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Optimization of simulated systems is the goal of many methods, but most methods as-

sume known environments. We, however, develop a ‘robust’ methodology that accounts

for uncertain environments. Our methodology uses Taguchi’s view of the uncertain world,

but replaces his statistical techniques by Kriging. We illustrate the resulting methodology

through classic Economic Order Quantity (EOQ) inventory models. Our results suggest

that robust optimization requires order quantities that differ from the classic EOQ. We also

compare our latest results with our previous results that do not use Kriging but Response

Surface Methodology (RSM).

Key words: Statistics, Design of experiments; Inventory-Production, Simulation; Decision

analysis: Risk

JEL: C0, C1, C9

1. Introduction

In practice, some inputs of a given simulation model are uncertain so the optimum solution

that is derived—ignoring these uncertainties—may be wrong. Strategic decision-making in

such an uncertain world may use Taguchi ’s approach, originally developed to help Toyota

design ‘robust’ cars; i.e., cars that perform reasonably well in many circumstances; see Beyer

and Sendhoff (2007), Kleijnen (2008), Park et al. (2006), Taguchi (1987) and Wu and Hamada

(2000).
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We use Taguchi’s view of the world, but not his statistical methods. These methods

use rather restrictive designs and analysis models, so we use Kriging. This Kriging ap-

plied to simulation or ‘computer’ models is explained by Sacks et al. (1989) and Santner

et al. (2003). Kriging gives metamodels—also called response surfaces, surrogates, emula-

tors, auxiliary models, repromodels, etc.; see Barton and Meckesheimer (2006) (we give so

many synonyms because simulation is used in many disciplines, with their own terminolo-

gies). These metamodels run much faster than the underlying—possibly computationally

expensive—simulation models; e.g., it takes 32 hours per run, on a high performance com-

puter in the aerospace-engineering case study reported by Oberguggenberger et al. (2009).

Kriging treats the simulation model as a black box; i.e., only the Input/Output (I/O) of

the simulation model are observed. (Black-box methods have wider applicability but lower

efficiency than white-box methods such as perturbation analysis and the score function.)

Moreover, we combine Kriging metamodeling with Non Linear Programming (NLP). In

our NLP approach we select one of the multiple simulation outputs as the goal or objective,

while the remaining outputs must satisfy given constraints (thresholds).

This combination of Kriging and NLP gives an estimate of the robust solution of the

simulation optimization problem. Finally, in the NLP model we change specific threshold

values for the constrained simulation outputs, to estimate the Pareto frontier.

We also compare our results with the results of a previous article in which we used

Response Surface Methodology (RSM) as a heuristic to optimize the simulated system; see

Dellino et al. (2009). We use Matlab software for the various components of our heuristic,

because this software is well documented and is used by many simulationists.

Note that our methodology may also be applied to study so-called implementation errors,

which are studied by Stinstra and den Hertog (2008).

The rest of this article is organized as follows. Section 2 summarizes Taguchi’s worldview.

Section 3 summarizes RSM for robust optimization. Section 4 summarizes Kriging (so readers

familiar with Kriging may skip this text) and the use of Kriging for robust optimization.

Section 5 illustrates the new methodology through the classic EOQ simulation model (which

has a known I/O function and is a building block for more complicated and realistic supply-

chain simulation models). Section 6 presents our conclusions and possible topics for future

research.
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2. Taguchi’s worldview

Taguchi (1987) distinguishes between two types of factors (inputs, variables): (i) decision or

control factors, which we denote by dj (j = 1, . . . , k), and (ii) environmental or noise factors

(say) eg (g = 1, . . . , c). He assumes a single output (say) w. Taguchians focus on the mean

and the variance of this output. By definition, the decision factors are under the control of

the users; e.g., in inventory management, the order quantity is supposed to be controllable.

The environmental factors are not controlled by the users; e.g., the demand rate in inventory

management is a noise factor.

We adopt Taguchi’s view, but not his statistical methods—which have been criticized

by many statisticians; see Nair (1992). Instead of these methods we use Kriging includ-

ing designs such as Latin Hypercube Sampling (LHS). Our reason for selecting Kriging is

that the experimental area in simulation experiments may be much larger than in physi-

cal experiments, so a low-order polynomial may be an inadequate approximation (nonvalid

metamodel). Our main reason for choosing a non-Taguchian design is that simulation ex-

periments enable the exploration of many more factors, factor levels, and combinations of

factor levels than real-life (physical) experiments do. For a further discussion of various

metamodels and designs in simulation we refer to Kleijnen (2008) and Kleijnen et al. (2005).

Moreover, we do not use a scalar Taguchian loss function such as the signal-to-noise or

mean-to-variance ratio; instead we allow the output to have a statistical distribution that

we characterize through its mean and standard deviation. We formulate a NLP problem in

which one of these characteristics (e.g., the mean of the primary simulation output) is the

goal function to be minimized, while the other characteristics (e.g., the standard deviation

of the goal output) must meet given constraints (Lehman et al. (2004) also minimize the

mean while satisfying a constraint on the variance; they use a Bayesian approach). Next we

change the thresholds (right-hand sides) in these constraints, and find the Pareto-optimal

efficiency frontier—briefly called the Pareto frontier. Also see Beyer and Sendhoff (2007),

Myers and Montgomery (1995, p. 491), Park et al. (2006), Wu et al. (2008).

3. RSM and robust optimization

In this section we summarize Dellino et al. (2009), who use RSM for robust simulation-

optimization; this approach guides our Kriging approach. Like Myers and Montgomery
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(1995), Dellino et al. use the following RSM metamodel:

y = β0 + β′d + d′Bd + γ ′e + d′∆e + ε (1)

where y denotes the regression predictor of the expected (mean) simulation output E(w), ε

the residual with E(ε) = 0 if this metamodel has no lack-of-fit (i.e., this metamodel is valid)

and with constant variance σ2
ε , β = (β1, . . . , βk)

′ the first-order effects of the control variables

d = (d1, . . . , dk)
′, B the k×k symmetric matrix with the purely quadratic effects βj;j on the

main diagonal and half the interaction effects βj;j′/2 off the diagonal, γ = (γ1, . . . , γc)
′ the

first-order effects of the noise factors e = (e1, . . . , ec)
′, and ∆ = (δj;g) the ‘control-by-noise’

two-factor interactions.

To examine whether the assumed metamodel (1) is an adequate approximation, Dellino

et al. use leave-one-out cross-validation which eliminates one I/O combination, recomputes

the estimates, and compares the estimated output with the output eliminated.

Under the assumption E(e) = µe it is easy to derive that (1) implies

E(y) = β0 + β′d + d′Bd + γ ′µe + d′∆µe . (2)

Under the assumption cov(e) = Ωe (1) implies

var(y) = (γ ′ + d′∆)Ωe(γ + ∆′d) + σ2
ε = l′Ωel + σ2

ε . (3)

The mean and variance in (2) and (3) may be estimated through plugging in the Ordinary

Least Squares (OLS) estimates of the regression coefficients in (1) into the right-hand sides of

(2) and (3). (Del Castillo (2007, pp. 250–253) shows how the resulting bias in the estimated

variance might be eliminated.)

Dellino et al. minimize the resulting estimated mean ŷ, while keeping the estimated

standard deviation σ̂y below a given Threshold T ; they use the standard deviation instead

of the variance because the standard deviation has the same scale as the mean. They solve

this constrained minimization problem that is nonlinear in the decision variables d; this

gives the estimated robust decision variables d̂+. Next they vary T , which may give different

solutions d̂+ with corresponding ŷ and σ̂y. They then collect the pairs (ŷ, σ̂y) to estimate

the Pareto frontier. Finally, they estimate the variability of this frontier through parametric

bootstrapping of the OLS estimates that gave ŷ and σ̂y (we shall return to bootstrapping, in

Section 4.2. They illustrate their methodology through the same EOQ model that we shall

use in Section 5.
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4. Kriging and robust optimization

In this section, we first summarize the basics of Kriging; next we discuss how to use Kriging

for robust optimization.

4.1. Kriging basics

We base this subsection on Kleijnen (2008) and Kleijnen (2009). Typically, Kriging models

are fitted to data that are obtained for larger, global experimental areas than the small, local

areas used in low-order polynomial regression metamodels such as (1). Originally, Kriging

was developed in geostatistics—also known as spatial statistics—by the South African min-

ing engineer Danie Krige; see the classic geostatistics textbook Cressie (1993). Later on,

Kriging was often applied to the I/O data of deterministic simulation models; see the classic

article Sacks et al. (1989). Recently, Kriging has also been applied to random (stochastic)

simulation; see Ankenman et al. (2009).

Kriging uses the linear predictor

y = λ′w (4)

where—unlike the regression coefficients in (1)—the weights λ are not constants but decrease

with the distance between the ‘new’ input combination to be predicted and the ‘old’ input

combinations that have already been simulated and resulted in the simulation outputs w.

Our heuristic uses the simplest type of Kriging called Ordinary Kriging, which assumes

w = µ+ δ (5)

where w is the simulation output (which depends on the input combination), µ is the sim-

ulation output averaged over the whole experimental area, and δ is the additive noise that

forms a stationary covariance process (so its covariances decrease with the distances or ‘lags’

between the simulation input combinations) with zero mean. Note that Ankenman et al.

(2009) call δ the ‘extrinsic noise’; they add another term to (5) and call it ‘intrinsic noise’,

which is caused by the Pseudo-Random Numbers (PRN) that are used in random simulation

so the same input combination still shows intrinsic noise (this intrinsic noise has variance

that may vary with the input combination, and is correlated if common PRN are used to

simulate various input combinations).

If (5) holds, then the optimal weights in (4) can be proven to be

λo= Γ−1

[
γ + 1

1− 1′Γ−1γ

1′Γ−11

]
(6)
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where Γ =(cov(wi, wi′)) with i, i′ = 1, . . . , n is the n×n matrix with the covariances between

the n old outputs, and γ = (cov(wi, w0)) is the n-dimensional vector with the covariances

between the old outputs wi and w0, the output of the combination to be predicted which

may be either new or old. Obsviously γ varies with w0, so λo in (6) varies with w0.

The covariances Γ and γ in (6) are often based on the Gaussian correlation function

exp

(
−

k∑
j=1

θjh
2
j

)
=

k∏
j=1

exp
(
−θjh2

j

)
(7)

where hj denotes the distance between input j of the new and the old combinations, and θj

denotes the importance of input j (the higher θj is, the less effect input j has).

Substituting the correlation function (7) into (6) implies that the weights are relatively

high for inputs close to the input to be predicted. Moreover, the optimal weights (6) imply

that for an old input the predictor equals the observed simulation output at that input (all

weights are zero except the weight of the observed output); i.e., the Kriging predictor is an

exact interpolator. (RSM uses OLS, which minimizes the Sum of Squared Residuals so it is

not an exact interpolator; Kriging accounting for the intrinsic noise in random simulation is

not an exact interpolator either.)

So, the optimal weights (6) depend on the correlation function (7)—but this correlation

function is unknown. Consequently, the parameter values θj in (7) must be estimated.

The standard Kriging software and literature uses Maximum Likelihood Estimators (MLEs)

assuming the noise δ in (5) is (multivariate) Normally (Gaussian) distributed. We estimate

the correlation functions and the corresponding optimal weights through DACE, which is

free-of-charge Matlab software that is well documented by Lophaven et al. (2002).

To get the I/O simulation data to which the Kriging model is fitted, simulation analysts

often use LHS. This LHS assumes that a valid metamodel is more complicated than a low-

order polynomial (which is assumed in RSM). LHS does not assume a specific metamodel

or I/O function. Instead, LHS tries to fill the design space formed by the simulation inputs;

i.e., LHS is a space-filling design (references and websites for other space-filling designs are

given by Kleijnen (2008, pp. 127–130)). We shall further discuss LHS in our EOQ example

in Section 5.

4.2. Two Kriging approaches to robust simulation-optimization

To solve robust simulation-optimization problems, we propose the following two approaches

using Kriging metamodels:
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• Inspired by Dellino et al. (2009), we fit two Kriging metamodels, namely one model for

the mean and one for the standard deviation—both estimated from the simulation’s

I/O data.

• Inspired by Lee and Park (2006), we fit a single Kriging metamodel to a relatively

small number (say) n of combinations of the decision variables d and the environmental

variables e. Next, we use this metamodel to compute the Kriging predictions for the

simulation output w for N � n combinations of d and e accounting for the distribution

of e.

In the first approach, we select the input combinations for the simulation model through

a crossed (combined) design for the decision and environmental factors (as is usual in

Taguchian design); i.e., we combine the (say) nd combinations of the decision variables

d with the ne combinations of the environmental variables e. These nd combinations are

space-filling, so we can avoid extrapolation when using the Kriging metamodels to obtain

predictions; Kriging is known to give bad extrapolators. The ne combinations are sampled

from their input distribution; we use LHS for this sampling. Simulating these nd × ne com-

binations gives the outputs wi,j with i = 1, . . . , nd and j = 1, . . . , ne. These I/O data enable

the computation of the following estimators of the nd conditional means and variances:

wi =

ne∑
j=1

wi,j

ne
(i = 1, . . . , nd) , (8)

s2
i =

ne∑
j=1

(wi,j − wi)2

ne − 1
(i = 1, . . . , nd) . (9)

These two estimators are unbiased because they do not assume any metamodel; metamodels

are only approximations so they may have important lack of fit.

Note that Dellino et al. (2009) mention that they use a crossed design, even though RSM

does not require such a design. An alternative for a crossed design is the split-plot design

presented by Dehlendorff et al. (2009a) or Simultaneous Perturbation Stochastic Approxi-

mation (SPSA) described by Miranda and Del Castillo (2009). Furthermore, note that the

variability of the estimators is much larger for the mean than it is for the variance; e.g., under

the normality assumption var(w) = σ2/ne and var(s2) = 2(ne − 1)σ4/n2
e; this problem is

also studied by Koch et al. (1998).
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In the second approach, we select a relatively small number of input combinations for

the simulation model (say) n, using a space-filling design for the k + c input factors (k and

c still denote the number of decision and environmental factors, respectively; see again the

first paragraph of Sec. 2); i.e., the environmental factors are not yet sampled from their

distribution. For the larger design with N combinations, we use a space-filling design for

the decision factors, but LHS for the environmental factors accounting for their distribution.

We do not simulate the N combinations of this large design but we compute the Kriging

predictors for the conditional means and standard deviations; i.e., in the right-hand sides of

(8) and (9) we replace ne and nd by Ne and Nd (the large-sample analogues of the small-

sample ne and nd) and w by ŷ where ŷ denotes the Kriging predictor computed through

(4).

We shall further explain both approaches through an EOQ example in the next section.

Our methodology assumes that in practice the simulation model is expensive, although we

shall illustrate the two approaches through this inexpensive EOQ simulation model.

Both approaches use these estimated Kriging metamodels for the mean and standard

deviation to estimate the robust optimum that minimizes the mean while satisfying a con-

straint on the standard deviation. Varying the value of the right-hand side for that constraint

gives the Pareto frontier (see the last paragraph of Section 3 above).

This Pareto frontier is built on estimates (of the mean and standard deviation of the

output). We therefore further analyze this frontier. Whereas Dellino et al. (2009) ap-

ply parametric bootstrapping, we apply nonparametric or distribution-free bootstrapping.

Moreover, bootstrapping (both parametric and nonparametric) assumes that the ‘original’

observations are Identically and Independently Distributed (IID); see Efron and Tibshi-

rani (1993). Because we cross the design for the decision variables and the environmental

variables, the nd observations on the output for a given combination of the environmental

factors are not independent. We therefore resample the ne vectors wj (j = 1, . . . , ne) (with

replacement, as bootstrapping requires). This resampling gives the ne bootstrapped obser-

vations w∗j =
(
w∗1,j, . . . , w

∗
nd,j

)
; the superscript ∗ is the usual symbol for bootstrapped values.

(Simar and Wilson (1998) also use distribution-free bootstrapping, albeit in the context of

Data Envelopment Analysis (DEA) instead of Pareto frontiers.)
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Analogous to (8) and (9) we estimate the nd bootstrapped conditional means and vari-

ances:

wi
∗ =

ne∑
j=1

w∗i,j

ne
(i = 1, . . . , nd) , (10)

s2∗
i =

ne∑
j=1

(
w∗i,j − wi∗

)2
ne − 1

(i = 1, . . . , nd) . (11)

To the estimates computed through (10) and (11) respectively we apply Kriging. The result-

ing two Kriging metamodels give optimum solutions for different threshold values. To reduce

the sampling error in this bootstrapping, we repeat this sampling (say) B times; B is called

the bootstrap sample size. This sample size gives the bootstrapped conditional averages and

variances wi;b
∗ and s2∗

i;b (b = 1, . . . , B); see (10) and (11). These output data enable us to

derive confidence intervals, and to account for management’s risk attitude associated with

the threshold value. We shall detail our procedure through an EOQ example, in the next

section.

5. EOQ inventory simulation

Like Dellino et al. (2009) we apply our methodology to the simulation optimization of the

EOQ inventory model. For the classic model, Zipkin (2000, pp. 30-39) uses the following

symbols and assumptions: (i) The demand is known and constant, say a units per time

unit. (ii) The order quantity is Q units. (iii) Total costs consist of setup cost per order, K;

cost per unit purchased or produced, c; and holding cost per inventory unit per time unit,

h. Management’s goal is to minimize the total costs per time unit C, over an infinite time

horizon.

It is easy to derive that this problem has the following true I/O function, which we shall

use to check our simulation results:

C =
aK

Q
+ ac+

hQ

2
. (12)

This function implies that the EOQ is

Qo =

√
2aK

h
, (13)
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Table 1: I/O data of the classic EOQ simulation
Q 15000 22500 30000 37500 45000
C 88650.00 87641.66 87700.00 88185.00 88883.34

and the corresponding minimal cost is

Co = C(Qo) =
√

2aKh+ ac . (14)

In our example we use the parameter values in the classic Operations Research textbook

Hillier and Lieberman (2001, pp. 936–937, 942–943): a = 8000, K = 12000, c = 10, and

h = 0.3; substituting these parameter values into (13) and (14) gives Qo = 25298 and Co =

87589.

Following Dellino et al. (2009), we shall consider a variant of the classic EOQ model—

which assumes an unknown demand rate—to tackle robustness issues. The robustness of the

EOQ model is also examined by Yu (1997), who uses other criteria and other methods than

we do (he uses two minmax criteria and analytical methods instead of simulation). But first

we consider classic optimization.

5.1. Classic simulation optimization

In this subsection we use classic optimization; i.e., we ignore the uncertainty of the environ-

ment. Like Dellino et al. (2009) we use the following steps in our simulation experiment.

We select an experimental area for Q, namely the interval [15000, 45000]. Furthermore,

we pick five equally spaced points in this interval, including the extreme points, 15000 and

45000. Running the simulation model with these five input values gives the total costs

C(Qi) = Ci (i = 1, . . . , 5); see Table 1. Based on these I/O data, we estimate the Kriging

metamodel; see Figure 1, which also displays the true I/O function derived through (12) and

the second-degree polynomial metamodel used by Dellino et al. (2009).

To validate this Kriging metamodel, we use cross-validation. This gives Figure 2, which

shows the scatterplots for the Kriging and RSM metamodels. Because scatterplots may use

scales that are misleading, Table 2 gives the relative prediction errors ŷ−i/Ci, where the

subscript −i means that I/O combination i is eliminated in the cross-validation, for Kriging

and RSM. This validation shows that in this example Kriging does not give a better ap-

proximation than the second-order polynomial does. Our explanation uses the Taylor-series
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Figure 1: Kriging and RSM metamodels and the true I/O function of the classic EOQ model

argument; i.e., the EOQ model has a simple, smooth I/O function that is well approxi-

mated by a second-order polynomial in our relatively small experimental area. However,

Van Beers and Kleijnen (2003) give examples in which Kriging does give better predictions

than regression metamodels do. Moreover, the next paragraph will give estimated optimal

order quantities and corresponding costs that are closer to the true optimal values when

using Kriging instead of second-order polynomial regression. (Of course, the true optimum

is known only for simple academic models such as the EOQ model; cross-validation can be

applied to any metamodel.)

Table 2: Cross-validation of Kriging and RSM metamodels for EOQ cost
Kriging Regression

i ŷ−i ŷ−i/Ci ŷ−i ŷ−i/Ci
1 87951.83 0.9921 87849.94 0.9910
2 88151.34 1.0058 87952.11 1.0035
3 88337.88 1.0073 87628.92 0.9992
4 88417.91 1.0026 87951.95 0.9974
5 88044.17 0.9906 87576.98 1.0078

To compute the estimated optimum (say) Q̂o, we apply Matlab’s fmincon to the Kriging
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Figure 2: Scatterplots for the cross-validation of the Kriging and RSM metamodels of the
classic EOQ model

metamodel for the EOQ cost (but we could have used some other solver including a global

optimizer instead of a local optimizer such as fmincon). This gives Q̂o = 25337.31 and the

estimated minimal cost Ĉo = 87523.30. To verify these estimated optimal values, we use

(13) and (14) and obtain Q̂o/Qo = 25337.31/25298 = 1.0016 and Ĉo/Co = 87523.30/87589 =

0.9992; so we conclude that the estimated optimal cost and order quantity virtually equal the

true optimal values. For the second-order polynomial metamodel Dellino et al. (2009) give the

following results: Q̂o = 28636 and Ĉo = 887654, so Q̂o/Qo = 1.13 and Ĉo/Co = 1.001, which

are slightly less accurate estimated optimal values—compared with our Kriging estimates.

Note that we also experiment with a smaller experimental area; i.e., a smaller Q interval.

This interval gives a more accurate metamodel; the resulting estimated optimum is only

0.32% above the true EOQ and the corresponding cost virtually equals the true cost.

5.2. Robust optimization

Now we follow Dellino et al. (2009), and assume that a (demand per time unit) is an unknown

constant; i.e., a has a Normal distribution with mean µa and standard deviation σa: a ∼

12



N(µa, σa). Furthermore, we assume µa= 8000 (‘base’ value used in Section 5.1), and σa

= 0.10µa (uncertainty about the true input parameter). This standard deviation can give

negative values for a, so we resample until we get non-negative values only; this adjustment

of the Normal distribution is ignored in our further analysis. We apply the two general

approaches that we sketched in Section 4.2.

5.2.1. Approach 1: Kriging models for mean and standard deviation estimated
from simulation I/O data

To select ‘a few’—namely na = 25—values for the environmental factor a in our simulation,

we use LHS (na = 25 gives ‘enough’ data to bootstrap later on). LHS splits the range of

possible a values (0 < a < ∞) into na equally likely subranges. We use lhsnorm from

the Matlab Statistics Toolbox to select these values from N(µa, σa); see The Mathworks

Inc. (2005). For the control variable Q we select nQ = 10 equally spaced values within

[15000, 45000], which is the range selected in the previous subsection. We cross these two

designs for a and Q respectively, which gives 25×10 combinations of the two factors. Running

the simulation model for these 250 input combinations gives an I/O table similar to Table

1. This table together with (8) and (9) gives the estimated mean and standard deviation of

the cost C conditional on Q:

Ci =

na∑
j=1

Ci,j

na
(i = 1, . . . , nQ ), (15)

si =


na∑
j=1

(
Ci,j − Ci

)2
na − 1


1/2

(i = 1, . . . , nQ) . (16)

The latter estimator is biased, because E(
√
s2) = E(s) 6=

√
E(s2) =

√
σ2= σ; we ignore this

bias.

Using (15) and (16), we fit one Kriging metamodel for the estimated mean cost—which

gives Ĉ—and one Kriging metamodel for the estimated standard deviation of cost—which

gives ŝ; obviously, each of these metamodels is based on nQ = 10 observations (in the

terminology of Sect. 4.1 there are 10 ‘old’ observations). The two Kriging metamodels are

shown in Figures 3 and 4, which also display the true cost function

E(C) =

(
K

Q
+ c

)
µa +

hQ

2
, (17)
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and the true standard-deviation function

σC = cσa +
Kσa
Q

; (18)

both (17) and (18) are easy to derive from (12). Figure 3 resembles the classic EOQ graph,

which assumes a known demand rate. Figure 4 illustrates that the standard deviation de-

creases as the order quantity increases; i.e., the increased order provides a buffer against

unexpected variations in the demand rate.
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Figure 3: Kriging metamodel for mean cost in Approach 1 and the true mean cost

We validate these two metamodels—without using the true I/O functions (17) and (18)—

through leave-one-out cross-validation. This validation gives the scatterplots in Figures 5

and 6, which use the symbols ŷ1 and ŷ2 for the Kriging predictors of the mean and standard

deviation. Given these two figures, we accept the two Kriging metamodels.

Based on these two Kriging metamodels, we next try to find the order quantity that

minimizes the mean cost, while the standard deviation does not exceed the given threshold

T . We again solve this constrained optimization problem through Matlab’s fmincon. Next

we again vary this threshold, and find the set of optimal solutions that estimates the Pareto

frontier; see Figure 7, which also shows the true Pareto frontier derived from (17) and (18).
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Figure 4: Kriging metamodel for the cost’s standard deviation in Approach 1 and the true
standard deviation

Note that we select a range for the threshold T that differs from the range in Dellino

et al. (2009), because selecting the same range would have resulted in an unconstrained

optimization problem so the Pareto frontier would have been a single point.

5.2.2. Approach 2: Single Kriging metamodel for mean and standard deviation

Myers and Montgomery (1995) and also Dellino et al. (2009) assume that a valid metamodel

is the low-order incomplete polynomial metamodel in (1); that model implies the mean and

variance displayed in (2) and (3). In a similar way we now assume that the Kriging model

based on (4) gives a valid metamodel. That model has coefficients λ that vary with the

point to be predicted; unlike (2) and (3), it does not give an explicit mean and variance.

To estimate the Kriging coefficients λ, we select the same number of input combinations

for the simulation model as we did for Approach 1; i.e., we select na × nQ = 25× 10 = 250

input combinations. To select these 250 values, we use a space-filling design in these two

factors (in Approach 1 we use a space-filling design only for Q). To avoid extrapolation when

using the Kriging metamodel, we select max aj = µa+3σa and min aj = max(µa−3σa, ε) with

15
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Figure 5: Scatterplot of Kriging metamodel for mean cost in Approach 1

ε a small positive number. After running the simulation for these 250 input combinations,

the resulting I/O data give a Kriging metamodel for the costs Ĉ as a function of the demand

rate a and the order quantity Q. This metamodel is used in the following procedure:

1. Use LHS to sample Na � na values from the distribution of the environmental variable

a, and use a space filling design to select NQ � nQ values for the decision variable

Q. We select Na = 100 and NQ = 25. Note that the probability of exceeding the

upper bound for a is negligible; if nevertheless this event occurs, we simply take a new

sample.

2. Combine the values of Step 1 into Na ×NQ input combinations.

3. Compute the Kriging predictions Ĉi,j (i = 1, . . . , NQ j = 1, . . . , Na) for the combina-

tions of Step 2, using the Kriging metamodel estimated from the smaller experiment

with the simulation model with na × nQ input combinations.

4. Use these predictions Ĉi,j to estimate the NQ conditional means and standard devia-
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Figure 6: Scatterplot of Kriging metamodel for cost’s standard deviation in Approach 1

tions of the cost C:

Ĉi =

Na∑
j=1

Ĉi,j

Na

(i = 1, . . . , NQ) , (19)

σ̂i =

Na∑
j=1

(
Ĉi,j − Ĉi

)2

Na − 1
(i = 1, . . . , NQ) , (20)

which are analogous to (15) and (16) but use a metamodel.

5. Fit one Kriging metamodel to the NQ estimated means resulting from (19); fit another

Kriging metamodel to the NQ estimated standard deviations resulting from (20).

Figures 8 and 9 display the two Kriging models resulting from Step 5 and the true

functions.

Cross-validation gives scatterplots for these two metamodels, which look very good: all

points are near the 45% line, so we do not display these two figures but refer to Figures 5

and 6 (which give the scatterplots for Approach 1). Cross-validation also gives values such as
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Figure 7: Estimated Pareto frontier in Approach 1 and true Pareto frontier for EOQ example

ŷ1;(−1)/Ĉ1 = 0.9999988577 and ŷ2;(−25)/σ̂25 = 1.0000003809, which imply very small relative

prediction errors. So we accept these two Kriging metamodels as adequate approximations.

We solve the constrained optimization problem, again using fmincon. Next we vary the

threshold T , albeit it over a range that differs from the previous range—to get interesting

results, namely neither unconstrained nor infeasible results. The resulting Pareto frontier

and the true frontier are displayed in Figure 10.

Finally, we compare Approaches 1 and 2. Our criteria may be their relative costs and

benefits. The benefit may be the accuracy of the approach; i.e., how close is the estimated

frontier to the true frontier derived from (17) and (18)? Comparing Figures 7 and 10 shows

that the accuracy provided by Approach 1 is higher than that of Approach 2. The costs

are the computer time needed by the two approaches: because they use two designs of the

same size, their computational costs are the same. In the next subsection, however, we shall

compare the two approaches through their confidence regions for the mean and standard

deviation.
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Figure 8: Kriging metamodel for mean costs based on Kriging predictions in Approach 2,
and the true mean cost

5.2.3. Bootstrapped confidence region

We estimated the Pareto frontier through random simulation outputs Ci,j (whether we use

Approach 1 or 2), so we further analyze this frontier. As we explained through (10) and

(11), we use distribution-free bootstrapping. This bootstrap gives Cb
∗

and s∗b (b = 1, . . . , B),

which gives the fitted Kriging metamodels; results for Approach 1 are given in Figure 11,

where the vertical line will be explained later. This figure shows that the bootstrapped

curves envelop the original curve and the true curve. Next, we use these bootstrap results

as follows. (Dellino et al. (2009) use bootstrapping to derive a bundle of estimated Pareto

curves, but we think that the following analysis is more relevant.)

Given the original (non-bootstrapped) Pareto frontier, management selects their preferred

combination of the mean and standard deviation of the inventory cost; e.g., Ĉ = 87449.35 and

ŝ = 8353.03, which corresponds with the ‘cross’ in Figure 7. Making the standard deviation

not exceed its threshold implies a specific order quantity; namely, Q̂+ = 25287.69, which

corresponds with the ‘cross’ in Figure 4 (displayed at the right-hand end of the estimated

Pareto curve). Actually, this order quantity may give a mean and a standard deviation that
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Figure 9: Kriging metamodel for the cost’s standard deviation based on Kriging predictions
in Approach 2, and the true function

differ from the ‘original’ values in Figure 11; see the vertical line in Figure 11 that is placed

at Q = Q̂+ = 25287.69.

In Figure 11 this estimated Pareto-optimal order quantity Q̂+ corresponds with B boot-

strapped values for the mean and standard deviation. From these B values, we estimate a

confidence region for the mean and standard deviation of the cost; i.e., we obtain simultane-

ous confidence intervals—called a confidence region—for these two outputs, as follows. We

compute the distribution-free bootstrapped confidence interval (also see Efron and Tibshi-

rani, 1993): [
Ĉ

+∗

(bB(α/2)/2c), Ĉ
+∗

(dB(1−(α/2))/2e)

]
where Ĉ

+∗

(·) denotes the bootstrapped average cost predicted by the Kriging metamodel in

Approach 1 that corresponds with the estimated Pareto-optimal order quantity Q̂+, the

subscript ( ) denotes the order statistic (i.e., the B bootstrapped observations are ranked

or sorted from smallest to largest), b c denotes the floor function (which gives the integer

part), d e denotes the ceiling function (rounding upwards), α/2 gives a two-sided confidence

interval, Bonferroni’s inequality implies that the type-I error rate for the interval per output
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Figure 10: Estimated Pareto frontier in Approach 2 and true Pareto frontier for EOQ ex-
ample

is divided by the number of outputs (which is two, namely the mean and standard deviation).

Analogously we compute the following confidence interval for the standard deviation of the

cost: [
ŝ+∗
(bB(α/2)/2c), ŝ

+∗
(dB(1−(α/2))/2e)

]
.

Figure 12 displays rectangular confidence regions for two points on the original estimated

Pareto curve; namely, part a of the figure corresponds with the relatively small threshold

value T = 8250 so Q̂+ = 34940.05 for Approach 1 and Q̂+ = 29994.86 for Approach 2;

part b corresponds with the larger threshold value T = 8600 so we obtain the relatively

smaller Q̂+ = 25287.69 for Approach 1 and Q̂+ = 26150.43 for Approach 2. These two

threshold values reflect risk-averse and risk-seeking management. This figure shows that in

this example Approach 2 gives a smaller confidence region and still covers the true point.

The confidence interval for the standard deviation implies that the estimated Pareto-optimal

order quantity may still give a standard deviation that violates the threshold. Confronted

with this possibility, management may want to change the order quantity such that the

probability of violating the threshold becomes acceptable; e.g., management may switch

21



from the relatively small threshold in Figure 12 (part a) to the higher threshold in part b.

The formalization of the problem of choosing among random outputs is beyond this article;

a classic reference is Keeney and Raiffa (1976); also see the next section, which covers future

research issues (see the first issue).

6. Conclusions and future research

Robust optimization of simulated systems may use Taguchi ’s worldview, which distinguishes

between decision variables that need to be optimized and environmental variables that remain

uncertain but should be taken into account when optimizing. Taguchi’s statistical techniques,

however, may be replaced by Kriging metamodels (instead of low-order polynomials) and

their space-filling designs such as LHS (instead of orthogonal arrays). Kriging for robust

optimization may be further enhanced by distribution-free bootstrapping, which better enables

management to make the final compromise decision. Application of this new methodology

to the classic EOQ model shows that the classic EOQ and the robust EOQ do differ.

Future research may address the following issues. Instead of minimizing the mean under

a variance constraint, we may consider alternative formulations; e.g., minimize a specific

quantile of the simulation output; see Batur and Choobineh (2009), Bekki et al. (2009)

and Kleijnen et al. (2009), or minimize the Conditional Value at Risk (CVaR); see Chen et

al. (2009), Dehlendorff et al. (2009b) and Garćıa-González et al. (2007); the mean-variance

trade-off is also criticized by Yin et al. (2009). Our Kriging metamodels may be compared

with alternative metamodels ; e.g., so-called Universal Kriging discussed in the Kriging litera-

ture, RSM (low-order polynomial linear-regression) models proposed by Dellino et al. (2009),

and Generalized Linear Models proposed by Lee and Nelder (2003). In a next article we shall

adjust our methodology for random simulation models which imply aleatory uncertainty be-

sides epistemic uncertainty; these two types of uncertainty are discussed by De Rocquigny et

al. (2008) and Helton (2009). Examples of random simulation are (s, S) models, with either

explicit out-of-stock costs resulting in scalar output or a service constraint resulting in vector

output (the difference S − s in these models is often based on the EOQ model, discussed in

this article). Finally, we hope to apply our methodology to complex supply chain models;

also see Shukla et al. (2009) and Rao and Goldsby (2009).
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Figure 11: (a) Bootstrapped estimated costs, original metamodel in Approach 1 (heavy
curve) and true cost (dotted curve); (b) Bootstrapped estimated standard deviations of
cost, original metamodel in Approach 1 (heavy curve) and true standard deviation (dotted
curve)
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Figure 12: Confidence regions for σC (on x-axis) and E(C) (on y-axis) based on bootstrapped
Kriging in Approach 1 (outer rectangle) and Approach 2 (inner rectangle) at (a) T = 8250
and (b) T = 8600 (see the vertical line). ‘∗’ denotes the ‘true’ solution based on (17) and
(18)
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