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Abstract

By a cooperative game in coalitional structure or shortly coalitional game we mean
the standard cooperative non-transferable utility game described by a set of payoffs
for each coalition beíng a nonempty subset of the grand coalition of all players. lt
is well-known that balancedness is a sufficient conclition for the nonemptiness of the
core of such a cooperative non-transferable utility game. In this paper we consider
non-transferable utility games in which for any coalition the set of payoffs depends on
a permutation or ordering upon any partition of the coalition into subcoalitions. We
call such a game a cooperative game in permutational structure or shortly permuta-
tional game. Doing so we extend the scope of the standard cooperative game theory
in dealing with economic or political probleins. The core of a permutational game
consists of all payoff vectors attainable for the graud coalition such that no coalition
has a partition with permutation on the elements of tliis partition through which the
coalition can improve upon the payoffs of all players in the coalition. Introducing a
concept of balancedness for ordered partitions of coalitions, we prove the nonempti-
ness of the core of a balanced non-transferable utility permutational game. Moreover
we show that the core of a permutational game coincides with the core of a corre-
sponding game in coalitional structure, but that balancedness of the permutational
game does not imply balancedness of the corresponding coalitional game. This leads
also to a weakening of the conditions for the existence of a nonempty core of a game
in coalitional structure, induced by a game in pennutational strucuture.

The proof of the nonemptiness of the core of a permututational game is based
on a new intersection theorem on the unit simplex, which generalizes the well-known
intersection theorme of Shapley. We also give a simplicial algorithm to compute an
element of this core.

Key words: non-transferaóJe utility game, balancedness, core, unit simplez,
closed covering, intersection theorem
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1 Introduction

It is well-known that balancedness is a sufficient condition for the nonemptiness of the
core of the standard cooperative non-transferable utility game described by a set of
payoffs for each coalition being a nonempty subset of the grand coalition of all play-
ers. In the following we call such a non-tran::ferri.ble~ utility game a game in coalitional
structure or shortly coalitional game. We also speak about coalitioual balancedness
if we mean the well-known concept of balanceduess of a family of coalitions. Scarf [9]
gave a constructive proof of the nonemptiness of the core of a coalitionally balanced
game in coalitional structure based on the complementary pivoting technique intro-
duced by Lemke and Howson [6]. Shapley [I1J generalized the intersection theorem
of Knaster-Kuratowski-Mazurkiewicz on the unit simplex in order to prove the non-
emptiness of the core, see also 5hapley [10]. [n I~amiya and Talman [4] a simplicial
algorithm was proposed to find a core element of a coalitional game.

In this paper we generalize the concept of a cooperative non-transferable util-
ity game to a non-transferable utility game in which for any nonempty coalition a
(possibly empty) set of attainable payoffs is given for any pennutation or ordering
upon a partition of the coalition into subcoalitious. This dependency on an ordered
partition of the coalition reflects the situation in which the payoff set of a coalition
depends on the sequence in which the coalition is formed or on the hierarchy of the
members of the coalition. In this way it is possible to differentiate between the play-
ers in the coalition, for instance between the player who takes the initiative to form
the coalition, or is the most powerful player in the coalition, and the other players
in the coalition. Another example is a situation when there is need for players to
stand in a queue in order to get their payoff ancl waiting costs are involved. In such
an environment it is necessary to differentiate the players in a coalition according to
some ordering of subsets of the coalition. Also for scheduling problems the outcome
depends very much on the ordering of machines (i.e., players) to be processed. In
Nowak and Radzik [8] such a cooperative game is considered in case of transferable
utilities and each subset consists of only one playrr, i.e., only permutations on the set
of elements of a coalition are considered. For these Tti games the value of the char-
acteristic function depends on the ordering of the members of the coalition. Nowak
and Radzik generalize the concept of the Shapley value for such games. We also refer
to the work of Myerson [7], who used undirected graphs to moclel communieation
structures in cooperative games.

In this paper we consider non-transferable utility games with payoff sets for any
permutation upon each possible partition of the coa.litions. We call such a game a non-
transferable utility game in permutational structure or shortly permutational game.
The core of a permutational game consists of all payoff vectors attainable for the grand
coalition such that there is no coalition having a partition and permutation on the
elements of this partition through which the coalition can improve upon the payoffs
of all players in the coalition. Generalizing the concept of coalitional balancedness to
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balancedness for ordered partitions of coalitions, we prove the nonemptiness of the
core of a balanced permutational game by applying a new intersection theorem on the
unit simplex. Moreover we prove that the core of a permutational game coincides with
the core of a corresponding game in coalitioual structure. We also give an example
showing that balancedness of the permutational game does not imply balancedness
of the corresponding coalitional game. This therefore leads to a weakening of the
conditions for the existence of a nonempty core of a game in coalitional structure.

In Section 2 we introduce the concept of non-transferable utility permutational
games. We also define for any permutational gamP a corresponding coalitional game
and show that the core of the permutational game coincides with the core of the

corresponding coalitional game. In Section 3 we define the concept of permutational
balancedness and show that permutational balancedness of a permutational game
does not imply coalitional balancedness of the corresponding coalitional game. In
Section 4 we prove that balancedness of a permutational game is a suf6cient condition

for the nonemptiness of the core. This proof follows from a new intersection theorem

on the unit simplex. If the corresponding coalitional game is not balanced, the
nonemptiness oí the core of this game follows from the nonemptiness of the core of
the permutational game. In Section 5 we give a simplicial algorithm to compute a
core element of permutational games. In Section (i we make some concluding remarks.

2 Permutational games

In an n-player cooperative non-transferable utility game introduced by Aumann and

Peleg (2] each nonempty subset of players, called a coalition, can obtain any vector

out of a certain subset of R" as payoff vector. An attainable payoff vector lies in the

core of the game ií no coalition can improve upon this vector, see Aumann (1]. In
this paper we introduce a cooperative non-transferable utility game in which the set
of payoff vectors of a coalition is allowed to depend on the permutation or ordering
on a partition of subcoalitions of the players in the coalition.

The set {1,...,n} of the n players in the game is denoted by J1Í, while for
positive k the set of indices { I, ..., k} is denoted by I~;. For a nonempty subset S of JV,
called a coalition of players, let PS be a partition {S'~, ..., S~} of S into t subcoalitions
of S and let ~r(PS) -(nl(PS),...,Ai(P,`s)) denote a pennutation or ordering of the
elements of PS. In the sequel a partition into t subcoalitions is called a t-partition
and a permutation rr(PS) on a t-partition of .S is called an ordered t-partition of S.
Let PN denote the set of all ordered partitions of subsets of N, i.e.,

PN-{a(P3)I Ps-{5,,...,S,},1 ctc.s,5'CN,S~O},

where s- ISI denotes the number of elements of thr set ,5'. For some coalition S C J`í
and permutation a(PS) of a t-partition of 5', we define the n-vector m"(Psl by

ra~(P's) - 0, if j~ S
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and
m"tp`s1 - 2(t - r f 1) if E R~ P

' t(t ~ 1)s~ J ( s),

where s. - ~a,(PS)~. Observe that ~~-~ m~~Ps~ - l. Furthermore, let m denote the
vector all of whose components ate equal to n-~, i.e., m- mxtPN~.

Example 2.1
Take n- 3 and consider the ordered 2-partition rr(P{z,z}) -( {1}, {2}) of the subset

{1,2}. Then mxtPs} - (3 , 3,0)T. For the ordered 3-partition rr(PN) -( {1}, {2}, {3})

we obtain mxlP~rl -(z, 3 , e)r. The ordered 2-partition rr(PN) -({1,2}, {3}) of N

gives mxlPia) - (3 ,3,á)T and the ordered 2-partition n(PN) - ({3},{1,2}) of N

gives mxlPNl - ( s, s, 3) T. Observe that only the components j E S of the vector

mxlPsl get a positive weight, the weights of two components is equal if they are in

the same subset of the partition and that the total weight of the components in some

subset becomes greater if the subset has a higher priority in the ordering.

Definition 2.2 Permutational Game
A non-transferable utility game in permutational structure or permutational game

with n players is a function V from PN to the collection of subsels of Rn satisfying

that for every a(PS) E PN, the set V(a(PS)) C R" ás a cylinder in the sense that for

any two vectors u and v in R" with u; - v; for all i E.S. it holds that u E V(n(PS))

if and only if v E V(n(PS)).

In the sequel we denote a permutational game with n players and function V by

the pair (PN, V). We call V the payoff function of the game (DN, V). If u E
V(a(PS)) for some t-partition {Sz,...,Si} of the coalition S, the members of S can

guarantee themselves a payoff u; for member i E.S', independent of what the players

outside the coalition do, by agreeing on the permutation a(PS) of the t-partition

PS -{Sr,...,5~} of S. In case S is the grand coalitiou N, V(n(PN)) denotes the

set of payoff vectors the whole set of players can guarantee itself when the players

coordinate according to the permutation n(P~). For ease of notation we define for

any S C N the set of payoffs V(S) by V(,S) - V(a(PS)), i.e., V(S) is the set of

payoff vectors the coalition S can guarantee itself without partitioning itself into

subcoalitions.
For any permutational game (PN, V), let the function V' from the collection

of subsets of N to the collection of subsets of R" be defined by

v'(S) - ~~5~, ~xcPsl ~(~(Ps)), s c N.

Then the function V' induces a non-transferable utility n-player game in coalitional
structure, denoted by (N, V'). Observe that V(S) C V'(S), but that generally V'(S)
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is not equal to V(S). Moreover in Definition '~.'~ we allow for empty payoff sets.

Hence, it might be possible that some of the payoff sets V'(S) are also empty. In

the next example we illustrate the concept of permutional game and give also the

corresponding coalitional game.

Example 2.3
Take n- 3. Then we have to consider three subsets consisting of one player, three

subsets consisting of two players, and the grancl coalition of all the three players.

In case of a one-player coalition S-{i}, t can only be equal to 1 and we have

PS -{{i}} with payoff set V({i}) and V'({i.}) - V({i}) for all i E lV. In case

of a two-player coalition S- {i, j} we have to consider two partitions, namely the

1-partition PS -{{i, j}} and the 2-partition Py -{{i}, {j}}. The first case gives

the payoff set V(S). In the second case we have payoff sets for both permutations
~r(PS) -({i},{j}) and n(PS) -({j},{á}). So, tota.lly there are three payoff sets for

the two-player coalition, for instance

V(ij)-{xER3~3x;~2x~C6},

V(a,J)-{xER3~x;f2x;G3},

and

V(j,i)-{xER3~4x;-Fx~G4},

where V(ij) denotes V(n(P{~a})) and V(i, j) denotes V(rr(P{;,~})) `"'th a(P{~,~}) -
({i}, {j}). The set V'({i, j}) is the union over these three sets. The projection of the

three sets in the ( x;,x~)-plane is given in Figm~e 1. The shaded area in this figure is

the projection of the set V'({i,j}) in the ( x;,:r~)-plaue. For the grand coalition we

have one payoff set for the 1-partition P~r - {{i, j, k} }, two payoff sets for any of the

three 2-partitions P~ -{{i, j}, {k}} and six payoff sets for the unique 3-partition

PN -{{i}, {j}, {k}}. So, totally there are 13 payoff sets for the grand coalition in a

permutational game with three players. The payoff set of the grand coalition in the

corresponding coalitional game (JV, V') is the iuiion over all these 13 payoff sets.

The core of the corresponding coalitional game (N , V'), denoted by C(N, V'),

is as usual defined by the set of vectors u E V'(JV) such that there do not exist a

coalition S C ~V and a vector v E V'(S) such that v; ~ u; for all i. E S. Analogously

we say that a payoff vector u is in the core of the permutational game if u E V'(JV)

and there is no coalition S and permutatiou a( P; ) of a t-partition of S in which the

coalition S can improve upon u.

Definition 2.4 Core of a Permutational Game
The core oJa non-transferable utility perynutational game (PN, V) is the set oJ vectors
u E R" satisfying that u E V'(~V) and there do not ezist a coatition S with ordered
partition a(PS) E PN and a vector v E V(n(P5)) such that v; ~ u; for all i E S.



, VG,i) v(ij) v~

Figure I: Example 2.3, the projection of the payoff sets of coalition {i, j}



-6-

Observe that a core element is an element of V'(JV) because any vector u lying in
a set V(a(PN)) of some permutation of some t-partition PN of the grand coalition
is attainable and hence the payoff set of the grand coalition is not restricted to the
set V ( N). In the sequel we denote the core of a perinutational game (PX , V) by
C(PN~, V). Now we have the following lemma.

Lemma 2.5 Equivalence of the Cores
For any permutational game (PN, V) and the corrc..ponding coalitional game (JV, V')
it holds that C(PN, V)- C(N, V').

Proof.
For some u E R", first suppose u ~ C(JV,V'). Then there exists a coalition S C JV
and a vector v E R" such that v E V'(S) and v; ~ u; for all i E S. By the definition of
V'(S) this implies that there is some ordered partition n(P' ) such that v E V(~r(PS)).
Hence u ~ C(PN, V). Secondly, suppose that u~ C(P~, V). Then there exist an
ordered partition ~r(PS) of some coalition S and some vector v E V(n(PS)) such that
v; 1 u; for all i E S. By definition we have that v E V'(S). Hence u ~ C(~V,V').
Q.E.D.

3 Balanced permutational games

The core of a non-transferable utility permutational game might be empty. How-
ever, it will be shown that the core is nonempty if the permutational game sat-

isfies some balancedness condition and every set V(~r(PS)), a(PS) E~N, is com-
prehensive, closed and bounded from above in its projection space Rs defined by
Rs -{(x;);ES~z E R"}. The balancedness conclition differs from the well-known
concept of balancedness of coalitions, in the sequel to be called coalitional balanced-
ness. In this section we introduce the concept of pennutational balancedness for

ordered partitions of coalitions and define the related concept of a permutationally
balanced game. Moreover we show by an example that permutational balancedness
of the permutational game does not imply coalitional I,alancedness of the correspond-
ing coalitional game. Since it will be proved in Section 4 that balancedness of the
permutational game is sufficient for the nonemptiness of the core, it also follows that
it is sufficient for the nonemptiness of the core of a coalitional game induced by a
permutational game that the underlying perinutational game is balanced.

Definition 3.1 Permutational Balancedness
A family P- {nl(PS; ), .. ., ak(PS; )} of k ordered partitions irz PN is permutationally

óalanced if there exist positive numbers ~~, j - 1, ..., k, such lhat

k x~~P~~ 1
~ ~~ m s, - m.
~-i
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Permutational balancedness of a family P - { n' ( PS; ), ..., nk( PS; )} of k ordered

partitions in PN can be interpreted as follows. In the ordered partition a'(PS,) -

(~i(Ps~)~~-.~~i,(PS;)), 1 E {1,...,k}, the power or weight of subcoalition ah(PS`',)

is a fraction '' tn}1
of the power of subcoalition n~(PS; ) , while the total weight of a

subcoalition is equally divided over the members of the subcoalition. This is reflected

in the vector mx'lPs~l. Now the family P is permutationally balanced if the ordered

partitions ~r~(PS,), j - 1,...,k, can be assigned weights a~ in such a way that

the total power of every player i E J~i is the same and therefore equal to m; -~n-
Geometrically it means that ~ is permutationally balanced if and only if the vector m

lies in the convex hull of the vectors mx'lPs~ ~, j- l, ... , k. Notice that in Definition

3.1 it must hold that ~~-, a~ - 1.

Example 3.2
Take n - 3. Then the family {~r', a2, n3} of two ordered 2-partitions and one 1-
partition given by nl -( {1}, {2}), ~rZ - ( {2}, {:3}) aud ~r3 -( {3}) is permutationally

balanced. Since m~' -(3, 3,0)T, m~' -(0, 3, 3)T and mx' -(0,0, 1)T, this family

is permutational balanced with weights a~ - 2, ~2 - 4, and a3 - 4. Observe that
the ordered 2-pattition ({1,2}, {3}) of ~V is permutationally balanced, but that the

family of the ordered 2-partition ({1}, {2}) and the ordered 1-partition ( {3}) is not

permutationally balanced.

In case P is a family of 1-partitions we have that n'(Ps;) -(.5') and hence the

system of equations in the balancedness condition reduces to

k
,

~~~m -m,
~-t

with mh' - ~5,~ if h E S~ and mh' - 0 if 1a ~ S', which is equal to the well-

known concept of coalitional balancedness of the family of subsets {S', ..., Sk} of
N. Therefore, the concept of permutational ba,lancedness contains the concept of
coalitional balancedness for a family of 1-partitions as a special case.

Definition 3.3 Balanced Permutational Game
A non-transferable utility permutational game (DN, V) is permutationally balanced
if for every permutationally balanced family P-{ n' ( PS; ), ..., nk(PS; )} of ordered
partitions in ?~N it holds that

~k-,V(~'(Ps.)) ~ V'(N)-

In the sequel we speak shortly about a balanced permutational game and a
balanced coalitional game if we mean a permutationally (respectively coalitionally)
balanced non-transferable utility permutationa.l (respectively coalitional) game. For
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a given permutational game (PN,V) any vector ín the set V'(S) is attainable for
coalition S. Since V(S) C V'(S), and generally V'(S) ~ V( S), the induced coalitiona]
game (~V, V') need not to be coalitionally balanced if ( ~N, V) itself is permutationally
balanced. This fact is shown in the next exainple.

Example 3.4
Take n - 3 and define the permutational game (PN, V) by

V(i)-{xER3~x;G0},i-1,2,3,

V(1,2)-{xER3~2x1fxZG3},

and

V(2,1)-{xER3~x,~2xzG3},

where V(i) denotes V({i}) and V(i, j) denotes V(({i}, {j})). Furthermore,

V(N) - V(3) n V(1,2) n V(2, 1),

and
V(~r(PS)) - 0, otherwise.

Observe again that we allow for empty payoff sets. The corresponding coalitional
game is given by

V'({i}) - V(i), i - 1,2,3,

v'( { l, 2}) - v(1, 2) u v(2,1) u v({ 1, 2} )- v(1, 2) u v(2, 1),

since V({1,2}) - 0,

V'({1,3}) - V'({2,3}) - 0,

and
V'(N) - V(N).

The projection of the sets V(1, 2) and V(2, 1) on the (x~, x~)-space is given in Figure 2.
The shaded area in this figure is the projection of the set V({1,2,3}) - V'({1,2,3})

on the ( x~,xz)-space. Both the permutational ga.mr (~N,V) and the coalitional

game (N,V') have the point ( 1, 1,0)T as thi~ uniqu~. corc clemcnt. For the permu-
tational game this point lies in V(JV) and there is uo coalition having an ordered

partition through which the coalition can improvP upon this outcome. The coali-
tion { 1, 2} can improve on each other point in V(N) through the ordered 2-partition
({1},{2}) or the ordered 2-partition ({2},{1}). Also for the coalitional game the
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outcome ( 1, 1, 0)T is the unique element of V'(N) on which the coalition {1, 2} can-
not improve upon. Clearly the coalitional game is not balanced, since the family of
coalitions {1, 2} and {3} is coalitionally balanced, whereas the point x-(i, 2, 0)T
lies in V'({1,2}) fl V'({3}) but not in V'(N). On the other hand the permutational
game is permutationally balanced. In fact there are only four relevant families of
ordered partitions to consider, namely the family of the three ordered 1-partitions
({1}), ({2}), ( {3}), the family of two ordered 2-partitions and one ordered 1-partition
({1}, {2}), ( {2}, {1}), ( {3}), the family of one ordered 2-partition and two ordered
1-partitions ( {1}, {2}), ({2}), ( {3}), and the family of one ordered 2-partition and
two ordered 1-partitions ( {2}, {1}), ({1}), ({3}). For each of these famílies we have
that the intersection of the sets of payoffs of the members of the family is a subset
of V'(N), for instance V(1, 2) fl V(2) fl V(3) C V'(N). For all other permutationally
balanced families we have that the intersectiou of t.he~ pa.yoff sets of the members of
the family is empty and hence is a subset of V'(~V ).

4 Nonemptiness of the core of a balanced permu-
tational game

In order to prove the nonemptiness of the core of a balanced permutational game we
first introduce an intersection theorem on the (n. - 1)-dimensional unit simplex S"
defined by

n

S"-{zER.}~~2j-I}.
j-1

In this theorem the simplex S" is covered by closed subsets CxlPsl, ~r(PS) E PX,
satisfying some boundary condition. Under this rondition there exists a balanced
collection of permutations for which the correspouding subsets of S" have a nonempty
intersection.

Theorem 4.1
Let {CxlPsl ~ a(PS) E PN} be a collection of closed sets covering S" satisfying that
if x lies in the óoundary of S" and z E C~1N51, f.heia S C{i E In ~ x; ~ 0}. Then
there is a permutationally balanced Jamily P-{nl ( PS; ), ..., ak(PS;)} oj k ordered
partitions in ~N jor which it holds that

~~ ~~
~;-, C. PS,1 ~ 0.

Proof.
For any ordered partition a(PS) E~N, definr thr~ vc ctor cx~~sl - rn - m~lP`sl. For
x E S", define the set F(x) by

F(x) - Conv(c'~Psl ~ x E C"~P51}),



Figure 2: Example 3.4, balanced permutational game



-ll-

where Conv(X) denotes the convex hull of a set X C R". Clearly, for every x E S",
the set F(z) is nonempty, convex, and compact. Moreover, U~ES"F(x) is bounded
and F is an upper hemi-continuous mapping from the set S" to the collection of
subsets of the set Y" defined by

Y"- {yER"~mTy-Oandy;?-1 fori- 1,...,n}.

Both sets S" and Y" are nonempty, convex, and runipact. Next, IeL G be the mapping
from Y" to the collection of subsets of S" defined by

G(y) -{x E S" ~ x'Ty G xTy for every x' E S"}.

Clearly, for every y E Y" the set G(y) is nonempty, convex, and compact, and G is
upper hemi-continuous. Hence:, the mapping H from the nonempty, convex, compact
set S" x Y" into the collection of aubsets of S" x Y" defined by H(x, y) - G(y) x F(x)
is upper hemi-continuous and fot every (x, y) E S" x}''", the set H(x, y) is nonempty,
convex, and compact. According to Kakutani's fixed point theorem the mapping H
has a fixed point on S" x Y", i.e., there exist x' E S" and y' E Y" satisfying
y' E F(x') and x` E G(y'). Let ~- z"Ty", then z' E G(y') implies y; - a' if
x; ~ 0 and y; C~ if x; - 0. On the other haud, y' E F(x") implies there ex-

ist nonnegative numbers ai,...,ak satisfying ~~-~ a~ - 1 and y' -~~-~ a~c''IPs~I,

where ~r~(PS,), j - 1,...,k, are such that z' E Cx'~P51~. Without loss of generality
we may assume that a~ ~ 0 for every j - 1, ..., k. We now show that y' - 0 and

hence that the collection {x~(PS;),...,xk(Ps;)} is perinutationally balanced. Since
by definition of the set Y", mTy' - 0, we obtain that a' 1 0. Moreover, by the
boundary condition we have that x; - 0 implies that i~ S~ for every j- 1, ..., k,

and so y; -~~-1 ~jn-~ ~ 0. Therefore, 0 C y; G a" if x; - 0 and y; - cY' 1 0 if
x; ~ 0. Since ~~-1 y; - 0, this implies that x; 1 0 for every i E I" and ot' - 0.

So, y' - Q. Consequently, {a~(PS;),...,ak(Psk)} is permutationally balanced. Since
v

x' E f1~-~C'~~PS~~, this completes the proof. Q.E.D.

By applying this intersection theorem we can prove the nonemptiness of the core of
a balanced permutational game.

Theorem 4.2
A non-transferable utility permutational game (PN, V) has a nonempty core if
i) the set V({i}) is nonempty and the sef {x; ~.r E V({i})} is óounded from above
for every i E N,
iiJ the game is permutationally balanced,
iii) for every a(P,`s) E PN, the set V(a(PS)) is comprehensive and closed, and the
set {(z;);ES E Rs ~ x E V(~r(PS)) and x; 1 max{y; ~ y E V({i})} for all i E S} is
bounded.
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Proof.
Without loss of generality we may assume that 0 E V({i}) for any i E JV. To prove
the theorem we define a closed covering {Cx~Psl ~ n(PS) E PN} of S" satisfying the
conditions of Theorem 4.1 and show that an intersection point of a permutationally
balanced collection of these sets induces an eleinent in the core of the game. For
given M ~ 0 and for any x E S", let the number ar be determined by

a~ - max{~ E R ~ -Mx f am E Ux~ps~ETniV(a(Ps))}.

Since 0 E V({i}) and because of iii), for every M 1 0, ~r exists for any x E S".
Moreover, by the boundedness condition, M~ 0 can be chosen so large that for
every i E I„ and x E S", x; - 0 implies that i ~ S for any S satisfying -Mx f a~m E
V(~r(PS)). Now, for a(PS) E PN we define

CxlPsl -{x E S" ~-Mx t~~m E V(a(P3))}.

Since every V(~r(PS)) is closed and comprehensive, the collection of sets {C'lP`sl ~a(PS)
E PN} is a collection ofclosed sets covering the simplex S", and satisfying the bound-
ary condition of Theorem 4.1. Hence there is a balanced family P-{rrl(PS,),...,

ak(PS;)} of elements of PN such that f1~-~Cx'~Ps~~ ~ 0. Let x' be a point in this

intersection, so x' E Cx'lPs~ 1 for j - 1, .. . , k. Since the game is balanced we have
that f1~-~V(a'(PS,)) C V'(JV) and hence u' - -Mr' f a~.m E V'(~V). Now, sup-
pose there exist a vector v E R", a coalition S, and an ordered partition ~r(PS) E P~
such that v E V(~r(PS)) and v; ~ u; for all i E.S. Since V(a(PS)) is comprehen-
sive and cylindric, there is a p 1 0 such that u' f pna E V(a(PS)). Howevet, then
-Mx' f(~~. f~)m E V(~r(PS)), which contradicts that -Mx` f am ~ V(a(PS))
for any a~ a~.. Hence u' E C(DN,V). Q.E.D.

5 Computation of a core element of a balanced
permutational game

In this section we discuss how an element of the core of a balanced permutational
game can be approximated. For a game (DN, V), let C~lPsl be defined as in the proof
of Theorem 4.2. Let y be an arbitrary point in the relative interior of S" and for
T C I,,, T~ I,,, let the subset A(T) of S" be defined by

A(T)-{xES"~x-y~~a;(y-e(i.)), a;~OforalliET},
iET

where for i E I,,, e(i) is the ith unit vector in R". Since y~ 1 0 for all j E I,,, the
dimension of A(T) equals t- ~T~. Notice that A(~) -{y}. The vector y will be the
starting point of the algorithm.
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Now, let S" be subdivided into ( n - 1)-dimensional simplices such that every
aubset A(T), T C I" with t ~ n, is triangulatc,d into t-dimensional simplices. A
simplicial subdivision of S" that can eavily be implemeuted on the computer is the
V-triangulation with arbitrary me.~sh size proposed in Doup and Talman [3]. Let x
be an arbitrary vertex of a simplex in the underlying simplicial subdivision. Then
we labcl x with the n-vector f(x) equal to I(ar) - m - m"tPs~, where a(PS) E PN
is such that x E C"tPsl. If x lies in more thau oue set we choose one of them. Let
the t-simplex o(w', ..., w't' ) be a t-dimensional simplex of the simplicial subdivision
with vertices wl, ..., w`t'. Then Q is called T-complete for some T C I", t~ n, if
the system of linear equations

` ` ` 1c~ ~j ( 1(~) ) f L I~A I e ~h) ~- Q I ~~ ~- I Q~ ()
j-1 AQT

has a solution (a', p', Q`) -(a~, ... , Jci~l, ph, h~ T, ~3') satisfying a~ ~ 0 for all
j E Ict~ and ph ? 0 for h~ T. We assume that for any some t-dimensional simplex o
in A(T) the system ( 1) is nondegenerate ( if necessary by perturbing the system), i.e.,
ií (1) has at least one feasible solution for souie siuiplex o(w' ,..., wct' ) in A(T), then
the system has a whole line segment of feasible solutions (a, p,Q) with at each of the
end points exactly one of the variables in (~, fe) bc.ing zero. Notice that the system
(1) has n j- 2 columns and n~ 1 rows. In case at an end point of a set of feasible
solutions to (1) it holds that aA - 0 for some h E ~~ti , then also the facet r(wr,...,
wA-I,wAti, ... ,wttr) opposite the vertex wA is ca.lled T-complete. A t-simplex in
A(T) can have at most two T-complete facets and a T-complete facet in A(T) is a
facet of either two t-simplices in A(T) or líes in the boundary of A(T) and is facet of
just one t-simplex in A(T). Now, let us considrr the T-complete t-simplices in A(T)
for some given T C I". They form sequences of adjacent t-simplices with T-complete
common facets in A(T). Such a sequence is either a loop or has two end simplices.
An end simplex a of a sequence in A(T) is either a t-simplex having a solution to
(1) with pk - 0 for some unique k~ T or is a. t-simplex with a T-complete facet r
lying in A(T ` {h}) for some unique h E T. In the latter case we have that r- {y}
if T- {h} and otherwise r is an end simplex of a sequence of adjacent (T `{h})-
complete ( t - 1)-simplices in A(T `{h}). NoticP tliat r cannot lie in the boundary
of S" because x E C'tPsl implies that S C {i E I" ~ x; ~ 0}. In the first case o
is an end simplex of a sequence of adjacent (T U {k})-complete (t .} 1)- simplices
in A(T U {k}), unless T- 1" `{k}. If T U{k} - I", let K-{j E I" ~~~ ~ 0}

at the corresponding solution of the system ( 1), and for j E Ií let ~rj(PS, ) be the

element of PN such that 1(ur') - m- mx'tPS~t, so wj E C'~tps~t. Clearly, the family
of permutations {aj(PS;), j E K} is permutationally balanced. Therefore the vector
u' --Mx' t a:~m withx' -~jEK aw~ can be considered to be an approximating
core element of the permutational game.

By linking the sequences of t-simplices in A(T) with common T-complete
facets together as described above, there exists a sequence of adjacent simplices of
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variable dimension having T-complete facets in common in A(T ) for varying T C I",
connecting the starting point y with a point x' correspponding to an approximating
core element. This sequence can be followed by alternating (lexicographic) pivot
steps in system ( 1) and replacement steps in tlie i,nderlying simplicial subdivision of
S". If the accuracy of approximation at x' is not satisfactory, the algorithm can be
restarted at x' with a finer simplicial subdivision. Within a finite number of steps
any a priori chosen accuracy can be reached.

6 Concluding remarks

In this paper we introduced permutational games a.nd proved that the core of such
a game is nonempty if the game is permutationall,v balanced. This concept of bal-
ancedness is a generalization of the well-konown concept of balancedness of coalitions.
Analogously the existence result concetniug the none,nptiness of the core is more gen-
eral than for games in coalitional structure. A game in coalitional structure is a special
case in the family of games in permutational structure. Indeed, when V(~r(PS)) -~
for every t 7 2 then the permutational game is a gaine in coalitional structure and
permutational balancedness coincides with coalitional balancedness. Moreover, a bal-
anced permutational game is also coalitionally balanced with respect to the sets V(S),
S C ~V. However, the corresponding coalitional gaine (,Ar, V'), obtained by defining
the payoff set V'(S) of coalition S as the union of all payoff sets of the ordered par-
titions of S in the permutational game, neccl not tu bc coalitioually balanced. Since
a permutational game and its corresponding coalitioual game óave the same core, it
follows that permutational balancedness of thc undPrlying permutatioual game is a
sufficient condition for the nonemptiness of thc corc of the corresponding coalitional
game.

Intersection Theorem 4.1 is a generalization of the well-known intersection
theorem of Shapley [10], [ll], in which only sets ('y are defined for coalitions S C JV.
We notice that the boundary condition of this intersection result can be relaxed by
applying a general intersection result given in vau der Laan, Talman and Yang [5].
Instead of assuming that for every boundary point x E S" we have that S C{i E
I" ~ x; ~ 0} if x E C~lPsl, it is sufficient to assiune that for every boundary point
x there is at least one permutation a(PS) E PN such that S C {i E 1" ~ x; ~ 0}
and x E C~lPsl. This allows that there are also pPrmutations ~r(PS) E PX such that
x E C'~Psl but not S C{i E 1" ~ x; 1 0}. This is stated in the fol]owing theorem.

Theorem 8.1
Let {C~lPSI ~ n(PS) E PN} be a collection oj clnsed sets covering the simplex S"
satisjying that for every T C I", it holds that {x E S" ~ x; - 0 for all i E T} C

11sct„`r Ux1Ps1C'lP`s1. Then there és a balanced jarnílyT - {R~(PS;),...,Ak(PS;)}

of elements of PN for which f1~-~Cx'lps~~ ~ 0.
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The proof of this theorem follows by applying the Maiu Theorem in [5].
Finally we point out that there are many ways to define the weights of the

players for an ordered partition of a given coalitiou. For example, for a given permu-
tation rr(PS) E PN, we could define the n-dimr~usioual power vector m"~P's) by

m~~PSI - O, if j~ S

and
t'-r t f 1 r-'

m~~P's) - ~ (~-r( ) )1-h, if,7 E ~,(Ps),
~h-r sht t t 1

~(P:1where sh - ~~rh(PS)~. It is easily seen that ~~'-~ nz~ - 1. In this case we always

have that mk~Psl 1 m~~Psl for any k E R;(PS) aud l E n~(PS) if 1 G i G j G t. This
implies that every member in a higher ranked subcoalition has more power than any
member in a lower ranked subcoalition. Notice however that this has consequences
in forming permutationally balanced families and Irence on the fact whether or not
a game in permutational structure is permutationally balanced. Since the core of a
game does not depend on the definition of the power vectors, this implies that for the
nonemptiness of the core ofa permutational game it is sufficient to have permutational
balancedness with respect to some arbitrary set of power vectors. Notice that if we
take m'lP`sl - ms for every rr(PS) E PN, then the permutational game is balanced
with respect to these constant vectors (with respect to S) if and only if the induced
coalitional game is balanced. Hence, an incluced coalitional game being balanced
implies that the original permutational game is permutationally balanced with respect
to some collection of power vectors. Clearly, the other way around is not true, i.e., a

coalitional game induced by a balanced perinritational game may not be coalitional
balanced.
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