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Abstract

In this paper we propose a simplicial algorithm to find a core
element for balanced games without side payments. The algorithm subdivides
an appropriate simplex into smaller simplices and generates from an arbit-
rarily chosen point a sequence of adjacent simplices of variable dimension.
Within a finite number of iterations the algoríthm finds a simplex yielding
an approximating core element. If the accuracy of approximation is not
satisfactory the algorithm can be restarted with a smaller mesh size in
order to improve the accuracy.
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1. Introduction

It is well-known that a cooperative game need not to have an outcome
which cannot be improved upon by any subaet of pleyers. In case of a game
with side payment the core, consiating of all outcomes which cannot be im-
proved, is nonempty if and only if the geme is balanced, see Bondareva [4]
and Shapley [8]. A core element in a balanced game with side payments can be
easily calculated by solving a sequence of linear programming problems.

Games without side payments were introduced by Aumann and Peleg [2],
and Aumann [1] developed the core concept for such gemes. Scarf C7] proved
the nonemptiness of the core for such a game íf it is balanced. Scarf gave a
constructive proof based on the complementary pivoting technique introduced
by Lemke and Howson [6]. Shapley [9] generalized the well-known Knaster-
Kuratowski-Mazurkiwicz Theorem on the unit simplex in order to give a con-
structive proof of the nonemptiness of the core. In an arbitrary subdivision
of the (unit) simplex into simplicea, a aequence of adjacent simplices is
generated, which is initiated at one of the corners of the big simplex. The
terminal simplex yields an approximating core element.

In this paper we propose a simplicisl algorithm which can be
initiated at any point of the unit simplex. From that point the algorithm
generates a sequence of adjacent simplices of varying dlmension. The algo-
rithm leaves the starting point along one out of 2n - 2 directions in case
there are n players. This number corresponds to the number of proper coali-
tions in the game. The algorithm is based on the simplicial algorithm
developed by Doup, van der Lasn and Talman [5] for computing economic equi-
libria. Along the path of aimplices generated by the algorithm, coalitiona
are added and sometimes deleted until a balanced set of coslitions has been
found. Once such a set is obtained, an approximating core element hes been
found. If the accuracy of approximation at that point ia not satisfactory,
the algorithm can be restarted at that point with a smaller mesh size of the
triangulatíon in order to improve the accuracy. Within a finite number of
restarts any accuracy of approximation can be reached.
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2. Balanced game and core

Let N denote the set {1,...,n} and 2N the set of all nonempty sub-
sets of N. We call the elements of N end the elements of 2N, plsyers and
coalitions, respectively. A game is a pair (N,v) where v is a mapping from
2N to the set of subsets of the n-dimensional euclidean space, RN. The set
v(S) represents the set of payoff or utility vectors that the players of
coalition S can ensure by themselves, regardless of the actions of players
outside the coalition. For S in 2N, let RS denote the ~S~-dimensional sub-
space of RN with coordinates indexed by the elements of S. If x E RN and S E
2N, then xS E RS will denote the projection of x on RS.

Assumption 2.1: For each S E 2N, the set v(S) satisfies
i) if x E v(S) and xi - yi for ell i E S, then y E v(S),

ii) if x E v(S) and y( x, then y E v(S),
iii) v(S) is closed, -
iv) {xSlx E v(S)} is nonempty and bounded from above.

Without loss of generality we assume that each set v({i}), i E N,
has been normalized to the half apace {x~xi ~ 0} and that the other v(S)'s
have been shifted accordingly. The core of a game representa the set of
feasible utility vectors that cannot be improved upon by any coalition.

Definition 2.1: The core of the game (N,v) is the set
C(N,v) -{x E v(N)~~ S E 2N end y E v(S) such that yi ) xi for all 1 E S}.

Under Assumption 2.1, the core is a closed and bounded set but may,
however, be empty. It is a well known fact that every balanced game has a
nonempty core.

Let B be a collection of nonempty subsets of 2N, and let B1 -
{S E B~i E S}, The set B is said to be balanced if there exist nonnegative
numbers bS, S E B, such that

ïS~ bS z 1 for all i E N.
1

A game (N,v) is said to be balanced if for every balanced set B
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nS~v(S) C v(N).

Theorem 2.1 (Scarf [7]): Every balanced game has a nonempty core.

Let U be the (n-1)-dimensional aubset of RN defined by U- conv{-
Mne(j)~j - 1,...,n} where e(j) is the j-th unit vector in RN and the number
M) 0 is such that x E v(S) implies xi C M for every 1 E S. Let e be the n-
vector of ones. The function T: U~ RF is defined by

T(u) - max{r E R~u t re E uS~ v(S)}.

Clearly, t is a continuous function on U, for example see Berge [3]. For S E
2N we now define the set CS by

CS -{u E U~u i T(u)e E v(S)}.

Since v(S) is closed, the set CS is also cloaed. The algorithm will compute
e point uM in U such that for some balanced collection Bw

u~ E nSEBM CS.

Then XN - uM . t(u~)e E nS~„ v(S) C v(N) and x~ lies in the core since x~
lies on the (upper) boundary of uS~ v(S).

Lemma 2.2 (Shapley (9]): For all u E U, if u E CS then S C{1 E N~ui ~ 0}.

Proof: Let u E CS and T -{i E N~ui ~ 0}. The lemma is trivial if T- N. So
assume that ~T~ ( n. Because ui - 0 for ell i(C T, we have LiETui --Mn, so
there exists a k E T for which uk C-M. Since u. 2(u)e E RA, we have uk t
t(u) ~ 0, and hence T(u) ) M. On the other hand, u. t(u)e E v(S), so for
every j E S, uj t t(u) C M. Therefore uj C 0 for every j E S, from which it
follows that S C T. Q.E.D.

The lemma will guarantee the algorithm never hits the boundary of
the set U.
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3. The algorithm

To describe the algorithm, let p be an arbitrarily chosen starting
point in the relative interior of U. Next, let s be a sign vector in RN,
i.e., s~ E{0,-1,.1} for all j E N. We call a sign vector s feasible if s
contains at least one -1 and one .1. For a feasible sign vector s let the
subset A(s) of U be defined by

A(s) -{u E U~u~IP~ ' maxh uhlph if s3 - -1

u~IP3 - minh uhlph if s3 - 41}.

Clearly, the dimension of A(s) is equal to t- ~I~(s)~ . 1 where

I~(s) - {i E N~si - 0}.

In particular, if the sign vector s does not contain zeros then A(s) is a 1-
dimensional set, being the line segment connecting p and the point p(s) in
the boundary of U given by p~(s) - 0 for all j with s~ - tl and p~(s) --

~pjlLs --1 Ph for all j with s~ --1. For n - 2 the subdivision of U into
h

sets A(s) for an arbitrary p is illustrated in Figure 3.1. Next U is sub-
divided into n-dimensional simplices such that each A(s) is triangulated
into t-dimensional simplices, for example see Doup, van der Lean and Talman
C5]. A t-dimensional simplex or t-simplex a can be represented by its ttl
vertices wl, ,wt}1 To each vertex w of the simplicial subdivision we
assign a vector label s(S) corresponding to some fixed coalition S for which
w lies in CS, where s3(S) - 1- ~S~In for j E S end a3(S) --~S~In for j iC
S. For g - t or t-1, let 6(wl, , .,wgal) be a g-simplex with vertices
wl, ..,wg}1 in A(s) for some feasible aign vector s. Let a(Sf) be the vector
label of vertex w~, then we cell v s-complete i f the system of linear equa-
tions

tl a S~) l (e(h) 1 r0l (3.1)Eg-1 aj (1 J - Esh~O uhshl 0 J - I1J
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-3Me (3)

Figure 3.1

has a nonnegative solution ~~, j- 1,...,g.l, ~ for h a IC(s). In particu-
lar, for t- 1 and g- 0, the zero-dimensional simplex consisting of the
point p is s~-complete with s~ ~ tl if i E S~ and s~ --1 if i iC S~, where
S~ is such that a(S~) is the vector label of p. If S~ equals N, the point p
t t(p)e lies in the core. Suppose now that S~ unequals N. Clearly, s~ is
feasible and does not contain zeros. Notice that there are 2n-2 feasible
sign vectors not containing zeroa end that each such sign vector corresponds
in this way to one of the 2n-2 proper coalitions.

The starting point p of the algorithm is an end point of a uniquely
determined 1-dimensional símplex v(p,pl) in A(s~) end therefore v(p,pl) is
also s~-complete. Let a(S1) be the vector label of pl then the algorithm is
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initiated by making a linear programming pivot step with (a(S1)T,1)T in the
system

a(a(lo), - Lh-1 y~shle~h) J ~ r~l. (3.2)

If by this pivot step ~ becomes first 0, the algorithm movea to the 1-sim-
plex a(pl,p2) in A(s~) adjacent to C(p,pl) and continues with making a pivot
step with (a(52)T,1)T, where a(S2) is the vector label of p2. Otherwise, one
of the uh's must become first 0.

In general the algorithm generates, for varying feasible aign vec-
tors s, a sequence of adjacent t-dimensional simplices in A(s), having s-
complete common facets. In each simplex a(w1, ..,wt;l) a pivot step is made
in (3.1) in order to determine which variable becomes first 0. To prevent
degeneracy we perturb the right hand side of (3.1). If for some
j E{1,...,t~l}, aj becomes 0, then the facet 2 opposite vertex wj of v is
also s-complete. If this facet does not lie in the boundary of A(s), there
is exactly one t-simplex á in A(s) having T also as a facet. Let w be the
vertex of á opposite to T, then the algorithm continues by making a pivot
step in (3.1) with (a(3)T, 1)T, where a(3) is the vector label of w. If t
lies in the boundary of A(s) then either T is a(t-1)-simplex in A(s) with
IIU(s)I - IIC(s)I - 1 or t lies in the boundary of U.

Lemma 3.1: An s-complete facet in A(s) does not lie in the boundary of U.

Proof: Suppose that T is an s-complete ( t-1)-simplex in A(s), lying in
bd(U). Clearly, xi - 0 for all x E T and all i for which si - rl. Let
yl, ,yt be the vertices of T. Therefore yi - 0 for all i for which si -
tl. Let a(Sj) be the vector label of vertex yj, j- 1,...,t. According to
Lemma 2.2, we must have i(~ Sj, j- 1,...,t, for all i for which si -.1. On
the other hand, T is s-complete. Therefore

t a(S~) l (e(h) 1 r0lFj-1 aj 1 J - ïsh~0 Nhshl 0 J - I1 J (3.3)



has a nonnegative solution a~, j- 1,...,t, yth for h(C IC(s). For all i with
si -{1, since i Q Sj, we have that ai(Sj) --ISjl~n, j- 1,...,t. Con-
sequently, for i with si -.1, the i-th equation at the solution of (3.3) is
equal to

-it a~ISjl~n - u~ - 0j-1 j i

and hence Ki ~ 0, which contradicts Hi ~ 0. Q.E.D.

An s-complete facet of a t-simplex in A(s) in the boundary of A(s)
therefore must be a(t-1)-simplex in A(à) with àj ~ 0 for some j E IC(s) and
sh - sh for all h~ j. Then the algorithm continues with making a pivot step
with àj(e(j)T, 0)T.

Finally, by making a pivot step in ( 3.1) for a t-simplex a in
one of the ~'s may become first 0. Becauae of the perturbation of the
hand side we may asaume that only one of the Jth's, say uk, becomes 0.
is not the
just one

only positive or negative component of a, then T
(t.l)-simplex á in A(à) where àk - 0 and àh - sh

be the vertex of á opposite to a and let e(S) be the vector
the algorithm continues by making a pívot step with (a(S)T,
that sk is the only positive or negative component of
implies that when we disregard the perturbation also
zero and hence that the system

Fttl A ra(Sj)1 - r01
a-1 j l 1 J l1J

A(s),
right
If sk

is a facet of
for h~ k. Let w
label of w, then

T1) . Suppose now
s, then system (3.1)
the other ~'s must be

has a nonnegative solution a~, j z 1,...,t.l. For j- 1,...,t41, let b` be
defined by

then we get

S~ - ~~~(Fi41 ~ilsil~n).

il~j b~ - 1 for i- 1,...,n.
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Hence, the subset BM -{S1, ..,St;l} is balanced. We remark that some of the
~~'s and therefore some of the b~'s might be equsl to zero. In that case we
restrict ourselves to the balanced subset of coalitions S~ for which A~ ) 0.
The point u' z ï~~i ~~w~ can be considered to approximately lie in nSEB~CSin the sense that u~ lies close to e point in CS for any S E B`. Hence, the
point uM f 2(u~)e can be taken as an approximating core element.

For u E U, let 2N(u) be defined by

ZN(u) - max{r E R~u t re E v(N)}.

As a measure of accuracy of approximation at u~ one could consider the non-
negative number t(u~) - TN(u~). If the latter number is too large one may
restart the algorithm with a simpliciel subdivision of U having a smaller
mesh size and with p equal to u~. Now, let (G1, G2, ..) be a sequence of

k~ k~triangulations of U wíth mesh size tending to zero and let u . T(u )e be
the approximating core element found with the algorithm applied for theM
triangulation , k- 1,2,... . Let Bk be the set of balanced coalitions

Mcorresponding to the verticea of the final simplex containing uk , for
kM

sll k. Then there existk-e subsequence kl, k2,.. , such that B~- BM for
some balanced set B~ and u~ converges to some ui in U. Since the vertices
of vk on this subsequence also converge to u~ and each CS is closed, we
obtain that uM E nS~~CS and hence that uN 4 t(uN)e lies in the core, due to
the balancedness of B~. Notice that 2(u~) - tN(u') must be zero.

Because the number of simplices of any triangulation Gk in the
sequence is finite and due to the perturbation to avoid degeneracy, the
algorithm finds for each k within a finite number of iterations an approxi-
mating core element. Moreover, within a finite number of restarts, any accu-
racy of approximation will be reached.



9

References

[1] R.G. Aumann, "The core of a cooperative game without side payments",
Trans. Amer. Math. Soc. 98, 1961, 539-552.

[2] R.G. Aumann and B. Peleg, "Von Neumann-Morgenstern solutions to coopera-
tive games without side payments", Bull. Amer. Math. Soc. 66, 1960, 173-
179.

[3] C. Berge, Topological Spaces, Oliver and Boyd, Edinburgh, U.K., 1963.
[4] O.N. Bondareva, "The core of an n person game", Vestnik Leningrad Uni-

versity Mathematics 13, 1962, 141-142.
[5] T.M. Doup, G, van der Laan and A.J.J. Talman, "The (2nt1-2)-ray algo-

rithm: A new simplicial algorithm to compute economic equilibria",
Mathematical Programming 39. 1987. 241-252.

[6] C.E. Lemke and G.T. Howson, "Equilibrium points of bi-matrix games",
SIAM Journal of Applied Mathematics 12, 1964, 413-423.

[7] H.E. Scarf, "The core of an N person geme", Econometrica 35, 1967. 52-
69.

[8] L.S. Shapley, "On balanced sets and cores", Naval Res. Rogist. Quart.
14, 1967, 453-460.

[9] L.S. Shapley, "On balanced games without side payments", in T.C. Hu and
S.M. Robinson eds., Mathematical Programming, Academic Press, New York,
1973. pp. z61-290.



Diecussion Paper Series, CentER, Tilburg Dnivereity, The Netherler~ds:
(For previous papers please consult previous discusaion papera.)

No. Author(s)

8916 A. Kapteyn, P. Kooreman
and A. van Scest

Title

Quantity Rationing and Concavity in a
Flexible Household Labor Supply Model

891~ F. Canova
8918 F. van der Plceg

8919 W. Bossert and
F. Stehling

892o F. van der Plceg

8921 D. Canning

8922 C. Fershtman and
A. Fishman

8923 M.B. Canzoneri and
C.A. Rogers

8924 F. Groot, C. Withagen
and A. de Zeeuw

8925 O.P. Attanasio and
G. Weber

8926 N. Rankin

892~ Th. ven de Klundert

8928 C. Dang

8929 M.F.J. Steel and
J.F. Richard

8930 F. van der Plceg

Seasonalities in Foreign Exchange Markets

Monetary Disinflation, Fiscal Expansion and
the Current Account in an Interdependent
World

On the Uniquenesa of Cardinally Interpreted
Utility Functions

Monetary Interdependence under Alternative
Exchange-Rate Regimes

Bottlenecks and Persistent Unemployment:
Why Do Booms End?

Price Cycles end Booms: Dynamic Search
Equilibrium

Is the European Community an Optimal Currency
Area? Optimal Tax Smoothing versus the Cost
of Multiple Currencies

Theory of Natural Exhaustible Resourcea:
The Cartel-Veraus-Fringe Model Reconsidered

Consumption, Productivity Growth and the
Interest Rate

Monetary and Fiacal Policy in a 'Hartian'
Model of Imperfect Competition

Reducing External Debt in a World with
Imperfect Asset and Imperfect Commodity
Subatitution

The D 1-Triangulation of Rn for Simplicial
Algor3thas for Computing Solutiona of
Nonlinear Equationa
Bayesian Multivariate Exogeneíty Analysis:
An Application to a UK Money Demand Equation

Fiscal Aapects of Monetary Integration in
Europe

8931 H.A. Keuzenkamp The Prehistory of Rational Expectations



No. Author(s) Title

8932 E. van Damme, R. Selten Alternating Bid Bargaining with a Smallest
and E. Winter Money Unit

8933 H. Carlsson and
E. van Damme

8934 H. Huizinga

8935 C. Dang and
D. Talman

8936 Th. Nijman and
M. Verbeek

8937 A.P. Barten

8938 G. Marini

8939 w. cc~th and
E. van Damme

894o G. Marini end
P. Scaramozzino

8941 J.K. Dagsvik

8942 M.F.J. Steel

8943 A. Rcell

8944 C. Hsiao

8945 R.P. Gilles

8946 W.B. MacLeod and
J.M. Malcomson

8947 A. van Sceat and
A. Kapteyn

8948 P. Kooreman and
B. Melenberg

Global Payoff Uncertainty and Risk Dominance

National Tax Policies towards Product-
Innovating Multinational Enterprises

A New Triangulation of the Unit Simplex for
Computing Economic Equilibria
The Nonresponse Bias in the Analysis of the
Determinants of Total Annual Expenditures
of Households Based on Panel Data

The Estimation of Mixed Demend Systems

Monetary Shocks and the Nominal Interest Rate

Equilibrium Selection in the Spence Signaling
Game

Monopolistic Competition, Expected Inflation
and Contract Length

The Generalized Extreme Value Random Utility
Model for Continuous Choice

Weak Exogenity in Misapecified Sequentiel
Modele

Dusl Capacity Trading and the Quality of the
Market

Identification and Estimation of Dichotomous
Latent Variables Models Using Panel Data
Equilibrium in a Pure Exchenge Economy with
an Arbitrary Communication Structure

Efficient Specific Investments, Incomplete
Contracts, end the Role of Market Alterna-
tivea

The Impact of Minimum Wage Regulations on
Employment and the Wage Rate Distribution

Maximum Score Estimation in the Ordered
Response Model



No. Author(s)

8949 c. Dang

8950 M. Cripps

8951 T. Wansbeek and
A. Kapteyn

8952 Y. Dai, G. van der Laan,
D. Talman and
Y. Yamamoto

8953 F. van der Plceg

8954 A. Kapteyn,
S. van de Geer,
H. van de Stadt and
T. Wansbeek

8955 L. Zou

8956 P.Kooreman and
A. Kapteyn

8957 E. van Demme

9001 A. van Soeat,
P. Kooreman and
A. Kapteyn

9002 J.R. Magnus and
B. Pesaran

9003 J. Driffill end
C. Schultz

9~4 M. McAleer,
M.H. Pesaran and
A. Bera

9005 Th. ten Rea end
M.F.J. Steel

9006 M. McAleer and
C.R. McKenzie

Title

The D -Triengulation for Simplicisl
Defor~ation Algorithms for Computing
Solutions of Nonlinear Equations

Dealer Behaviour end Price Volatility in
Asset Markets
Simple Estimators for Dynamic Panel Data
Modela with Errors in Variablea

A Simplicisl Algorithm for the Nonlinear
Stationary Point Problem on an Unbounded
Polyhedron

Risk Aversion, Intertemporal Substitution andConsumption: The CARA-LQ Problem

Interdependent Preferences: An Econometric
Analysis

Ownership Structure end Efficiency: An
Incentive Mechanism Approach

On the Empirical Implementation of Some Game
Theoretic Models of Household Labor Supply

Signaling and Forward Induction in a Market
Entry Context

Coherency and Regularity of Demand Systems
with Equelity and Inequelity Constraints

Forecasting, Misspecificatíon and Unit Roots:
The Case of AR(1) Versus ARMA(1,1)

Wage Setting and Stabilization Policy in aGame with Renegotiation

Alternative Approaches to Teating Non-Neated
Models with Autocorrelated Diaturbances: An
Application to Modela of U.S. Unemployment

A Stochastic Analysis of an Input-Output
Model: Comment

Keyneaian and New Classical Models oP
Unemployment Reviaited



No. Author(s)

9007 J. Oaiewalskí and
M.F.J. Steel

9008 G.W. Imbens

9009 G.W. Imbens

9010 P. Deachampa

9011 W. Gilth and
E. van Damme

9012 A. Horaley and
A. Wrobel

9013 A. Horsley end
A. Wrobel

9014 A. Horsley and
A. Wrobel

9015 A, ven den Elzen,
G. ven der Lean and
D. Talman

9016 P. Deschamps

9017 B.J. Christensen
end N.M. Kiefer

9018 M. Verbeek and
Th. Nijman

9019 J.R. Magnus and
B. Pesaran

9020 A. Robson

9021 J.A. Magnus and
B. Pesaran

Title

Semi-Conjugate Prior Densities in Multi-
variate t Regresaion Models
Duration Models with Time-Varying
Coefficients

An Efficient Method of Moments Estimator
for Discrete Choice Models with Choice-Based
Sampling

Expectations and Intertemporal Separability
in an Empirical Model of Consumption and
Investment under Uncertainty

Gorby Games - A Game Theoretic Analysis of
Disarmament Campaigns and the Defense
Efficiency-Hypothesis

The Existence of an Equilibrium Density
for Marginal Cost Prices, and the Solution
to the Shifting-Peak Problem

The Closedneas of the Free-Disposal Hull
of a Production Set

The Continuity of the Equilibrium Price
Density: The Case of Symmetric Joint Costs,
and a Solution to the Shifting-Pattern
Problem

An Adjustment Process for an Exchange
Economy with Linear Production Technologies

On Fractional Demand Systems and Budget
Share Positivity

The Exact Likelihood Function for an
Empirical Job Search Model

Testing for Selectivity Bias in Panel Data
Models

Evaluation of Moments of Ratios of Quadratic
Forms in Normal Variables and Related
Statistics

Statue, the Diatribution of Wealth, Socisl
and Private Attitudes to Risk

Evaluation of Momenta of Quadratic Forms in
Normal Variables



No. Author(s)

9022 K. Kamiya end
D. Talman

9023 W. F~ona

9024 C. Dang

Title

Linear Stationary Point Problema

Good Times, Bad Times, and Vertical Upstream
Integration

The D 2-Triangulation for Simplicial Homotopy
Algor3thms for Computing Solutions of
Nonlinear Equations

9025 K. Kamiya end Variable Dimenaion Simpliciel Algorithm for
D. Talman Balanced Games



i i~~ ~~~' ~~~ ~~ ~ ui~ i~


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19

