Tilburg University

The ($2 \mathrm{n}+\mathrm{m}+1-2$)-ray algorithm

Talman, A.J.J.; Yamamoto, Y.; Yang, Z.

Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Talman, A. J. J., Yamamoto, Y., \& Yang, Z. (1993). The ($2 n+m+1-2$)-ray algorithm: a new variable dimension simplicial algorithm for computing economic equilibria on Sn×Rm+. (CentER Discussion Paper; Vol. 1993-23).
Unknown Publisher.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CBM ${ }^{R}$ R
 for
 8414 mic Research 1993 23
 Discussion paper

CentER
 for
 Economic Research

The (2 ${ }^{\mathrm{n}+\mathrm{m}+1}-2$)-Ray Algorithm:
A New Variable Dimension Simplicial
Algorithm For Computing
Economic Equilibria On $S^{n} \times R_{+}^{m}$
by Dolf Talman, Yoshitsugu Yamamoto and Zaifu Yang

May 1993

The $\left(2^{n+m+1}-2\right)$-Ray Algorithm: A New Variable Dimension Simplicial Algorithm For Computing Economic Equilibria On $S^{n} \times R_{+}^{m}$

Dolf Talman ${ }^{1}$, Yoshitsugu Yamamoto ${ }^{2}$ and Zaifu Yang ${ }^{1}$

Abstract

In this paper a new variable dimension simplicial algorithm is developed to compute economic equilibria on the cartesian product of the n-dimensional unit price simplex S^{n} and the m-dimensional production activity space R_{+}^{m}. The algorithm differs from other algorithms in the number of directions in which the algorithm may leave the starting point. More precisely, the algorithm has $2^{n+m+1}-2$ rays to leave the starting point whereas the other algorithms have at most $2^{m}(n+1)$ rays. The path of points generated by the algorithm can be interpreted as a globally and universally convergent price and production adjustment process. The process, as well as the convergence condition, is also economically meaningful. We apply the algorithm to economies with linear production, to economies with constant returns to scale, and to economies with increasing returns to scale.

Keywords: Equilibrium, stationary point problem, simplicial algorithm, simplicial subdivision, vector labelling, adjustment process, piecewise linear approximation.

1 Introduction

Over the last several years the existence and computation of economic equilibria on the cartesian product of the n-dimensional unit price simplex S^{n} and the m dimensional production activity space R_{+}^{m} has attracted wide attention (see e.g. $[3,4,5,6,7,8,10,11,14])$. In an equilibrium of an economy every producer chooses an production activity in order to maximize his profit and prices and activity levels are such that for every commodity demand is at most equal to supply. Mathiesen [10, 11], see also [3], applied the Lemke-Howson complementary pivoting algorithm to economies with linear prodution technologies by solving a sequence of complementarity problems on R_{+}^{n+m+1}. Other authors followed another way,

[^0]and utilized simplicial variable dimension restart algorithms initiated by van der Laan and Talman [9]. In a simplicial subdivision or triangulation of the underlying space such an algorithm,starting in an arbitrarily chosen grid point of the subdivision, searches for a simplex yielding an approximate equilibrium by generating a sequence of adjacent simplices of varying dimension. Under some convergence condition the algorithm terminates within a finite number of steps. If the approximate equilibrium is not accurate enough, the algorithm can be restarted at the lastly found approximate solution with a finer subdivision in the hope of finding a better approximate equilibrium within a small number of iterations. Simplicial algorithms are classified according to the number of rays along which the starting point can be left.

In van den Elzen, van der Laan and Talman [4] a new economic adjustment process has been introduced to compute an equilibrium in an economy with linear production technologies. In van der Laan, Talman and Kremers [8] this adjustment process was generalized to an economy with constant returns to scale by solving a sequence of linear stationary point problems on S^{n}. In the latter method convergence is not guaranteed. In Hofkes [6] and also in Yamamoto and Yang [14], other economic applications are considered such as when the production exhibits increasing returns to scale. To find an equilibrium in an economy with nonlinear nondecreasing returns to scale production technologies, the ($n+m+1$)-ray algorithm was developed in [6] and the $2^{m}(n+1)$-ray algorithm in [14].

In this paper we propose a new simplicial algorithm to compute economic equilibria on $S^{n} \times R_{+}^{m}$. Depending on the sign pattern of the function value at an arbitrarily chosen starting point in $S^{n} \times R_{+}^{m}$, the algorithm starts to leave the starting point along one out of $2^{n+m+1}-2$ rays. The triangulation of $S^{n} \times R_{+}^{m}$ which underlies the algorithm is a combination of the V-triangulation of S^{n} in [2], and the K^{\prime}-triangulation of R_{+}^{m} in [13], which we call the $V K^{\prime}$-triangulation, see also [14]. Moreover, a sufficient condition for the existence of an equilibrium is introduced. This condition generalizes the well-known "No-Production-Without-Input" assumption in the sense that if an activity level becomes very large, then at least one of the commodities is in excess demand. Under this condition the path of points followed by the algorithm can be interpreted as a globally and universally convergent price and production level adjustment. Barring degeneracy the algorithm converges for any starting point and the process of which the path is followed by the algorithm simultaneously adjusts prices and activity levels as follows. Initially, the process increases relatively the prices of the commodities with positive excess demand and decreases relatively the prices of the commodities with negative excess demand, while it increases relatively the activity levels of the firms with positive profits and decreases relatively the activity levels of the firms with negative profits. In general, the prices of the commodities with positive (negative) excess demand and the activity levels of the firms making positive (negative) profits are kept rela-
tively maximal (minimal). From an economic view point this behavior seems to be very close to the classical tatonnement process in which prices adjust according to the law of demand and supply, i.e. prices increase in case of positive excess demand and decrease when excess demand is negative. The adjustment process developed in this paper seems therefore to be much more intuitive and appealing than the adjustment processes obtained from the other simplicial algorithms. Moreover, the convergence condition given in this paper is more natural than those stated for other simplicial algorithms. We remark that the algorithm will also converge under these conditions.

The paper is organized as follows. In Section 2 we give the piecewise linear path of the algorithm and formulate a sufficient condition for the existence of an equilibrium. Section 3 describes the underlying subdivision of $S^{n} \times R_{+}^{m}$. Section 4 discusses the pivot steps and the replacement steps of the algorithm. In Section 5 we are concerned with the application of the process to several typical economic equilibrium models. Finally concluding remarks will be given in Section 6.

2 The path of the algorithm

We define the n-dimensional unit simplex S^{n} by

$$
S^{n}=\left\{p \in R_{+}^{n+1} \mid \sum_{i=1}^{n+1} p_{i}=1\right\}
$$

where R_{+}^{n+1} is the nonnegative orthant of the $(n+1)$-dimensional Euclidean space R^{n+1}. Let $f: S^{n} \times R_{+}^{m} \longrightarrow R^{n+1} \times R^{m}$ be a continous function with $f(p, y)=$ $\left(f_{1}(p, y), f_{2}(p, y)\right)$ for $p \in S^{n}$ and $y \in R_{+}^{m}$. The function $f=\left(f_{1}, f_{2}\right)$ is assumed to satisfy

$$
\begin{equation*}
p^{t} f_{1}(p, y)+y^{t} f_{2}(p, y)=0 \text { for all } p \in S^{n} \text { and } y \in R_{+}^{m} . \tag{2.1}
\end{equation*}
$$

Definition 2.1 A pair $\left(p^{*}, y^{*}\right) \in S^{n} \times R_{+}^{m}$ is an equilibrium if $f\left(p^{*}, y^{*}\right) \leq 0$, i.e.
(1) $f_{1}\left(p^{*}, y^{*}\right) \leq 0$
(2) $f_{2}\left(p^{*}, y^{*}\right) \leq 0$.

Let us give some explanation on the above function in economic terms. Let there be a finite number of consumers, m production activities or firms, and $n+1$ commodities in the economy. A vector $p \in S^{n}$ can be interpreted as a price vector being normalized on the unit simplex, and a vector $y \in R_{+}^{m}$ is a vector of activity levels of the firms. Then $f_{1 j}(p, y)$ can be regarded as the net excess demand of commodity $j, j \in\{1, \ldots, n+1\}$, at price vector p and activity level vector y. The function f_{2} is related to the profit of the firms, e.g. $f_{2 i}(p, y)$ is the profit of the
firm $i, i \in\{1, \ldots, m\}$, at price vector p and activity level y when firm i has a unit production level. Condition (2.1) reflects Walras' law, stating that all consumers spend their income. An equilibrium for this economy is a price vector $p^{*} \in S^{n}$ and a production activity level vector $y^{*} \in R_{+}^{m}$ such that at (p^{*}, y^{*}) the excess demand of the consumption sector is at most equal to the net supply of the production sector and no production activity makes positive profit.

It easily follows from Definition 2.1 that because of condition (2.1) an equilibrium $\left(p^{*}, y^{*}\right) \in S^{n} \times R_{+}^{m}$ has the property that

$$
\begin{array}{lll}
f_{1 j}\left(p^{*}, y^{*}\right)=0 & \text { if } & p_{j}^{*}>0 \\
f_{1 j}\left(p^{*}, y^{*}\right) \leq 0 & \text { if } & p_{j}^{*}=0 \tag{2.2}\\
f_{2 i}\left(p^{*}, y^{*}\right)=0 & \text { if } & y_{i}^{*}>0 \\
f_{2 i}\left(p^{*}, y^{*}\right) \leq 0 & \text { if } & y_{i}^{*}=0 .
\end{array}
$$

As shown in Yamamoto and Yang [14] the problem is equivalent to the stationary point or variational inequality problem on $S^{n} \times R_{+}^{m}$ with respect to f and is also equivalent to the nonlinear complementarity problem on $S^{n} \times R_{+}^{m}$. In what follows, we will introduce a simplicial algorithm to solve the problem. As applications of the algorithm, several typical economic examples will be discussed later. Let $(u, v) \in S^{n} \times R_{+}^{m}$ be an arbitrarily chosen starting point of the algorithm. For simplicity we assume that u is an interior point of S^{n}. Let $b=\left(b_{1}, \ldots, b_{m}\right)^{t}$ be such that $b_{i}>v_{i}$ for all i. To find an equilibrium in $S^{n} \times R_{+}^{m}$, we propose to follow a piecewise linear path of points starting at (u, v). The path traced by the algorithm can be interpreted as the approximate path generated by an adjustment process in which prices and activity levels are simultancously adjusted. The process generates a piecewise smooth path, denoted by P, of points in $S^{n} \times R_{+}^{m}$ such that for every point (p, y) on the path it holds that for all i, j

$$
\begin{array}{cll}
\frac{p_{1}}{u_{j}}=a & \text { if } & f_{1 j}(p, y)<0 \\
a \leq \frac{p_{i}}{u_{j}} \leq \max _{h_{1}} \frac{p_{h}}{u_{h}} & \text { if } & f_{1 j}(p, y)=0 \\
\frac{p_{1}}{u_{j}}=\max _{h} p_{h} & \text { if } & f_{1 j}(p, y)>0 \\
y_{i}=a v_{i} & \text { if } & f_{2 i}(p, y)<0 \\
a v_{i} \leq y_{i} \leq c v_{i}+(1-c) b_{i} & \text { if } & f_{2 i}(p, y)=0 \\
y_{i}=c v_{i}+(1-c) b_{i} & \text { if } & f_{2 i}(p, y)>0
\end{array}
$$

for certain numbers $a, 0 \leq a \leq 1$ and c satisfying

$$
\begin{array}{ll}
c=a & \text { if } \\
c \leq a & f_{1}(p, y) \not \leq 0 \\
c \leq & \text { if } \\
f_{1}(p, y) \leq 0 .
\end{array}
$$

Notice that (u, v) satisfies (2.3) for a equal to I and that the process will terminate as soon as a becomes equal to zero at say $\left(p^{*}, y^{*}\right)$. In the latter case $f_{1 j}\left(p^{*}, y^{*}\right)<0$ if $p_{j}^{*}=0, f_{1 j}\left(p^{*}, y^{*}\right) \geq 0$ if $p_{j}^{*}>0, f_{2 i}\left(p^{*}, y^{*}\right)<0$ if $y_{i}^{*}=0$, and $f_{2 i}\left(p^{*}, y^{*}\right) \geq 0$ if
$y_{i}^{*}>0$. From condition (2.1) it follows immediately that (p^{*}, y^{*}) is an equilibrium of the problem. Under certain regularity and nondegeneracy conditions, the set of points in $S^{n} \times R_{+}^{m}$ satisfying (2.3) consists of piecewise smooth loops and paths. Exactly one of these paths is the path P, laving the starting point (u, v) as an end point. In order to guarantee that the path P is bounded we impose a simple and also economically meaningful condition on the function f.

Assumption G (Generalized "no-production-without-input") There exists a positive number T such that for each $(p, y) \in S^{n} \times R_{+}^{m}$ with $\max _{i} y_{i} \geq T$, there is an index i satisfying $f_{1 i}(p, y)>0$.

The condition says in economic terms that when one or more firms choose a high production level the supply of at least one commmodity can not meet consumers' excess demand.

Theorem 2.2 Under Assumption G the path P in $S^{n} \times R_{+}^{m}$ starting at (u, v) is bounded and its other end point is an equilibrium.

Proof: Suppose that the path P is unbounded. Then without loss of generality there is a sequence $\left\{\left(p^{k}, y^{k}\right)\right\}_{1}^{\infty}$ satisfying (2.3), with some of the components of y^{k} going to infinity. Therefore there exists a positive integer M such that for each $k \geq M, \max _{i} y_{i}^{k} \geq \max \left\{T, \max _{i} b_{i}\right\}$. Moreover, since (p^{k}, y^{k}) satisfies (2.3) it holds that for each $k \geq M, f_{1 j}\left(p^{k}, y^{k}\right) \leq 0$ for all j. By assumption we have that for each (p^{k}, y^{k}) with $k \geq M$, there is an index i such that $f_{1 i}\left(p^{k}, y^{k}\right)>0$ which contradicts $f_{1 i}\left(p^{k}, y^{k}\right) \leq 0$. Hence, the path P is bounded and has another end point, say $\left(p^{*}, y^{*}\right)$. Clearly, $\left(p^{*}, y^{*}\right)$ is an equilibrium.

We are now ready to present an economic interpretation of the adjustments of prices and activity levels along the path P defined in (2.3). The adjustment process starts in (u, v). Barring degeneracy the vector $f(u, v)$ contains no zeros. In the case that all commodities in the market are in excess supply, the process initially keeps all the prices fixed, while the activity levels of the firms with positive profits are increased with the same proportion and the activity levels of firms with negative profit do not change. Otherwise, the process increases initially the prices of commodities with positive excess demand proportionally and decreases the prices of commodities with negative excess demand proportionally, while the process increases the activity levels of the firms making positive profit and decreases the activity levels of the firms making negative profit with the same proportion. In general the process adjusts simultaneously the prices and activity levels according to the sign pattern of the excess demand and the profit. The price of a commodity is kept relatively maximal (minimal) if the excess demand of the commodity is positive (negative)
and the activity level of a firm is kept the same proportion smaller (larger) if its profit is negative (positive).

The path P of points from (u, v) as defined in (2.3) is followed through making alternating replacement steps in the $V h^{\prime \prime}$-triangulation of $S^{n} \times R_{+}^{m}$ as described in the next section and pivot steps in a linear system of equations. To do so, we replace in system (2.3) the function f by its piecewise linear approximation F with respect to the $V K^{\prime}$-triangulation. The function F is linear on each simplex of the subdivision and coincides with f on the vertices of every simplex. Then the algorithm traces a piecewise linear path, denoted by \bar{P}, in $S^{n} \times R_{+}^{m}$ such that for every point (p, y) on \bar{P} it holds that for all i, j

$$
\begin{array}{cll}
\frac{p_{1}}{u_{j}}=a & \text { if } & F_{1 j}(p, y)<0 \\
a \leq \frac{p_{1}}{u_{j}} \leq \max _{h} \frac{p_{h}}{u_{h}} & \text { if } & F_{1 j}(p, y)=0 \\
\frac{p_{h}}{u_{j}}=\max _{h} \frac{p}{h}^{u_{h}} & \text { if } & F_{1 j}(p, y)>0 \\
y_{i}=a v_{i} & \text { if } & F_{2 i}(p, y)<0 \\
a v_{i} \leq y_{i} \leq c v_{i}+(1-c) b_{i} & \text { if } & F_{2 i}(p, y)=0 \\
y_{i}=c v_{i}+(1-c) b_{i} & \text { if } & F_{2 i}(p, y)>0 \tag{2.4}
\end{array}
$$

for certain numbers $a, 0 \leq a \leq 1$, and c is satisfying

$$
\begin{array}{lll}
c=a & \text { if } & F_{1}(p, y) \geq 0 \\
c \leq a & \text { if } & F_{1}(p, y) \leq 0 .
\end{array}
$$

The function $F=\left(F_{1}, F_{2}\right)$ is given by $F(p, y)=\sum_{i=1}^{t+1} \lambda_{i} f\left(p^{i}, y^{i}\right)$ where $\lambda_{1}, \ldots, \lambda_{t+1} \geq 0$ are such that $\sum_{i=1}^{t+1} \lambda_{i}=1$, and $(p, y)=\sum_{i=1}^{t+1} \lambda_{i}\left(p^{i}, y^{i}\right)$ is a point in some t-simplex $\sigma\left(w^{1}, \ldots, w^{t+1}\right)$ of the $V K^{\prime}$-triangulation with vertices $w^{i}=\left(p^{i}, y^{i}\right)$, $i=1, \ldots, t+1$. By introducing a generalized primal-dual pair L of subdivided manifolds and a function from L into $R^{n+1} \times R^{m}$ whose zero points satisfy (2.4), e.g. see [1], we can demonstrate the existence of a piecewise linear path of points satisfying (2.4) from (u,v) to an approximate equilibrium under Assumption G. In the next section we describe the $V^{\prime} K^{\prime \prime}$-triangulation of $S^{n} \times R_{+}^{m}$ which underlies the algorithm.

3 The simplicial subdivision

Let I_{n+1} and I_{m} denote the set of integers $\{1,2, \ldots, n+1\}$ and $\{1,2, \ldots, m\}$, respectively. The i-th unit vector in R^{n+1} is denoted by $e_{1}(j), j \in I_{n+1}$, while $e_{2}(i)$ is the i -th unit vector in $R^{m}, i \in I_{m}$. A vector $s=\left(s_{1}, s_{2}\right) \in R^{n+1} \times R^{m}$ is said to be a sign vector if $s_{1 j} \in\{-1,0,+1\}$ for every $j \in I_{n+1}$ and $s_{2 i} \in\{-1,0,+1\}$ for every $i \in I_{m}$. For each sign vector s, let

$$
\begin{aligned}
I^{-}\left(s_{1}\right) & =\left\{j \in I_{n+1} \mid s_{1 j}=-1\right\} \\
I^{0}\left(s_{1}\right) & =\left\{j \in I_{n+1} \mid s_{1 j}=0\right\}
\end{aligned}
$$

$$
\begin{aligned}
I^{+}\left(s_{1}\right) & =\left\{j \in I_{n+1} \mid s_{1 j}=+1\right\} \\
I^{-}\left(s_{2}\right) & =\left\{i \in I_{m} \mid s_{2 i}=-1\right\} \\
I^{0}\left(s_{2}\right) & =\left\{i \in I_{m} \mid s_{2 i}=0\right\} \\
I^{+}\left(s_{2}\right) & =\left\{i \in I_{m} \mid s_{2 i}=+1\right\}
\end{aligned}
$$

Furthermore, let

$$
\begin{aligned}
S=\{ & s \in R^{n+1} \times R^{m} \mid \mathrm{s} \text { is a sign vector } \\
& \text { which contains at least one }-1 \text { and one }+1 \\
& \text { and in case } \left.s_{1} \geq 0 \text { there is some } i \in I_{m} \text { such that } s_{2 i}<0 \text { and } v_{i}>0\right\} .
\end{aligned}
$$

Note that in case $v_{i}>0$ for all $i \in I_{m}$ there are $2^{n+m+1}-2$ sign vectors in S containing no zeros at all. Each sign vector $s \in S$ will induce a t-dimensional subset $A(s)$ of $S^{n} \times R_{+}^{m}$, where $t=t_{1}+t_{2}+1$ with $t_{1}=\left|I^{0}\left(s_{1}\right)\right|$ and $t_{2}=\left|I^{0}\left(s_{2}\right)\right|$. It is readily seen that t lies between 1 and $n+m$ and is equal to one for the sign vectors in S containing no zeros at all. Therefore when $v_{i}>0$ for all $i \in I_{m}$ there are $2^{n+m+1}-21$-dimensional sets or rays along one of which the algorithm leaves the starting point (u, v).

Definition 3.1

For $s \in S$, the set $A(s)$ is given by

$$
\begin{array}{cll}
A(s)=\left\{(p, y) \in S^{n} \times R_{+}^{m}\right. & \mid & \\
\begin{array}{c}
p_{1} \\
u_{j}
\end{array}=a & \text { if } & s_{1 j}=-1 \\
a \leq \frac{p_{1}}{u_{j}} \leq \max _{h} \frac{p_{h}}{u_{h}} & \text { if } & s_{1 j}=0 \\
\frac{p_{i}}{u_{j}}=\max _{h} \frac{p_{h}}{u_{h}} & \text { if } & s_{1 j}=+1 \\
y_{i}=a v_{i} & \text { if } & s_{2 i}=-1 \tag{3.1}\\
a v_{i} \leq y_{i} \leq c v_{i}+(1-c) b_{i} & \text { if } & s_{2 i}=0 \\
y_{i}=c v_{i}+(1-c) b_{i} & \text { if } & s_{2 i}=+1 \\
c=a & \text { if } & s_{1} \geq 0 \\
c \leq a & \text { if } & s_{1} \leq 0
\end{array}
$$

The boundary of a t-dimensional set $A(s)$ consists of the $(t-1)$-dimensional sets $A\left(s^{\prime}\right)$ with $s^{\prime} \in S$ differing in only one component of s being zero in s, and in case $I^{-}\left(s_{1}\right) \neq I_{n+1}$ of the intersection of $A(s)$ with the $(t-1)$-dimensional set $S^{n}\left(I^{-}\left(s_{1}\right)\right) \times R^{m}\left(I^{-}\left(s_{2}\right)\right)$ where $S^{n}\left(I^{-}\left(s_{1}\right)\right)=\left\{p \in S^{n} \mid p_{j}=0\right.$ if $\left.j \in I^{-}\left(s_{1}\right)\right\}$ and $R^{m}\left(I^{-}\left(s_{2}\right)\right)=\left\{y \in R_{+}^{m} \mid y_{i}=0\right.$ if $\left.i \in I^{-}\left(s_{2}\right)\right\}$. According to the description in Section 2, the algorithm leaves (u, v) along the ray $A\left(s^{0}\right)$ for which $s^{0}=\operatorname{sign}(f(u, v))$, where as in the sequel the sign of a vector is taken componentwise. In general a point $(p, y) \in S^{n} \times R_{+}^{m}$ satisfies (2.4) if and only if for some sign vector $s \in S,(p, y)$
lies in $A(s)$ and $s=\operatorname{sgn}(F(p, y))$. The triangulation of $S^{n} \times R_{+}^{m}$ with respect to which the piecewise linear approximation F of f is defined must be such that it triangulates each $A(s), s \in S$. The $V K^{\prime \prime}$-triangulation of $S^{n} \times R_{+}^{m}$ introduced in Yamamoto and Yang [14] satisfies this property. To describe this simplicial subdivision, let $s \in S$ be given, let $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t_{1}}\right)$ be a permutation of the t_{1} elements of $I^{0}\left(s_{1}\right)$, and let r be a sign vector containing no zeros and conforming to s_{2}, i.e., $r_{i}=s_{2 i}$ whenever $s_{2 i} \neq 0$. In case $I^{-}\left(s_{1}\right)=I_{n+1}$ or $v_{i}=0$ it must hold that $r_{i}=+1$ when $s_{2 i}=0$. Let K be a subset of I_{n+1}. The projection $\left(p_{1}(K), p_{2}(r)\right)$ of (u, v) is defined by

$$
p_{1}(K)=u, \text { if } K=\emptyset
$$

Otherwise,

$$
p_{1 j}\left(K^{\prime}\right)= \begin{cases}0 & \text { for } j \notin K \\ u_{j} / \sum_{h \in K} u_{h} & \text { for } j \in K\end{cases}
$$

and

$$
p_{2 i}(r)=\left\{\begin{array}{lll}
0 & \text { for i } \in I^{-}(r) & \text { if } s_{1} \notin 0 \\
v_{i} & \text { for i } \in I^{-}(r) & \text { if } s_{1} \leq 0 \\
b_{i} & \text { for i } \in I^{+}(r) . &
\end{array}\right.
$$

Finally, we assume that $I^{0}\left(s_{2}\right)=\left\{i_{1}, i_{2}, \ldots, i_{t_{2}}\right\}$ with the ordering $i_{1}<i_{2}<\ldots<$ $i_{t_{2}}$.

Definition 3.2 Let s, γ and r be given as above. The subset $A(s, \gamma, r)$ is given by

$$
\begin{gathered}
A(s, \gamma, r)=\left\{(p, y) \in S^{n} \times R_{+}^{m} \mid(p, y)=(u, v)+\sum_{i=0}^{t-1} \alpha^{i} q^{i},\right. \text { where } \\
\text { if } s_{1} \not 又 0, \text { then } 0 \leq \alpha^{t_{1}} \leq \ldots \leq \alpha^{1} \leq \alpha^{0} \leq 1 \\
\text { and for } j=1, \ldots, t_{2} \\
0 \leq \alpha^{t_{1}+j} \leq \alpha^{0}, \\
\text { and if } s_{1} \leq 0, \text { then } 0 \leq \alpha^{t_{1}} \leq \ldots \leq \alpha^{1} \leq \min \left\{1, \alpha^{0}\right\} \\
\text { and for } j=1, \ldots, t_{2} \\
0 \leq \alpha^{t_{1}+j} \leq \alpha^{0}, \text { if } r_{i,}=+1 \text { and } s_{2 i,}=0 \\
\left.0 \leq \alpha^{t_{1}+j} \leq \alpha^{1} \text {, if } r_{i,}=-1 \text { and } s_{2 i,}=0\right\}
\end{gathered}
$$

where the $(n+m+1)$-vector q^{0} is defined by

$$
q^{0}=\left(p_{1}\left(I^{+}\left(s_{1}\right)\right), p_{2}(r)\right)-(u, v),
$$

for $j=1, \ldots, t_{1}$ the $(n+m+1)$-vector q^{j} is definad by

$$
\begin{aligned}
q^{j}= & \left(p_{1}\left(I^{+}\left(s_{1}\right) \cup\left\{\gamma_{1}, \ldots, \gamma_{j}\right\}\right), p_{2}(r)\right) \\
& -\left(p_{1}\left(I^{+}\left(s_{1}\right) \cup\left\{\gamma_{1}, \ldots, \gamma_{j-1}\right\}\right), p_{2}(r)\right),
\end{aligned}
$$

and for $j=1, \ldots, t_{2}$ the $(n+m+1)$-vector $q^{t_{1}+j}$ is defined by

$$
q^{t_{1}+j}= \begin{cases}\left(0, v_{i,}, e_{2}\left(i_{j}\right)\right) & \text { if } r_{i,}=-1 \text { and } s_{2 i,}=0 \\ \left(0,\left(v_{i},-b_{i},\right) e_{2}\left(i_{j}\right)\right) & \text { if } r_{i,}=+1 \text { and } s_{2 i, j}=0 .\end{cases}
$$

It can easily be verified that the dimension of $A(s, \gamma, r)$ equals t and that $A(s)$ is the union of $A(s, \gamma, r)$ over all permutations γ of the elements of $I^{0}\left(s_{1}\right)$ and all sign vectors r conforming to s_{2}. For $n=m=1$, the subdivision of $S^{n} \times R_{+}^{m}$ is illustrated in Figure 3.1.

Figure 3.1: Subsets $A(s)$ of $S^{n} \times R_{+}^{m}$ for $m=n=1$.

Let d be a positive integer.

Definition 3.3

When $s_{1} \notin 0$, the $V \mathbb{K}^{\prime \prime}$-triangulation with grid size d^{-1} of $A(s, \gamma, r)$ is the collection $G^{d}(s, \gamma, r)$ of t-simplices $\sigma(a, \pi)$ with vertices $w^{1}, w^{2}, \ldots, w^{t+1}$ such that
(I) $w^{1}=(u, v)+\sum_{i=0}^{t-1} a(i) d^{-1} q^{i}$ with $a=(a(0), a(1), \ldots, a(t-1))$ an integer vector such that $0 \leq a\left(t_{1}\right) \leq \ldots \leq a(0) \leq d-1$ and for $i=t_{1}+1, \ldots, t-1$

$$
0 \leq a(i) \leq a(0)
$$

(2) for $i=1, \ldots, t, w^{i+1}=w^{i}+d^{-1} q^{\pi_{i}}$ where $\pi=\left(\pi_{1}, \ldots, \pi_{t}\right)$ a permutation of the elements of $\{0,1, \ldots, t-1\}$ such that $p>p^{\prime}$ if $a\left(\pi_{p}\right)=a\left(\pi_{p^{\prime}}\right)$ when for some $j, 1 \leq j \leq t_{1}, \pi_{p}=j$ and $\pi_{p^{\prime}}=j-1$, or when for some $j \geq t_{1}+1, \pi_{p^{\prime}}=0$ and $\pi_{p}=j$.

When $s_{1} \leq 0$, the $V h^{\prime \prime}$-triangulation with grid size d^{-1} of $A(s, \gamma, r)$ is the collection $G^{d}(s, \gamma, r)$ of t-simplices $\sigma(a, \pi)$ with vertices $w^{1}, w^{2}, \ldots, w^{t+1}$ such that
(1) $w^{1}=(u, v)+\sum_{i=1}^{t-1} a(i) d^{-1} q^{i}$ with $a=(a(0), \ldots, a(t-1))$ an integer vector such that $0 \leq a\left(t_{1}\right) \leq \ldots \leq a(1) \leq \min \{a(0), d-1\}$ and for $j=1, \ldots, t_{2}$

$$
\begin{aligned}
& 0 \leq a\left(t_{1}+j\right) \leq a(0), \text { if } r_{i j}=+1 \text { and } s_{2 i j}=0 \\
& 0 \leq a\left(t_{1}+j\right) \leq a(1), \text { if } r_{i j}=-1 \text { and } s_{2 i j}=0
\end{aligned}
$$

(2) for $i=1, \ldots, t, w^{i+1}=w^{i}+d^{-1} q^{\pi_{1}}$ where $\pi=\left(\pi_{1}, \ldots, \pi_{t}\right)$ is a permutation of the elements of $\{0,1, \ldots, t-1\}$ such that $p>p^{\prime}$ if $a\left(\pi_{p}\right)=a\left(\pi_{p^{\prime}}\right)$ when for some $j, 1 \leq j \leq t_{1}, \pi_{p}=j$ and $\pi_{p^{\prime}}=j-1$, or when for some $j \geq t_{1}+1, \pi_{p}=j$ and $\pi_{p^{\prime}}=0$, or when for some $j \geq t_{1}+1, r_{i,-t_{1}}=-1, \pi_{p}=j$ and $\pi_{p^{\prime}}=1$.

The union of the collection (id (s, γ, r) over all permutations γ of the elements of $I^{0}\left(s_{1}\right)$ and over all sign vectors r conforming to s is a triangulation of $A(s)$, whereas the union of all these triangulations over all sign vectors $s \in S$ yields the $V K^{\prime}$-triangulation of $S^{n} \times R_{+}^{m}$ with grid size d^{-1}.

Let $\sigma(a, \pi)$ and $\bar{\sigma}(a, \pi)$ be two adjacent simplices in $A(s, \gamma, r)$ with common facet τ opposite to the vertex $w^{k}, 1 \leq k \leq t+1$, of σ. Then $\bar{\sigma}$ is obtained from σ by replacing w^{k} as described in Table 3.1, where $e(i)$ is the ($i+1$)-th unit vector in $R^{t}, i=0,1, \ldots, t-1$.

Table 3.1: The vertex w^{k} of $\sigma(a, \pi)$ is replaced

	$\bar{\pi}$	\bar{a}
$k=1$	$\left(\pi_{2}, \ldots, \pi_{t}, \pi_{1}\right)$	$a+e\left(\pi_{1}\right)$
$1<k<t+1$	$\left(\pi_{1}, \ldots, \pi_{k-2}, \pi_{k}, \pi_{k-1}, \ldots, \pi_{t}\right)$	a
$k=t+1$	$\left(\pi_{t}, \pi_{1}, \ldots, \pi_{t-1}\right)$	$a-e\left(\pi_{t}\right)$

When a facet lies in the boundary of $A(s, \gamma, r)$ we have the following lemma.
Lemma $3.4 W h e n ~ s_{1} \notin 0$, the facet τ opposite to the vertex w^{k} of $\sigma(a, \pi)$ in $A(s, \gamma, r)$ lies in the boundary of this set if and only if one of the following cases holds:
(1) $k=1, a(0)=d-1$, and $\pi_{1}=0$;
(2) $k=t+1, a\left(\pi_{t}\right)=0$, and $\pi_{t}=j$ for some $j, j \geq t_{1}$;
(3) $1<k<t+1, a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right), \pi_{k-1}=0$, and $\pi_{k} \geq t_{1}+1$;
(4) $1<k<t+1, a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right), \pi_{k-1}=i-1$, and $\pi_{k}=i$ for some $i \in$ $\left\{1,2, \ldots, t_{1}\right\}$.
When $s_{1} \leq 0$, the facet τ opposite to the vertex w^{k} of $\sigma(a, \pi)$ in $A(s, \gamma, r)$ lies in the boundary of this set if and only if one of the following cases holds:
(1) $k=1, a(1)=d-1, \pi_{1}=1$, and $t_{1} \geq 1$;
(2) $k=t+1, a\left(\pi_{t}\right)=0$, and $\pi_{t}=j$ for some $j, j \geq t_{1}$;
(3) $1<k<t+1, a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right), \pi_{k-1}=0$, and $\pi_{k} \geq t_{1}+1$;
(4) $1<k<t+1, a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right), \pi_{k-1}=i-1$, and $\pi_{k}=i$ for some $i \in$ $\left\{1,2, \ldots, t_{1}\right\} ;$
(5) $1<k<t+1, a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right), \pi_{k-1}=1$, and $\pi_{k}=t_{1}+j$ with $r_{i},=-1$ for some $j \in\left\{1, \ldots, t_{2}\right\}$.

In the next section we describe the steps of the algorithm by making use of Table 3.1 and Lemma 3.4.

4 The steps of the algorithm

As stated in Section 2, the algorithm follows a piecewise linear path of points (p, y) in $S^{n} \times R_{+}^{m}$ satisfying (2.4). The left hand side of (2.4) corresponds to the subdivision of $S^{n} \times R_{+}^{m}$ into sets $A(s)$, whereas the right hand side coincides with the sign pattern of the piecewise linear approximation F of f with respect to the $V K^{\prime}$-triangulation. Each point (p, y) on the path \bar{P} lies in $A(s)$ with $s=\operatorname{sign}(F(p, y))$. Let $\sigma(a, \pi)$ with vertices w^{1}, \ldots, w^{t+1} be a t-simplex in $A(s)$ containing such a point (p, y). Then there exist unique nonnegative numbers $\lambda_{i}^{*}, i=1, \ldots, t+1, \mu_{j}^{*}, j \notin I^{0}\left(s_{1}\right)$, and $\theta_{k}^{*}, k \notin I^{0}\left(s_{2}\right)$, such that $\sum_{i} \lambda_{i}^{*}=1,(p, y)=\sum_{i} \lambda_{i}^{*} w^{i}$, and

$$
\begin{aligned}
F_{1 j}(p, y) & =\sum_{i} \lambda_{i}^{*} f_{1 j}\left(w^{i}\right)=-\mu_{j}^{*} & & \text { if } j \in I^{-}\left(s_{1}\right) \\
& =\sum_{i} \lambda_{i}^{*} f_{1 j}\left(w^{i}\right)=0 & & \text { if } j \in I^{0}\left(s_{1}\right) \\
& =\sum_{i} \lambda_{i}^{*} f_{1 j}\left(w^{i}\right)=\mu_{j}^{*} & & \text { if } j \in I^{+}\left(s_{1}\right) \\
F_{2 k}(p, y) & =\sum_{i} \lambda_{i}^{*} f_{2 k}\left(w^{i}\right)=-\theta_{k}^{*} & & \text { if } k \in I^{-}\left(s_{2}\right) \\
& =\sum_{i} \lambda_{i}^{*} f_{2 k}\left(w^{i}\right)=0 & & \text { if } k \in I^{0}\left(s_{2}\right) \\
& =\sum_{i} \lambda_{i}^{*} f_{2 k}\left(w^{i}\right)=\theta_{k}^{*} & & \text { if } k \in I^{+}\left(s_{2}\right) .
\end{aligned}
$$

Such a t-simplex is called s-complete. It is readily seen that a t-simplex $\sigma\left(w^{1}, \ldots, w^{\ell+1}\right)$ is s-complete if and only if the $(n+m+2)$-system of linear equations

$$
\sum_{i=1}^{t+1} \lambda_{i}\binom{f\left(w^{i}\right)}{1}-\sum_{j \notin I^{\circ}\left(s_{1}\right)} \mu_{j}\left(\begin{array}{c}
s_{1 j} e_{1}(j) \tag{4.1}\\
0_{2} \\
0
\end{array}\right)-\sum_{k \notin I^{\circ}\left(s_{2}\right)} \theta_{k}\left(\begin{array}{c}
0_{1} \\
s_{2 k} e_{2}(k) \\
0
\end{array}\right)=\left(\begin{array}{c}
0_{1} \\
0_{2} \\
1
\end{array}\right)
$$

has a nonnegative solution $\lambda_{i}^{*}, i=1, \ldots, t+1, \mu_{j}^{*}, j \notin I^{0}\left(s_{1}\right)$, and $\theta_{k}^{*}, k \notin$ $I^{0}\left(s_{2}\right)$.The vectors 0_{1} and 0_{2} in (4.1) denote the $(n+1)$-vector and the m-vector of zeros, respectively.

Nondegeneracy Assumption For each solution (λ, μ, θ) of the system (4.1) at most one of variables (λ, μ, θ) is equal to zero.

Under this assumption the set of solutions (λ, μ, θ) of the system (4.1) forms a line segment, if any. An end point of such a line segment is called a basic solution and has exactly one of the variables equal to zero. The line segment of solutions (λ, μ, θ) induces a line segment of points $w=\sum_{i} \lambda_{i} w^{i}$ in σ for which according to (4.1) it holds that $\operatorname{sign}(F(w))=\operatorname{sign}\left(\sum_{i} \lambda_{i} f\left(w^{i}\right)\right)=s$. The line segment of solutions (λ, μ, θ) to (4.1) therefore corresponds to a linear piece of the path \bar{P} in $\sigma(a, \pi)$ and can be followed by making a linear programming pivot step in (4.1). The algorithm starts with the unique 1 -simplex $\sigma^{0}\left(w^{1},(0)\right)$ in $A\left(s^{0}, \emptyset, r^{0}\right)$ having $w^{1}=(u, v)$ as a vertex, where s^{0} is the sign pattern of $f(u, v)$ and $r^{0}=s^{0}$. Clearly,
σ^{0} is s^{0}-complete. Notice that, because of the nondegeneracy assumption, s^{0} does not contain any zeros. The first piece of the path \bar{P} is contained in σ^{0}. It can be traced by making a pivot step in (4.1) with respect to σ^{0} by pivoting in the variable λ_{2} corresponding to the vertex w^{2} of σ^{0}. After this pivot either λ_{1} becomes zero, μ_{j} becomes zero for some $j \in\{1, \ldots, n+1\}$, or θ_{k} becomes zero for some $k \in\{1, \ldots, m\}$. In general, each linear piece of the path \bar{P} can be followed by making a pivot step in (4.1) for some simplex $\sigma(a, \pi)$ with vertices w^{1}, \ldots, w^{t+1} in some $A(s, \gamma, r)$. Suppose that in such a pivot step μ_{j} becomes zero for some $j \notin I^{0}\left(s_{1}\right)$ or θ_{k} becomes zero for some $k \notin I^{0}\left(s_{2}\right)$. Then the corresponding point $w^{*}=\left(p^{*}, y^{*}\right)=\sum_{i} \lambda_{i} w^{i}$ is an approximate equilibrium if $\left|I^{+}\left(s_{1}\right)\right|+\left|I^{+}\left(s_{2}\right)\right|=1$, and $s_{1 j}=+1$ or $s_{2 k}=+1$, or if $\left|I^{-}\left(s_{1}\right)\right|+\left|I^{-}\left(s_{2}\right) \cap\left\{q \mid v_{q}>0\right\}\right|=1$, and $s_{1 j}=-1$ or $s_{2 k}=-1$. Otherwise, we consider the following cases: (1) $\mu_{j}=0$ for some $j \in I^{-}\left(s_{1}\right)$, (2) $\mu_{j}=0$ for some $j \in I^{+}\left(s_{1}\right)$, (3) $\theta_{k}=0$ for some $k \in I^{-}\left(s_{2}\right)$, and (4) $\theta_{k}=0$ for some $k \in I^{+}\left(s_{2}\right)$.
(1) If $\mu_{j}=0$ for some $j \in I^{-}\left(s_{1}\right)$, let $\bar{s}_{1 j}=0, \bar{s}_{1 h}=s_{1 h}$ for $h \neq j, \bar{s}_{2}=s_{2}$, then σ is a facet of a $(t+1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \bar{\gamma}, r)$ where $\bar{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{t_{1}}, j\right)$, $\bar{a}(l)=a(l)$ for $l=0,1, \ldots, t_{1}, \bar{a}\left(t_{1}+1\right)=0, \bar{a}\left(t_{1}+l+1\right)=a\left(t_{1}+l\right)$ for $l=1, \ldots, t_{2}$ and $\pi=\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{t}, t_{1}+1\right)$ where

$$
\begin{array}{ll}
\bar{\pi}_{i}=\pi_{i} & \text { if } \pi_{i}<t_{1}+1 \\
\bar{\pi}_{i}=\pi_{i}+1 & \text { if } \pi_{i}>t_{1}+1 .
\end{array}
$$

(2) If $\mu_{j}=0$ for some $j \in I^{+}\left(s_{1}\right)$, let $\bar{s}_{1 j}=0, \bar{s}_{1 h}=s_{1 h}$ for $h \neq j, \bar{s}_{2}=s_{2}$, then σ is a facet of a $(t+1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \bar{\gamma}, r)$ where $\bar{\gamma}=\left(j, \gamma_{1}, \ldots, \gamma_{t_{1}}\right), \bar{a}(0)=$ $a(0), \vec{a}(1)=a(0), \vec{a}(l)=a(l-1)$ for $l=2, \ldots, t, \bar{\pi}=\left(\rho_{1}, \ldots, \rho_{h}, 1, \rho_{h+1}, \ldots, \rho_{t}\right)$ with $\rho_{h}=\pi_{h}$ for $\pi_{h}=0, \rho_{l}=\pi_{l}+1$ for $l \neq h$.
(3) If $\theta_{k}=0$ for some $k \in I^{-}\left(s_{2}\right)$, let $\bar{s}_{1}=s_{1}, \bar{s}_{2 k}=0$, and $\bar{s}_{2 h}=s_{2 h}$ for $h \neq k$, then σ is a facet of the $(t+1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \gamma, \bar{r})$ where if $I^{-}\left(s_{1}\right) \neq I_{n+1}$ and $v_{k} \neq 0$, then $\bar{r}_{k}=-1, \bar{r}_{k}=r_{h}$ for $h \neq k, \bar{a}(l)=a(l)$ for $l=0,1, \ldots, t_{1}+j, \bar{a}\left(t_{1}+j+1\right)=0$, and $\bar{a}\left(t_{1}+l+1\right)=a\left(t_{1}+l\right)$ for $l=j+1, \ldots, t_{2}$ with j the largest index for which $i_{j}<k$, and $\bar{\pi}=\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{t}, t_{1}+j+1\right)$ with

$$
\begin{array}{ll}
\pi_{h}=\pi_{h} & \text { if } \pi_{h}<t_{1}+j+1 \\
\bar{\pi}_{h}=\pi_{h}+1 & \text { if } \pi_{h}>t_{1}+j+1
\end{array}
$$

and where if $I^{-}\left(s_{1}\right)=I_{n+1}$, or $v_{k}=0$ then $\bar{r}_{k}=+1, \bar{r}_{h}=r_{h}$ for $h \neq k, \bar{a}(l)=$ $a(l)$ for $l=0,1, \ldots, j, \bar{a}(j+1)=a(0)$ and $\bar{a}(l+1)=a(l)$ for $l=j+1, \ldots, t_{2}$ with j the largest index for which $i_{j}<k$, and $\bar{\pi}=\left(\rho_{1}, \ldots, \rho_{h}, j+1, \rho_{h+1}, \ldots, \rho_{t}\right)$ with $\rho_{h}=0$ for $\pi_{h}=0$,

$$
\begin{array}{ll}
\rho_{l} & =\pi_{l} \\
\rho_{l}=\pi_{l}+1 & \text { if } \pi_{l}<j+1 \text { for } l \neq h \\
\rho_{l}>j
\end{array}
$$

(4) If $\theta_{k}=0$ for some $k \in I^{+}\left(s_{2}\right)$, let $\bar{s}_{1}=s_{1}, \bar{s}_{2 k}=0$, and $\bar{s}_{2 h}=s_{2 h}$ for $h \neq k$, then σ is a facet of the $(t+1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \gamma, r)$ with $\bar{a}(l)=a(l)$ for $l=0,1, \ldots, t_{1}+j, \bar{a}\left(t_{1}+j+1\right)=0$, and $\bar{a}\left(t_{1}+l+1\right)=a\left(t_{1}+l\right)$ for $l=j+1, \ldots, t_{2}$ with j the largest index for which $i_{j}<k$, and $\bar{\pi}=\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{t}, t_{1}+j+1\right)$ where

$$
\begin{array}{rll}
\bar{\pi}_{h}=\pi_{h} & \text { if } & \pi_{h}<t_{1}+j+1 \\
\bar{\pi}_{h}=\pi_{h}+1 & \text { if } & \pi_{h}>t_{1}+j+1
\end{array}
$$

In the above four cases, the next linear piece of the path \bar{P} is contained in $\bar{\sigma}$. This lincar piece can be followed by making a pivot step in (4.1) with $\binom{f(\bar{w})}{1}$, where \bar{w} is the vertex of $\bar{\sigma}$ not contained in σ.

If after a pivot step in (4.1) λ_{k} becomes zero for some $k \in\{1, \ldots, t+1\}$, then the point $w^{*}=\left(p^{*}, y^{*}\right)=\sum_{i \neq k} \lambda_{i} w^{i}$ lies in the facet τ of σ opposite to the vertex \boldsymbol{w}^{k}. The following cases may happpen according to Lemma 3.4.
(1) If $k=1, a(0)=d-1, \pi_{1}=0$, and $s_{1} \notin 0$, the algorithm terminates with an approximate equilibrium w^{*}.
(2) If $t_{1} \geq 1, k=1, a(1)=d-1$, and $\pi_{1}=1$, the algorithm terminates with an approximate equilibrium w^{*}.
(3) If $k=t+1, a\left(t_{1}\right)=0$, and $\pi_{t}=t_{1}$, then τ is the $(t-1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \bar{\gamma}, r)$ with $\bar{s}_{1 j}=-1$ for $j=\gamma_{t_{1}}, \bar{s}_{1 h}=s_{1 h}$ for $h \neq j, \bar{s}_{2}=s_{2}$, $\bar{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{t_{1}-1}\right), \bar{a}(l)=a(l)$ for $l=0,1, \ldots, t_{1}-1, \bar{a}(l)=a(l+1)$ for $l=t_{1}, \ldots, t-2$, and $\bar{\pi}=\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{t-1}\right)$ where

$$
\begin{array}{rll}
\bar{\pi}_{h}=\bar{\pi}_{h} & \text { if } & \pi_{h}<t_{1} \\
\pi_{h}=\pi_{h}-1 & \text { if } & \pi_{h}>t_{1} .
\end{array}
$$

The algorithm continues in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by making a pivot step in (4.1) with $\left(\begin{array}{c}\bar{s}_{1 j} e_{1}(j) \\ 0_{2} \\ 0\end{array}\right)$.
(4) If $k=t+1, a\left(\iota_{1}+j\right)=0$ for some $j, 1 \leq j \leq \iota_{2}$, and $\pi_{l}=\iota_{1}+j$, then τ is the $(t-1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \gamma, r)$ with $\bar{s}_{1}=s_{1}, s_{2 i}=r_{i,}, \bar{s}_{2 h}=s_{2 h}$ for $h \neq i_{j}$, $\bar{a}(l)=a(l)$ for $l=0,1, \ldots, t_{1}+j-1, \bar{a}(l)=a(l+1)$ for $l=t_{1}+j-1, \ldots, t-2$, and $\pi=\left(\bar{\pi}_{1}, \ldots, \bar{\pi}_{t-1}\right)$ where

$$
\begin{array}{rll}
\bar{\pi}_{h}=\pi_{h} & \text { if } & \pi_{h}<t_{1}+j \\
\bar{\pi}_{h}=\pi_{h}-1 & \text { if } & \pi_{h}>t_{1}+j .
\end{array}
$$

The algorithm proceeds in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by performing a pivot step in (4.1) with $\left(\begin{array}{c}0_{1} \\ \bar{s}_{2 i}, e_{2}\left(i_{j}\right) \\ 0\end{array}\right)$.
(5) If $1<k<t+1, \pi_{k-1}=0, \pi_{k}=1$, and $a(0)=a(1)$, then τ is the $(t-1)$ simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \bar{\gamma}, r)$ with $\bar{s}_{1 j}=+1$ for $j=\gamma_{1}, \bar{s}_{1 h}=s_{1 h}$ for $h \neq j$, $\bar{s}_{2}=s_{2}, \bar{\gamma}=\left(\gamma_{2}, \ldots, \gamma_{t_{1}}\right), \bar{a}(0)=a(0), \bar{a}(l)=a(l+1)$ for $l=1, \ldots, t-2$, and $\bar{\pi}=\left(\rho_{1}, \ldots, \rho_{k-2}, \rho_{k}, \ldots, \rho_{t}\right)$ where

$$
\begin{aligned}
& \rho_{h}=\pi_{h}-1 \text { for } h=1, \ldots, k-2 \\
& \rho_{h}=\pi_{h}-1 \text { for } h=k, \ldots, t .
\end{aligned}
$$

The algorithm is continued in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by bringing $\left(\begin{array}{c}\bar{s}_{1 j} e_{1}(j) \\ 0_{2} \\ 0\end{array}\right)$ into (4.1).
(6) (i) If $s_{1} \not \geq 0,1<k<t+1, \pi_{k-1}=0, \pi_{k}=t_{1}+j$ for some $j, 1 \leq j \leq t_{2}$, and $a\left(l_{1}+i\right)=u(0)$, then τ is a facet of $\sigma(u, \pi)$ in $A(s, \gamma, r)$ with $r_{i}=-r_{i}$, and $r_{h}=r_{h}$ for $h \neq i$. The algorithm continues in $\sigma(a, \pi)$ by making a pivot step in (4.1) with $\binom{f(w)}{1}$, where \bar{w} is the vertex of σ not contained in τ.
(ii) If $I^{-}\left(s_{1}\right)=I_{n+1}, 1<k<t+1, \pi_{k-1}=0, \pi_{k}=j$ for some $j, 1 \leq j \leq t_{2}$, then τ is the $(t-1)$-simplex $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(\bar{s}, \gamma, \bar{r})$ with $\bar{s}_{1}=s_{1}, \bar{s}_{2 i}=-1$, $\bar{r}_{i},=-1, \bar{s}_{2 h}=s_{2 h}, \bar{r}_{h}=r_{h}$ for $h \neq i_{j}$, and $\bar{a}(l)=a(l)$ for $l=0,1, \ldots, j-1$, $\bar{a}(l)=a(l+1)$ for $l=j, \ldots, t-2$, and $\bar{\pi}=\left(\rho_{1}, \ldots, \rho_{k-1}, \rho_{k+1}, \ldots, \rho_{t}\right)$ where

$$
\begin{array}{rll}
\rho_{h}=\pi_{h} & \text { if } & \pi_{h}<j \\
\rho_{h}=\pi_{h}-1 & \text { if } & \pi_{h}>j
\end{array}
$$

The algorithm proceeds in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by making a pivot step in (4.1) with $\left(\begin{array}{c}0_{1} \\ \bar{s}_{2 i}, e_{2}\left(i_{j}\right) \\ 0\end{array}\right)$.
(iii) If $s_{1} \leq 0,\left|l^{0}\left(s_{1}\right)\right| \geq 1,1<k<t+1, \pi_{k-1}=0, \pi_{k}=t_{1}+j$ for some $j, 1 \leq j \leq t_{2}, a\left(t_{1}+j\right)=a(0)$, and $r_{i}=+1$, then τ is a facet of $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(s, \gamma, \bar{r})$ with $\bar{r}_{i},=-1, \bar{r}_{h}=r_{h}$ for $h \neq i_{j}, \bar{a}\left(t_{1}+j\right)=a(1), \bar{a}(l)=a(l)$ for $l \neq t_{1}+j$, and $\bar{\pi}$ is the same as π except that π_{k} moves to behind 1 . The algorithm is continued in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by making a pivot step in (4.1) with $\binom{f(\bar{w})}{1}$, where \bar{w} is the vertex of $\bar{\sigma}$ not contained in τ.
(iv) If $s_{1} \leq 0,1<k<t+1, \pi_{k-1}=1, \pi_{k}=t_{1}+j$ for some $j, 1 \leq j \leq t_{2}$, $a(1)=a\left(t_{1}+j\right)$, and $r_{i}=-1$, then τ is a facet of $\bar{\sigma}(\bar{a}, \bar{\pi})$ in $A(s, \gamma, \bar{r})$ with $\bar{r}_{i j}=+1, \bar{r}_{h}=r_{h}$ for $h \neq i_{j}, \bar{a}\left(t_{1}+j\right)=a(0), \bar{a}(l)=a(l)$ for $l \neq t_{1}+j, \bar{\pi}$ is the same as π except that π_{k} moves to behind 0 . The algorithm continues in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by pivoting $\binom{f(\bar{w})}{1}$ in (4.1), where \bar{w} is the vertex of $\bar{\sigma}$ not contained in τ.
(7) If $1<k<t+1, \pi_{k-1}=i-1, \pi_{k}=i$ for some $i \in\left\{2, \ldots, t_{1}\right\}$, and $a\left(\pi_{k-1}\right)=a\left(\pi_{k}\right)$, then τ is a facet of $\bar{\sigma}(a, \pi)$ in $A(s, \bar{\gamma}, r)$ with $\bar{\gamma}=$ $\left(\gamma_{1}, \ldots, \gamma_{i-2}, \gamma_{i}, \gamma_{i-1}, \gamma_{i+1}, \ldots, \gamma_{t_{1}}\right)$. The algorithm proceeds in $\bar{\sigma}(a, \pi)$ by bringing $\binom{f(\bar{w})}{1}$ in (4.1), where \bar{w} is the vertex of σ not contained in τ.
(8) In all other cases, $\bar{\sigma}(\bar{a}, \bar{\pi})$ is adapted accoding to Table 3.1 by replacing w^{k}. The algorithm continues in $\bar{\sigma}(\bar{a}, \bar{\pi})$ by pivoting $\binom{f(\bar{w})}{1}$ in (4.1), where \bar{w} is the vertex of $\bar{\sigma}$ not contained in τ.

This completes the description of how the algorithm operates on $S^{n} \times R_{+}^{m}$. We are now ready to discuss the convergence of the algorithm. As norm we denote $\|\cdot\|_{\infty}$ by $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$ for $x \in R^{n}$.

Lemma 4.1 Lel $D\left(T^{\prime}\right)=\left\{(p, y) \in S^{n} \times R_{+}^{n} \mid \max \left\{T, \max _{i} b_{i}\right\} \leq \max _{i} y_{i} \leq\right.$ $\left.\max _{i} b_{i}+\max \left\{T, \max _{i} b_{i}\right\}\right\}$ and let $\varphi=\inf \left\{\max _{i} f_{1 i}(p, y) \mid(p, y) \in D(T)\right\}$. If Assumption G is satisfied, then $\varphi>0$.

Proof: The conclusion directly follows from the compactness of $D(T)$ and the continuity of f.

Due to the compactness of $D(T)$, the function f is uniformly continuous on $D(T)$. Therefore for a positive $\epsilon \leq \varphi / 2$, there is a $\delta>0$ such that $x, y \in D(T)$ and $\|x-y\|_{\infty} \leq \delta$ imply $\|f(x)-f(y)\|_{\infty} \leq \epsilon$.

Theorem 4.2 Suppose that the algorithm works on the $V K^{\prime}$-triangulation of $S^{n} \times R_{+}^{m}$ with mesh size smaller than the above δ. Then under Assumption G it terminates within a finite number of steps.

Proof: It is sufficient to show that there does not exist any s-complete simplex in $A(s) \cap D(T)$. Suppose to the contrary that there is an s-complete simplex $\sigma(a, \pi)$ with vertices $w^{\prime}, w^{2}, \ldots, w^{1+1}$ in $D(T)$). It implies that $s_{1} \leq 0$ and $s_{2 k}=+1$ for some $k \in I_{m}$. According to equation (4.1) we have that the piecewise linear approximation F_{1} at $w=\sum_{i=1}^{t+1} \lambda_{i} w^{i} \in \sigma$ is non-positive, i.e. $F_{1}(w) \leq 0$. Because $w \in D(T)$,
there exists some j for which $f_{1_{j}}(w) \geq \varphi$ according to Lemma 4.1. It follows that $f_{1 j}\left(w^{i}\right) \geq \varphi / 2$ for all vertices w^{i} of σ. Since $F_{1}(w)=\sum_{i=1}^{t+1} \lambda_{i} f_{1}\left(w^{i}\right)$, and $\sum_{i=1}^{t+1} \lambda_{i}=1, \lambda_{i} \geq 0$ for $i=1, \ldots, t+1$, we obtain $F_{1 j}(w) \geq \varphi / 2>0$. This is a contradiction.

It is easily seen from Theorem 4.2 that as the mesh size of the $V K^{\prime}$-triangulation of $S^{n} \times R_{+}^{m}$ goes to zero, the end points of the paths \bar{P} followed by the algorithm yield a subsequence that converges to an equilibrium.

5 Applications

In this section we apply the adjustment process to economies with constant returns to scale. It may be worth mentioning that this process can also be used to find an equilibrium in an economy with increasing returns to scale and converges for any starting point under the condition stated in Hofkes [5]. Let us consider an economy with a finite number of consumers, m firms each having constant returns to scale production functions, indexed by $i=1, \ldots, m$, and $n+1$ commodities, indexed by $j=1, \ldots, n+1$. Consumers are assumed to be endowed with the commodities. Given a price vector $p \in R_{+}^{n+1} \backslash\{0\}$ with p_{j} denoting the price of commodity j, let $d(p)$ denote the total demand of the consumers, where $d_{j}(p)$ is the demand for commodity $j \in I_{n+1}$, and let $z(p)$ be the total demand $d(p)$ minus the total initial endowments. Standard assumptions on z are as follows:
(1) z is continuous in $p \in R_{+}^{n+1} \backslash\{0\}$;
(2) z is homogeneous of degree zero, i.e. $z(\lambda p)=z(p)$ for any $\lambda>0$ and $p \in$ $R_{+}^{n+1} \backslash\{0\} ;$
(3) (Walras'law) $p^{t} z(p)=0$ for every $p \in R_{+}^{n+1} \backslash\{0\}$.

Commodities in the economy can be produced by the firms. A production activity of firm $i, i \in I_{m}$, at price vector $p \in R_{+}^{n+1} \backslash\{0\}$, is characterized by an input-output $(n+1)$-vector $a^{i}(p)$ whose negative components correspond to the amounts of inputs and whose positive components to the amounts of outputs per unit production. Then $p^{t} a^{i}(p)$ represents the profit of firm $i, i \in I_{m}$, per unit production. Moreover, $a^{i}, i \in I_{m}$, is homogeneous in p of degree zero, concave and continuous on $R_{+}^{n+1} \backslash\{0\}$. Let y be a nonnegative m-vector of production levels and let $A(p)$ be the $(n+1) \times m$ matrix $\left[a^{1}(p), \ldots, a^{m}(p)\right]$. Hence $A(p) y$ denotes the net supply of the production side at price vector p and a production level vector y. For this economy we call a price vector p^{*} and a production level vector y^{*} an equilibrium if for each commodity demand is at most equal to endowment plus net supply of the production side and no production activity makes positive profit. Let the net excess demand function
$f_{1}: R_{+}^{n+1} \backslash\{0\} \times R_{+}^{m} \longrightarrow R^{n+1}$ be defined by $f_{1}(p, y)=z(p)-A(p) y$, i.e. $f_{1}(p, y)$ is the excess demand of the consumption side at p minus the net supply of the production side at (p, y). Further let the profit function $f_{2}: R_{+}^{n+1} \backslash\{0\} \times R_{+}^{m} \longrightarrow R^{m}$ be defined by $f_{2}(p, y)=A^{t}(p) p$, i.e. $f_{2}(p, y)$ is the vector of profits at p per unit activity. For a detailed description of the model, we refer to van der Laan, Talman and Kremers [8].

Definition 5.1 A pair $\left(p^{*}, y^{*}\right) \in R_{+}^{n+1} \backslash\{0\} \times R_{+}^{m}$ is an equilibrium if
(1) $f_{1}\left(p^{*}, y^{*}\right) \leq 0$
(2) $f_{2}\left(p^{*}, y^{*}\right) \leq 0$.

Because of the homogenity of degree zero of z and $a^{i}, i=1, \ldots, m$, we have that if $\left(p^{*}, y^{*}\right)$ is an equilibrium, then also $\left(\lambda p^{*}, y^{*}\right)$ is an equilibrium pair for any $\lambda>0$. So this permits us to normalize the price vectors to the n-dimensional unit simplex S^{n}. Now the problem is reduced to the one we discussed in Section 2 . For the existence of an equilibrium in this economy the following no free production assumption is introduced in [8].

Assumption F (No production without input) For any $p \in S^{n}, A(p) y \geq 0$ and $y \geq 0$ implies that $y=0$.

Taking $(u, v) \in S^{n} \times R_{+}^{m}$ and a positive vector $b \in R_{+}^{m}$ as described in Section 2, we will show that under condition F there exists an equilibrium in the economy with constant returns to scale via the adjustment process (2.3). To do so, it suffices to prove the following assertion.

Theorem 5.2 The path P in $S^{n} \times R_{+}^{m}$ is bounded.
Proof: Suppose that the path P is unbounded. Then without loss of generality there is some sign vector $s \in S$ with $s_{1} \leq 0$ such that $A(s)$ contains a sequence $\left\{\left(p^{k}, y^{k}\right)\right\}_{1}^{\infty}$, with some of the components of y^{k} going to infinity. Since S^{n} is compact, the sequence p^{k} has a subsequence converging to a cluster point q in S^{n}. Because $\left(p^{k}, y^{k}\right) \in A(s)$ we have that $f_{1 j}\left(p^{k}, y^{k}\right) \leq 0$ for all j. Hence there exist nonnegative numbers μ_{j}^{k} for all $j \notin I^{0}\left(s_{1}\right)$ such that

$$
\begin{equation*}
f_{1}\left(p^{k}, y^{k}\right)-\sum_{j \notin I^{0}\left(s_{1}\right)} \mu_{j}^{k} s_{1 j} e_{1}(j)=z\left(p^{k}\right)-A\left(p^{k}\right) y^{k}+\sum_{j \in I^{-\left(s_{1}\right)}} \mu_{j}^{k} e_{1}(j)=0 . \tag{5.1}
\end{equation*}
$$

Since p^{k} has a subsequence converging to q and z is continuous, system (5.1) can only have a solution for all k if the homogeneous system of linear equations

$$
\begin{equation*}
-A(q) y+\sum_{j \in I-\left(s_{1}\right)} \mu_{j} e_{1}(j)=0 \tag{5.2}
\end{equation*}
$$

has a nonzero solution $y_{i}^{*} \geq 0, i \in I_{m}$, and $\mu_{j}^{*} \geq 0, j \in I^{-}\left(s_{1}\right)$. On the one hand, if $y^{*}=0$, there exists at least one component of μ_{j}^{*} greater than zero, contradicting system (5.2). On the other hand, if $y^{*} \neq 0$, it easily follows from Assumption F that at least one component of $A(q) y^{*}$ is less than zero, which is also in contradiction with system (5.2). From these results, system (5.1) does not have a nonzero nonnegative solution. This completes the proof.

Theorem 5.2 indicates that the path P ' is bounded and therefore leads to another end point which must be an equilibrium. Of course, the adjustment process can also be applied to the special case of linear production technologies. In that case the matrix $A(p)$ is independent of p. Then the process converges for any starting point under the standard assumption that there can be no production without input (see e.g. $[4,7,12]$).

6 Concluding remarks

In this paper we developed a simplicial variable dimension restart algorithm to compute economic equilibria on $S^{n} \times R_{+}^{m}$. The algorithm can start at an arbitrarily chosen point of $S^{n} \times R_{+}^{m}$ and has much more rays to leave the starting point than the other variable dimension algorithms developed thusfar. For the price and activity level adjustment of the algorithm the economic interpretation of the adjustment seems to be very intuitive and similar to the classical tatonnement processes. Contrary to the latter ones, for the simplicial process introduced in this paper the global convergence property holds. Finally, we will report numerical results on the implementation of the algorithm in a forthcoming paper.

References

[1] Y. Dai, G. van der Laan, A.J.J. Talman and Y. Yamamoto, "A simplicial algorithm for the stationary point problem on an unbounded polyhedron", SIAM Journal on Optimization 1 (1991) 151-165.
[2] T.M. Doup and A.J.J. Talman, "A new simplicial algorithm dimension algorithm to find equilibria on the product space of simplices", Math. Programming 37 (1987) 319-355.
[3] B.C. Eaves, "Thoughts on computing market cquilibria with SLCP", in: The Computation and Modelling of Economic Equilibria, A.J.J. Talman and G. van der Laan, eds. (North Holland, Amsterdam, 1987) pp 1-17.
[4] A.H. van den Elzen, G. van der Laan and A.J.J. Talman, "An adjustment process for an exchange economy with linear production technologies", to appear in Mathematics of Operations Research.
[5] M.W. Hofkes, "Solution of general equilibrium models with nonconvex technologies", Rescarch Memorandum ss, Dept. of Econometrics, Vrije Universiteit, Amsterdam (1989).
[6] M.W. Hofkes, "A simplicial algorithm to solve the nonlinear complementary problem on $S^{n} \times R_{+}^{m ", ~ J o u r n a l ~ o f ~ O p t i m i z a t i o n ~ a n d ~ A p p l i c a t i o n s ~} 67$ (1990) 551-565.
[7] J.A.W.M. Kremers and A.J..J. Talman, "An SLSPP-algorithm to compute an equilibrium in an economy with linear production technologies", Research Memorandum FEW 498, Tilburg University, Tilburg (1989).
[8] (. van der Laan, A.J.J. Talman and J.A.W.M. Kremers, "On the computation and existence of an equilibrium in an economy with constant returns to scale production," Research Memorandum FEW 577, Tilburg University, Tilburg (1992).
[9] G. van der Laan and A.J.J. Talman, "A restart algorithm for computing fixed points without an extra dimension", Math. Programming 17 (1979) 74-84.
[10] L. Mathiesen, "Computation of economic equilibrium by a sequence of linear complementary problems", Math. Programming 23 (1985) 144-162.
[11] L. Mathiesen, "An algorithm based on a sequence of linear complementary problems applied to a Walrasian equilibrium model: an example," Math. Programming 37 (1987) 1-18.
[12] H. Scarf, The Computation of Economic Equilibria (Yale University Press, New Haven, 1973)
[13] M.J. Todd, "Improving the convergence of fixed point algorithms", Math. Programming Study 7 (1987) 151-169.
[14] Y. Yamamoto and Z. Yang, "The $2^{m}(n+1)$-ray algorithm: a new simplicial algorithm for the stationary point problem on $R_{+}^{m} \times S^{n}$," to appear in Annals of Operations Research.

Figure 3.1: Subsets $A(s)$ of $S^{n} \times R_{+}^{m}$ for $n=m=1$.

No.	Author(s)	Title
9208	W. Härdle and	
A.B. Tsybakov		

No.	Author(s)	Title
9227	E. Bomhoff	Four Econometric Fashions and the Kalman Filter Alternative - A Simulation Study
9228	P. Borm, G.-J. Otten and H. Peters	Core Implementation in Modified Strong and Coalition Proof Nash Equilibria
9229	H.G. Bloemen and A. Kapteyn	The Joint Estimation of a Non-Linear Labour Supply Function and a Wage Equation UsingSimulated Response Probabilities
9230	R. Beetsma and F. van der Ploeg	Does Inequality Cause Inflation? - The Political Economy of Inflation, Taxation and Government Debt
9231	G. Almekinders and S. Eijffinger	Daily Bundesbank and Federal Reserve Interventions - Do they Affect the Level and Unexpected Volatility of the DM/\$-Rate?
9232	F. Vella and M. Verbeek	Estimating the Impact of Endogenous Union Choice on Wages Using Panel Data
9233	P. de Bijl and S. Goyal	Technological Change in Markets with Network Externalities
9234	J. Angrist and G. Imbens	Average Causal Response with Variable Treatment Intensity
9235	L. Meijdam, M. van de Ven and H . Verbon	Strategic Decision Making and the Dynamics of Government Debt
9236	H. Houba and A. de Zeeuw	Strategic Bargaining for the Control of a Dynamic System in State-Space Form
9237	A. Cameron and P. Trivedi	Tests of Independence in Parametric Models: With Applications and Illustrations
9238	J.-S. Pischke	Individual Income, Incomplete Information, and Aggregate Consumption
9239	H. Bloemen	A Model of Labour Supply with Job Offer Restrictions
9240	F. Drost and Th. Nijman	Temporal Aggregation of GARCH Processes
9241	R. Gilles, P. Ruys and J. Shou	Coalition Formation in Large Network Economies
9242	P. Kort	The Effects of Marketable Pollution Permits on the Firm's Optimal Investment Policies
9243	A.L. Bovenberg and F. van der Ploeg	Environmental Policy, Public Finance and the Labour Market in a Second-Best World
9244	W.G. Gale and J.K. Scholz	IRAs and Household Saving

No.	Author(s)	Title
9245	A. Bera and P. Ng	Robust Tests for Heteroskedasticity and Autocorrelation Using Score Function
		The Long Memory and Variability of Inflation: A Reappraisal of the Friedman Hypothesis
9246	R.T. Baillie, C.F. Chung and M.A. Tieslau	A Generalized Method of Moments Estimator for Long- 9247 M.A. Tieslau, P. Schmidt and R.T. Baillie
9248	Memory Processes	

No.	Author(s)	Title
9309	H. Bester	Price Commitment in Search Markets
9310	T. Callan and	Female Labour Supply in Farm Households: Farm and O. van Soest
9311	M. Pradhan and A. van Soest	Formal and Informal Sector Employment in Urban Areas of Bolivia
9312	Th. Nijman and E. Sentana	Marginalization and Contemporaneous Aggregation in Multivariate GARCH Processes
9313	K. Wärneryd	Communication, Complexity, and Evolutionary Stability
9314	O.P.Attanasio and M. Browning	Consumption over the Life Cycle and over the Business
9315	F. C. Drost and	
	B. J. M. Werker	A Note on Robinson's Test of Independence
9316	H. Hamers, P. Borm and	On Games Corresponding to Sequencing Situations
	S. Tijs	with Ready Times

P.O BOX 90153. 5000 LE TILBURG. THE NETHERLAND Bibliotheek K. U. Brabant

17000011602654

[^0]: ${ }^{1}$ Department of Econometrics, Tilburg University, 5000 LE Tilburg, The Netherlands
 ${ }^{2}$ Institute of Socio-Economic Planning, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

