Tilburg University

Variable dimension simplicial algorithm for balanced games

Kamiya, K; Talman, A.J.J.

Publication date:
1990

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Kamiya, K., \& Talman, A. J. J. (1990). Variable dimension simplicial algorithm for balanced games. (CentER Discussion Paper; Vol. 1990-25). Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

com ter Discussion R for
 8414 -nic Research paper

25

$$
\text { No. } 9025
$$

VARIABLE DIMENSION SIMPLICIAL ALGORITHM FOR BALANCED GAMES

by Kazuya Kamiya 518.55 and Dolf Talman 330.115 .22

April 1990

VARIABLE DIMENSION SIMPLICIAL ALGORITHM FOR BALANCED GAMES

by
Kazuya KAMIYA
and
Dolf TALMAN

March 1990

VARIABLE DIMENSION SIMPLICIAL ALGORITHM FOR BALANCED GAMES

Kazuya KAMIYA ${ }^{1)}$ and Dolf TALMAN ${ }^{2}$)

Abstract

In this paper we propose a simplicial algorithm to find a core element for balanced games without side payments. The algorithm subdivides an appropriate simplex into smaller simplices and generates from an arbitrarily chosen point a sequence of adjacent simplices of variable dimension. Within a finite number of iterations the algorithm finds a simplex yielding an approximating core element. If the accuracy of approximation is not satisfactory the algorithm can be restarted with a smaller mesh size in order to improve the accuracy.

Keywords: Core, triangulation, simplicial algorithm

1) Department of Economics, Osaka University, Toyonaka, Osaka, Japan.
2) Department of Econometrics, Tilburg University, Tilburg, The Netherlands.

1. Introduction

It is well-known that a cooperative game need not to have an outcome which cannot be improved upon by any subset of players. In case of a game with side payment the core, consisting of all outcomes which cannot be improved, is nonempty if and only if the game is balanced, see Bondareva [4] and Shapley [8]. A core element in a balanced game with side payments can be easily calculated by solving a sequence of linear programming problems.

Games without side payments were introduced by Aumann and Peleg [2], and Aumann [1] developed the core concept for such games. Scarf [7] proved the nonemptiness of the core for such a game if it is balanced. Scarf gave a constructive proof based on the complementary pivoting technique introduced by Lemke and Howson [6]. Shapley [9] generalized the well-known Knaster-Kuratowski-Mazurkiwicz Theorem on the unit simplex in order to give a constructive proof of the nonemptiness of the core. In an arbitrary subdivision of the (unit) simplex into simplices, a sequence of adjacent simplices is generated, which is initiated at one of the corners of the big simplex. The terminal simplex yields an approximating core element.

In this paper we propose a simplicial algorithm which can be initiated at any point of the unit simplex. From that point the algorithm generates a sequence of adjacent simplices of varying dimension. The algorithm leaves the starting point along one out of $2^{n}-2$ directions in case there are n players. This number corresponds to the number of proper coalitions in the game. The algorithm is based on the simplicial algorithm developed by Doup, van der Laan and Talman [5] for computing economic equilibria. Along the path of simplices generated by the algorithm, coalitions are added and sometimes deleted until a balanced set of coalitions has been found. Once such a set is obtained, an approximating core element has been found. If the accuracy of approximation at that point is not satisfactory, the algorithm can be restarted at that point with a smaller mesh size of the triangulation in order to improve the accuracy. Within a finite number of restarts any accuracy of approximation can be reached.
2. Balanced game and core

Let N denote the set $\{1, \ldots, n\}$ and 2^{N} the set of all nonempty subsets of N. We call the elements of N and the elements of 2^{N}, players and coalitions, respectively. A game is a pair (N, v) where v is a mapping from 2^{N} to the set of subsets of the n-dimensional euclidean space, R^{N}. The set $v(S)$ represents the set of payoff or utility vectors that the players of coalition S can ensure by themselves, regardless of the actions of players outside the coalition. For S in 2^{N}, let R^{S} denote the $|S|$-dimensional subspace of R^{N} with coordinates indexed by the elements of S. If $x \in R^{N}$ and $S \in$ 2^{N}, then $x^{S} \in R^{S}$ will denote the projection of x on R^{S}.

Assumption 2.1: For each $S \in 2^{N}$, the set $v(S)$ satisfies
i) if $x \in v(S)$ and $x_{i}=y_{i}$ for all $i \in S$, then $y \in v(S)$,
ii) if $x \in v(S)$ and $y \leqq x$, then $y \in v(S)$, iii) $v(S)$ is closed,
iv) $\left\{\left.\mathrm{x}^{\mathrm{S}}\right|_{\mathrm{x} \in \mathrm{v}}(\mathrm{S})\right\}$ is nonempty and bounded from above.

Without loss of generality we assume that each set $v(\{i\}), i \in N$, has been normalized to the half space $\left\{x \mid x_{i} \leqq 0\right\}$ and that the other $v(S)^{\prime} s$ have been shifted accordingly. The core of a game represents the set of feasible utility vectors that cannot be improved upon by any coalition.

Definition 2.1: The core of the game (N, v) is the set $C(N, v)=\left\{x \in v(N) \mid \nexists S \in 2^{N}\right.$ and $y \in v(S)$ such that $y_{i}>x_{i}$ for all $\left.i \in S\right\}$.

Under Assumption 2.1, the core is a closed and bounded set but may, however, be empty. It is a well known fact that every balanced game has a nonempty core.

Let B be a collection of nonempty subsets of 2^{N}, and let $B_{i}=$ $\{S \in B \mid i \in S\}$. The set B is said to be balanced if there exist nonnegative numbers $\delta_{S}, S \in B$, such that

$$
\Sigma_{S \in B_{i}} \delta_{S}=1 \quad \text { for all i } E N .
$$

A game (N, v) is said to be balanced if for every balanced set B

$$
n_{S \in B} v(S) \subset v(N)
$$

Theorem 2.1 (Scarf [7]): Every balanced game has a nonempty core.
Let U be the ($n-1$)-dimensional subset of R^{N} defined by $U=\operatorname{conv}\{-$ $\operatorname{Mne}(j) \mid j=1, \ldots, n\}$ where $e(j)$ is the j-th unit vector in R^{N} and the number $M>0$ is such that $x \in v(S)$ implies $x_{i}<M$ for every $i \in S$. Let e be the $n-$ vector of ones. The function $\tau: U \rightarrow R_{+}$is defined by

$$
\tau(u)=\max \left\{r \in R \mid u+r e \in U_{S C N} v(S)\right\} .
$$

Clearly, τ is a continuous function on U, for example see Berge [3]. For $S \in$ 2^{N} we now define the set C_{S} by

$$
C_{S}=\{u \in U \mid u+\tau(u) e \in v(S)\} .
$$

Since $v(S)$ is closed, the set C_{S} is also closed. The algorithm will compute a point u^{*} in U such that for some balanced collection B^{*}

$$
\mathrm{u}^{*} \in n_{\mathrm{S} \in \mathrm{~B}^{*}} \mathrm{C}_{\mathrm{S}} .
$$

Then $x^{*}=u^{*}+\tau\left(u^{*}\right) e \in \cap_{S \in B^{*}} v(S) C v(N)$ and x^{*} lies in the core since x^{*} lies on the (upper) boundary of $U_{S C N} v(S)$.

Lemma 2.2 (Shapley [9]): For all $u \in U$, if $u \in C_{S}$ then $S C\left\{i \in N \mid u_{i} \neq 0\right\}$.
Proof: Let $u \in C_{S}$ and $T=\left\{i \in N \mid u_{i} \neq 0\right\}$. The lemma is trivial if $T=N$. So assume that $|T|<n$. Because $u_{i}=0$ for all $i \notin T$, we have $\Sigma_{i \notin T} \mathrm{u}_{i}=-\mathrm{Mn}$, so there exists a $k \in T$ for which $u_{k}<-M$. Since $u+\tau(u) e \in R_{+}$, we have $u_{k}+$ $\tau(u) \geq 0$, and hence $\tau(u)>M$. On the other hand, $u+\tau(u) e \epsilon v(S)$, so for every $j \in S, u_{j}+\tau(u)<M$. Therefore $u_{j}<0$ for every $j \in S$, from which it follows that S C T.
Q.E.D.

The lemma will guarantee the algorithm never hits the boundary of the set U.

3. The algorithm

To describe the algorithm, let p be an arbitrarily chosen starting point in the relative interior of U. Next, let s be a sign vector in R^{N}, i.e., $s_{j} \in\{0,-1,+1\}$ for all $j \in N$. We call a sign vector s feasible if s contains at least one -1 and one +1 . For a feasible sign vector s let the subset $A(s)$ of U be defined by

$$
\begin{aligned}
A(s)=\left\{u \in U \mid u_{j} / p_{j}=\max _{h} u_{h} / p_{h}\right. & \text { if } s_{j}=-1 \\
u_{j} / p_{j}=\min _{h} u_{h} / p_{h} & \text { if } \left.s_{j}=+1\right\}
\end{aligned}
$$

Clearly, the dimension of $A(s)$ is equal to $t=\left|I^{0}(s)\right|+1$ where

$$
I^{0}(s)=\left\{i \in N \mid s_{i}=0\right\}
$$

In particular, if the sign vector s does not contain zeros then $A(s)$ is a 1dimensional set, being the line segment connecting p and the point $p(s)$ in the boundary of U given by $p_{j}(s)=0$ for all j with $s_{j}=+1$ and $p_{j}(s)=-$ $\mathrm{Mnp}_{\mathrm{j}} / \Sigma_{\mathrm{s}_{\mathrm{h}}=-1} \mathrm{p}_{\mathrm{h}}$ for all j with $\mathrm{s}_{\mathrm{j}}=-1$. For $\mathrm{n}=2$ the subdivision of U into sets $A(s)$ for an arbitrary p is illustrated in Figure 3.1. Next U is subdivided into n-dimensional simplices such that each $A(s)$ is triangulated into t-dimensional simplices, for example see Doup, van der Laan and Talman [5]. A t-dimensional simplex or t-simplex σ can be represented by its $t+1$ vertices w^{1}, \ldots, w^{t+1}. To each vertex w of the simplicial subdivision we assign a vector label $a(S)$ corresponding to some fixed coalition S for which w lies in C_{S}, where $a_{j}(S)=1-|S| / n$ for $j \in S$ and $a_{j}(S)=-|S| / n$ for $j \notin$ S. For $g=t$ or $t-1$, let $\sigma\left(w^{1}, \ldots, w^{g+1}\right)$ be a g-simplex with vertices w^{1}, \ldots, w^{g+1} in $A(s)$ for some feasible sign vector s. Let $a\left(S^{j}\right)$ be the vector label of vertex w^{j}, then we call σ s-complete if the system of linear equations

$$
\Sigma_{j=1}^{g+1} \lambda_{j}\left[\begin{array}{c}
a\left(S^{j}\right) \tag{3.1}\\
1
\end{array}\right]-\Sigma_{s_{h} \neq 0} \mu_{h} s_{h}\left[\begin{array}{c}
e(h) \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Figure 3.1
has a nonnegative solution $\lambda_{j}^{*}, j=1, \ldots, g+1, \mu_{h}^{*}$ for $h \notin I^{0}(s)$. In particular, for $t=1$ and $g=0$, the zero-dimensional simplex consisting of the point p is s^{0}-complete with $s_{i}^{0}=+1$ if $i \in S^{0}$ and $s_{i}^{0}=-1$ if i $\not \& S^{0}$, where S^{0} is such that $a\left(S^{0}\right)$ is the vector label of p. If $S^{0^{1}}$ equals N, the point p $+\tau(p) e$ lies in the core. Suppose now that S^{0} unequals N. Clearly, s^{0} is feasible and does not contain zeros. Notice that there are $2^{n}-2$ feasible sign vectors not containing zeros and that each such sign vector corresponds in this way to one of the $2^{\mathrm{n}}-2$ proper coalitions.

The starting point p of the algorithm is an end point of a uniquely determined 1-dimensional simplex $\sigma\left(\mathrm{p}, \mathrm{p}^{1}\right)$ in $\mathrm{A}\left(\mathrm{s}^{0}\right)$ and therefore $\sigma\left(\mathrm{p}, \mathrm{p}^{1}\right)$ is also s^{0}-complete. Let $a\left(S^{1}\right)$ be the vector label of p^{1} then the algorithm is
initiated by making a linear programming pivot step with $\left(a\left(S^{1}\right)^{\top}, 1\right)^{\top}$ in the system

$$
\lambda\left[\begin{array}{c}
a\left(S^{0}\right) \tag{3.2}\\
1
\end{array}\right]-\sum_{h=1}^{n} \mu_{h} s_{h}\left[\begin{array}{c}
e(h) \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

If by this pivot step λ becomes first 0 , the algorithm moves to the 1 -simplex $\sigma\left(\mathrm{p}^{1}, \mathrm{p}^{2}\right)$ in $\mathrm{A}\left(\mathrm{s}^{0}\right)$ adjacent to $\sigma\left(\mathrm{p}, \mathrm{p}^{1}\right)$ and continues with making a pivot step with $\left(a\left(S^{2}\right)^{\top}, 1\right)^{\top}$, where $a\left(S^{2}\right)$ is the vector label of p^{2}. Otherwise, one of the μ_{h} 's must become first 0 .

In general the algorithm generates, for varying feasible sign vectors s, a sequence of adjacent t-dimensional simplices in $A(s)$, having $s-$ complete common facets. In each simplex $\sigma\left(w^{1}, \ldots, w^{t+1}\right)$ a pivot step is made in (3.1) in order to determine which variable becomes first 0 . To prevent degeneracy we perturb the right hand side of (3.1). If for some $j \in\{1, \ldots, t+1\}, \lambda_{j}$ becomes 0 , then the facet τ opposite vertex w^{j} of σ is also s-complete. If this facet does not lie in the boundary of $A(s)$, there is exactly one t-simplex $\bar{\sigma}$ in $A(s)$ having τ also as a facet. Let \bar{w} be the vertex of $\bar{\sigma}$ opposite to τ, then the algorithm continues by making a pivot step in (3.1) with $\left(a(\bar{S})^{\top}, 1\right)^{\top}$, where $a(\bar{S})$ is the vector label of \bar{w}. If τ lies in the boundary of $A(s)$ then either τ is a $(t-1)$-simplex in $A(\bar{s})$ with $\left|I^{0}(\bar{s})\right|=\left|I^{0}(s)\right|-1$ or τ lies in the boundary of U.

Lemma 3.1: An s-complete facet in $A(s)$ does not lie in the boundary of U.

Proof: Suppose that τ is an s-complete ($t-1)$-simplex in $A(s)$, lying in bd(U). Clearly, $x_{i}=0$ for all $x \in \tau$ and all i for which $s_{i}=+1$. Let y^{1}, \ldots, y^{t} be the vertices of τ. Therefore $y_{i}^{j}=0$ for all i for which $s_{i}=$ +1. Let $a\left(S^{j}\right)$ be the vector label of vertex $y^{j}, j=1, \ldots, t$. According to Lemma 2.2, we must have $i \notin \mathrm{~S}^{j}, j=1, \ldots, t$, for all i for which $s_{i}=+1$. On the other hand, τ is s-complete. Therefore

$$
\Sigma_{j=1}^{t} \lambda_{j}\left[\begin{array}{c}
a\left(S^{j}\right) \tag{3.3}\\
1
\end{array}\right]-\Sigma_{s_{h} \neq 0} \mu_{h} s_{h}\left[\begin{array}{c}
e(h) \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

has a nonnegative solution $\lambda_{j}^{*}, j=1, \ldots, t, \mu_{h}^{*}$ for $h \notin I^{0}(s)$. For all i with $s_{i}=+1$, since $i \notin S^{j}$, we have that $a_{i}\left(S^{j}\right)=-\left|S^{j}\right| / n, j=1, \ldots, t$. Consequently, for i with $s_{i}=+1$, the $i-$ th equation at the solution of (3.3) is equal to

$$
-\Sigma_{j=1}^{t} \lambda_{j}^{*}\left|S^{j}\right| / n-\mu_{i}^{*}=0
$$

and hence $\mu_{i}^{*}<0$, which contradicts $\mu_{i}^{*} \geqq 0$. Q.E.D.

An s-complete facet of a t-simplex in $A(s)$ in the boundary of $A(s)$ therefore must be a $(t-1)$-simplex in $A(\bar{s})$ with $\bar{s}_{j} \neq 0$ for some $j \in I^{0}(s)$ and $\bar{s}_{h}=s_{h}$ for all $h \neq j$. Then the algorithm continues with making a pivot step with $\bar{s}_{j}\left(e(j)^{\top}, 0\right)^{\top}$.

Finally, by making a pivot step in (3.1) for a t-simplex σ in $A(s)$, one of the μ_{h} 's may become first 0 . Because of the perturbation of the right hand side we may assume that only one of the μ_{h} 's, say μ_{k}, becomes 0 . If s_{k} is not the only positive or negative component of s, then τ is a facet of just one $(t+1)$-simplex $\bar{\sigma}$ in $A(\bar{s})$ where $\bar{s}_{k}=0$ and $\bar{s}_{h}=s_{h}$ for $h \neq k$. Let \bar{w} be the vertex of $\bar{\sigma}$ opposite to σ and let $a(\bar{S})$ be the vector label of \bar{w}, then the algorithm continues by making a pivot step with $\left(\mathrm{a}(\overline{\mathrm{S}})^{\top}, 1\right)^{\top}$. Suppose now that s_{k} is the only positive or negative component of s, then system (3.1) implies that when we disregard the perturbation also the other μ_{h} 's must be zero and hence that the system

$$
\Sigma_{j=1}^{t+1} \lambda_{j}\left[\begin{array}{c}
a\left(S^{j}\right) \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

has a nonnegative solution $\lambda_{j}^{*}, j=1, \ldots, t+1$. For $j=1, \ldots, t+1$, let δ_{j}^{*} be defined by

$$
\delta_{j}^{*}=\lambda_{j}^{*} /\left(\Sigma_{i=1}^{t+1} \lambda_{i}^{*}\left|S^{i}\right| / n\right),
$$

then we get

$$
\Sigma_{i \in S^{j}} \delta_{j}^{*}=1 \text { for } i=1, \ldots, n
$$

Hence, the subset $B^{*}=\left\{S^{1}, \ldots, S^{t+1}\right\}$ is balanced. We remark that some of the $\lambda_{j}^{* \prime} s$ and therefore some of the $\delta_{j}^{* \prime \prime} s$ might be equal to zero. In that case we restrict ourselves to the balanced subset of coalitions S^{j} for which $\lambda_{j}^{*}>0$. The point $u^{*}=\sum_{j=1}^{t+1} \lambda_{j}^{*} w^{j}$ can be considered to approximately lie in $n_{S \in B^{*}} C_{S}$ in the sense that u^{*} lies close to a point in C_{S} for any $S \in B^{*}$. Hence, the point $u^{*}+\tau\left(u^{*}\right) e$ can be taken as an approximating core element.

For $u \in U$, let $\tau^{N}(u)$ be defined by

$$
\tau^{N}(u)=\max \{r \in R \mid u+r e \in v(N)\}
$$

As a measure of accuracy of approximation at u^{*} one could consider the nonnegative number $\tau\left(u^{*}\right)-\tau^{N}\left(u^{*}\right)$. If the latter number is too large one may restart the algorithm with a simplicial subdivision of U having a smaller mesh size and with p equal to u^{*}. Now, let $\left(G^{1}, G^{2}, \ldots\right)$ be a sequence of triangulations of U with mesh size tending to zero and let $u^{k^{*}}+\tau\left(u^{k^{*}}\right)$ e be the approximating core element found with the algorithm applied for the triangulation $\mathrm{G}^{\mathrm{k}}, \mathrm{k}=1,2, \ldots$. Let $\mathrm{B}^{\mathrm{k}^{*}}$ be the set of balanced coalitions corresponding to the vertices of the final simplex σ^{k} containing $u^{k^{*}}$, for all k. Then there exists a subsequence k_{1}, k_{2}, \ldots, such that $B^{k_{j}^{*}}=B^{* *}$ for some balanced set B^{*} and $u^{k_{j}^{*}}$ converges to some u^{*} in U. Since the vertices of σ^{k} on this subsequence also converge to u^{*} and each C_{S} is closed, we obtain that $u^{*} \in \cap_{S \in B^{*}} C_{S}$ and hence that $u^{*}+\tau\left(u^{*}\right)$ e lies in the core, due to the balancedness of B^{*}. Notice that $\tau\left(\mathrm{u}^{*}\right)-\tau^{N}\left(u^{*}\right)$ must be zero.

Because the number of simplices of any triangulation G^{k} in the sequence is finite and due to the perturbation to avoid degeneracy, the algorithm finds for each k within a finite number of iterations an approximating core element. Moreover, within a finite number of restarts, any accuracy of approximation will be reached.

References

[1] R.G. Aumann, "The core of a cooperative game without side payments", Trans. Amer. Math. Soc. 98, 1961, 539-552.
[2] R.G. Aumann and B. Peleg, "Von Neumann-Morgenstern solutions to cooperative games without side payments", Bull. Amer. Math. Soc. 66, 1960, 173179.
[3] C. Berge, Topological Spaces, Oliver and Boyd, Edinburgh, U.K., 1963.
[4] O.N. Bondareva, "The core of an n person game", Vestnik Leningrad University Mathematics $13,1962,141-142$.
[5] T.M. Doup, G. van der Laan and A.J.J. Talman, "The ($2^{n+1}-2$)-ray algorithm: A new simplicial algorithm to compute economic equilibria", Mathematical Programming 39, 1987, 241-252.
[6] C.E. Lemke and G.T. Howson, "Equilibrium points of bi-matrix games", SIAM Journal of Applied Mathematics 12, 1964, 413-423.
[7] H.E. Scarf, "The core of an N person game", Econometrica 35, 1967, 5269.
[8] L.S. Shapley, "On balanced sets and cores", Naval Res. Rogist. Quart. 14, 1967, 453-460.
[9] L.S. Shapley, "On balanced games without side payments", in T.C. Hu and S.M. Robinson eds., Mathematical Programming, Academic Press, New York, 1973, pp. 261-290.

Discussion Paper Series, CentER, Tilburg University, The Netherlands:
(For previous papers please consult previous discussion papers.)

No. Author(s)
8916 A. Kapteyn, P. Kooreman and A. van Soest

8917
8918

8920

8921

8922

8923

8924 F. Groot, C. Withagen and A. de Zeeuw

8925

8926

8927

8928

8929

8930

8931
M.F.J. Steel and J.F. Richard
F. van der Ploeg
H.A. Keuzenkamp

Title

Quantity Rationing and Concavity in a Flexible Household Labor Supply Model

Seasonalities in Foreign Exchange Markets
Monetary Disinflation, Fiscal Expansion and the Current Account in an Interdependent World

On the Uniqueness of Cardinally Interpreted Utility Functions

Monetary Interdependence under Alternative Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment: Why Do Booms End?

Price Cycles and Booms: Dynamic Search Equilibrium

Is the European Community an Optimal Currency Area? Optimal Tax Smoothing versus the Cost of Multiple Currencies

Theory of Natural Exhaustible Resources: The Cartel-Versus-Fringe Model Reconsidered

Consumption, Productivity Growth and the Interest Rate

Monetary and Fiscal Policy in a 'Hartian' Model of Imperfect Competition

Reducing External Debt in a World with Imperfect Asset and Imperfect Commodity Substitution
The $\mathrm{D}_{1}-$ Triangulation of R^{n} for Simplicial
Algorithms for Computing Solutions of
Nonlinear Equations
Bayesian Multivariate Exogeneity Analysis:
An Application to a UK Money Demand Equation
Fiscal Aspects of Monetary Integration in
Europe
The Prehistory of Rational Expectations Algorithms for Computing Solutions of Nonlinear Equations

Bayesian Multivariate Exogeneity Analysis: An Application to a UK Money Demand Equation

Fiscal Aspects of Monetary Integration in Europe

The Prehistory of Rational Expectations

No.	Author(s)	Title
8932	E. van Damme, R. Selten and E. Winter	Alternating Bid Bargaining with a Smallest Money Unit
8933	H. Carlsson and E. van Damme	Global Payoff Uncertainty and Risk Dominance
8934	H. Huizinga	National Tax Policies towards ProductInnovating Multinational Enterprises
8935	C. Dang and D. Talman	A New Triangulation of the Unit Simplex for Computing Economic Equilibria
8936	Th. Nijman and M. Verbeek	The Nonresponse Bias in the Analysis of the Determinants of Total Annual Expenditures of Households Based on Panel Data
8937	A.P. Barten	The Estimation of Mixed Demand Systems
8938	G. Marini	Monetary Shocks and the Nominal Interest Rate
8939	W. Guth and E. van Damme	Equilibrium Selection in the Spence Signaling Game
8940	G. Marini and P. Scaramozzino	Monopolistic Competition, Expected Inflation and Contract Length
8941	J.K. Dagsvik	The Generalized Extreme Value Random Utility Model for Continuous Choice
8942	M.F.J. Steel	Weak Exogenity in Misspecified Sequential Models
8943	A. Roell	Dual Capacity Trading and the Quality of the Market
8944	C. Hsiao	Identification and Estimation of Dichotomous Latent Variables Models Using Panel Data
8945	R.P. Gilles	Equilibrium in a Pure Exchange Economy with an Arbitrary Communication Structure
8946	W.B. MacLeod and J.M. Malcomson	Efficient Specific Investments, Incomplete Contracts, and the Role of Market Alternatives
8947	A. van Soest and A. Kapteyn	The Impact of Minimum Wage Regulations on Employment and the Wage Rate Distribution
8948	P. Kooreman and B. Melenberg	Maximum Score Estimation in the Ordered Response Model

No.	Author(s)	Title
8949	C. Dang	The D_{3}-Triangulation for Simplicial Deformation Algorithms for Computing Solutions of Nonlinear Equations
8950	M. Cripps	Dealer Behaviour and Price Volatility in Asset Markets
8951	T. Wansbeek and A. Kapteyn	Simple Estimators for Dynamic Panel Data Models with Errors in Variables
8952	Y. Dai, G. van der Laan, D. Talman and Y. Yamamoto	A Simplicial Algorithm for the Nonlinear Stationary Point Problem on an Unbounded Polyhedron
8953	F. van der Ploeg	Risk Aversion, Intertemporal Substitution and Consumption: The CARA-LQ Problem
8954	A. Kapteyn, S. van de Geer, H. van de Stadt and T. Wansbeek	Interdependent Preferences: An Econometric Analysis
8955	L. Zou	Ownership Structure and Efficiency: An Incentive Mechanism Approach
8956	P.Kooreman and A. Kapteyn	On the Empirical Implementation of Some Game Theoretic Models of Household Labor Supply
8957	E. van Damme	Signaling and Forward Induction in a Market Entry Context
9001	A. van Soest, P. Kooreman and A. Kapteyn	Coherency and Regularity of Demand Systems with Equality and Inequality Constraints
9002	J.R. Magnus and B. Pesaran	Forecasting, Misspecification and Unit Roots: The Case of $\operatorname{AR}(1)$ Versus $\operatorname{ARMA}(1,1)$
9003	J. Driffill and C. Schultz	Wage Setting and Stabilization Policy in a Game with Renegotiation
9004	M. McAleer, M.H. Pesaran and A. Bera	Alternative Approaches to Testing Non-Nested Models with Autocorrelated Disturbances: An Application to Models of U.S. Unemployment
9005	Th. ten Raa and M.F.J. Steel	A Stochastic Analysis of an Input-Output Model: Comment
9006	M. McAleer and C.R. McKenzie	Keynesian and New Classical Models of Unemployment Revisited

No.	Author(s)	Title
9007	J. Osiewalski and M.F.J. Steel	Semi-Conjugate Prior Densities in Multivariate t Regression Models
9008	G.W. Imbens	Duration Models with Time-Varying Coefficients
9009	G.W. Imbens	An Efficient Method of Moments Estimator for Discrete Choice Models with Choice-Based Sampling
9010	P. Deschamps	Expectations and Intertemporal Separability in an Empirical Model of Consumption and Investment under Uncertainty
9011	W. Galth and E. van Damme	Gorby Games - A Game Theoretic Analysis of Disarmament Campaigns and the Defense Efficiency-Hypothesis
9012	A. Horsley and A. Wrobel	The Existence of an Equilibrium Density for Marginal Cost Prices, and the Solution to the Shifting-Peak Problem
9013	A. Horsley and A. Wrobel	The Closedness of the Free-Disposal Hull of a Production Set
9014	A. Horsley and A. Wrobel	The Continuity of the Equilibrium Price Density: The Case of Symmetric Joint Costs, and a Solution to the Shifting-Pattern Problem
9015	A. van den Elzen, G. van der Laan and D. Talman	An Adjustment Process for an Exchange Economy with Linear Production Technologies
9016	P. Deschamps	On Fractional Demand Systems and Budget Share Positivity
9017	B.J. Christensen and N.M. Kiefer	The Exact Likelihood Function for an Empirical Job Search Model
9018	M. Verbeek and Th. Nijman	Testing for Selectivity Bias in Panel Data Models
9019	J.R. Magnus and B. Pesaran	Evaluation of Moments of Ratios of Quadratic Forms in Normal Variables and Related Statistics
9020	A. Robson	Status, the Distribution of Wealth, Social and Private Attitudes to Risk
9021	J.R. Magnus and B. Pesaran	Evaluation of Moments of Quadratic Forms in Normal Variables

No. Author(s)

9022

9023

9024 C. Dang

9025

Title
Linear Stationary Point Problems

Good Times, Bad Times, and Vertical Upstream Integration

The D_{2}-Triangulation for Simplicial Homotopy Algorithms for Computing Solutions of Nonlinear Equations

Variable Dimension Simplicial Algorithm for Balanced Games

PO BOX 90153. 5000 LE TILBURG, THE NETHERLAND
Bibliotheek K. U. Brabant

17000011175693

