## Tilburg University

## Evaluation of moments of quadratic forms in normal variables

Magnus, J.R.; Pesaran, B.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Magnus, J. R., \& Pesaran, B. (1990). Evaluation of moments of quadratic forms in normal variables. (CentER Discussion Paper; Vol. 1990-21). Unknown Publisher.

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.


No. 9021

## EVALUATION OF MOMENTS OF QUADRATIC FORMS IN NORMAL VARIABLES <br> by Jan R. Magnus <br> 696.42 <br> and Bahram Pesaran $R 83$

April 1990

# Evaluation of moments of quadratic forms in normal variables 

by<br>Jan R. Magnus<br>London School of Economics<br>and<br>CentER, Tilburg University<br>and<br>Bahram Pesaran<br>Economics Division, Bank of England

February 1990

Keywords: Quadratic forms; Moments; Cumulants

## ABSTRACT

We present and describe a subroutine, called CUM, which calculates the cumulants and moments of a quadratic form in normal variables. That is, if we let $Q=x^{\prime} A x$, then $C U M$ can calculate $E\left(Q^{s}\right)$, where $x$ is an $n x 1$ vector of normally distributed variables with some mean and a positive definite (hence non-singular) covariance matrix, and $A$ is an $n x n$ symmetric matrix. A diskette containing the Fortran code of CUM and some test programmes is available on request.

## Language

Fortran 77

## Description and Purpose

The subroutine CUM calculates the exact cumulants and moments of the quadratic form $x^{\prime} A x$, where $x$ is an $n \times 1$ vector of normally distributed variables with some mean $\mu$ and a positive definite (hence non-singular) variance-covariance matrix $\Omega$ and $A$ is an $n \times n$ symmetric matrix. The routine is based on theory developed by Magnus(1978, 1979) for the central case where $\mu=0$, and Magnus(1986, Lemmas 2 and 3) for the general case.

## Parameter statements

The following parameters have been set in subroutines CUM and PARINT :

ISPAR=77 The dimensions of the array ISPRTN (ISPARxISDIM) where all \& possible partitions for a particular s are stored. This two ISDIM=12 dimensional array is set up by subroutine PARINT.

MAXMOM=24 The maximum of $s$ allowed.

If $12<$ s $\leq 24$ is to be calculated, then both ISPAR and ISDIM should be increased.

Working out cumulants and moments for $\mathbf{s > 2 4}$ is possible. In that case not only ISPAR and ISDIM should be changed in the parameter statements, but also MAXMOM. Furthermore, the DATA statement in subroutine PARINT should be extended to include MAXMOM numbers. In the data statement the vector NUM has been set up to contain the number of all possible partitions of numbers up to 24 . If a MAXMOM bigger than 24
is specified, the data statement for NUM should be extended accordingly. For a table containing the partitions for integers up to 100 see $\mathrm{Hall}(1986, \mathrm{p} .38)$.

## Structure

SUBROUTINE CUM(IMOM, N, LS, A, IEMU, EMU, IOMEGA, OMEGA, RKUM, RMOM, WORK1, WORK2, WORK3, VEC, IFAIL)

Formal Parameters

| IMOM | integer | input: | $=0$ if only cumulants are required $=1$ if both cumulants and moments are required. |
| :---: | :---: | :---: | :---: |
| N | integer | input: | No of observations n |
| LS | integer | input: | order of the highest cumulant or moment required. |
|  |  | output: | unchanged unless LS $>M$ where M=MIN(MAXMOM,ISDIM) in which case LS is set equal to $M$. |
| A | real array of dimension at least $N x(N+1) / 2$ | input: | symmetric matrix in the quadratic form x'Ax. Only the lower part of $A$ is stored as: <br> $a_{11}, a_{21}, a_{22}, a_{31}, a_{32}, a_{33}$ etc. |
| IEMU | integer | input: | $\begin{aligned} & =0 \text { if } \mu=0 \\ & \neq 0 \text { if } \mu \neq 0 \end{aligned}$ |
| EMU | real array of dimension at least $N$ | input: | vector $\mu$. Values required only if IEMU $=0$ though storage should be allocated to it. |
| IOMEGA | integer | input: | $=-1$ if $L^{-1}$ is supplied where $\boldsymbol{\Omega}=\mathrm{LL}$ ', L lower triangular |
|  |  |  | $\begin{aligned} & =1 \text { if } L \text { is supplied where } \\ & \Omega=L L^{\prime}, L \text { lower triangular } \end{aligned}$ |
|  |  |  | $=2$ if $\Omega$ is supplied |
| OMEGA | real array of dimension at least $N x(N+1) / 2$ | input: | either $L$ or $L^{-1}$ or $\Omega$ where only lower part of these are stored |

RKUM real array of dimension at least LS

RMOM real array of dimension at least LS

WORK1 real array of dimension at least $N x(N+1) / 2$

WORK2 real array of dimension at least $\mathrm{Nx}(\mathrm{N}+1) / 2$

WORK3 real array of dimension at least $\mathrm{Nx}(\mathrm{N}+1) / 2$

VEC real array of dimension at least N

IFAIL integer
output: the required cumulants with $i$-th cumulant stored in RKUM(i).
output: the required moments with i-th moment stored as RMOM(i).
work space
work space
work space
work space
output: a fault indicator where:
0 : no error
1: $\mathrm{N} \leq 1$
2: IOMEGA out of range
3: LS < 1
4: if IOMEGA $=2 \Omega$ not pos. definite
if IOMEGA=1 diagonal elements of $L$ not all positive
if IOMEGA $=-1$ diagonal elements of $\mathrm{L}^{-1}$ not all positive

5: if IOMEGA=2 or 1 , L can't be inverted
if IOMEGA $=-1, \mathrm{~L}^{-1}$ can't be inverted

6: ISPAR in the parameter statement is too small

## Auxiliary Algorithms

CUM calls various functions and subroutines listed below:
\(\left.$$
\begin{array}{ll}\text { (F1) FUNCTION INX(I,J): } & \begin{array}{l}\text { picks out the appropriate element of a } \\
\text { symmetric matrix stored in lower triangular } \\
\text { form }\end{array}
$$ <br>
(F2) REAL*8 FUNCTION FACT(N): calculates N! <br>
A real*8 function is used because large <br>

values of N are passed as the argument.\end{array}\right\}\)|  | constructs the matrix containing all <br> partitions of an integer |
| :--- | :--- |
| (S1) SUBROUTINE PARINT: | decomposes A (pos. def.) into LL' (L lower |
| (S2) SUBROUTINE SEP: | triangular) and replaces A by L |
| (S3) SUBROUTINE LOWINV: | inversion (in place) of a lower triangular <br> matrix |
| (S4) SUBROUTINE MULT1: | computes C=B'AB (A symmetric, B lower <br> triangular) |

## Constants

The DATA statement in CUM sets EPS $=1.0-11$ as a small number. Any number with an absolute value below EPS will be treated as zero.

## Precision

The version of the routines listed below is in double precision (Real*8). In order to change the program to single precision the following changes should be made:
(1) Change all IMPLICIT REAL*8 to IMPLICIT REAL*4
(2) Change the constants in the DATA statements to single precision versions.
(3) Change DSQRT, DABS to SQRT, ABS, in the statement functions appearing in the beginning of routines SEP and LOWINV.

Time

Using the VAX 6330 at the London School of Economics, typical CPU times for the double precision version are reported in Table 1 for different combinations of LS(4, 8 and 12) and $n(10,20,30,40$ and 50 ). Other parameters were kept fixed at IMOM=1 and IEMU=1 as the variations in these did not affect the CPU time significantly. It should be pointed out that the effect of increase in LS is cumulative, i.e. when LS=4 all of the first 4 cumulants and moments are calculated while for LS=8 all first 8 cumulants and moments are evaluated by CUM.

## Table 1. Typical CPU times

| $n$ | LS=4 | LS=8 | LS=12 |
| :--- | :--- | :--- | :--- |
| 10 | 0.30 | 0.32 | 0.47 |
| 20 | 1.07 | 1.47 | 1.98 |
| 30 | 3.74 | 5.17 | 6.39 |
| 40 | 10.43 | 13.24 | 16.35 |
| 50 | 23.81 | 29.52 | 35.26 |

## Accuracy

In order to check the accuracy of calculations we used CUM to evaluate the first 4 cumulants and moments of the $x^{2}$ distribution with 4 degrees of freedom. This was achieved by using an arbitrary ( $20 \times 4$ ) matrix $R$ and by setting $A=R\left(R^{\prime} R\right)^{-1} R^{\prime}$ and $\Omega=1$. Setting IEMU=0 the first 4 cumulants and moments of $x^{\prime} A x$ were calculated.

The exact rth cumulant of a $x^{2}$ distribution with $v$ degrees of freedom can be calculated using the formula

$$
\begin{equation*}
\kappa_{r}=v 2^{r-1}(r-1)! \tag{1}
\end{equation*}
$$

while the moments of a $x^{2}$ distribution with $v$ degrees of freedom can be worked out using its moment generating function which is

```
    MGM(t)=(1-2t)
```

Table 2 allows the comparison between the exact results using (1) and (2) and the calculated values using CUM.

Table 2. Accuracy of cumulants and moments of a $x^{2}$ distribution calculated by CUM

|  | Cumulants |  | Moments |  |
| :---: | :---: | :---: | :---: | :---: |
| $r$ | Exact | Calculated | Exact | Calculated |
| 1 | 4 | 4.00000000 | 4 | 4.0000000 |
| 2 | 8 | 8.00000000 | 24 | 24.00000000 |
| 3 | 32 | 32.00000000 | 192 | 192.00000000 |
| 4 | 192 | 192.00000000 | 1920 | 1920.00000000 |

Examining Table 2 shows that in this example an accuracy of at least eight decimal points is achieved.

## Related Algorithms

The algorithm for the evaluation of moments of ratios of quadratic forms in normal variables and related statistics by Magnus and Pesaran (1990).

## REFERENCES

Hall, M.(1986), Combinatorial Theory(2nd edition), John Wiley and Sons, New York.

Magnus, J. R.(1978), 'The moments of products of quadratic forms in normal variables', Statistica Neerlandica, 32, 201-210.

Magnus, J. R.(1979), 'The expectation of products of quadratic forms in normal variables: the practice', Statistica Neerlandica, 33, 131-136.

Magnus, J. R.(1986), 'The exact moments of a ratio of quadratic forms in normal variables', Annales d'Economie et de Statistique, 4, 95-109.

Magnus, J. R. and Pesaran, B.(1990), 'Evaluation of moments of ratios of quadratic forms in normal variables and related statistics', submitted to Applied Statistics.

SUBROUTINE CUM(IMOM, N, LS, A, IEMU, EMU, IOMEGA, +OMEGA, RKUM, RMOM, WORK1, WORK2, WORK3, VEC, IFAIL)

C
c
ALGORITHM AS??? APPL. STATIST. (1990).
CALCULATES CUMULANTS AND MOMENTS OF A
QUADRATIC FORM IN NORMAL VARIABLES
IMPLICIT REAL*8(A-H,O-Z)
PARAMETER ( ISDIM $=12$, ISPAR $=77$, MAXMOM $=24$ )
DIMENSION A(*), OMEGA (*), WORK1 (*), WORK2 (*), wORK3 (*)
DIMENSION EMU(*), RKUM(*), RMOM (*), VEC (*)
DIMENSION ISPRTN(ISPAR,ISDIM), TR(ISDTM)
DATA ZERO, ONE, TWO, EPS/O.ODO,1.ODO,2.0DO,1.D-11/
IFAIL=1
IF (N.LE.1) RETURN
IFAIL=2
IF (IOMEGA.NE.-1.AND. IOMEGA.NE.1.AND.IOMEGA.NE.2) RETURN
IFAIL=3
IF (LS.LT.1) RETURN
$\mathrm{NN}=\mathrm{N} *(\mathrm{~N}+1) / 2$
LS $=$ MIN (LS, MAXMOM, ISDIM)
SET WORK2 $=L$ WHERE OMEGA $=L L^{\prime}$
DO $10 I=1$, NN
WORK2 (I) =OMEGA (I)
IF (IOMEGA.EQ.1.OR.IOMEGA.EQ.-1) THEN
IFAIL=4
DO $20 \mathrm{I}=1, \mathrm{~N}$
R=WORK2 (INX (I, I))
IF (R.LT.EPS) RETURN
CONTINUE
END IF

```
```

IFAIL=0

```
```

IFAIL=0
IF(IOMEGA.EQ.2) CALL SEP(WORK2,N,ONE,EPS,IFAIL)
IF(IOMEGA.EQ.2) CALL SEP(WORK2,N,ONE,EPS,IFAIL)
IF (IOMEGA.EQ.-1) CALL LOWINV(WORK2,N, ZERO,ONE,EPS, IFAIL)
IF (IOMEGA.EQ.-1) CALL LOWINV(WORK2,N, ZERO,ONE,EPS, IFAIL)
IF(IFAIL.NE.0) THEN
IF(IFAIL.NE.0) THEN
IF(IOMEGA.EQ.2) IFAIL=4
IF(IOMEGA.EQ.2) IFAIL=4
IF(IOMEGA.EQ.-1) IFAIL=5
IF(IOMEGA.EQ.-1) IFAIL=5
RETURN
RETURN
END IF

```
END IF
```

```
            IF(IEMU.NE.0) THEN
```

            IF(IEMU.NE.0) THEN
    IF(IOMEGA.GT.0) THEN
    IF(IOMEGA.GT.0) THEN
            CALL LOWINV(WORK2,N, ZERO,ONE,EPS,IFAIL)
            CALL LOWINV(WORK2,N, ZERO,ONE,EPS,IFAIL)
            IFAIL=IFAIL+4
            IFAIL=IFAIL+4
            IF(IFAIL.NE.4) RETURN
            IF(IFAIL.NE.4) RETURN
    END IF
    END IF
    DO 40 I=1,N
    DO 40 I=1,N
    SUM=2ERO
    SUM=2ERO
    DO 30 J=1, I
    DO 30 J=1, I
    IF(IOMEGA.GT.O) THEN
    IF(IOMEGA.GT.O) THEN
        R=WORK2 (INX (I,J) )
        R=WORK2 (INX (I,J) )
    ELSE
    ELSE
        R=OMEGA (INX (I,J))
        R=OMEGA (INX (I,J))
    END IF
    END IF
    SUM=SUM+R*EMU (J)
    SUM=SUM+R*EMU (J)
    VEC (I)=SUM
    VEC (I)=SUM
    END IF

```
END IF
```

C

## CALCULATE CUMULANTS OF QUADRATIC FORM IN RKUM

```
    DO 130 IS=1,LS
    IF(IS.EQ.1) THEN
    DO 50 I=1,NN
    WORK2 (I) =WORK1 (I)
        ELSE
    DO 70 I=1,N
    DO 70 J=1,I
    IJ=INX (I,J)
    SUM=ZERO
    DO 60 K=1,N
    IK=INX(I,K)
    KJ=INX (K,J)
    SUM=SUM+WORK1 (IK) *WORK2 (KJ)
    WORK3 (IJ) =SUM
        DO }80\textrm{I}=1,N
    WORK2 (I) =WORK3 (I)
        END IF
        SUM=ZERO
        DO 90 I=1,N
        RI=WORK2(INX(I,I))
    SUM=SUM+RI
        TR(IS)=SUM
        IF(IEMU.NE.0) THEN
        SUM=ZERO
        DO }100\textrm{I}=1,\textrm{N
        TT=TWO
        DO }100\textrm{J}=1,
        IJ=INX (I,J)
        IF(I.EQ.J) TT=ONE
    SUM=SUM+TT *VEC (I) *WORK2 (INX (I, J)) *VEC (J)
    RS=IS
```

$T R(I S)=T R(I S)+R S * S U M$
END IF

```
TT=2**(IS-1)
RKUM(IS) =TT*FACT (IS-1)*TR(IS)
```

CALCULATE MOMENTS OF QUADRATIC FORM (IF REQUIRED) IN RMOM

IF (IMOM.EQ.1) THEN
CALL PARINT (IS, ISPRTN, ISPAR, ISDIM, ISROW, IFAIL)
IF (IFAIL.NE.0) THEN
IFAIL=6
RETURN
END IF
SUM=ZERO
DO $120 \mathrm{I}=1$, ISROW
$\mathrm{RB}=\mathrm{ONE}$
$R A=O N E$
DO $110 \mathrm{~L}=1$, IS
R2L $=2$ * $L$
$K=\operatorname{ISPRTN}(I, L)$
IF (K.NE. O) THEN
$R B=R B * E A C T(K) *(R 2 L * * K)$
$R A=R A *(T R(L) * * K)$
END IF
CONTINUE
$\mathrm{RB}=(\mathrm{FACT}(I S) *(T W O * * I S)) / R B$
SUM $=$ SUM + RA *RB
RMOM (IS) $=$ SUM
END IF
CONTINUE
IFAIL=0
RETURN
END

## SUBROUTINE PARINT (M,MPRTN,MRDIM,MDIM,MR, IFAIL)

CONSTRUCTS THE MR X M MATRIX "MPRTN" CONTAINING
ALL MR PARTITIONS OF THE INTEGER M

## PARAMETER (MAXMOM=24)

DIMENSION MPRTN (MRDIM, MDIM)
DIMENSION NUM (MAXMOM), IWORK (MAXMOM)
DATA NUM/1, 2, 3, 5, 7, 11, 15, 22, 30, 42,56, 77, 101, 135, 176, 231, $+297,385,490,627,792,1002,1255,1575 /$

IFAIL=1
IF (M.LT.1.OR.M.GT.MAXMOM.OR.M.GT.MDIM) RETURN
IFAIL=2
IF (NUM (M) .GT.MRDIM) RETURN
IFAIL=0
$\mathrm{N} 1=0$
$\mathrm{N} 2=1$
N3 $=0$
$M R=1$
$M 1=1$
$\mathrm{L}=0$
$\operatorname{MPRTN}(1,1)=1$
IF (M.EQ.1) RETURN
DO $10 \mathrm{~J}=2, \mathrm{M}$
$\operatorname{MPRTN}(1, J)=0$
DO $99 \mathrm{~K}=2, \mathrm{M}$
IF (N2.NE. 0) THEN
DO $30 \mathrm{I}=1, \mathrm{~N} 2$
$\operatorname{MPRTN}(\operatorname{MR}+I, 1)=0$
DO $20 \mathrm{~J}=2, \mathrm{M}$
$\operatorname{MPRTN}(\mathrm{MR}+\mathrm{I}, \mathrm{J})=\operatorname{MPRTN}(\mathrm{I}+\mathrm{N} 1, \mathrm{~J})$
$\operatorname{MPRTN}(\operatorname{MR}+1,2)=\operatorname{MPRTN}(\operatorname{MR}+1,2)+1$
END If
IF (N3.NE.O) THEN

```
    L=0
    DO }80\textrm{I}=\textrm{N}1+\textrm{N}2+1,M
    DO }80\textrm{J}=2,\textrm{K}-
    IF (MPRTN(I,J).EQ.0) GO TO 80
    DO 40 JJ=1,M
    IWORK(JJ)=MPRTN(I,JJ)
    IWORK (J) =IWORK (J) -1
    IWORK (J+1)=IWORK (J+1) +1
    IF(N2.NE.O.OR.L.NE.0) THEN
        DO 60 II=MR+1,MR+N2+L
        DO 50 JJ=1,M-1
        IF (MPRTN(II,JJ).NE.IWORK(JJ)) GO TO 60
        IF(MPRTN(II,M).EQ.IWORK (M)) GO TO 80
        CONTINUE
        END IF
        L=L+1
        DO 70 JJ=1,M
        MPRTN (MR+N2+L,JJ) =IWORK (JJ)
        CONTINUE
        END IF
        DO 90 II=1,MR
        MPRTN(II, 1)=MPRTN (II, 1) +1
        N1=M1
        N3=N2+L
        N2=MR-N1
        M1=MR
        MR=MR+N3
        CONTINUE
        RETURN
        END
```

INTEGER FUNCTION INX(I, J)
c
C PICKS OUT THE APPROPRIATE ELEMENT OF A SYMMETRIC
C
c
PICKS OUT THE APPROPRIATE ELEMENT OF A SYMMETRIC
MATRIX STORED IN LOWER TRIANGULAR FORM
IF (I.GE.J) THEN
INX=I*(I-1)/2+J
ElSE
INX=J* (J-1) / $2+I$
END IF
RETURN
END
REAL* 8 FUNCTION FACT (N)
DECOMPOSES A (POSITIVE DEFINITE) INTO LL'
(L LOWER TRIANGULAR) AND REPLACES A BY L

```
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(*)
ZSQRT (H)=DSQRT (H)
IFAIL=1
```

```
DO 20 I=1,N
DO 20 J=I,N
IJ=INX (J,I)
R=A(IJ)
IF(I.NE.1) THEN
    DO 10 K=1,I-1
    R=R-A(INX (I,K))*A(INX (J,K))
END IF
IF(I.EQ.J) THEN
    IF(R.LT.EPS) RETURN
    D=ONE/ZSQRT (R)
END IF
A(IJ) =R*D
IFAIL=0
RETURN
END
SUBROUTINE LOWINV(A,N, ZERO,ONE,EPS,IFAIL)
C
C
    INVERSION (IN PLACE) OF N X N LOWER TRIANGULAR MATRIX
C
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A(*)
ZABS (H)=DABS (H)
IFAIL=1
DO 20 I=1,N
R=A(INX (I,I))
IF(ZABS (R).LT.EPS) RETURN
D=ONE/R
DO 20 J=1, I
IJ=INX(I,J)
IF(I.NE.J) THEN
    SUM=ZERO
    DO 10 K=J,I-1
```

IMPLICIT REAL*8 ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
DIMENSION $A(*), B(*), C(*)$
DO $20 \mathrm{I}=1, \mathrm{~N}$
DO $20 \mathrm{~J}=1, \mathrm{I}$
$I J=I N X(I, J)$
SUM=ZERO
DO $10 \mathrm{~K}=\mathrm{I}, \mathrm{N}$
$K I=I N X(K, I)$
DO $10 \mathrm{~L}=\mathrm{J}, \mathrm{N}$
$\mathrm{LJ}=\mathrm{INX}(\mathrm{L}, \mathrm{J})$
$K L=I N X(K, L)$
SUM $=$ SUM $+B(K I)$ * $A(K L)$ * $B(L J)$
$C(I J)=$ SUM
RETURN
END

Discussion Paper Series, CentER, Tilburg University, The Netherlands:
(For previous papers please consult previous discussion papers.)

| No. | Author(s) |
| :--- | :--- |
| 8901 | Th. Ten Raa and <br> P. Kop Jansen |
| 8902 | Th. Nijman and F. Palm |

8903 A. van Soest, I. Woittiez, A. Kapteyn

8904 F. van der Ploeg

8905 Th. van de Klundert and A. van Schaik

8906 A.J. Markink and F. van der Ploeg

8907 J. Osiewalski

8908 M.F.J. Steel

8909 F. van der Ploeg

8910 R. Gradus and
A. de Zeeuw

8911 A.P. Barten

8912 K. Kamiya and A.J.J. Talman

8913 G. van der Laan and A.J.J. Talman

8914 J. Osiewalski and M.F.J. Steel

8915 R.P. Gilles, P.H. Ruys and J. Shou

Title
The Choice of Model in the Construction of Input-Output Coefficients Matrices

Generalized Least Squares Estimation of Linear Models Containing Rational Future Expectations

Labour Supply, Income Taxes and Hours Restrictions in The Netherlands

Capital Accumulation, Inflation and LongRun Conflict in International Objectives

Unemployment Persistence and Loss of Productive Capacity: A Keynesian Approach

Dynamic Policy Simulation of Linear Models with Rational Expectations of Future Events: A Computer Package

Posterior Densities for Nonlinear Regression with Equicorrelated Errors

A Bayesian Analysis of Simultaneous Equation Models by Combining Recursive Analytical and Numerical Approaches

Two Essays on Political Economy
(i) The Political Economy of Overvaluation (ii) Election Outcomes and the Stockmarket

## Corporate Tax Rate Policy and Public and Private Employment

Allais Characterisation of Preference Structures and the Structure of Demand

Simplicial Algorithm to Find Zero Points of a Function with Special Structure on a Simplotope

Price Rigidities and Rationing

A Bayesian Analysis of Exogeneity in Models Pooling Time-Series and Cross-Section Data On the Existence of Networks in Relational Models

| No. | Author(s) | Title |
| :---: | :---: | :---: |
| 8916 | A. Kapteyn, P. Kooreman and A. van Soest | Quantity Rationing and Concavity in a Flexible Household Labor Supply Model |
| 8917 | F. Canova | Seasonalities in Foreign Exchange Markets |
| 8918 | F. van der Ploeg | Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World |
| 8919 | W. Bossert and <br> F. Stehling | On the Uniqueness of Cardinally Interpreted Utility Functions |
| 8920 | F. van der Ploeg | Monetary Interdependence under Alternative Exchange-Rate Regimes |
| 8921 | D. Canning | Bottlenecks and Persistent Unemployment: Why Do Booms End? |
| 8922 | C. Fershtman and <br> A. Fishman | Price Cycles and Booms: Dynamic Search Equilibrium |
| 8923 | M.B. Canzoneri and <br> C.A. Rogers | Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies |
| 8924 | F. Groot, C. Withagen and A. de Zeeuw | Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered |
| 8925 | O.P. Attanasio and G. Weber | Consumption, Productivity Growth and the Interest Rate |
| 8926 | N. Rankin | Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition |
| 8927 | Th. van de Klundert | Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution |
| 8928 | C. Dang | The $D_{1}$-Triangulation of $R^{n}$ for Simplicial Algorithms for Computing Solutions of Nonlinear Equations |
| 8929 | M.F.J. Steel and J.F. Richard | Bayesian Multivariate Exogeneity Analysis: An Application to a UK Money Demand Equation |
| 8930 | F. van der Ploeg | Fiscal Aspects of Monetary Integration in Europe |
| 8931 | H.A. Keuzenkamp | The Prehistory of Rational Expectations |


| No. | Author(s) | Title |
| :---: | :---: | :---: |
| 8932 | E. van Damme, R. Selten and E. Winter | Alternating Bid Bargaining with a Smallest Money Unit |
| 8933 | H. Carlsson and <br> E. van Damme | Global Payoff Uncertainty and Risk Dominance |
| 8934 | H. Huizinga | National Tax Policies towards ProductInnovating Multinational Enterprises |
| 8935 | C. Dang and <br> D. Talman | A New Triangulation of the Unit Simplex for Computing Economic Equilibria |
| 8936 | Th. Nijman and M. Verbeek | The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data |
| 8937 | A.P. Barten | The Estimation of Mixed Demand Systems |
| 8938 | G. Marini | Monetary Shocks and the Nominal Interest Rate |
| 8939 | W. Guth and <br> E. van Damme | Equilibrium Selection in the Spence Signaling Game |
| 8940 | G. Marini and <br> P. Scaramozzino | Monopolistic Competition, Expected Inflation and Contract Length |
| 8941 | J.K. Dagsvik | The Generalized Extreme Value Random Utility Model for Continuous Choice |
| 8942 | M.F.J. Steel | Weak Exogenity in Misspecified Sequential Models |
| 8943 | A. Roell | Dual Capacity Trading and the Quality of the Market |
| 8944 | C. Hsiao | Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data |
| 8945 | R.P. Gilles | Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure |
| 8946 | W.B. MacLeod and <br> J.M. Malcomson | Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives |
| 8947 | A. van Soest and <br> A. Kapteyn | The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution |
| 8948 | P. Kooreman and <br> B. Melenberg | Maximum Score Estimation in the Ordered Response Model |


| No. | Author(s) | Title |
| :---: | :---: | :---: |
| 8949 | C. Dang | The $\mathrm{D}_{3}$-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations |
| 8950 | M. Cripps | Dealer Behaviour and Price Volatility in Asset Markets |
| 8951 | T. Wansbeek and <br> A. Kapteyn | Simple Estimators for Dynamic Panel Data Models with Errors in Variables |
| 8952 | Y. Dai, G. van der Laan, <br> D. Talman and <br> Y. Yamamoto | A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron |
| 8953 | F. van der Ploeg | Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem |
| 8954 | A. Kapteyn, <br> S. van de Geer, <br> H. van de Stadt and <br> T. Wansbeek | Interdependent Preferences: An Econometric Analysis |
| 8955 | L. Zou | Ownership Structure and Efficiency: An Incentive Mechanism Approach |
| 8956 | P.Kooreman and <br> A. Kapteyn | On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply |
| 8957 | E. van Damme | Signaling and Forward Induction in a Market Entry Context |
| 9001 | A. van Soest, <br> P. Kooreman and <br> A. Kapteyn | Coherency and Regularity of Demand Systems with Equality and Inequality Constraints |
| 9002 | J.R. Magnus and <br> B. Pesaran | Forecasting, Misspecification and Unit Roots: The Case of $\operatorname{AR}(1)$ Versus $\operatorname{ARMA}(1,1)$ |
| 9003 | J. Driffill and <br> C. Schultz | Wage Setting and Stabilization Policy in a Game with Renegotiation |
| 9004 | M. McAleer, <br> M.H. Pesaran and <br> A. Bera | Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment |
| 9005 | Th. ten Raa and M.F.J. Steel | A Stochastic Analysis of an Input-Output Model: Comment |
| 9006 | M. McAleer and C.R. McKenzie | Keynesian and New Classical Models of Unemployment Revisited |


| No. | Author(s) | Title |
| :--- | :--- | :--- |
| 9007 | J. Osiewalski and <br> M.F.J. Steel | Semi-Conjugate Prior Densities in Multi- <br> variate t Regression Models |
| 9008 | G.W. Imbens |  |$\quad$| Duration Models with Time-Varying |
| :--- |
| Coefficients |



17000011175651

