l_’__l
TILBURG 0}%?%_? ¢ UNIVERSITY
l‘jf’l

Tilburg University

On the existence of networks in relational models
Gilles, R.P.; Ruys, P.H.M.; Jilin, S.

Publication date:
1989

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Gilles, R. P., Ruys, P. H. M., & Jilin, S. (1989). On the existence of networks in relational models. (CentER
Discussion Paper; Vol. 1989-15). Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/403be502-d3a2-45d4-aac5-6aaca9bb0357

C-tER Discussion
Econonlt';zli{esearch pap er

cBM

-9 IR PR TN

YHEEE. - C I N0 0 9 9 4
8414 g
1989

15




No. 8915
ON THE EXISTENCE OF NETWORKS
IN RELATIONAL MODELS

by Robert P. Gilles,
Pieter H.M. Ruys and
Shou Jilin

March, 1989



On the Existence of Networks in Relational
Models !

Robert P. Gilles? Pieter H.M. Ruys
Tilburg University Tilburg University
Tilburg, the Netherlands Tilburg, the Netherlands

Shou Jilin®
Xian Jiaotong University
Xian, China

March 1989

1Correspondence address: Robert P. Gilles, Dept. of Economics, Tilburg University,
P.O. Box 90153, NL-5000 LE Tilburg, The Netherlands. The authors would like to thank

Ton Storcken and Thijs ten Raa for their contributions and comments to this paper.

2This author is financially supported by the Netherlands organization for scientific re-

search (N.W.0.), grant 450-228-009

3The research for this paper was performed durinc the visit of Shou Jilin to the Dept
of Mathematics and Computing Sciences of Eindhoion University of Technology, and the
Center for Economic Research, Tilburg University, the Netherlands. Financial support is

gratefully acknowledged.



Abstract

In economies with limited communication between agents there emerge natural
(social) organization structures. We focus our attention to one such a structure,
called a network. It turns out that these networks usually exist in a deterministic
graph-theoretic setting. They can be interpreted as potential or latent organization
structures, of which one eventually will emerge.

Previously the existence of such networks or latent organization structures was
already established for “normal” economies, i.e., economies with a finite number
of agents or a continuum of agents. This paper is concerned with the question
whether in pathological economies with limited communication there also exist such
potential organization structures. In this paper we state and prove some generic
results concerning this existence problem.



1 Introduction

The problem of limited communication between economic subjects has received
increasing attention in the past few years. The reason is that the existing literature
on general equilibrium theory does not allow for constraints on communication
between economic agents in the allocation or trade processes. Therefore, one is
neither able to describe coalition formation in a realistic way.

Recently, this issue has been addressed from several points of view. Consid-
ering the problem of coalition formation, firstly, one may put direct constraints in
coalition formation. This is done in Hammond, Kaneko and Wooders (1987) and
in Gilles (1987). The first paper describes a core in a continuum economy based
on blocking by finite coalitions only. The second is giving a description of coali-
tion formation based on a certain limited collection of primitive coalitions. Both
however only give an intuitive justification for their approach, and to the question
whether these axioms concerning coalition formation are valid.

Another point of view is to give a direct description of communication in an
economic setting. A very basic approach is given in Aumann and Dréze (1974), who
developed the notion of a coalition structure consisting of disjoint groups of agents
without direct communication between those groups. This concept has led Myerson
(1977) to introduce a graph to describe comnmuhication in a game or an economy
directly. It turned out to be a very fruitful tool for describing such limited commu-
nication situations, but it also had severe limitations with respect to the techniques
that had to be used in solving certain problems in such environments. Traditionally
one has “skipped” this problem by introducing and using stochastic graphs instead
of deterministic graphs in the description of communication situations.

In more recent literature, the development of these stochastic graph-theoretic
models of communication has been extended beyond the notion of a coalition struc-
ture. Allen (1982) used a stochastic model to study the spreading of innovations
in an economy with limited communication. Kirman, Oddou and Weber (1986)
based a model of coalition formation on a graph-theoretic model of communication.
They defended the application of stochastics in their model by noting that “it is
difficult to envisage that the modeler should be able to specify the communication
structure for a given economy. He might thus wish to specify the structure with a

certain variability.” They also suggested that the way an individual gets his/her



information is as if he or she is making telephone calls to people chosen at random.

In Gilles and Ruys (1988) it is argued that both arguments are unsatisfac-
tory. Alternatively, they defend the application of a given deterministic graph for
describing a communication structure. The seminal paper of Kalai et al. (1978) on
the application of a deterministic graph, addresses the problem of middlemen in a
three-person game. In this specific situation they studied the core and concluded
that a middleman, i.c. an agent which handles all communication in the economy,
may have a disadvantageous position. In fact, this paper also shows that certain
agents can be more powerful than others. In this case, the notion of “power” is only
based on the position of those agents in the communication structure. Secondly,
it shows that the core can not be accepted as the proper cooperative equilibrium
concept in such situations. The study of power arising from specific positions in
social or communication structures has been recently undertaken by Gilles (1988).
A more general approach to the middlemen problem is presented in Muto et al.
(1987), where so called “Big Boss”-games are studied.

In this paper we follow the lines as developed in Gilles and Ruys (1988 and
1989). There it is argued that conceptually the modelling of an economy with
limited communication has to be in the tradition of general equilibrium theory, as
developed in Debreu (1959), Grodal (1974), Hildenbrand (1974), and Mas-Colell
(1985). There it is common practice to model an economy as a mapping from the
collection of agents to a certain attribute space. In Gilles and Ruys (1988) this
practice was extended to an economy with an arbitrary communication structure.
Thus an economy consists of a socially structured class of economic agents, a well
chosen attribute space, and a mapping from the set of agents into the attribute
space, describing types of agents. The attention in this theory is now focussed
on the structure of the attribute set, as induced by the mapping and the social
structure of the set of agents. We call the structured attribute space, which results
from this model, a typology of the socially structured class of economic agents. In
this sense the socially structured collection of economic agents is typified by this
typology.

Gilles and Ruys (1988) have introduced a generalized notion of middleman
in arbitrary communication patterns, which they called a network in the attribute
space. In fact a network is a minimal collection of types of agents which can handle

all communication in the communication structure. Hence in the specific situations



which were described by Kalai et al. (1978) the middlemen form a network on their
own. Networks are not only important in solving questions as posed by Kalai et al.
(1978) on core-allocations for agents with special positions in such communication
structures, but also in describing explicit models of coalition formation and trade
patterns. This line has been pursuit by Gilles and Ruys (1989) with networks as
the basic notion in coalition formation in arbitrary large communication structures,
and in Gilles (1988), where networks and patterns of networks are used to give a
description of a social or communication structure. In the latter a value-like power
index was based on the positions of agents in such networks. This approach extends
the scope of analysis, which was developed in the seminal paper by Kalai et al.
(1978).

In the present paper we address the fundamental question under which conditions
the existence of such networks, or generalized middlemen, is guaranteed. This prob-
lem is especially important in the modelling of large economies. In such economies
the existence problem of networks is no longer trivial. In Gilles and Ruys (1988) it
was already proven that for the “normal” cases there is no problem with respect to
existence. With “normal” case we just mean a situation in which the set of agents
can be typified in a compact attiribute space. Although it is very plausible that
every (large) economy can be typified in such a compact space, it is not guaran-
teed that all non-pathological economies are covered by this existence result. The
main reason for this disbelief is that a typification, as described above, puts some
severe conditions on the topology on the attribute space. It may be that in certain
cases this space is not compact, while the economy is quite “normal”. We mention
the possibility of an economy with a countably infinite number of types. Here the
attribute space trivially is no longer compact.

The proof of a generic existence result, which by the above example is of
crucial importance for applications, turns out to be a non-trivial problem. In this
paper we show that for specially structured attribute spaces the existence of a
network is guaranteed. For the most general case we can however only prove that
there exist network-like collectiohs of types in the typification of a communication
structure. In some sense it is dissapointing that the existence of a network is not
guaranteed for every situation, but on the other hand we have established that
in every interesting case, which is not too pathological, there exists a generalized



middleman. This makes it plausible that in nearly every model we can use the

concept of network to describe certain behaviour of economic agents.

This paper is organized as follows. In the second section we restate the model as
described in Gilles and Ruys (1988 and 1989). The third section is devoted to the
definition of the notion of a network and the formulation of some existence results.
As mentioned above these results are restricted to specific situations. In section 4,
a generic existence result is stated and proved for a network-like concept. Finally,

we make some concluding remarks and suggestions for future research in section 5.

2 Relational Models

In this section we will develop the model which will be analysed in the next sections
of this paper. For a full exposition of the model and its economic features we mainly
tefer to the basic papers of Gilles and Ruys (1988 and 1989). It is not our purpose
to deal with the economic content of this model, but we are mainly interested in the
mathematical property of the model under which conditions there exists a network
or a network-like concept. These networks play an important role in the process of
coalition formation as described in Gilles and Ruys (1989).

The main line of our modelling will be explained in the next definitions.
The first definition deals with the first primitive notion of our modelling, namely a
population, which describes a set of agents with individual as well as social charac-
teristics or features. These social characteristics are described by a relation on the
set of agents. Hence we are dealing with a graph as the main basic concept of our

model.
Definition 2.1 A pair (A,R) is a population if

e A is a set of economic agents ;

e RC A x A is a symmetric and reflezive relation on the set of agents A.

It is clear that a population — or relational structure — can be identified with an
undirected graph. In this paper we will assume that this graph can be as well finite
as infinite, especially uncountable. In the uncountable case it is especially inter-
esting to have a model of coalition formation and arrive at a coalitional structure

as described in Gilles (1987). However, to describe such a uncountable population



we have to impose some more mathematical structure. Therefore we embed the
population into a topological space of agents’ characteristics or attributes such that
it satisfies certain conditions and properties, which describe some social phenomena
as can be notified or described in the population itself.

Hence, we introduce an additional primitive concept to our model: a topo-
logical attribute space (C,7) which satisfies the T)-separation property, i.e., for
every two points z,y € C, such that z # y, there exists an open set V € 7 such
that (z€ Vandy g V)or(y€Vandz¢V). Note that we do not exclude metric
or Hausdorff spaces with this definition, but that we take the topological space as
general as possible. The space (C,7) is usually denoted as the space of character-
istics or attributes. (See for instance Hammond, Kaneko and Wooders (1987) and
Gilles and Ruys (1988).) For some theorems in the sequel we have to impose some
more severe conditions on the topological space (C,7) or on a subspace of it.

The next definition describes the process of embedding or modelling a popu-
lation (A, R) in the attribute space (C,7) in more detail. The purpose of this kind
of modelling is that we are able to describe and analyse certain properties in the
setting of a population in more detail. The assumption that such an embedding or
model of a population in the topological attribute space (C,T) exists, is one of the
main postulates of economics.

This can be illustrated by refering to the practice in general equilibrium
theory. In the work of Aumann (1964), Hildenbrand (1974) and Mas-Colell (1985)
one defines an economy as a mapping from the set or space of agents, denoted by
A, to the space of preferences, which is usually denoted by P x E!, where Ei is
the ¢-dimensional Euclidean space. Here £ expresses the number of commodities
in the economy, and so E! is the commodity space. Hence, an economy is defined
as a mapping £ : A — P x E%. In fact the economist does not deal with the
agents themselves, but with the typology of those agents in the type-space P x Et.
A generalization of this practice in general equilibrium theory and many other

research areas in economics and other social sciences is given in the next definition.

Definition 2.2 Let (A, R) be a population.
The pair (A, R) is a typology of (A, R) in the fnpelogical space (C.7) if there caists
a mapping g : A — C which satisfies the following properties:

1. A:= g(A)CC and



R:= {(a,b) | 3(a,f) ER: a=g(a), b=g(B)} C A x A.
2. For every point a € A there ezists an open neighbourhood U, € T such that

beU,NA = (a,b) €R

3. For every point a € A and every pair of agents a,3 € g~'(a) there ezists a

finite sequence 71,...,7, € g7 '(a), where n is a natural number, such that
ca=m;
*B="m;

® (vj,7j+1) €E R for every j =1,...,n— 1.
4. There ezists an at most countable sequence {C,)neN of pairwise disjoint topo-
logically connected subsets of the restricted topological space (A, T|A) such that
A = UpeN Cn. (Here the collection of all positive integers is denoted by N.)

The points in the set A, which is by definition a subset of the topological attribute
space (C,7), are called types. The mapping g from the population (A,R) to the
restricted topological space (A,T|A) is referred to as the characterization of the
population in that topological space.

We note from the definition that a type is an image of a certain collection of agents
with the same characteristics or attributes, as described in the introduction on
the purpose of our modelling, and evenly important that those agents are socially
closely related in the sense that they are able to communicate with each other
through one another. It is quite normal to speak of types in such situations. As the
standard theory of general equilibrium shows, one is really only interested in types
of agents instead of the agents themselves. (See also Hildenbrand (1974), Grodal
(1974), and Mas-Colell (1985).)

From mathematics we learn from the last property on the characterization of
a population in the topological space, that the restricted topological space (4, 7|A4)
consists of at most countably many components. (A component of a topological
space is defined as a maximal topologically connected subset of that topological
space.) In the case of a typology of some population (A,R) in a fixed topological
space (C,7) we refer to the at most countable sequence of components of the re-
stricted topological space (4,7|A) as the subdivision of the typology (4, R). This
subdivision will be denoted by (An).eN-



In the sequel we assume that we have a fixed topological space (C, 7), which satisfies
the T)-separation property. Moreover, we assume that we have a fixed population
which we will denote by (A, R), that can be modelled in the fixed topological space
(C,7) by some characterization g: A — C. Hence, we assume that the mapping
g satisfies the properties as formulated in the previous definition. Henceforth we
speak of a typology (A,R) of the population (A,R) in the topological space (C, ).

The assumption that there exists a characterization for the population (.4, R)
in the topological space (C,7) is called the Axiom of Descriptive Modelling. It
is one of the main methodological axioms of economic theory, since it assumes that
we can describe the economic behaviour of the agents in the economy by describing
and analysing the agents by their characteristics. Again we refer to the usual prac-
tice in general equilibrium theory and econometrics, that we mostly handle not the
agents themselves, but types of agents. Hence, we mostly deal with certain aspects
of the behaviour of the agents only.

In the next definitions we will describe some social phenomena in the setting
of a typology (A, R) of the population (A, R) in the topological space (C, ), which
can also be extended easily to the general setting of the population (A, R) itself.
For details we refer to Gilles and Ruys (1988).

Definition 2.3 Let (A, R) be a typology.
The mapping F : A — 24, which denotes to every type a € A the set

F(a) := {b€ A |(a,b) € R}

is the type-relation mapping of the typology (A, R). For every type a € A, the
set F(a) is describing the collection of related types of a in the typology (A, R).

The next “connectedness” property on a typology turns out to be crucial in nearly
all results in this paper as well as in Gilles and Ruys (1988). Before we are able to

state this important definition, we have to define a technical tool first.

Definition 2.4 Let (A, R) be a typology and let the sequence (4,),en be its uniquely
defined subdivision.

A pair (A, R) is a condensation of the typoloan ( V1) in the veatricted topological
space (A,7|A) if AC A, R C Ax A and there crists a surjective mapping C' = 4 —
A such that the following properties are satisfied:



1. For every integer n € N and any two types a,b € A, it holds that C(a) = C(b).

2. For any two integers n,m € N, n # m, and all types a € A, and b € A,, it
holds that C(a) # C(b).

3. (a,b) € R if and only if there ezist integers n,m € N, n # m, and two
types ¢ € A, and y € A,, such that C(z) = a, C(y) = b, and furthermore
(z,y) € R.

It is not difficult to see that there always exists a condensation of a typology (A, R)
in the restricted topological space (A, 7|A). With the use of the notion of conden-
sation we are now able to define the main property of a typology with respect to

the social characteristics of the agents in the population.

Definition 2.5 A typology (A, R) is component-connected if there ezists a con-
densation (A,R) of (A, R) in the restricted topological space (A,T|A), which is a

finitely connected graph, i.e., for every two points a,b € A there ezists an integer

n € N and a finite sequence &,...,&, € A such that
e ¢ =ajy
L] E,,:I;;

o for every j =1,...,n—1: (&;,¢;41) € R.

Connectedness is a quite natural condition on relational models. It just prescribes
that there exist communication lines between all groups of types which are socially
close to each other. (In Gilles and Ruys (1988) these classes or groups of types are
called macro-types. For an economic interpretation of this concept we also refer to
that paper.) To show the importance of the notion of component-connectedness we
state one of the main results of Gilles and Ruys (1988).

Definition 2.6 Let S be some set. Moreover, let G,H C S be two subsets of S,
and let n € N be an integer.

A finite sequence of subsets of S of length n, denoted by G,,...,G, C S, is an
irreducible chain between G and H if it satisfies the following properties:

e G;=Gand G, =H ;
o foreveryj=1,...,n~1: G;NGj, #0 ;



o forall|lh—j|>1: GaNG; =0.

The next lemma gives a full description of component-connectedness in terms of
communication within the original population and in the typology itself. The proof
of this lemma can be found in Gilles and Ruys (1988).

Lemma 2.7 Let (A, R) be a typology of the population (A,R) in the topological

space (C,7). Then the following statements are equivalent:
1. (A, R) is component-connected.

2. For every two types a,b € A there ezists an integer n € N and a finite
sequence of types c1,...,cn € A such that the sets F(c,),...,F(cn,) C A form
an irreducible chain between F(a) and F(b).

3. For every two types a,b € A there ezists an integern € N and a finite sequence
of types ¢1,...,cn € A such that ¢; = a, ¢, = b and for every j =1,...n — 1:
(cjrci41) € R.

4. For every two agents o, € A there ezists an integer n € N and a finite
sequence of agents vy,...,7, € A such that v, = a, v, = B and for every
j=1,...n=1: (7;,7j+1) € R, i.e., any two agents in the population are able

to communicate with each other.

3 Existence of Networks

As in the previous section we again take a fixed topological space (C,7), which
satisfies the T)-separation property, and a fixed population (A, R). Moreover, we
assume that there exists a typology (A4, R) of (4,R) in (C,7). Within the setting
of such a relational model we now define the concept of network. Although this
notion is defined in the setting of a typology it is casily established that it can be
generalized to any graph, and hence also to the population (A, R) itself.

We start with the definition of a so called pre-network, which expresses
the basic ideas about a specific coalition of agents, or types which can handle all

communication within the economy.

Definition 3.1 Let (A, R) be a typology.
A set of types N C A is a pre-network in (A, R) if it satisfies the following

conditions:
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Reachability:
The collection of sets {F(a) | a € N} is a cover of A ;

Connectivity:
The graph (N,R|N), with RN := RN (N x N), is finitely connected, i.e.,
for every two types a,b € N there is a finite sequence of types cy,...,cn € N
such that a = ¢;, b = ¢, and moreover for every j = 1,...,n — 1 it holds that
(ejrcjs1) € R|N.

From the definition it is clear that any large enough set is a pre-network, since the
set of all types A itself is a pre-network. This shows that in a pre-network there may
be many “superfluous” types, i.e., we can dispose of these types without altering
the essential properties of this collection of types. These essential properties are
just describing the handling of communication or information: Every agent in the
population can reach the network directly, and secondly, the network can deliver
the message to any other agent in the population by communicating it through
network-members only.! Hence, we are essentially interested in the minimal pre-
networks, where minimality is taken with respect to the disposal of superfluous

types. This leads to the following definition of a network.

Definition 3.2 Let (A, R) be a typology.
A set of types N C A is a network in (A, R) if it is a pre-network in (A, R) and
there is no type a € N such that the subset N\{a} is also a pre-network in (A, R).

A simple version of an existence theorem for a specific typology was given and

proved in Gilles and Ruys (1988). The next lemma recapitulates this result.
Lemma 3.3 (Gilles—Ruys) Let (A, R) be a typology.
(a) If there ezists a pre-network in the typology (A, R), then the typology (A, R) is

component-connected.

(b) If the restricted topological space (A,7|A) is a compact topological space, then
there ezists a finite network in (A, R) if and only if (A, R) is component-

connecled.

!We remark that the relations as described in the population can also be trade relations. This
implies that a network can be interpreted as a potential trade device or organization.
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For the proof of this lemma we refer to the proof of theorem 3.8(a) in Gilles and Ruys
(1988). There the properties of a pre-network, i.e., reachability and connectivity,
are the only ones, which are used in the proof of that assertion. So the proof can
therefore be copied without major alterations, and can be applied to the case as
described in (a). For a proof of (b) we refer to the second part of the proof of
theorem 3.8 in Gilles and Ruys (1988).

We now state some properties of networks in relation with pre-networks. We also
can show that the minimality property of a network is equivalent to the minimality

of a pre-network with respect to set-theoretic inclusion.

Theorem 3.4 Let (A, R) be a typology.

(a) If the class of types N C A is a pre-network, then any collection M C A, with
the property that N C M, is also a pre-network.

(b) A class of types N C A is a network if and only if it is a pre-network and
there is no proper subset of N, say M C N with M # N, which is also a
pre-network.

PROOF
Let (A, R) be a typology.

(a) Let the subset N C A be a pre-network, and suppose that M C A with
N C M. Now if M\N = 0, then the assertion is obvious. Hence assume that
M\N # 0.

Since N C M it is evident that A = F(N) C F(M) and so the reachability
property of a pre-network is also satisfied by M.

To prove the connectivity property of a pre-network, we note that for every
a € M\N there is a type b € N such that a € F(b). (This follows directly
from the fact that N is a pre-network.) Hence we arrive at the conclusion
that a € M\ N can have a chain as defined in the definition of a pre-network.
So the connectivity of M is proven.

This concludes the proof that M is also a pre-network.

(b) The if-part of the assertion is evident. Therefore we only have to check the
only if-part.
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Suppose that N C A is a network and suppose that there exists a pre-network
M C N with M # N. Then by definition we know that #N\M > 2. Now
take a fixed type @ € N\M. Thus by assertion (2) and the fact that the
pre-network M C N\{a} C N, we know that N\{a} is also a pre-network.

Hence, by definition N cannot be a network. This is a contradiction.
Q.E.D.

The next modifications of the component-connectedness property of a typology
or relational model are necessary to state an extension of the existence result on
compact relational models, i.e., the case in which the restricted topological space

(A,7|A) is a compact space.

Definition 3.5 The typology (A, R) is strongly connected if there ezists a con-
densation (A, R) of (A, R) in the restricted topological space (A,T|A) which is a
finitely connected graph, and for all @ € A it holds that

#{be A | (a,b) € R} < .

Another formulation of strong connectedness is that for the typology (A4, R) there
exists a condensation (4, R) such that it is not only a finitely connected graph, but
that furthermore for every @ € A it holds that

#[RN ({a} x 4)] < oo.

From this property of a typology we can derive an important preliminary result,
which seems less relevant from an economic theoretic point of view, but which is of
great importance to the proof of any extension of the existence result on networks

as formulated in Lemma 3.3 for the “normal” situation of a compact typology.

Lemma 3.6 (Reordering—lemma) Let (A,R) be a strongly connected relational
model and let (A, R) be a condensation as given in Definition 3.5. Furthermore, let
C: A -— A be the mapping belonging to this condensation.

Now we can reorder the set A = {a, | n € N} such that

1. for any k € N the relational sub-model (U%,_, C~(am), R|U%_; C Y (am) ) is
a component connected typology, and
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2. the sct A can be divided into a countable sequence of (finite) groups (B;)ieN,
i.e., U2, B; = A, such that
B, = {al}y
B; = {a2z,...,8n, } for n; > 1,
B, = {G,_,s++-38n. } for nts > 1y (r > 2)
where n, (r € N) are finite integers.
Moreover, if [ry — ro| = 1, then there ezist ay, € B,, and ay, € B,, such that
(am,a1,) € R.
And if |ry — 73| > 1, then for every ay, € B, and ay, € B,, it holds that
(ar,,ax,) € R.

PRrROOF

The proof of this lemma can easily be derived from the definition of strongly
connectedness. Take for instance any a; € A. Next define B, := {a;} and
B, :={a € A\ B; | (a,a;) € R}. Moreover, let B,_;, with r > 2, be constructed,

then we choose
r—1
B,:={a€ A\ |J Bk | (a,b) € R, b€ B, ,}.
k=1

We remark however that the reordering of A is not unique. Moreover the sequence
of groups (B;);en may neither be unique.
Q.E.D.

Finally we are able to state the extension of the existence result on compact typolo-
gies of populations. In the proof of the theorem we explicitly use the reordering
lemma 3.6.

Theorem 3.7 Let (A, R) be a typology, and let (A,).eN be the unique subdivision
of (A, R). Let the following properties be satisfied:

1. The restricted topological space (A,7|A) is a Hausdorff space ;

2. (A, R) is strongly connected ;

3. For every integer n € N, A, is a compact subset of the restricted topological
space (A,T|A) ;
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{. There ezists a reordering of the subdivision, denoted by (A} )reN, a partition
of the reordered condensation as consiructed in Lemma 3.6, denoted by the
sequence (B;)jen (UB; = A), and an integer N € N, such that when j > N,
there is a unique type a; € C~'(B;) such that

F(a;)NC™(Bjn) #0
Then there ezists a countable network in (A, R).

PROOF
Let (AL)ren and (B;);en be as given in condition 4 of the theorem and the re-
ordering lemma 3.6. Moreover we denote for every integer k > N the unique type
ax € C~(Bs) such that

F(ax) N C Y (Bry1) #0
Note that from lemma 3.6 it follows that for a fixed £ € N it holds that for all
types a € C~'(B,) and integers m € N with |k — m| > 1: F(a) NC~Y(B,) = 0.

We now take a fixed number k € N.

We define the collection, denoted by Sp C 24, as the class of all finite pre-networks
H in the sub-model (U%_, C~'(B;), R|U%, C~'(B;)) such that @, € H. Note that
this collection is not empty, i.e., S # 0. (This is deduced from an application of
Lemma 3.3 to the compact typology as described above.) Moreover, it is evidently
clear, that the collection Sy has a minimal element. We denote this minimal element
by E,. We remark that E, € Si, and hence is a pre-network such that a, € E,,

but that E} is not necessarily a network.

From the sequence (Ej)ien We now construct another sequence, denoted by (Eg)ienN,
consisting of networks, i.e., for every k € N the collection E; is a network in the
sub-model (U%_, C~*(B;), R| UL, C~(B;)).

For construction of the sequence we take a fixed integer k € N, and we note that

we have two possibilities:
1. Ej is a network in (U%-, C'(B;), R|U5_, C "'(B;)). Then we take Ej = E,.
2. If Ey is not a network of (U, C~(B;), R|U%_, C~(B;)), then by construc-

tion of Ej and property 4 of the theorem it follows that Ej \ {@:} is a network
in (U, C~1(B;), R|UL, C~'(B;)). Hence we take E; := E; \ {a}.
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Now for every k > N it holds that Ej C Ej,.

In fact, since Ej4, is a pre-network, it holds by assumption 4 of the theorem that
@i € Eiyq. But it also holds that Ej \ {@x} C Egy1, since there is no direct relation
between any type in E;\ {a:} and any type in Ej, \ By, ie., RN(Eg \ {@r} X Epsq\
Ej) = 0. From these properties it easily follows that by construction the assertion

as formulated above is true.

Hence the sequence (Ey)ienN is increasing with respect to inclusion, and so we can
define the following set:
E* := Li(E}) = Ls(E})

By the obvious theorems it is easily established that E* is the closed limit of the
sequence (E})ren. (For an elaboration of this remark we refer to Klein-Thompson
(1984) and the introduction in Hildenbrand (1974). There is also given the defi-
nitions of the operators “Li” and “Ls” in connection with the topology of closed

convergence on a hyper-space of closed subsets of a certain topological space.)

It is now easily proved that the collection E* is in fact a countable network in the
typology (4, R):

Countability E* is an at most countable subset of A, since for every k € N the

collection Ej is finite.

Reachability F(E*) = A.
Suppose that this is not true. Then there exists a type a € 4 such that a ¢
F(E*). But there also exists a number K > N, such that a € C‘I(U;.l:__1 B;) =
U, C~Y(B;), and hence a € F(Ej) C F(E*). This is a contradiction.

Connectivity The relational sub-model (E*, R|E*) is finitely connected.
Take any pair of types a,b € E*, then there exists a number K > N such that
a,b € Ex. By construction of the sequence (Ej)senN it holds that a and b are
finitely connected within Ej, and hence are finitely connected within E7 for
every j > K > N. Therefore a and b are finitely connected within E*.

Minimality Suppose there exists a type a € E* such that the collection E*\ {a} also
satisfies reachability and connectivity, i.e., it is also a pre-network in (4, R).

Now there exists an integer j € N such that @ € Bj, with a # a; if
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j > N. Then it is easy to show that for K := max{j, N} it holds that
Ek can not be a minimal element in the collection S, consisting of pre-
networks in (UX, C~'(B;), R|UX, C~!(B;)) containing the unique element
ax € C7'(Bk). This is in contradiction with the assumption on Eg, and

hence with the assumptions on E”.

This concludes the proof of the assertion as formulated in the theorem.

Q.E.D.

The specific structure of the typologies for which this existence theorem is valid,
is a tree-like structure. This also shows that the existence theorem for countable

networks is only valid for certain specific situations, and cannot be called “generic”.

4 Existence of Quasi-networks

As noted in the previous section we only derived some existence results on networks
under quite restrictive conditions, such as strong connectedness and compactness.
In this section we introduce some related concepts to the notion of network in a
typology, and show that under much more general conditions the existence of such
constiructions is guaranteed. We start our investigation with the introduction of

the concept of pseudo-network.

Definition 4.1 Let (A, R) be a typology.

(a) A setof types N C A is a closed pre-network in (4, R) if N is a pre-network
in (A, R) and furthermore N is a closed set in the restricted topological space
(4,7|A4).

(b) A set of types N C A is a pseudo-network in (4, R) if N is a closed pre-
network in (A, R) and there is no proper closed subset of N in the restricted
topological space (A,7|A), which is also a closed pre-network in (A, R).

From the definition above we immediately arrive at the following properties of the

concepts defined:
i.  Any closed pre-network is a pre-network.

ii. The closure of any pre-network is a closed pre-network.
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iii. Since the topological space (C,7) satisfies the T-separation property, it is
easily established that any finite pre-network is a closed pre-network.

iv. Any closed network in (4, R) is also a pseudo-network.

v. The closure of any network in the typology (4, R) is not necessarily a pseudo-
network. (The proof of this statement is fairly trivial, and rests on the insight
that there can exist closed subsets of a closure of a set S, denoted by S, which
do not have to be subsets of S itself.)

We are now able to state a corollary, which directly follows from the proofs of the

two existence results, Lemma 3.3 and Theorem 3.7.

Corollary 4.2 Let (A, R) be a typology.
If (A, R) satisfies either the conditions as formulated in Lemma 3.3 or the conditions
as formulated in Theorem 3.7, then there ezists a collection of types N C A which

is a nelwork as well as a pseudo-network in (A, R).

PROOF

If the conditions of Lemma 3.3 are satisfied, then it follows from the fact that any
finite set is closed in a compact Tj-space, that the network as constructed in the
proof of Lemma 3.3 is a closed set in restricted topological space (A,7|A). Hence
by iv. above this collection is also a pseudo-network in (A, R).

Let the conditions of Theorem 3.7 be satisfied.

It is easily deducted from the proof of 3.7, that the collection E* is a closed subset

in restricted topological space (4,7|4), and hence it is a closed network in (4, R).

Again by applying iv. it is obvious that E* also has to be a pseudo-network.
Q.E.D.

The next example shows however that we cannot generalize any of the statements
as formulated in i. — iii. above to the similar statements on the relation between

networks and pseudo-networks.

Example 4.3 Networks and pseudo-networks
In this example we construct a relational model from a not explicitly defined popu-

lation (A, R) in the two dimensional Euclidean space, denoted by E?. We construct
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this example such that there exists a network in the typology which is not a pseudo-
network, and such that there exists a pseudo-network in the typology, which is not
a network.

First we construct the relational model, which in fact is also the population
itself, by defining the set of agents A and a relation R on that set. This is done
in the context of the non-negative orthant of the two dimensional Euclidean space,
denoted by E?. Hence we define:

A = [(0,1] x [0,00)] U {(0,0)} C E2

N:=[0,1]x {0} C 4

Let 7 be the relative (Euclidean) topology on the set A C E2 and note that N is a
closed subset of A endowed with this topology .

We define the relation R C A x A by giving the relation mapping F' : A — 24,
Take a fixed small positive number § > 0. Now for all types a € A we denote
by B(a) := Bs(a) N A, where Bs(a) is the ball with radius § around a € 4, a
é-neighbourhood in the relative Euclidean topology on A. We define the relation

mapping F as follows:

F((0,0)) := B((0,0)) UN

F((a,0)) := B((a,0)) UN U [{a} x [0,00)], for every a € (0,1]

F((a,b)) := B((a,b)) U {(a,0)}, for (a,b) € A\N.

Now we can draw some conclusions with respect to the constructed relational model.
First we note that (A, R) is indeed a typology of itself as a population in the
Euclidean space E?.

It is easily established that N is a closed pre-network in (A4, R). Moreover
there is no proper closed subset of N which satisfies the conditions of reachability
and connectivity of a pre-network, and hence we conclude that N is a minimal

closed pre-network, i.e., N is a pseudo-network in (4, R).
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Next we observe that the set N’ := N\{(0,0)} is a network in (4, R). Firstly
it satisfies both conditions of a pre-network, and secondly if we delete a point from
N', then the remaining set does not satisfy both conditions. Hence N’ satisfies all
conditions of a network.

So we actually constructed a typology in which there exists a pseudo-network

which contains, as a proper subset, a network.

We may conclude from the example above that an existence result on pseudo-
networks may be as hard to get as a generalisation of our initial result of Gilles and
Ruys (1988). Therefore we have to introduce a weaker concept than the concept of
pseudo-network, in order to be able to establish a more general existence result.

Both concepts introduced in the next definition are direct generalisations
of the notions of closed pre-network and pseudo-network as defined above. The
notion of asymptotic closed pre-network is closely related to the notion of closed
pre-network. Similarly the concept of quasi-network — or minimal asymptotic closed
pre-network — is defined in the same fashion as pseudo-network in the setting of
closed pre-networks.

Before we define both new concepts we have to mention some technical

preliminaries. Let (A, R) be a typology and now define
F(A):={F C A| F is a closed subset of (4,7]|4)}

Next define 7. to be the topology of closed convergence on the class F(A) of all
closed subsets of the restricted topological space (4, 7|A). Hence the pair (F(4),Tc)
is the hyper-topological space of the restricted topological space (4,7|A) endowed
with the topology of closed convergence. (For a full exposition of this hyper-space
we refer to Hildenbrand (1974). As shown there, hyper-spaces endowed with the
topology of closed convergence have many applications in economic theory, espe-

cially in general equilibrium theory.)

Definition 4.4 Let (A,R) be a typology and let (F(A),T.) be the hyper-space of
closed convergence on the restricted topological space (A,T|A).

(a) The collection of types M C A is an asymptotic closed pre-network in
(A,R) if M is a closed set, i.e., M € F(A), and for every T.-neighbourhood
Var of M, there ezists a closed pre-network N such that N € V.
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(b) The collection of types N C A is a quasi-network in (4,R) if N is an
asymplotic closed pre-network and there is no proper subset M C N, with
M # N, which is also an asymptotic closed pre-network of (4, R).

Next we come to the main existence theorem on quasi-networks. It is not only
very general, but it also gives a description of the strength of the component-

connectedness condition on a typology.

Theorem 4.5 (Existence of Quasi-networks)

Let (A, R) be a typology such that the restricted topological space (A, 7|A) is a locally
compact Hausdorff space. If (A,R) is component-connected, then there ezists a
quasi-network in (4, R).

Proor
Take a fixed type d € A. Next define

S;:={N C A|de N and N is an asymptotic closed pre-network in (4, R)}

We note that by the component-connectedness of (4, R) the set of all types 4 is a
(closed) pre-network and so A € Sy # 0.

In order to use Zorn’s lemma on the class S;, we now take a totally ordered sub-
collection By C Sy. Since for every asymptotic closed pre-network N € By, by
definition d € N it is obvious that

d € No:=nNBy # 0.

We now will prove that the set No is an underbound for the totally ordered subcol-
lection By C Sy, i.e., we will prove that Ny € Sz. (In order to do so, we note that
we only have to check whether Ny is an asymptotic closed pre-network in (4, R).)

In fact we know that the collection By is a decreasing net with respect to inclusion,
and so Ng := Li(B4) = Ls(By). So by theorem 4.5.4 of Klein-Thompson (1984), we
establish that Ny = limyes, NV in the topology of closed convergence 7. on the class
of closed sets F(A).

We note that any 7.-open neighbourhood can be written as the collection

UK,G):={FeFA) | FNK =0and FNG #0, G € G},
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where K C A is a compact subset of the restricted topological space (4,7|A)
and G C 7|A is some finite collection of non-empty open subsets of the restricted
topological space (4,7|A).

Hence, for each 7;-open neighbourhood U(K, G) of Ny, there is an asymptotic closed
pre-network N; € By such that Ny € U(K,G). But U(K,G) is then also a T -open
neighbourhood of Ni, and hence by the definition of an asymptotic closed pre-
network, there exists a closed pre-network, denoted by N, such that N € U(K,G) .

So we conclude that for every T.-open neighbourhood U(K,G) of N, there is a
closed pre-network N € By such that N € U(K,G). With the use of the definition
of an asymptotic closed pre-network, we establish that Ny is also an asymptotic
closed pre-network in (4, R), i.e., Ny € S;.

Next we apply Zorn’s lemma on the collection S; to establish the existence of a
minimal element, say N,in S, (Note that d € N)

Next we define the following collections:

S§:={N C A| N is a closed pre-network in (4, R)}

S§':={N C A | N is an asymptotic closed pre-network in (4, R)}

Obviously § C 8§'. In order to complete the proof of the theorem we first have to

prove the following claim:

CLAIM
There is no asymptotic closed pre-network N € S’ such that N ¢ N\ {d}, N #

N\ {d}.

PROOF OF THE CLAIM

Suppose that there is an asymptotic closed pre-network N € S’ such that N C
N\ {d}, N # N\ {d}. Then NU{d} C N and N U {d} # N.

First we note that N U {d} is a closed subset in the restricted topological space
(A,7|A). (Use the Ty-separation property of (C,7).) Next take a 7.-open neigh-
bourhood U(K,G) of NU{d}, where K C A is a compact set, and G = {G1, ..., G}
is a finite collection of open subsets of the restricted topological space (4,7|4). We
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now prove that there exists a closed pre-network in this 7;-open neighbourhood
U(K,G) of N U{d}. First define

G:={GeG|d¢gG}cg

If G' # 0, then U(K,G') is a neighbourhood of N. Since N € S’ we know that there
is a closed pre-network N € S such that N € U(K,G').

If G' = 0, then U(K,{A}) is a neighbourhood of N. By the same reasoning as
above, there exists a closed pre-network N € S such that N € U(K,{A4}).

In both cases above it is obvious that N U {d} belongs to S, i.e., is a closed pre-
network, and moreover (N U {d}) € U(K,G).

Hence we may conclude that N U{d} is an asymptotic closed pre-network, and thus
N U {d} € S;. This contradicts the minimality assumption on NV in the collection
Sa.

THIS COMPLETES THE PROOF OF THE CLAIM.

We can distinguish two cases:

(1) N \ {d} is an asymptotic closed pre-network, ie, N\ {d} e s
Then by the claim, the set N\{d} has to be a minimal element of the collection
S, and so N \ {d} is the required quasi-network in (4, R).

(i) N\ {d} is not an asymptotic closed pre-network, i.e., N \ {d} ¢ S".
Then by applying the claim we arrive at the conclusion that N is a minimal
element in §’, and so it is the required quasi-network in (4, R).

Q.E.D.

The theorem above is in direct sense not so interesting with respect to economic
theory, and the theory of coalition formation in populations. However, this result
not only gives a very powerfull (indirect) description of the notion of component-
connectedness, but it is also of crucial importance to a general application of net-
works in economic theory. With respect to our first remark on this result we
note that it just states that in very general situations the condition of component-
connectedness involves the existence of a network-like structure in the population.

This means that in most economies, even in pathological ones, such structures exist.
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And this is of crucial importance to the application of networks and network-like
concepts in economic theory and the modelling of economies with limited commu-
nication.

To complete this description of existence results we finally state under which
conditions a countable quasi-network exists. This final theorem is a generalisation
of a similar theorem on the existence of a countable network in the previous section.
To establish the existence of such a countable quasi-network, we only have to deal
with strongly connected typologies. Hence, we can drop some of the additional

conditions of the existence theorem on countable networks in the previous section.

Theorem 4.6 Let (A,R) be a typology, and let (An)neN be its uniquely defined

subdivision. Assume that the following properties are satisfied:

1. (A, R) is strongly connected ;
2. the restricted topological space (A,7|A) s a Hausdorff-space ;

3. for every integer n € N, A, is a compact subset of the restricted topological
space (A, T|A).

Then there ezists a countable quasi-network in (A, R).

Proor
First we note that under the assumptions above the restricted topological space
(A, 7|A) is a locally compact topological space. Using the reordering-lemma we can

reorder the sequence (A, )N such that for every k € N:

k k
(U 4m,R| |J An) is component-connected.

m=1 m=1
Next define for every n € N the set N, as a finite network in (A,,R|4,), and
construct the following sequence (F,).cx of finite subsets of A:

o Fy:=N;;

e Given the set F, (n € N) we define F,y; := F, U Npyy U {a, b}, where taking
anumber 1 < k < n such that (@, a@n41) € R, we choose a € Ay and b € Ay
such that (a,b) € R.
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Now for each n € N the set F, is a finite, and thus closed. Obviously it is a pre-
network in the relational sub-model (B,, R|B,), where B, := U],_; Am. Moreover,
the sequence (F,)ncN is increasing, i.e., F; C Fj4, for all j € N.

Define N := Ls(F,) = Li(F,). It is easy to check that N is a closed subset of the
restricted topological space (4,7|A4), which satisfies all properties of a pre-network.

Hence, N is a countable closed pre-network.
This means that there exists a countable asymptotic closed pre-network in (4, R).

Take d € A, and define:

S, { NcCc A| de N and N is an at most countable }
d =

asymptotic closed pre-network in (4, R)

Hence Sy # 0. (Take N U {d} as an example of an element in the collection Sq.)
Similarly as is done in the proof of the general existence theorem on quasi-networks,

we are able to cstablish that:
1. By Zorn’s lemma there exists a minimal element in the collection Sd.
2. Define:
:= {N C A| N is an at most countable closed pre-network in (4, R)}

S'::{NCA

N is an at most countable }
asymptotic closed pre-network in (4, R)

By repeating a course of reasoning which is similar as in the proof of the
general existence theorem, we arrive at the conclusion that there exists a
minimal element in the collection 8’. This is the desired countable quasi-
network in (4, R).

Q.E.D.

5 Concluding Remarks

In this paper we have stated some results on the existence of networks and network-
like concepts in the setting of relational economies. The significance of these results
is that they cover nearly all possible typifications of populations in a topological

attribute space.
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The main existence result is already stated in Gilles and Ruys (1988), and
covers those economies which can be characterized in a topologically compact at-
tribute space. In the literature one mostly takes such attribute spaces since it
expresses the notion of a large, however bounded, class of types in the economy. In
those typifications the existence of networks is no problem.

The second existence result gives an extension to more pathological typifi-
cations, namely with unbounded many types, which however can be “ordered” in a
string of compact classes. For these near-compact collections of types the existence
of networks is neither a problem.

The search for a generic result led us to the definition of a network-like
concept, called a quasi-network. It turns out that the component-connectedness
property implies the existence of such a quasi-network in the most general setting.
Since (component-) connectedness is a very natural condition on an economy, this
result expresses that generically there always exists a network-like structure in the
economy. This is crucial in the development of new tools to describe economies
with relational constraints on (economic) behaviour. It also implies that we can
use freely the concept of network to describe the process of coalition formation and
the formation of social structures in such economies.

Hence the relevance of these results can also be illustrated by refering to the
applications of networks and network-like concepts in the description of coalition
formation in such a setting, as is done in Gilles and Ruys (1989), and the application

to the study of communication within relational settings as is done in Gilles (1988).

The main drawback of the theory of networks in typifications, is that these results
only guarantee the existence of such structures in the economy, but do not state
anything on the number of networks in the economy. It is likely that in any economy
there are an infinite number of such networks?. Within this number there are many
networks, which have no relevant meaning in the description of certain social or
economic phenomena, such as coalition formation.

We therefore introduced the notion of active or relevant network in Gilles
and Ruys (1989). For the moment we are not able to give a formal definition of
this notion. The relevancy of a certain network is based on the phenomena which

2In most cases we pxol‘;ably even have to count with aniuncountably infinite number of networks

in the economy. Especially in the compact case, which is the “normal” situation, this is likely, as
can be inferred from Lemma 3.3.
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the modeller wants to describe in the model, and hence is depending on the model
itself. For example in a health economy one is mostly interested in networks with
a medical as well as an economic meaning in the economy.

We admit that this reduction of the amount of networks in an economy
is still somewhat vague and informal. Therefore future research has to develop
tools to describe which networks are relevant for a certain problem and which are
not. These tools probably not only depend on the social structure and the social
constraints in the economy, as described in this paper and Gilles and Ruys (1988),

but also on the individual economic capacities of the agents in the economy?.
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