one pivoting step, replacing

li,(wati)
bY lj~(w~) - lp(wa-t ),

In case (a)-(ii), let D~ k be the matrix obtained from Di by deleting the colamn cor-

respondinq to i- q- 1 and by replacing Ci(w9tt) -!i(w9) by Li(w,tt). We chooee

any column of Bi, say Bik., to make the matrix [Bik.,D~ k] nonsingnlar. L.et the vec-

tor c-(co, ct, ..., c,,, ) be defined as in case (a}(i) except that (4.2) now óolds for all i~ 0, j,

and in (4.2) ci~k~ is replaced by ciy.. After the ratio-test, in order to obtain the new D~ t two

pivoting ateps are made in [Bi~-,D~ k] to rcplacing Bit- by li(wQtt)-li(w9) and Ci(w9tt)

by ri (wa ) - li ( wa-t ),

In case (a}(iii), let Bwt. be the colmm~ of B~ corresponding to i- q and replace

it by [~(w9ft) for all A~ 0. Let D~ ~ be the anbmatrix of Di by deleting the colnma

corresponding to i- q- 1. Now the vtctor c is defined as in the previons subcase except

tbat in (4.2) the term with cik~ is missing. After the ratio-test, one pivoting step is made in

[Bik-, D~ ~]-t to replace Bit. by !i(w~tt) -[i(w9) whereas, for all i, B,k. becomes equal

to (.(w9) - C.(wv-t ),

In case (a)-(iv), let the k'-th colmm~ of each BA correspond to i- q- 1 and let D~ t be

the matrix obtained from D~ t by replacing !i(wtt~ )- li(wo) by li(watt ). Now the vector
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~-(r,,, ci,..., c,,, ) with co E R~to~t~ if ao ~[1 ( co E R't' if ao - O), and for i~ 0, q E Rtt~

if a, ~ 0( c, E R' if a, - 0), is defined by cok- - 0, coh - 1 for 1 C h C t(0) } 1 and h~ k',

ci - ~~ 1([i(w~) - [i(w~) - Brco),

and for i~ 0, j,

c, - D, ~([:(wa) - [;(wt) - B:co - cik[;(w9t~)).

After the ratio-test, a pivoting step is made in Di to replace [i(w9it) by li(wo)-[i(w9-t)

and [,(w9t~) -[,(w9) repleces [,(w') -[,(wa-r) in each B;.

In case ( a)-(v), let the k'-th column of each Bh correspond to i- q-1 and let ~k be the

matrix obtained from Bk by replacing the column corresponding to i - q by [h(wvt~), for

all h~ 0. Now thr vector c e( co, ..., c,„ ) is defined by cok. - t), cok - 1 for 1 C h C t(0) } I

andhlEk',andforí~0,

c, - D, ~([.(wa) - [.(w~) - B:co). (4.3)

Aftcr the ratiotest, C,(watr) becomes l;(tia) -[,(wo-r) and [;(wa) - C,(w9-~) becomes

[,(~a9t' ) - l,(ii,o) in each t~,.

In caxe ( b)-(i), let U~ k be the submatrix of U~ by deleting the column corresponding

to i- 1, and let Bik- be a column ot Bi making [Bik., D~k) nonsingnlar. The vector c is

obtained as in case ( a)-(ii) except that in (4.1) and ( 4.2) w~ is replaced by w~ and in (4.2)

the term with cik~ is missing. After the ratio-test a pivoting step is performed to replacing

B~k. by [i(wr) - [~(w'f~) wherea.v [(wr) becomes l(w~). In case ( b)-(ii), the vector c is

obtained as in case ( a)-(v) except that wt is replaced by w~. After the ratio-test, in each

9„ [,(w~)-[,(wt) becomes [;(tát)-[;(w'it), and C(wt) becomes [(w2).

In case ( c)-(i), let D~ k be Lhe submatrix of Di by deleting the colamn corresponding

to i- t and let Bik. be n column of Bi such that [Bik., D~k) is nonsingular. Then the

vector c e( co, et,...,c,,,) is defined by coh - 1 for 1 C h G t(0) } 1 and h~ k',

(cok~.l~i)T)T -[Bik~ ~ Di k)-'([i(wt}r) - B~ k'c0 k-).

and for all other i,

~ - D-r([.(wefr) - B;co).
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After the ratio-test, one pivoting atep is made in [Btt-, D~t)- ' to replacing Bik- by [~(wl )-

[~(w'{') whereas [(w') becomes [(w'tl). In case ( c)-(ii), let the k'-th column of each Ba

corr~spond to i- t. Then the vector c-(co,ci,...,c,,,) is defined by coi. - 0, coh e 1 for

1 C h ~ t(0) and h~ k', and for i~ 0,

~ - D-t([ (wet~) - B~eo)-

After the ratio-test, in each B;, [;(w'tt) - C;(w') becomes [;(wt )- l;(w`tt ), and C(wt)

becomes [(w't').

In the next lemma, we describe when a facet opposite a vertex of a simplex in

G'(a,ry(T)) lies on the boandary.

Lemma 4.1: Let o(w',...,w'tt) be a t-simplex in G'(s,ry(T)), then the facet r oppo-

site to the vertex wf lies in the boandary of A(s,7(T)) if and only if t- 1 aad r -{xo} or

if onc o( the following cases holds:

i) q- l, rl - 0, and a(ri )- n- 1

ii) 2 C q G i, rt-t - 0, r9 -(~,ki) for some j, and a(xy-i) - a(ry)

iii) 2 C q G t, r~-i -(~, 1~-t), ry -(~, k; ) for some 2 G i G t(~), and

a(r9-~) - a(rt)

iv) q e t f l, x, e(j,k~V]) for some j, and a(x~) - 0.

In case i), the facet r lies in the face S(lo(a) U It(a)) of S, i.e., at any end point x in

r, for all (j,k) E I-(s), we must have x~t - 0 and thereiore f~t(x) ~ 0. For a point x on

I' we have accordiag to (3.1) that for all (j, k) E I-(a), ffR(x) - aj4 pik C 0. Conseqaently,

case i) cannot occnr in the alQorithm. Táe other casea can occnr if a9 - 0 in (3.1) and we

now describe how the algorithm then continaea.

I11 CKYC ii), if j ~ 0 anrl ai - 0, then the facet r ie also n fecet ot a t-simplcx in A(a, ry(T')),

w h e re T' - T U{(j, ká )}`{( j, k; )} and ryj (T~ )-(( j, kó ), ( j, kz ), ..., (j, ki )), w hi le r b ecomes

(ri,...,av-~,().kó),rati,...,r~). The new vertex w~ is therefore eqnal to w9-' } n-tq(0).

lA4 Di be the matrix obtained from D~ by replacing the colmm~ corresponding to i- q

by I~(wat' ). The pivot step to follow the pató in o is now the same as above for the case

(a)-(iv) except that nfter the ratíotest the pivoting is made in B~' to replacing [i(w9}t)

by [~(wftt)-[j(w~) whereas [;(w~)-L,(w~-t) becoma the first column of B;,i - 1,...,m.
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In case ii), if j y' 0 and ai ~ 0, then the facet r Lies in the boundary of A(a) and is

a(1 - I)-simplex in A(a',ry(T')), where s'F, - tl,s~a - a,~ for all (i,h) y~ (j,k~), T' -
,

~~`{(j,k;)}, and ryi(T~) -{(j.kz),...,(j,~(i))}, while x becomes (r~,...,xo-t,xytt,...,x;).

Let ~i be the same as just above, then c-( co,...,c,~) is defined by coi - 0, co~ - 1 for

h-2.....t(o)~I,

ci - D~ ~ (ei (j, ~ ) - li ( wt ) - Bi co ),

and for i~ 0, j,

c. - D: t(-l:(w~) - B,ca)-

After the ratiotest, in D~ ~, li(w~t~) is replaced by ei(j,k;), and the first colamn of each

B, becomes [,( w9 t~)- l, ( w9- t).

In case ii ), if j - 0 and ao - 0, then the facet r is also a facet of a t-simplex in A(a, ry(T')),

where T' - T U {(0, kó )} `{(0, ko)} aad ryo(Tó )- ((0, ko ), (0, kz), ..., (0, ki )), while x becomes

(r~,...,xa-~,(O,kó),xat~,...,x,). The new vertex w~ is therr.fore equal to wQ-~ f n-tq(0).

Let B~ be the matrix obtained from B~, by replacing the column corresponding to i- q by

(~(wQtt), then c-(co,...,c,,,) is defined by co~ - 0, coa - I ior h- 2,..., t(0) -~ 1, and for

iy`0

c: - D;~(l:(w9) - l,(w~) - B:co).

After the ratio-test, in each B„ l,(w~t~ ) is replaced by l,(wat~ )-l;(w4) and the first column

bY l, (w~ ) - l, (wa-i ),

In case ii), it j - 0 and ao ~ 0, then the facet r lies on the boundary of A(a) and is

a(t - 1)-simplex in A(a',ry(T')), where aok, e~1, a~a e a;h for all (i,h) ~(O, ko), T' -,
T`{(~,ko)}, rya(Tó)-{(D,kz),...,(O,koto))},whilex becomes(at,...,xy-~,xott,...,xi). Let

each B~ be the matrix as defined just above. Then (co,..., c,,,) is defined by col - 0, coa - 1

for h- 2, ..., i(0) } 1, and for i~ 0,

c: - D: t(-l,(w~ ) - B:co)-

After the ratio-teat, in eech B;, tàe colmm~ l;(w'ft) is deleted and l;(w9t') - L,(w9-r)

becomes the first column.

Ia case iii), the facet r is also a fecet of a t-simplex in A(s,ry'(T)), where ry'i(Tj) -

((j.k;),...,O,k;),(j,k;-t),...,(j,ki(i))) and ry),(Ta) - rya(TA) for h~ l, while x becomea
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(x~,...,xo,x~-~,...,xi). Ihe new vertex w~ is theretore equal to wQ-' } n-~q(j,k;). The

pivoting step is identical to the aubcases of case (a) above when xy-1 -(j,k) and ry -

(j,k') for some j, except that after the ratio-test, when j ~ 0, two pivoting steps are

made in [B~s-,D~ }]-~ in order to replace Bir. by [r(w~) -[i(w4'1) nnd [t(wat~) by

[i(w4t~) -[i(w9), whereas, when j - 0, in each l~a, [h(w4tt) becomes [A(w9tt) -[a(w4)

and [a(w9)-(a(w,-~) becomes [a(tir) -[A(w9'~). When s~ - 0, j ~ 0, and i- [, then an

extra row-pivotine step ha, to be per[ormed in D~ 1 and Bi ha.v to be adapted in order to

exchange the row corrpponding to the index (j, k(-~ ) witA the one corresponding to (j, ki ).

When s~ - 0, j- 0, and i- l, then the d(k)'s and P-1 must be adapted in order to

exchange the row and in P-~ also the colamn corresponding to the index (0, k~-~ ) with the

ones corresponding to (0, ka).

In case iv), the facet r is in the boundary of A(s). If si - 0 and j ~ 0 then r is

a(t - 1)-simplex in A(s',ry(T')), where s'~k, - tl, a'k` --1, a~~ - s~h for all (i,h) ~
a ) '

(j,kó) and (j,ki), T' -T`{(j,ki)}, and yi(T~) -((j,k;),...,(j,ki-i)), whereas x becomes

(x~,...,x~-i). Let D~ k be the sabmatrix of D~ by deleting the column corresponding to

i- t and let B~4- be a column of Bi making (B~k., D~ k] aoasingular. Now the vector

c-(co,..., c,,,) with ci E Ri-' is defined by coa - 1 for h~ k',

(w~-,(~))T)T -[B)k'~D~s]-~[ei(j~ ó)-[I(w')-Bico].

and for i~ 0, j,

G - D~ 1(-[:(w~ ) - Bcco).

After the ratioteat, we first make a pivoting atep ia [B~k~, D~k]-~ to replacing B~k. by

e~ ( j, kó). Then we add to each d(A) the componeat and to B~ and D~ 1 the row corresponding

to the index ( j, ki ) and we add -e~(j, ki ) to D~ ~.

In ca.~e iv), if si ~ 0 and j ~ 0 then r is a ( t - I)-simplex in A(s',ry(T')), where

s'k, --1~ s:a - s~A for all ( i~A) if (j,~U))~ T' - T`{(j,~U))}, and 7i(T~) -((j,~)~- ~
~ an

(j, kát~l-~)), whereas x becomea ( xt,...,xi-~). Now the vector c-(co,...,c,,,) with c~ E R~

is defined by coA - 1 tor A~ k',

(cok-~ (ci)T)T -lBlk'~ Djkl(-ei(7~ ~~.1)-[!(wt) -B)co),
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where Brk. and D~ 4 are as defined in the previous case, and for i~ 0, j,

c, - D~ t(-l;(wt) - B,co).

After the ratio-tpt, oae pivoting step is made in [Bik., D~ s]'t in order to replace Bit. by

- ei (7, ~(i ) ).

ln cax iv), if j- 0 and ao - 0 then the facet r is a(t - 1)-simplex in A(s',ry(T')),

wtiere sókó - a-1, sóka --1, a~~ - a,~ for (i,A) ~(O,kó) and (O,ko), T' - T`{(O,ko)},

and ryo(Tó) - ((O,ko),...,(O,ki-t)), whereas x becomes (xt,...,x~-t). Now the vector c-

(co,...,c,,,) with co E Rr is defined by coA - 1 for all A and for i~ 0,

c, - D. t (-r,lwt) - B:co)-

A[ter the ratio-test, the d(h)'s and P't must be adapted by adding rows and to P-t also

a column corresponding to the index (0, k~ ). If j - 0 and ao ~ 0 then the facet r is a

(t - 1)-simplex in A(s',ry(T')), where aoao -- l,a~~ - a;p for (í,h) ~(O,ko~ot), T' -
Ho~

T`{(O,k~o~}, and ryo(Tó) - ((O,k~),...,(O,k~o~-i)), whereas r becomes (xi,...,xt-t). The

vector c-(co,...,c,,,) is defined as above for the case ao - 0. Note that after ehe ratiotest,

no changes need to be made. This concludes the case oí Lemma 4.1.

Next, suppose that by a pivoting step with respect to a t-simplex o(w~, ..,w't~) in

A(a,ry(T)) a variable yik, for some (j,k) ~!o(a), becomes zero. Let (!~(s))` be the com-

plement of ~(a) in !(j). If [(Io(a))`~ ~ 2 then o is a facet of jnst one (t t 1)-simplex

o' in A(a',7(T')), wherc a~s - U, a,la - s,~ for all (i~h) ~(Lk), T' - TU {(j.k)}.

ry~(T~) -((), k),ryi(Ti)) if ais - tl, and ryi(Tj) -(7i(Ti),(1, k)) if sik --f, whereas x be-

comes (xt,...,x;o,(1,k),x:ott,...,xt) if sik - fl and (xt,...,xe,(7,k)) if aik --1. If j~ 0

then we replace ei(j,k) in D~ t by a colamn Bik. of Bi to make [Bik.,D~ k] nonsingular.

Now c is defined as above for tàe cue (a}(ii) except that tàe new vertex is ti'"t~ if sik --F1

and w't~ if ejk --f nnd that in (4.2) the term cik~l;(w~tt) is missing. In order to per[orm

the ratio-test, we compnte the new d(A)'s and P't corresponding to o as follows. I.et L;,

be the matrix obtained trom L~, by deleting the (io t 2)-th column it aiF - fl and the

(t .} 2)-th colamn if si~ --t. We fint constract a vector v E R` snch that

- (-a;.e-(i,k)1L''v ` 0 1
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using the same method as above fot the case (a)-(iv) or (a}(v) if ajr - tl except that we

replace [j(ti9) and C;(w9) by ej(j, k) and 0, respectively, and for the case (c)-(i) or (c)-(ii) if

ajk --1 except that we replace [j(ti9) and l;(ti4) by -ej(j, k) and 0, respectively. Let v-

( vi ,..., v,o t~ , ~. v,otz...., v~ ) if a~t -}t and v -(vl, ..., v~fl, ~, v~tz...., v, ) if ajt --1. Fur-

ther, foreach h, let d(A) -(dl(h), .... d:,tl(h),dP(A), d;otz(h),..., dy-1(h), dytl(A), -...d.tt(h))

if ajk -}t and d(A) -(dt(A),...,d~tt(A),dy(A),ditz(A),...,dy-I(A),dytl(h),...,d.tt(A)) if

ajr --1, where x~-t -(j, k). We define for all h,

d(A) - d(A) } d:o~2(A)(v - e(io } 2)) if sjk -}1,

and
d(A) - d(A) } d~ta(A)(v - e(t } 2)) if sjt e-1,

where e(io } 2) and e(t } 2) are the (iu } 2)-th unit vector aad (t } 2)-th unit vector,

respectively. It is easy to check that Lé,d(h) - ~0~ and that d;otz(h) - 0 if aja -}1

and d~tz(h) - 0 if ajk --1, for all h. The P-I fo`r the next step can be obtained from the

d(h)'s ia the same way av described in Section 3. After the ratio-test, we replace Bjk. by

[~(wt}z)-[j(w't') if ajk -}1 and by Cj(w'otz)-Cj(w'"t`) if aj4 --1. In the latter case,

the first colmm~ of each B; becomes l;(w'ot` )- l;(w'o ). If j- 0, the vector c-(co,..., c,,,)

is defined by cop - 1 for all h and for i~ 0,

c; - D; t(t(ur'tz) -[:(wl )- B;co) if s~k -}1

and
C; ~ D~ t(!(91~af1) -[i(wl) - B;cO) Íf ajk --1.

In order to petform the tatio-test, we calcnlnte the d(A)'s and P't corresponding to o as

follows. We aet d(h) - d(h) for nll A~ k and d(k) - d(0). From the d(h)'s, we can essily

obtain P-~. Atter the ratio-test, each B; is extended witó the column C,(w`tz)-[;(w'f') if

ajt -}1 and with the colnma [;(w'o}z) -C;(ti'ot') if ajk --1. In the latter case the first

column oteacó B; becomes [;(w'"}t)-l;(w'"). Notice that in ell these cases only lo(w`tt)

aad Cj(w'tt) or lo(w'otl) aad LC(w'"t') need to be evalnated it j~ 0.

If ~(!~ (a))`~ - 2 and ~(lo(a))`~ - 2 then ehe corresponding point x- Ea;w' is a

zero point of J and therefore an approximate zero of f, wàere (lo(a))` is the complement
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of Io(a) in 1. If ~!~ (a)~ - 2, but ~lo(a)] ~ 2, then !~ (a) as well as h(a) consists o[ one

ch-ment, say ( j, k) and (j, h), respectively, and both u~~ and y~l~, become zero simultaneously.

Then o is a iacet of jast one (t } 1)-simplex o' in A(á,ry(T')), where a'~ - 0, a,' - a; for

i~ j, T' - T u{(j,h)}, ry~(T~) -(ryi(T~),(j,h)), whereas x becomes (rl,...,xi,(j,h)).

I[ j~ 0, then first we delete from each d(i) the component corresponding to the index

(j,h) and from B~ and D~ ` the row and from D~ t also the column corresponding to the

index (j, h). Next, in Dj ~, we replace e~(j, k) by a column B~k. of B~ to make [8~4., D~ k]

nonsingular. Now the vector c is defined as above for the case (a)-(ii) except that the new

vertex is equal to w`t~ - w`tt } n-`q(j,k) and in (4.2) the term cik~[;(watt) is missing.

The new d(h)'s and P-t corresponding to o can be obtained as in the previons case for

j~ 0. After the ratio-test, we replace Bik. by h(w`f~) -[~(w't~). If j- 0, then first we

delete from each d(i) the component and írom P'~ the row and column corresponding to

the index (O,h). Now the vector c-(co,...,c,,,) with co E Rt is defined by co~ - 1 for all h

and for i ~ 0,

c. - D; ~([;(wetx) - [~(w~) - B;ca).

The new d(A)'s and P-~ corresponding to o can be obtained as in the previons case for

j- 0. After the ratio-test, each B; is extended with the column L;(vi`t~) - !;(w`}t). This

concludes the steps of the algorithm in case of non-aublinearity.

Finally, we describe the initialization of the algorithm. At the starting point xo, let

ao - sgn J(xo), then

L~ ~o J(xo) -aóte(0, 1) ... -a~(ttt)e(m'[ t f)
t ) - 1 0 ... 0 ,

.

Hence we can take d(h) - e(h}1) for A- 1,...,[}1, and d([}2) -(1,0,...,O,solh~(zo)

am(tf~)Imttti)(xo)) E Rt"`t~)(M`)t` From these d(h)'s, we ea.vily obtain the initial P-t.

All the D~'s are inítially (l } 1) x(I } 1) identity matrices and the B;'s do not exist at

xo. The algorithm starta by making an l.p. pivoting step with (J(x`)T, 1)T in (3.2), where

x` - xo t n-`q(0). Note that becaase of the nondegeneracy assamption ao does not contain

any zero and hence there is no other sign vector e with ~Io(a)~ - 0 such that, with respect

to the nnique simplex in A(a) having xo aa a vertex, xo corresponds to s basic solution of

(3.2). Following the steps described above, the algorithm terminates within a finite number
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of steps with an x' E S for which J(x') - 0. If x' is not accarate enough to yield a zero
point of f, the algorithm can be restnrted at x' with a smaller grid size n-~.

b. Applications

In this section we describe how the algorithm on S presented in this paper can be used

to compute equilibria in an iaternational trade mode] or in an economy with increasing

returns to scale.

First of all we remark that the nnit símplices in the cross prodnct S need not to be of

the same dimension. The steps of the algorithms are the same in case S is the cartesian

product of m t 1 unit simplicee S~~), j - 0, 1,..., m, where [(j) is the dimension of the j-th

simplex in the product, i.e., S- S~(o) x... x Si(m). The only difference is that for each j

the number [ should be replsced by C(j).

In an international trade model there are m different countries. In country j, j-

1,...,m, there are ((j) domestic goods which are traded only inside country j. Moreover,

there are !(0) } 1 nondomestic gooda to be traded all over the world. Given a price vector

P E Rto)}( x Q~-tRf), p~ 0, with for j~ 0, pit the price of domestic commodity k in

country j, 1 C k C [(j), and with pok the price of common good k, 1 C k C l(0) } 1, let

zi(p) be the total excess demand vector of conntry j at p. Clearly, for j ~ 0, z; (p) - 0 when

i y` j, while z~ (p) and ~(p) oaly depend on po and pi, i.e., z; (p) - z; (po, pi ) for i- 0, j.

The equilibrium problem is to find a price vector p' snch that E~-ozi(p') - 0, i.e.,

~) zj(Pá, pj ) - 0, j - 1, ., m

ii)E~-tzó(Pó.Pj) - 0.

As shown in van der Laan ~1985), this problem can be formnlated as a zero point problem

on S. Let x E S, then we define price vectors q~ -(qa,~) E Rtto)}~ x R~t~) ia conntry j

bY 4ók - xi(~(i)t~)xo4, k- 1,...,1(0) t 1, and qjk - xik, k- 1,...,1(j). Then the fnnction

J: S y 11~-aRt~)t( is defined by

fo(x) - (m t 1)-tEj-i ó(9~)
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and for j- 1, .., m,

Jjk(x) - ~k(9~)~ k - 1,...,~(T),

c E~IOitIxoAZOA(9~ 1~ k-~(1) f 1.

A zero point r' of J in S yields an equiGbriam price vector p', where pó - xó and, for

j - t,...,m, p~k - x~k~x~t~~lttl, k- 1,...,1(j). Clearly, the function J is snch that

Jj(x) depends only on xo and sj, j- 1,...,m. Moteover, JjA(x) ~ 0 if xj~ - 0, for all

(j, k) E I, which follows from the monotonicity of the preference relations of the consnmers,

i.e., the excess demand for a domestic or common commodity is positive if its price tends

to zero. Notice that xj~i~~tt~ relates the price level of the domestic goods to the price level

of the common goods and that Jjt~V~tl~(xo,xj) is the deficit of coantry j, being positive

(or infinite) if the domestic price level of the common goods tends to zero. So, the function

J satisfies all the properties of Section 1, except that we do not óave that EkJjA(x) - 0,

for all j. However, because of Walras' law, i.e., every country will spend all its income, we

have that EAxjt Jj~(x) - 0, j- 1,..., m. Under this property, there also exists in general a

piecewise smooth path P from xo to a zero point oí J of points x satisfying (1.1), except

that in case Jj(x) ~ 0, xj satisfies

xj~ xjA
SD - m17tAv1,...,[tl)t1Z;0
~k jh

If Jjk(2) ~ ().

The path P can be followed piecewise linearly as described in the previous sections, making

use of the special stracture oí J. Becanse for each index j ~ 0 Walras' law holds instead

of the sum of the components eqnals zero, we mnst allow for sign vectors a for which for

some but not all j, a~ ~ 0 and s~ ~ 0, or sf ~ 0 and s~ ~ 0, instead of sj - 0. For a

simplicial algorithm on S for functions satisfying jnst Walras' law but withont (using) the

special structure of J we refer to Donp, van den Elzen, and Talman [1987] and Donp [1988].

The replacement stepa in the simplicial sabdivision are the same as for the latter algorithm,

whereas in each step the compatation of d(0) and the new d(k)'s, P-t, and D~ t's is identical

as described in the Sections 3 and 4.

[n case of an economy witL increasing retnrns to scale there are given m firms and

l f 1 commodities. Each firm j is represented by a prodaction set Yj and a pricing rnle
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,p~ ; Gd}~ -. S~. Also given is n demand function d: S~ x Y-. !i~'~, where Y- I1~-1Y~,

satisfying PTd(P.y) - DT(Ej-~Yi f w) fot all p E S~ and y E Y (Walras' law) if ~pi(Yi) - P
for all j, with w E Rrf~ the vector of the total intial endowment. We call (p',y') E S~ x Y

an equilibrium if at (p', y') all firms set the same price vector and produce efïiciently and if

demand is equal supply, i.e.,

i) r0i(y~)-p' and y~ EbdYi,j-1,...,m

and

ii) d(P ~ y') - Ej-iYj f w.

Under certain reasonable asaumptions on the yi's, Yi's, and d, the set of efficient attainable

production plans in Yi can be identified as S~ and there is a price vector po and a point

óo E S"m such that

(~vi(6i )- po)(bi - ái) ~ 0 it ái E ódSt (5.1)

and

Poz(R á) ~ 0 iC á E 6dS~x~ and ~pi(ái )- p~ for all j~ 0, (5.2)

where ~pi is now redefined on St and z is the net excess demaad íunction. Moreover, we

assume desirability ot goods, i.e., z;(p,b) ~ 0 whenever ~pi(ái) - p for all j and p; - O,i -

1,...,lfl. With x- ( p, 6) E S - Sr xS~xm, we define the function f írom S to R~~}t).tR.t~)

by Jo(x) - z(p, ó) and for j- 1, .., m,

Ii(x) - P - (vi(ói ).

A zero point of J obviously induces an eqnilibrium vector. Clearly, for j- 1,..., m, we have

~~tt x- 0 and x de ends onl on x and xi. Becaase oí 5.1 there in eneral exists4-1Jjk( )- Ji( ) P Y 0 ( ) g

a piecewise smooth path Pi of points (po,ó) E{po) x St'TM satistying (1.1) for j- 1,...,m,

and connecting (po,óo) with n point (pu,6~). At 6t we have thnt ~pi(6~) e po for all j~ 0,

i.e., all firms set the same price po. The path Pt can be íollowed approximately av described

in the previons sectioas except that fo is ignored, i.e., the matrix P-t and the d(h)'s are not

present at all nnd Ilo is empty. Continning in (po, át), there now exists a path P~ starting

in (po,Ài) of points x-(p,á) E S sach that pi(ái) - p for all j ~ 0 while xo and fo(x)

satisfy (1.1). The path P7 can be followed as described before with si - 0 for all j~ 0.

Becaase of Walraa' law, property (5.2), and the desirability condition, the path Ps cannot
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~neet the boundary of S and has therefore another end point. This end point is either a zero

of f and yields then an equilibrinm or it is a point (po, á~) with ,pt(ó~ ) - po for all j y` 0.

In the latter case (pe,62) is also an endpoint of a path P3 in {po} x Stxm, satisfying again

(1. t) for j- 1, ..., m. The other end point of P3, (po, á~), is again an end point of a path P~

in S satisfying (1.1) with fi(xo,xt) - 0 for j ;E 0, etc. In this way, there exists a piecewise

smooth path P in S connecting xo -(pn,bu) with a zeco point of f. The path consists of

sevr.rnl pieces. Gech piece lies either in {po} x St'm and satisfies (LL) for j- 1,...,m or

it lies in S and satisfies (l.l) with f~(x) e 0, j- 1,...,m. Each piece can be [ollowed as

described in the Sections 3 and 4, making use of the strnctnre of the function f. Notice

that Lhe algorithm terminates at an i E S where fo(i) C 0 or ~ 0 and fj(io,i~) - 0,

j - I,...,m.

The piecewise smooth path P ia S irom xo to a zero point of j can be interpreted

in both applicationa just described as the path tollowed by a price or qnantity adjastment

process. For example, in the case of the international trade economy, along the path, initially

the prices of the commodities for which Lhere is excess demand are relatively increased and

those of the commodities for which there is excess supply aze relatively decreased. Moreover,

the relative price level for a country is initially increased (decreased) if the trade balance

deficit is positive (negative). Aa soon as there is equilibrium on a market or balance, its

corresponding price or price level is adjusted in order to keep it in equilibrium. When the

price (tevel) becomes later on relatively too low or too high the market or balance becomes

again ín disequilibrium. The latter step prevents the process írom cycling or hitting the

bonndary (of S). A aimilar interpretation holds fot the adjustment along the path in case

of an economy with increasing returns to scale prodnction.
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