l_’__l
TILBURG 0}%?%_? ¢ UNIVERSITY
l‘jf’l

Tilburg University

The (2n+m+1-2)-ray algorithm
Talman, A.J.J.; Yamamoto, Y.; Yang, Z.

Publication date:
1993

Link to publication in Tilburg University Research Portal

Citation for published version (APA):

Talman, A. J. J., Yamamoto, Y., & Yang, Z. (1993). The (2n+m+1-2)-ray algorithm: a new variable dimension
simplicial algorithm for computing economic equilibria on SnxRm+. (CentER Discussion Paper; Vol. 1993-23).
Unknown Publisher.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/c83a49f7-b1d2-43e1-aa8e-3f3f30b5ef29




CentER
for
Economic Research

¥/

o~

~

b No. 9323 ’
The (2"**'! - 2)-Ray Algorithm:
A New Variable Dimension Simplicial
Algorithm For Computing
Economic Equilibria On S" x R}
by Dolf Talman, Yoshitsugu Yamamoto
and Zaifu Yang

May 1993

ISSN 0924-7815



The (2"+™+! — 2)-Ray Algorithm:
A New Variable Dimension Simplicial Algorithm
For Computing Economic Equilibria On S" x RY'

Dolf Talman', Yoshitsugu Yamamoto? and Zaifu Yang!

Abstract In this paper a new variable dimension simplicial algorithm
is developed to compute economic equilibria on the cartesian product
of the n-dimensional unit price simplex S™ and the m-dimensional pro-
duction activity space RY}'. The algorithm differs from other algorithms
in the number of directions in which the algorithm may leave the start-
ing point. More precisely, the algorithm has 2"*™+! — 2 rays to leave
the starting point whereas the other algorithms have at most 2™(n + 1)
rays. The path of points generated by the algorithm can be interpreted
as a globally and universally convergent price and production adjust-
ment process. The process, as well as the convergence condition, is also
economically meaningful. We apply the algorithm to economies with
linear production, to economies with constant returns to scale, and to
economies with increasing returns to scale.

Keywords: Equilibrium, stationary point problem, simplicial algorithm,
simplicial subdivision, vector labelling, adjustment process, piecewise
linear approximation.

1 Introduction

Over the last several years the existence and computation of economic equilibria
on the cartesian product of the n-dimensional unit price simplex S™ and the m-
dimensional production activity space R} has attracted wide attention (see e.g.
[3, 4, 5, 6, 7, 8, 10, 11, 14]). In an equilibrium of an economy every producer
chooses an production activity in order to maximize his profit and prices and ac-
tivity levels are such that for every commodity demand is at most equal to supply.
Mathiesen (10, 11], see also [3], applied the Lemke-Howson complementary pivoting
algorithm to economies with linear prodution technologies by solving a sequence
of complementarity problems on R}*™*!. Other authors followed another way,
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and utilized simplicial variable dimension restart algorithms initiated by van der
Laan and Talman [9]. In a simplicial subdivision or triangulation of the underlying
space such an algorithm,starting in an arbitrarily chosen grid point of the subdi-
vision, searches for a simplex yielding an approximate equilibrium by generating a
sequence of adjacent simplices of varying dimension. Under some convergence con-
dition the algorithm terminates within a finite number of steps. If the approximate
equilibrium is not accurate enough, the algorithm can be restarted at the lastly
found approximate solution with a finer subdivision in the hope of finding a better
approximate equilibrium within a small number of iterations. Simplicial algorithms
are classified according to the number of rays along which the starting point can be
left.

In van den Elzen, van der Laan and Talman [4] a new economic adjustment
process has been introduced to compute an equilibrium in an economy with linear
production technologies. In van der Laan, Talman and Kremers (8] this adjustment
process was generalized to an economy with constant returns to scale by solving
a sequence of linear stationary point problems on S™. In the latter method con-
vergence is not guaranteed. In Hofkes [6] and also in Yamamoto and Yang [14],
other economic applications are considered such as when the production exhibits
increasing returns to scale. To find an equilibrium in an economy with nonlinear
nondecreasing returns to scale production technologies, the (n+m+1)-ray algorithm
was developed in [6] and the 2™ (n + 1)-ray algorithm in [14].

In this paper we propose a new simplicial algorithm to compute economic equi-
libria on S™ x R}. Depending on the sign pattern of the function value at an
arbitrarily chosen starting point in S™ x R, the algorithm starts to leave the start-
ing point along one out of 2**™+! — 2 rays. The triangulation of S™ x R7 which
underlies the algorithm is a combination of the V-triangulation of S™ in [2], and
the K'-triangulation of R} in [13], which we call the V K'-triangulation, see also
[14). Moreover, a sufficient condition for the existence of an equilibrium is intro-
duced. This condition generalizes the well-known ”No-Production-Without-Input”
assumption in the sense that if an activity level becomes very large, then at least one
of the commodities is in excess demand. Under this condition the path of points
followed by the algorithm can be interpreted as a globally and universally con-
vergent price and production level adjustment. Barring degeneracy the algorithm
converges for any starting point and the process of which the path is followed by
the algorithm simultaneously adjusts prices and activity levels as follows. Initially,
the process increases relatively the prices of the commodities with positive excess
demand and decreases relatively the prices of the commodities with negative excess
demand, while it increases relatively the activity levels of the firms with positive
profits and decreases relatively the activity levels of the firms with negative profits.
In general, the prices of the commodities with positive (negative) excess demand
and the activity levels of the firms making positive (negative) profits are kept rela-



tively maximal (minimal). From an economic view point this behavior seems to be
very close to the classical tatonnement process in which prices adjust according to
the law of demand and supply, i.e. prices increase in case of positive excess demand
and decrease when excess demand is negative. The adjustment process developed
in this paper seems therefore to be much more intuitive and appealing than the
adjustment processes obtained from the other simplicial algorithms. Moreover, the
convergence condition given in this paper is more natural than those stated for
other simplicial algorithms. We remark that the algorithm will also converge under
these conditions.

The paper is organized as follows. In Section 2 we give the piecewise linear
path of the algorithm and formulate a sufficient condition for the existence of an
equilibrium. Section 3 describes the underlying subdivision of S™ x RT. Section
4 discusses the pivot steps and the replacement steps of the algorithm. In Section
5 we are concerned with the application of the process to several typical economic
equilibrium models. Finally concluding remarks will be given in Section 6.

2 The path of the algorithm
We define the n—dimensional unit simplex S™ by
St={pe R} | T pi=1}

where R}*! is the nonnegative orthant of the (n + 1)—dimensional Euclidean space
R**1. Let f : S" x RT — R™' x R™ be a continous function with f(p,y) =
(f1(p,y), fa(p,y)) for p € 5™ and y € R}. The function f = (fi, f2) is assumed to
satisfy

P filp,y) + ¥ fa(p,y) = 0 for all p € S™ and y € RT. (2.1)

Definition 2.1 A pair (p*,y*) € S™ x R} is an equilibrium if f(p*,y*) <0, i.e.
(1) filp",y*) <0
(2) fa(p*,y7) 0.

Let us give some explanation on the above function in economic terms. Let
there be a finite number of consumers, m production activities or firms, and n + 1
commodities in the economy. A vector p € S™ can be interpreted as a price vector
being normalized on the unit simplex, and a vector y € R} is a vector of activity
levels of the firms. Then fi;(p,y) can be regarded as the net excess demand of
commodity j, j € {1,...,n+ 1}, at price vector p and activity level vector y. The
function f; is related to the profit of the firms, e.g. fai(p,y) is the profit of the



firm i, 7 € {1,...,m }, at price vector p and activity level y when firm i has a unit
production level. Condition (2.1) reflects Walras’ law, stating that all consumers
spend their income. An equilibrium for this economy is a price vector p* € S™ and a
production activity level vector y* € RT such that at (p*,y*) the excess demand of
the consumption sector is at most equal to the net supply of the production sector
and no production activity makes positive profit.

It easily follows from Definition 2.1 that because of condition (2.1) an equilibrium
(p",y*) € 8™ x RT has the property that

Li(phyt) =0 il p;>0
hilphy7) <0l p3=0 (2.2)
Li(pty®) =0 if 7 >0
La(py?) S0 00y =0.

As shown in Yamamoto and Yang [14] the problem is equivalent to the stationary
point or variational inequality problem on 5™ x R} with respect to f and is also
equivalent to the nonlinear complementarity problem on S™ x R7. In what follows,
we will introduce a simplicial algorithm to solve the problem. As applications
of the algorithm, several typical cconomic examples will be discussed later. Let
(u,v) € S™ x R} be an arbitrarily chosen starting point of the algorithm. For
simplicity we assume that u is an interior point of S™. Let b = (b, ..., b,)" be such
that b; > v; for all 2. To find an equilibrium in S™ x R, we propose to follow a
piecewise linear path of points starting at (u,v). The path traced by the algorithm
can be interpreted as the approximate path generated by an adjustment process in
which prices and activity levels are simultancously adjusted. The process generates
a piccewise smooth path, denoted by P, of points in 8™ x RY such that for every
point (p,y) on the path it holds that for all 7, j

t=a if  fij(py) <0
a< ff < max; 2 if  fij(p,y) =0
‘-’:1; = max;, if  fij(p,y) >0
Yi = av; if fz,-(p,y) <0
av; <y < evi + (1= )by it fupy)=0 (23)
yi = cvi + (1 —¢)b; if  fau(p,y) >0
for certain numbers a, 0 < a < 1 and c satisfying
c=a if  fi(p,y) £0
c<a if  filp,y) <0.

Notice that (u,v) satislies (2.3) for « equal to | and that the process will terminate
as soon as a becomes equal to zero at say (p*,y*). In the latter case fi;(p*,y") <0
if p; =0, fi;(p",y7) 2 0if p; > 0, foi(p~,y") < 0if y7 =0, and fai(p*,y") 2 0 if



y; > 0. From condition (2.1) it follows immediately that (p*,y*) is an equilibrium
of the problem. Under certain regularity and nondegeneracy conditions, the set of
points in S™ x RT satisfying (2.3) consists of piecewise smooth loops and paths.
Exactly one of these paths is the path P, having the starting point (u,v) as an end
point. In order to guarantee that the path P is bounded we impose a simple and
also economically meaningful condition on the function f.

Assumption G (Generalized ”no-production-without-input”) There ex-
ists a positive number 7' such that for each (p,y) € S™ x R} with max; y; > T,
there is an index ¢ satisfying fii(p,y) > 0.

The condition says in economic terms that when one or more firms choose a high
production level the supply of at least one commmodity can not meet consumers’
excess demand.

Theorem 2.2 Under Assumption G the path P in S™ x R7 starting at (u,v) is
bounded and its other end point is an equilibrium.

Proof: Suppose that the path P is unbounded. Then without loss of generality
there is a sequence { (p*,y*)}° satisfying (2.3), with some of the components of
y* going to infinity. Therefore there exists a positive integer M such that for each
k > M,max; y* > max{ T, max; b; }. Moreover, since (p*,y*) satisfies (2.3) it holds
that for each k > M, fi;(p*,y*) < 0 for all j. By assumption we have that for each
(p*,y*) with k > M, there is an index i such that fi;(p*,y*) > 0 which contradicts
fri(p*,¥*) < 0. Hence, the path P is bounded and has another end point, say
(p*,y*). Clearly, (p*,y*) is an equilibrium.
(m]

We are now ready to present an economic interpretation of the adjustments of
prices and activity levels along the path P defined in (2.3). The adjustment process
starts in (u,v). Barring degeneracy the vector f(u,v) contains no zeros. In the case
that all commodities in the market are in excess supply, the process initially keeps
all the prices fixed, while the activity levels of the firms with positive profits are in-
creased with the same proportion and the activity levels of firms with negative profit
do not change. Otherwise, the process increases initially the prices of commodities
with positive excess demand proportionally and decreases the prices of commodi-
ties with negative excess demand proportionally, while the process increases the
activity levels of the firms making positive profit and decreases the activity levels of
the firms making negative profit with the same proportion. In general the process
adjusts simultaneously the prices and activity levels according to the sign pattern
of the excess demand and the profit. The price of a commodity is kept relatively
maximal (minimal) if the excess demand of the commodity is positive (negative)



and the activity level of a firm is kept the same proportion smaller (larger) if its
profit is negative (positive).

The path P of points from (u,v) as defined in (2.3) is followed through making
alternating replacement steps in the V' A'-triangulation of S™ x R} as described
in the next section and pivot steps in a linear system of equations. To do so,
we replace in system (2.3) the function f by its piecewise linear approximation F'
with respect to the V K'-triangulation. The function F' is linear on each simplex
of the subdivision and coincides with f on the vertices of every simplex. Then the
algorithm traces a piecewise linear path, denoted by P, in S™ x R7 such that for
every point (p,y) on P it holds that for all 7,

{j =a if  Fipy) <0
a< E:- < max), & if  Fjp,y)=0
511- = max), 2 if  Fij(p,y) >0
¥ = av; if  Fau(p,y) <0
av; <y, < evi + (1 — )b if Fuppy)=0 (24)
yi =cv; + (1 — e)b; if  Fu(p,y)>0
for certain numbers «, 0 < « < 1, and ¢ is satisfying
c=ia if Fi(p,y) £0
c<a if  Fi(p,y) <0.

The function F = (Fy, F3) is given by F(p,y) = T Aif(p', y*) where

Ay ooy Aigr > 0 are such that Y1 A = 1, and (p,y) = T4 Ai(p', ¥°) is a point in
some t-simplex a(w!,...,w'*') of the V K’-triangulation with vertices w' = (p', y"),
i = 1,...,t + 1. By introducing a generalized primal-dual pair L of subdivided
manifolds and a function from L into R"*!' x R™ whose zero points satisfy (2.4),
e.g. see [1], we can demonstrate the existence of a piecewise linear path of points
satisfying (2.4) from (u,v) to an approximate equilibrium under Assumption G. In
the next section we describe the V A'-triangulation of S™ x R} which underlies the
algorithm.

3 The simplicial subdivision

Let I,4; and I, denote the set of integers {1,2,..,n+ 1} and {1,2,...,m}, re-
spectively. The i-th unit vector in R"*! is denoted by €;(j), j € In41, while e;(2)
is the i-th unit vector in R™, i € I,,. A vector s = (s;,82) € R"*! x R™ is said to
be a sign vector if s;; € { —1,0,+1} for every j € I41 and sy € { —1,0,+1} for
every ¢ € I,,. For each sign vectors, let

I7(s1)
’0(31)

{ji€h]|s;=-1}
{j€lit1]s;=0}

Il



-3

I*(s1) {j € Lisi|s1,=+1}

I7(s2) = {i€1ln|s2=-1})
I°(s) = {i€l,]|s2=0}
I*(s2) = {i€ln]|szu=+1}

Furthermore, let

S= { s€ R x R |sis asign vector
which contains at least one —1 and one +1
and in case s; > 0 there is somei € I, such that s;; < 0and v; > 0}.

Note that in case v; > 0 for all ¢ € I,, there are 2"*™+! — 2 sign vectors in
S containing no zeros at all. Each sign vector s € S will induce a t-dimensional
subset A(s) of S™ x RT, where t = t; + 1, + 1 with ¢, =| I°(s;) | and t, =| I°(s;) |.
It is readily scen that t lies between | and n + m and is equal to one for the sign
vectors in .S containing no zeros at all. Therefore when v; > 0 for all ¢ € I,, there
are 2"tm+1 — 2 ].dimensional sets or rays along one of which the algorithm leaves
the starting point (u,v).

Definition 3.1
For s € S, the set A(s) is given by

A(s) ={(p,y) € S* x R} |

L:j- =a if s;;=-1
aS'Z—:Smaxhﬁ if s1; =10
%:max;.ﬁ‘: if s;=+1
yi = av; if sy=-1 (3.1)

av; <yi<cevi+(1—c)bi if 82 =0
yi=cvi+ (1 —c)b; if s2i=+1
c=a if s$140
c<a if 5 <0
where 0 < a < 1}.

The boundary of a t-dimensional set A(s) consists of the (¢ — 1)-dimensional
sets A(s’) with s’ € S differing in only one component of s being zero in s, and
in case I7(s;) # In41 of the intersection of A(s) with the (¢ — 1)-dimensional set
S™(I=(s1)) x R™(I~(s2)) where S*(I=(s1)) = {p € 5™ | p; = 0if j € I (s1)} and
R™(I7(s2)) ={y € R} |yi=0il7 € I~ (s2)}. According to the description in Sec-
tion 2, the algorithm leaves (u,v) along the ray A(s°) for which s° = sign(f(u,v)),
where as in the sequel the sign of a vector is taken componentwise. In general a
point (p,y) € S™ x R satisfies (2.4) if and only if for some sign vector s € S, (p,y)
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lies in A(s) and s = sgn(F(p,y)). The triangulation of 5™ x RT with respect to
which the piecewise linear approximation F of f is defined must be such that it
triangulates cach A(s), s € S. The VA'-triangulation of S® x RT introduced in
Yamamoto and Yang [14] satisfies this property. To describe this simplicial subdivi-
sion, let s € S be given, let ¥ = (11,72, ..., t,) be a permutation of the ¢, elements
of I°(sy), and let r be a sign vector containing no zeros and conforming to s, i.e.,
r; = $3; whenever s3; # 0. In case /7($1) = I,41 or v; = 0 it must hold that r; = +1
when sg; = 0. Let K be a subset of I,,;;. The projection (pi(K), p2(r)) of (u,v) is
defined by

p(K)=uif K=0

Otherwise,
azan - i for j g K
pi;i(K) —{ ;] Shexcun for j € K
and
v, fori €l (r) ifs; <0
b, for i € I*(r).

Finally, we assume that /°(s;) = {%1,12,...,%, } with the ordering i; < i, < ... <

0 for i€l (r) ifs; €0
pilr) = {

ig,. S
Definition 3.2 Let s, v and r be given as above. The subset A(s,y,r) is given
by

A(s,7,r) ={(p,y) € S* x R} | (p,y) = (u,v) + TiZg a'q’, where
ifs1 £0,then 0<a'<..<a'<a’<1
and for j=1,..,t;
0< atrti o aﬂ,
and if sy <0,then 0 < a" <..< o' <min{l,a}
and for 3 =1,..,t;
0<a"+ <a® if r;, =+land sy, =0
0< ot <alif vy, =—land sy, =0}
where the (n +m + 1)-vector ¢° is defined by
& = (M6 malr) = (w0),
Jor g =1, by the (v 4 m -+ V)-veclor ¢! is defined by

¢ = (n(I*(s) U {n,e 7)) p2(r)
—(p1(I*(s1) U {7,y %i-1}), P2(7)),



and for j = 1,...,t3 the (n + m + 1)-vector ¢"*7 is defined by

q"'“ = (O‘Ui,ez(ij)) if ri; = —1and 82i;, = 0
(0, (vi, = bi))ea(2;)) if riy =+1and sy, =0.

It can easily be verified that the dimension of A(s,7,r) equals ¢ and that A(s)
is the union of A(s,7,r) over all permutations  of the elements of /°(s;) and all
sign vectors r conforming to s;. For n = m = 1, the subdivision of S™ x R is
illustrated in Figure 3.1.

Figure 3.1: Subsets A(s) of 5" x R} form =n = 1.

Let d be a positive integer.

Definition 3.3
When s, £ 0,the V K'-triangulation with grid size d=' of A(s,v,r) is the collec-
tion G4(s,7,r) of t-simplices o(a, w) with vertices w', w?, ..., w'*! such that

(1) w' = (u,v)+T!Zha(i)d™'¢" with a = (a(0),a(1),...,a(t—1)) an integer vector
such that 0 < a(t)) <..<a(0)<d-1andfori=¢t,+1,..,t -1

0 < a(i) < a(0);

(2) fori=1,..,t,wt" = w' +d'q™ where ¥ = (m,...,m) a permutation of the
elements of {0,1,....,1 — 1} such that p > p' if a(7,) = a(7y) when for some
1 <j<ty,m,=j and my = j— 1, or when for some j > t; 4+ 1,7, =0 and

=7
When s, < 0,the V K'-triangulation with grid size d=' of A(s,~,r) is the collection
G4(s,7,r) of t-simplices o(a, ) with vertices w', w?, ..., w*! such that

(1) w' = (u,v)+Y!2} a(i)d~'q" with a = (a(0),...,a(t—1)) an integer vector such

=1

that 0 < a(t;) < ... < a(l) < min{a(0),d — 1} and for j =1,...,1;
0<a(ty+j) <a(0), f ri, =+1and sz, =0
0<a(ti+j) <a(l), if ri, =—land sz, =0;

(2) fori=1,..,t,w*" = w'+d'q™ wherc = (m,..., ) is a permutation of the
elements of {0,1,....,t — | } such that p > p' if a(7,) = a(7,) when for some
1 <j<ty,m=jandmy =j—1,, or when for some j > ¢, + 1,7, =j

and my =0, or when for some j >ty + 1,r;,_, = -1, 7, =j and mp = 1.
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The union of the collection (/4(s,7,r) over all permutations 4 of the elements
of I°s,) and over all sign vectors r conforming to s is a triangulation of A(s),
whereas the union of all these triangulations over all sign vectors s € S yields the
V K'-triangulation of S™ x RT with grid size d~'.

Let o(a,v) and 6(a,7) be two adjacent simplices in A(s,v,r) with common
facet T opposite to the vertex w*,1 < k <t + 1, of 0. Then & is obtained from o
by replacing w* as described in Table 3.1, where e(z) is the (i 4+ 1)-th unit vector in
R 1=0,1:58 =1,

Table 3.1: The vertex w* of o(a, ) is replaced

T a
k=1 (”2»‘“17“1 ”1) a+e(7r1)
l<k<t+1|(my,..,"Tk2 T, T%_1,...,7) | @
k=t+1 (s 15500 i) a — e(my)

When a facet lies in the boundary of A(s,~,r) we have the following lemma.

Lemma 3.4 When s, £ 0, the facet T opposite to the verter w* of o(a, ™) in
A(s,7v,r) lies in the boundary of this set if and only if one of the following cases
holds:

(1) k=1, a(0)=d—1, and 7, =0;

(2) k=t+1, a(x;) =0, and 7, = j for some j, j > t;;

(8) 1<k<t+],a(mimy)=a(m), mi=y =0, and 7 > ¢+ 1;

(4) } < k< t}+ 1, a(me-1) = a(mi), me—y = 1t — 1, and mp = 1 for some 1 €
Vi2)os by

When s; < 0, the facet T opposite to the vertex w* of a(a,n) in A(s,y,r) lies in
the boundary of this set if and only if one of the following cases holds:

(1) k=1,a(l)=d—-1,m =1, and t, 2 1;

(2) k=t+1, a(m) =0, and 7, = j for some j, j > ty;

(3) 1 <k<t+]1,a(mir) = a(mi), Tk =0, and 7 > 8+ 1;

(4) 1 <k< t}+ 1, a(mi-1) = a(m), -y = ¢t — 1, and 7 = t for some i €
152566 0 'k

(5) 1 <k<t+1,a(my) =a(m), 7y =1, and 7 =t + j withr;) = —1 for
some j € {1 .. 0y}

In the next section we describe the steps of the algorithm by making use of
Table 3.1 and Lemma 3.4.
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4 The steps of the algorithm

As stated in Section 2, the algorithm follows a piecewise linear path of points (p,y)
in S"x RY' satisfying (2.4). The left hand side of (2.4) corresponds to the subdivision
of S™x R intosets A(s), whereas the right hand side coincides with the sign pattern
of the piecewise linear approximation F of [ with respect to the V K'-triangulation.
Each point (p,y) on the path P lies in A(s) with s = sign(F(p,y)). Let o(a,n)
with vertices w',...,w*! be a {-simplex in A(s) containing such a point (p,y).
Then there exist unique nonnegative numbers A7, i = 1,...,t+ 1, p3,j & 1°(s;), and

07,k & 1%(s2), such that ;A7 =1, (p,y) = ¥; Afw', and

Fij(py) = LA fij(w') = —p; ifj €I (s)
i fii(w) =0 ifj € I°s)
TN fy(w') = p;  if j € I*(sy)

YAl fa(w') = =0 if k€ I (s,)
TiAfa(w') =0 if k€ Isy)

= YiAfa(w)=0; if ke lt(sy).

F?k(pvy)

Such a t—simplex is called s-complete. It is readily scen that a t-simplex
a(w!, .., w*") is s-complete if and only if the (1 +m 4 2)-system of linear equations

+1 J(w') s1;e1(y) (V1 0,
zxi( ; )- Sl n |- e smaw | =]
= i€10en) 0 kg19(n) 0 1

(4.1)

has a nonnegative solution A7, i = 1,...t + 1, u}, j & [°(s1), and 6}, k ¢

I°(s2).The vectors 0; and 0, in (4.1) denote the (n + 1)-vector and the m-vector of
zeros, respectively.

Nondegeneracy Assumption For each solution (), s, 8) of the system (4.1)
at most one of variables (A, u,0) is equal to zero.

Under this assumption the set of solutions (A, u,8) of the system (4.1) forms a
line segment, if any. An end point of such a line segment is called a basic solution
and has exactly one of the variables equal to zero. The line segment of solutions
(A, 41,0) induces a line segment of points w = ¥; A;w' in o for which according
to (4.1) it holds that sign(F(w)) = sign(X; Aif(w')) = s. The line segment of
solutions (A, u,0) to (4.1) therefore corresponds to a linear piece of the path P in
o(a,n) and can be followed by making a linear programming pivot step in (4.1).
The algorithm starts with the unique I-simplex ¢°(w!,(0)) in A(s° 0,7°) having
w' = (u,v) as a vertex, where s° is the sign pattern of f(u,v) and r® = s°. Clearly,
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0 0

0 is s%-complete. Notice that, because of the nondegeneracy assumption, s° does
not contain any zeros. The first piece of the path P is contained in ¢°. It can be
traced by making a pivot step in (4.1) with respect to o° by pivoting in the variable
Az corresponding to the vertex w? of o®. After this pivot either A, becomes zero, y;
becomes zero for some j € {1,...,n+1}, or 6, becomes zero for some k € {1,...,m }.
In general, each linear piece of the path P can be followed by making a pivot step in
(4.1) for some simplex o(a, 7) with vertices w!, ..., w**! in some A(s,~,r). Suppose
that in such a pivot step u; becomes zero for some j & I°(s;) or 6, becomes zero
for some k ¢ I°(s;). Then the corresponding point w* = (p*,y*) = ¥; \iw' is an
approximate equilibrium if | I*(sy) | + | I*(sz) |= 1, and s;; = +1 or sax = +1, or
if | I=(s1) |+ | I7(s2)N{q|v, >0} |=1, and s;; = —1 or sy = —1. Otherwise,
we consider the following cases: (1) u; = 0 for some j € I=(s;), (2) u; = 0 for some
J € I*(s1), (3) 0k = 0 for some k € I (s;), and (4) 6 = 0 for some k € I*(s;).

(1) If uj = 0 for some j € I~ (sy), let 5;; = 0, 51, = 815 for h # j, 53 = 3,, then
g is a facet of a (t + 1)-simplex &(a, ) in A(3,7,r) where 5 = (71, ..y Yt5,7)s
a(l) = a(l) for I = 0,1,....ty, a(t, +1) = 0, a(ty +1+1) = a(t; + 1) for
l=1,..,tpand 7 = (7y,..., T, t; + 1) where

i = ; if mi<ty+1
o =mi+1 if mi>t+1.

(2) If uj = 0forsomej € I*(sy), let 5,; =0, 81, = sy forh # j, 5, = sz, then o is
afacet of a (t+1)-simplex o(a, ) in A(S,7,r) where 5 = (j,71,...,71,), @(0) =
a(0),a(1) = a(0), a(l) = a(l —1) for | = 2,...,8, T = (P1y--s Phy s Pht 11 o0 Pt)
with pp = mp for 1, =0, py = m + 1 for [ # h.

(3) If 6 = 0 for some k € [~(sy), let 8 = 51,80 = 0, and 35, = s9; for
h # k, then o is a facet of the (t + 1)-simplex &(a,7) in A(3,~,7) where if
I7(s1) # In4y and vx # 0, then 7, = —1,7 =y, for h # k,a(l) = a(l) for
= 0, l,..., t|+j, d(t|+j+l) = 0, and Zl(t1+l+1) = d(t1+l) forl = j+1,...,t2
with j the largest index for which i; < k, and 7 = (71, ..., 7, ty + 7 + 1) with

Xh = Th if1r,.<t|+j+l
= m+l f m>t+5+1,
and where if I7(s;) = Ly, or v =0 then 7 = +1, 7, = v for h # k, a(l) =
a(l) for I =0,1,...;5,a(j +1) = a(0) and a(l+ 1) = a(l) for l = 7 + 1,..., 12
with j the largest index for which i; < k,and 7 = (p1,..., pr, J + 1, Prs1s -y Pt)
with p, = 0 for m, = 0,
P =m if m<j+lforl#h
po=m+1 if m>5+1.
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(4) If ;. = 0 for some k € I*(sy), let s, = 1,3 = 0, and Sz, = sy, for h # k,
then o is a facet of the (¢ + 1)-simplex a(a, 7) in A(S,v,r) with a(l) = a(l) for
1=0,1,...,ty+j,a(ti+5+1) =0, and a(t, +1+1) = a(t;+!{) for I = j+1, ..., 1,
with j the largest index for which i; < k, and & = (%4, ..., T, 1 +j + 1) where

=%y if 7rh<t1+j+l
mh=mp+1 if >t +7+1.

In the above four cases, the next linear piece of the path P is contained in . This
lincar picce can be followed by making a pivot step in (4.1) with ( f(lw) ), where

w is the vertex of & not contained in o.

If after a pivot step in (4.1) A becomes zero for some k € {1,...,t + 1 }, then
the point w* = (p*,y*) = Lixx Aw' lies in the facet 7 of o opposite to the vertex
w*. The following cases may happpen according to Lemma 3.4.

(1) If k=1,a(0) =d— 1,7y =0, and s; £ 0, the algorithm terminates with an
approximate equilibrium w*.

(2) Ifty 2 1,k =1,a(1) =d — 1, and m = 1, the algorithm terminates with an
approximate equilibrium w*.

(3) If k =t+1,a(ty) =0, and 7, = t;, then 7 is the (¢ — 1)-simplex &(a,7)
in A(s,7,r) with §;; = —1 for j = 7, 81n = 814 for b # j, 53 = s,,
¥ = (MyesYy=1)y @(l) = a(l) for L = 0,1,....4, — 1, a(l) = a(l + 1) for

l=1t,..,t—2,and # = (7,...,m_,) where

Th=mp if <ty

T, = &) — 1 iaf > .

The algorithm continues in &(a, 7) by making a pivot step in (4.1) with

( size(s) )
0, é
0

(4) Hk=1t+1,a(ti+J) =0 forsome j, | < j <y, and 7, = [, + 7, then 7 is the
(t—1)-simplex o(a, 7) in A(8,7,7) with & = s, 82, = 1y, 521, = 8 for h # ¢,
a(l)=a(l)forl=0,1,....,t1+5—1.a(l)=a(l+1)for l=t; +5-1,..,1 =2,
and # = (7y,..., T—1) Where

mn=m, if mp<ti+J
fr=mp—1 if m >t +7.
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The algorithm proceeds in a(a, ) by performing a pivot step in (4.1) with

0
( 52.‘,62(1'1') ) >
0

(5) f1 <k<t+1,m-y =0, =1, and a(0) = a(1), then 7 is the (t — 1)-
simplex o(a,7) in A(3,%,7) with §;; = +1 for j = 71, S14 = 815 for h # j,
32 = 82,7 = (725, 71,), @(0) = a(0),a(l) = a(l+ 1) forl =1,...,t — 2, and
= (plv"'v Pk—25 Pk s Pt) where

pp=mp—1 for h=1,..,k—-2
ok =mp=1 for h=k ..t

i5e1(5)
The algorithm is continued in &(a, 7)by bringing 0, into (4.1).
0

6) () Ifs £0, 1 <hk<t+1,m_y =07 =1+ forsome j, 1 <j <ty and
a(ly + 7) = a(0), then 7 is a facet of o(a, ) in A(s,y.r) with v, = —»; and
ri = vy for b # 4,. 'The algorithm continues in a(a, 1) by making a pivot step

in (4.1) with ( f(ll”) ) ., where w is the vertex of o not contained in 7.

(i) IfF I~(s1) = Lnp1, L <k <t+1,m-y =0, m = j for some j,1 < j < 2y,
then 7 is the (¢ — 1)-simplex &(a,7) in A(S,v,7) with & = s, 32, = —1,
1_‘,', = —1, 834 = Sqp, 7r, =13, for h ;é ij, and a(l) = a(l) forl =0,1,...,7—1,

a(l)=a(l+1)forl=j,...,t =2, and © = (p1, ..., Pk-1, Pk+1, ---, Pt) Where

Ph = Th if <]
pr=mn—1 if m>j.

The algorithm proceeds in &(a,7) by making a pivot step in (4.1) with

0
( S2i,02(15) )
0

(i) M sy <0, | I%sy) |2 1, l <k <t4+ 1,7y =0, 7 =1 + 3 for some
Jy 1 < j <ty a(ty + j) = a(0), and r;, = +1, then 7 is a facet of o(a, )
in A(s,7,7) with 7, = —1,7, = r, for h # i;,a(ti +j) = a(1),a(l) = a(l)
for I # t; + j, and 7 is the same as 7 except that m; moves to behind 1.
The algorithm is continued in &(a@,7) by making a pivot step in (4.1) with

( f(;”) ), where w is the vertex of & not contained in 7.
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(iv) Ifs1 0,1 <k<t+1,my =1,m =t +j for some j, 1 < j < t,,
a(1) = a(ty +j), and r;, = —1, then 7 is a facet of 5(a, 7) in A(s,~,) with
ri, = +1, 75 =1y for b # 15, a(ty + J) = a(0),a(l) = a(l) for | # t; + j, 7 is
the same as 7 except that 7. moves to behind 0. The algorithm continues in
o(a, ) by pivoting ( f(lw) ) in (4.1), where w is the vertex of & not contained
inT.

() Ml <k<t+l,m_y=t—1, 7 =iforsomei€{2..1},
and a(m—1) = a(m), then 7 is a facet of &(a, ) in A(s,¥,r) with 3 =
(Y15 <0y Yie2y Yis Yie1s Vit 15 -» 71, ). The algorithm proceeds in a(a, ) by bring-
J(w)

ing ) in (4.1), where w is the vertex of o not contained in 7.

(8) In all other cases, (a, 7) is adapted accoding to Table 3.1 by replacing w*.
The algorithm continues in &(a, 7) by pivoting < f(]w) ) in (4.1), where w is

the vertex of & not contained in 7.

This completes the description of how the algorithm operates on S x R7. We
are now ready to discuss the convergence of the algorithm. As norm we denote ||.||o
by ||z||x = maz; | ;| for z € R™.

Lemma 4.1 Let D(T') = { (p,y) € S x K} | max{T, max; b;} < max; y; <
max; b; + max{T,max; b;}} and let ¢ = inf{max; fi(p,y) | (p,y) € D(T)}. If
Assumption G is satisfied, then ¢ > 0.

Proof: The conclusion directly follows from the compactness of D(T) and the
continuity of f. =]

Due to the compactness of D(T'), the function f is uniformly continuous on
D(T'). Therefore for a positive € < ¢/2, there is a § > 0 such that z,y € D(T) and
llz = ylloo < & imply [|f(x) = f(¥)lloo < €.

Theorem 4.2 Suppose that the algorithm works on the V K'-triangulation of
S™ x R} with mesh size smaller than the above §. Then under Assumption G it
terminates within a finite number of steps.

Proof: It is sufficient to show that there does not exist any s-complete simplex in
A(s)N D(T). Suppose to the contrary that there is an s-complete simplex o(a, )
with vertices w' w?, o™ in D(T). 16 implies that s, < 0 and sy = 41 for some
k € .. According to equation (4.1) we have that the piecewise linear approximation
Fyat w = Tt hiw' € o is non-positive, ie. Fi(w) < 0. Because w € D(T),
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there exists some j for which fi;(w) > ¢ according to Lemma 4.1. It follows
that fi;(w') > ¢/2 for all vertices w' of 0. Since Fy(w) = T!t! \; fy(w'), and

Tt = LA >0 fori=1,..,t+ 1, we obtain Fyj(w) > ¢/2 > 0. This is a

contradiction. 0

It is easily seen from Theorem 4.2 that as the mesh size of the V K'-triangulation
of 5™ x RT goes to zero, the end points of the paths P followed by the algorithm
yield a subsequence that converges to an equilibrium.

5 Applications

In this section we apply the adjustment process to economies with constant returns
to scale. It may be worth mentioning that this process can also be used to find an
equilibrium in an economy with increasing returns to scale and converges for any
starting point under the condition stated in Hofkes [5]. Let us consider an economy
with a finite number of consumers; m firms cach having constant returus to scale
production functions, indexed by ¢ = 1,...,m, and n + 1 commodities, indexed by
J = l,..,n+ 1. Consumers are assumed to be endowed with the commodities.
Given a price vector p € Ry*'\{0} with p; denoting the price of commodity j,
let d(p) denote the total demand of the consumers, where d;(p) is the demand for
commodity j € Iy, and let z(p) be the total demand d(p) minus the total initial
endowments. Standard assumptions on = are as follows:

(1) z is continuous in p € R\ {0};

(2) =z is homogeneous of degree zero, i.e. z(Ap) = z(p) for any A > 0 and p €
RyF\{0};

(3) (Walras’law) p'=(p) = 0 for every p € Ri+H1\{0}.

Commodities in the economy can be produced by the firms. A production activity
of firm 1,2 € I, at price vector p € R3*'\{0}, is characterized by an input-output
(n+1)-vector a’(p) whose negative components correspond to the amounts of inputs
and whose positive components to the amounts of outputs per unit production.
Then p'a‘(p) represents the profit of firm i,i € I,,, per unit production. Moreover,
a‘,i € I,,, is homogeneous in p of degree zero, concave and continuous on R\ {0}.
Let y be a nonnegative m-vector of production levels and let A(p) be the (n+1)xm
matrix [a'(p),...,a™(p)]. Hence A(p)y denotes the net supply of the production side
at price vector p and a production level vector y. For this economy we call a price
vector p* and a production level vector y* an equilibrium if for each commodity
demand is at most equal to endowment plus net supply of the production side and
no production activity makes positive profit. Let the net excess demand function
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S R{F\{0} x R} — R™*! be defined by fi(p,y) = z(p) — A(p)y, i.e. fi(p,y)
is the excess demand of the consumption side at p minus the net supply of the
production side at (p,y). Further let the profit function f, : R\ {0} xR — R™
be defined by fa(p,y) = A'(p)p, i.e. fa(p,y) is the vector of profits at p per unit
activity. For a detailed description of the model, we refer to van der Laan, Talman
and Kremers [8].

Definition 5.1 A pair (p,y~) € Ry*'\{0} x RT is an equilibrium if
(1) filp*,y*) <0
(2) fa(p",y") <0.

Because of the homogenity of degree zero of z and a',i = 1, ..., m, we have that if
(p",y*) is an cquilibrium, then also (Ap*, y*) is an equilibrium pair for any A > 0. So
this permits us to normalize the price vectors to the n-dimensional unit simplex S™.
Now the problem is reduced to the one we discussed in Section 2. For the existence
of an equilibrium in this economy the following no free production assumption is
introduced in [8].

Assumption F (No production without input) For any p € S*, A(p)y > 0
and y > 0 implies that y = 0.

Taking (u,v) € S™ x R} and a positive vector b € R as described in Section
2, we will show that under condition F there exists an equilibrium in the economy
with constant returns to scale via the adjustment process (2.3). To do so, it suffices
to prove the following assertion.

Theorem 5.2 The path P in S™ x R} is bounded.

Proof:  Suppose that the path P is unbounded. Then without loss of generality
there is some sign vector s € S with s; < 0 such that A(s) contains a sequence
{ (»*,¥*) }5¢, with some of the components of y* going to infinity. Since S™ is
compact, the sequence p* has a subsequence converging to a cluster point ¢ in S™.
Because (p*,y*) € A(s) we have that fi;(p*,y*) < 0 for all j. Hence there exist
nonnegative numbers j% for all j @ 1°(s)) such that

L5 = 2 disua() =005 - A + X weai)=0.  (5.1)
i€1%(s1) s€l=(s1)

Since p* has a subsequence converging to ¢ and z is continuous, system (5.1) can
only have a solution for all & if the homogeneous system of linear equations

—Aly+ Y meal)=0. (5.2)

J€l= (1)
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has a nonzero solution y; > 0, i € I,,. and p; > 0, j € I=(s;). On the one hand, if
y* = 0, there exists at least one component of x} greater than zero, contradicting
system (5.2). On the other hand, if y* # 0, it easily follows from Assumption F that
at least one component of A(q)y* is less than zero, which is also in contradiction with
system (5.2). From these results, system (5.1) does not have a nonzero nonnegative
solution. This completes the proof. © o ]

Theorem 5.2 indicates that the path £ is bounded and therefore leads to another
end point which must be an equilibrium. Of course, the adjustment process can also
be applied to the special case of linear production technologies. In that case the
matrix A(p) is independent of p. Then the process converges for any starting point
under the standard assumption that there can be no production without input (see
eg. [4,7,12]).

6 Concluding remarks

In this paper we developed a simplicial variable dimension restart algorithm to
compute economic equilibria on S™ x R'. The algorithm can start at an arbitrar-
ily chosen point of S™ x R} and has much more rays to leave the starting point
than the other variable dimension algorithms developed thusfar. For the price and
activity level adjustment of the algorithm the economic interpretation of the adjust-
ment seems 1o be very intuitive and similar to the classical tatonnement processes.
Contrary to the latter ones, for the simplicial process introduced in this paper the
global convergence property holds. Finally, we will report numerical results on the
implementation of the algorithm in a forthcoming paper.
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