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Correcting Fallacies in Validity,
Reliability, and Classification

Klaas Sijtsma
Tilburg University, Tilburg, The Netherlands

This article reviews three topics from test theory that continue to raise discussion and
controversy and capture test theorists’ and constructors’ interest. The first topic con-
cerns the discussion of the methodology of investigating and establishing construct
validity; the second topic concerns reliability and its misuse, alternative definitions
of reliability, and methods for estimating reliability; and the third topic concerns the
relationships between reliability, test length, and the insufficient quality of decision
making using short but reliable tests.

INTRODUCTION

Over the past century, starting with the work by Edgeworth, Spearman, and Binet,
psychological test theory has shown an impressive growth. This growth is visible
in the expanding psychometric theory that guides the construction of tests and
also in the huge number of tests constructed using psychometric methods. The
classical themes in test theory have been and continue to be validity and reliability.
A test is valid if it measures the attribute of interest and reliable if it measures this
attribute with high precision.

In this review article, I focus on three different topics. The first topic concerns
the status of psychological attributes and the methodology of investigating and
establishing construct validity; the second topic concerns reliability and present
practices of estimating reliability and alternative approaches to reliability; and
the third topic concerns the relationships between reliability, test length, and the
insufficient quality of decision making using short but reliable tests. Each topic
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168 SIJTSMA

is important enough to warrant a separate article. However, the topics are con-
nected in more than tangential ways and, moreover, by the continued importance
for test theory and test construction. This justifies discussing them in the same
article.

The first topic, construct validity, has proven to be difficult perhaps mostly
because of the unclear status of the psychological attributes a test purports to
measure. Presently, the dominant conceptions seem to be realism, which claims
that attributes exist as real entities; constructivism, which considers them as con-
structions only to be known through samples of behavior; and rationalism, which
equates them to what the test measures. The dominant methodology of the past
decades, which was the investigation of the attribute’s nomological network, has
led to some frustration among researchers because in principle this methodology
implies an endless array of research projects, which threatens to result in indeci-
siveness with respect to construct validity. Several suggestions on how to solve
this problem have been recently made. I will discuss some of these suggestions
and prompt one in particular.

The second topic, reliability assessment, is not so much difficult but instead
fascinates because of the persistence with which psychological researchers ignore
useful information on reliability use. This information has been around in the
psychometric literature for a long time but somehow is not picked up well. For
example, even though it has long been known that coefficient alpha is not suited
for evaluating a test’s internal consistency, textbooks keep promoting this use of
alpha. In addition, despite being almost the worst reliability estimate available,
alpha remains by far the most used estimate. I will reiterate the arguments against
the internal consistency use of alpha and suggest other methods for estimating a
test’s reliability. In addition, I will briefly discuss reliability estimation by means of
generalizability theory and structural equation modeling, which seem to introduce
validity issues into reliability assessment. The question is whether one should
blend matters of validity and reliability or separate them.

The third topic is the growing popularity of short tests consisting of say, only
ten items, for decision making about individuals. Short tests are used because they
relieve the burden on patients, little children, and impatient clients and managers
that is caused by longer tests, and the short tests’ use is justified because their
test scores often have surprisingly good reliability provided that only high-quality
items are used. However, even with the best items available, using only a small
number of items will necessarily result in relatively large error variance at and
around the cut-score used for decision making. I will show this and argue that
important decisions require long tests.

Much as the three topics seem different, they also touch and even mingle in
interesting ways. Validity enters reliability assessment when coefficient alpha is
interpreted as an index for internal consistency and when generalizability theory
or structural equation modeling are used to estimate coefficients. Generalizability
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CORRECTING FALLACIES 169

theory assesses the degree to which test scores can be repeated, for example,
across different item formats, assessment modes and time points, and structural
equation modeling assesses repeatability, for example, across the common factor
shared by all items but not across other systematic score components such as group
factors. An important question then becomes whether reliability must be limited
to repeatability of test performance except random measurement error (classical
true-score theory), or whether considerations regarding generalizability beyond
the test (generalizability theory) or wanted and unwanted systematic components
of the true score (structural equation modeling) should be allowed to become
issues in reliability.

In classification of people in important diagnostic categories, short but reliable
tests are seen to have relatively large standard measurement errors and, conse-
quently, wide confidence intervals for true scores, which cover a large segment of
the (short) scale. This results in large proportions of classification errors, which
reduce the importance of a high reliability and advances the use of confidence
intervals for true scores. Large proportions of classification errors render short
tests doubtful for individual diagnosis.

A consequence of the problems mentioned is that test construction and test
practice are plagued by bad habits. Construct validity is often ascertained by
means of highly exploratory research strategies and is in need of more direction;
reliability is often estimated using one of the worst methods possible and is given
an incorrect interpretation; and due to practical testing demands short tests are
becoming increasingly popular, but their use results in many more classification
errors than the use of longer tests. Progress in test theory, both in the development
of psychometric methods and their practical use in test construction, is slow. Not
only are several validity and reliability issues unresolved or at least continue to be
at the center of much debate, novel insights also seem to have trouble finding their
way to the community of psychological researchers; see a recent discussion on
this theme by Borsboom (2006a, 2006b) and Clark (2006), Heiser (2006), Kane
(2006), and Sijtsma (2006). The main goal of my review is to critically discuss
some present-day ideas and practices and to suggest alternatives.

ATTRIBUTES, CONSTRUCT VALIDITY, AND CHOOSING
THE RIGHT METHODOLOGY

I will use the term “attribute” to represent mental properties such as verbal ability,
spatial orientation, and anxiety. Three perspectives seem to capture present-day
thinking on the status of, say, attribute A, and the way the validity of a measurement
instrument for attribute A is ascertained. I will not discuss the different uses of a
particular measurement instrument for attribute A and how these different uses are
validated; see the Standards for Educational and Psychological Testing (AERA,
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APA, & NCME, 1999, p. 9; also Messick, 1989) for a discussion on the need of
separately validating these different uses.

The Constructivist Viewpoint: Attributes as Constructions

The constructivist viewpoint is that cognitive abilities and personality traits are
constructed in an effort to better understand human behavior. This view implies that
attributes are products of the psychologist’s imagination and that they do not exist
in reality (Nunnally, 1978, pp. 94–109). In addition, human behavior is the source
of inspiration of theorizing about attributes. Thus, attributes are the offspring of
observable behavior and not the other way around: attributes are not the cause of
behavior. We are deeply inclined to think about our behavior in terms of cause-
effect schemes. Anxious behavior is caused by anxiety and intelligent behavior
by intelligence. In the constructivist view, anxiety and intelligence are convenient
constructs that serve to delineate sets of behaviors that hang together and are differ-
ent from other sets of behaviors. Theories about attributes explain which behaviors
hang together and why and also how an attribute relates to other attributes.

Like any theory, the theory about an attribute starts out as an idea, which, in its
initial state, is just as immaterial and volatile as other ideas. The more thought the
researcher gives to the attribute the more likely his ideas about the attribute will
transform into a theory that links the attribute to other attributes, speculates about
the relationships between them, and relates the attribute to behavioral correlates.
When the theory of the attribute has gone through several stages of develop-
ment, including logical reasoning, critical observation of people’s behavior that
is assumed to be typical of the attribute of interest, and empirical research on
(particular aspects of) the attribute, it may be possible to formulate hypotheses
about these behaviors. The hypotheses predict which behaviors hang together as
correlates of the attribute of interest, how the behaviors relate to behaviors typical
of other attributes, and how the manipulation of typical behaviors can affect other
typical behaviors. Such hypotheses can be tested empirically, and the results may
lead to the support or the adaptation of the theory of the attribute.

The constructivist approach to construct validation rests on theory testing,
and Nunnally (1978, pp. 98–105) gives a precise description of the process of
investigation. In their classical approach to construct validation, Cronbach and
Meehl (1955) place the test at the heart of a nomological network, which plays
the role of the attribute’s theory. The nomological network consists of laws that
relate attributes to one another and to observable properties. These laws are tested
empirically as hypotheses about the relationships of the attribute of interest with
the other attributes in the network using test scores to represent each but also
by testing group differences with respect to test scores, score change over time,
and the internal structure of the items in the test. In this conception of construct
validity, attributes are constructs that may be adopted, not demonstrated to be
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CORRECTING FALLACIES 171

correct, let alone discovered, and the inferences made by means of the test are
validated but not the test itself (Cronbach & Meehl, 1955; also AERA, APA, &
NCME, 1999).

The practice of construct validation often is different from the ideal just de-
scribed in that theory testing regularly is replaced by ad hoc collecting results on
some branches in the nomological network, devoid of a guiding theory. Thus, one
often sees that test constructors start with a set of items based more on habit and
intuition than on established theory guiding the choice of these items and then
work backward to find meaning for the test scores. In this process, knowledge of
the test score’s interpretation accumulates gradually as more relationships with
other attributes and background variables such as age and educational level are
clarified. Although aspects of this validation strategy are not unlike what one reads
in Cronbach and Meehl (1955), replacing theory testing by exploration and ad hoc
correlating variables, which happen to be available, may not be the spirit these
authors encouraged. It certainly weakens the conclusions compared with those
based on a confirmatory approach.

Several researchers (e.g., Borsboom, Mellenbergh, & Van Heerden, 2004;
Embretson & Gorin, 2001) have noted that investigation of the nomological net-
work does not aim at revealing the processes, cognitive or otherwise, that were
stimulated by the items and led to the item scores. They consider knowledge of
these processes to be crucial for establishing a test’s construct validity and notice
that the process of validation through the nomological network leaves open the
possibility that these processes remain terra incognita. Even though I think it
would be possible to include the study of processes generating item scores into the
nomological network, Embretson and Gorin (2001) seem to be less hopeful and
argue that Cronbach and Meehl’s (1955) methodology precludes the possibility to
learn about the cognitive theory underlying item performance.

Finally, it may be noted that the constructivist view leaves an undeniably un-
satisfactory feeling about the status of attributes; however, this is not to say that
the view is wrong. The dissatisfaction originates from the shaky foundation of
constructs, which is the mind of the psychologist. This foundation, or perhaps
the lack of it, conveys a kind of arbitrariness to the status of cognitive abilities
and personality traits. For many people it probably is more convenient to think
of attributes as real entities waiting to be discovered. When it comes to the def-
inition and the measurement of constructs, one feels a little like the baron Von
Münchhausen, who pulled himself out of a swamp by his bootstraps. The next
section discusses the realist conception of attributes.

The Realist Viewpoint: Attributes as Real Entities

The realist view assumes that mental attributes are real entities. I will take the
recent and notable approach proposed by Borsboom et al. (2004) as an example.
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172 SIJTSMA

These authors adopt realism as their point of departure for outlining an approach
to validity research. Briefly, they posit that the measurement of an attribute by
means of a test is valid if the attribute exists and if variations in the attribute
cause variations in the measurement outcomes of the test. The authors claim that
the realist viewpoint agrees with how many psychologists would define construct
validity, which psychologists say is about the question whether a test measures what
it should measure, but is at odds with much practical validity research, which rather
seeks to ascertain the meaning of the test scores, not what the test measures, after
the instrument has been constructed and the data have been collected. Borsboom
et al. (2004) consider this latter approach typical of the test validation practice that
was advocated if not at least stimulated by Cronbach and Meehl (1955).

Given the realist assumption about attributes, Borsboom et al. (2004) argue in
favor of validity investigation that tests the psychological theory of the attribute
of interest. This investigation starts with knowing what one wants to measure,
and then constructing the set of items that elicit the cognitive processes, which
produce the responses to the set of items and the differences between people in
response propensity to these items. The resulting sets of item scores are to be the
topic of meticulous validity research that has the study of the cognitive processes
at its focus. This can only be done when a theory of the attribute is available to
such detail that the test can be constructed as a manifestation of the structure of
this theory and the item scores can be considered as the result of the cognitive
processes involved. Advanced psychometric modeling of the item scores collected
by means of the test is then used to test the attribute theory. When the psychometric
model fits the data, the theory is supported and measurement is valid. Borsboom
et al. (2004) notice that a fitting model may not settle all loose ends of a theory,
but the principle stands clear.

As an example, Borsboom et al. (2004) mention the measurement of cognitive
development by means of the well-known balance scale task (Jansen & Van der
Maas, 1997; Siegler, 1981; Van Maanen, Been, & Sijtsma, 1989). Balance scale
tasks are based on a theory of developmental phases, each of which is characterized
by typical solution rules. As development progresses and children move into the
next phase, they adopt new rules for solving balance scale tasks. Assuming that
the theory is true and that the test consists of items that elicit responses that are
informative about the developmental phases posited by the theory, a child’s test
score reveals his/her level of cognitive development. Jansen and Van der Maas
(1997) used latent class modeling to demonstrate that the data structure predicted
by their balance-scale test corresponded with the empirical data structure. Hence,
according to the realist viewpoint they demonstrated that their test is valid (give or
take a few loose ends). Other examples of test construction and theory testing that
are subsumed under this validation strategy concern the measurement of verbal
ability (Janssen & De Boeck, 1997), spatial ability (Embretson & Gorin, 2001),
and perceptual classification (Raijmakers, Jansen, & Van der Maas, 2004).
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CORRECTING FALLACIES 173

Another example used later on in this section comes from the measurement
of the developmental attribute of transitive reasoning (Bouwmeester & Sijtsma,
2004). Here, the item set used was the result of longstanding research (e.g., see
Verweij, Sijtsma, & Koops, 1999, for an earlier attempt). This research eventually
led to the testing of three competing theories of transitive reasoning by fitting
three multilevel latent class models to the item response data, each model re-
flecting the formal structure of one of these theories (Bouwmeester, Vermunt, &
Sijtsma, 2007). It was concluded that fuzzy trace theory (Brainerd & Kingma,
1984; Brainerd & Reyna, 2004) better explained the data structure than Piaget’s
operational reasoning theory (Piaget, 1947) and Trabasso’s linear ordering theory
(Trabasso, 1977). (To avoid confusion, it may be noted that the word “fuzzy” refers
to the level of detail of information processed cognitively, not to mathematical ter-
minology.) Given this result and following Borsboom et al.’s line of reasoning, a
test for transitive reasoning is valid when its items elicit responses that are infor-
mative about the cognitive processes described by fuzzy trace theory. Hence, by
showing that fuzzy trace theory explains the data structure, Bouwmeester et al.
(2007) demonstrated construct validity for their transitive reasoning test.

Thus, the theory of the attribute is the driving force behind test construction,
and the validation of the test resides in showing that the theory adequately predicts
the responses to the items in the test. If the theory has been shown to do this, the
measurement of the attribute is valid.

The Evolution of Theory and the Role of the Nomological Network

Taken as a forceful plea for theory development as the basis of test construction and
measurement, Borsboom et al.’s (2004; also see Borsboom, 2005) view is highly
valuable (also, see Embretson, 1983; Embretson & Gorin, 2001). It promotes a
mentality of taking the attribute’s theory as point of departure for test construction
and testing hypotheses to challenge the theory. By doing this, it also takes a
powerful stand against exploratory research using preliminary sets of items chosen
primarily on the basis of habit and intuition and then claiming that correlations
between these items provide evidence of the measurement of an attribute. It is
different from approaches like Nunnally’s (1978) by asking proof that indeed the
test produces measurements that are the result of particular cognitive processes and
reflect individual variation regarding these processes. This limitation to cognitive
processes also limits the approach, as I will point out shortly.

I also think that Borsboom et al.’s approach does not necessitate considering
attributes as real entities waiting to be discovered. The realist assumption seems
to ignore how psychological theories about attributes in general originate and
develop. Attributes initiate as the result of observing behavior and noting that some
behaviors occur together more often than others and seem to have characteristics in
common that they do not share with other behaviors. In daily life, such observations
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are often unstructured if not haphazard but in psychology the observer, once
triggered by a particular phenomenon, will look more closely and purposefully.
This will lead him to set up a theory and test hypotheses on real data, which in
turn will not only affect the theory but also the conception of the attribute.

Thus, following their origin, attributes seem to be constructions that serve to
summarize related behaviors, and setting up and testing a theory then amounts
to demarcating the set of behaviors. For attributes such as abilities, the set of
behaviors may be broadened to include cognitive processes, and in the personality
domain the broadening may involve affects and emotions. I am not saying that overt
behaviors, processes, affects, and emotions just happen without any causation (e.g.,
when faced with a tiger a person may show certain fearful behaviors), only that
observers see behavior and infer attributes from behavior, not the other way around.

To illustrate this position, I will further discuss the development of transitive
reasoning. Initially, transitive reasoning was equated with logical reasoning on
the basis of memory of premises (Piaget, 1947): Given the premises that stick
A is longer than stick B, and stick B is longer than stick C, the child is capable
of transitive reasoning when he can correctly infer from the memorized premise
information that stick A is longer than stick C. In the next step of theory develop-
ment, linear ordering theory (Trabasso, 1977) replaced logical reasoning, typical
of Piaget’s operational reasoning theory, with the formation of an internal repre-
sentation of the linear ordering of the objects. For example, in a 5-object task, given
an ordered presentation of the premises (e.g., consecutive premises contain longer
sticks), an ends-inward internal representation identifies the first presented object
A as the shortest and the last presented object E as the longest and interpolates the
other objects in between. Given that such internal representations are available,
children were assumed to be able to infer the unknown transitive relation by reading
the internal representation from memory rather than by using rules of logic.

More recently, fuzzy trace theory has brought the insight that incoming in-
formation is encoded and reduced to the essence in so-called traces, which may
differ in degree of detail. Verbatim traces contain exact information, and gist traces
contain fuzzy, reduced, pattern-like, information that only holds the gist. Different
verbatim traces and different gist traces exist next to one another, and incoming
information is processed in parallel at different trace levels. Children are inclined
to use the least-detailed trace (i.e., the one holding the most global information),
which is least-demanding in terms of memory workload, for inferring a transitive
relationship. An example of gist trace information is objects become smaller to
the left (e.g., in a series of five ordered objects, such that A < B < C < D < E),
which is easier to use in solving whether A is smaller than E than the verbatim
exact premise information. The use of this gist trace renders both logical reasoning
on the basis of premises and also memory of the premises superfluous.

This example shows that the theory of transitive reasoning has developed and,
with it, the attribute itself. Initially, transitive reasoning was conceived of as a
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pure logical reasoning ability, which later evolved via the reading of an internal
representation into a more complex ability involving memory of encoded logical
information, and then finally into the ability of using the least-demanding piece
of coded information to solve what formally looks like a logical problem. Thus,
even though it still refers to being able to solve the same kinds of tasks, today
transitive reasoning is defined to be something else than a few decades ago. Due
to progressing insight based on research, the conception of transitive reasoning
has changed over time (also, see Borsboom et al., 2004, p. 1063).

Now, the three consecutive theories may be seen as phases one passes before
the objective truth is finally uncovered. I think this is the wrong perspective for two
related reasons. The first reason is that the perspective leans heavily on the model
of physical measurement, which often has been put forward as the role model
for psychological measurement (e.g., Michell, 1999, pp. 193–211). However, in
physics, scales are the result of strong theories and extremely precise and highly
replicable experimentation. In psychology, attributes and theories are much more
abstract and vague, and in experiments subjects are difficult to manipulate. As a
result, counts of particular kinds of responses are often weakly related, and results
cannot be replicated well. Thus, results are not compelling and scales are arbitrary
to a high degree. Given this state of affairs, one can only hope to get more grips
on human behavior, not to uncover the truth.

Because in psychological research so much is elusive, psychological theory
testing often stops when psychologists are convinced that they know enough about
an attribute and how it must be measured to solve a particular practical problem,
but not so much because the truth has been found. For example, hypothetically, re-
search in transitive reasoning may stop when educational psychologists think their
test is good enough for diagnosing a child’s persistent problems with arithmetic
tasks. This attitude known as practicalism aims at finding solutions to practical
problems, not necessarily to how things are, and is the second reason why theory
development does not lead to uncovering the truth. Michell (1999, p. 96) con-
sidered practicalism to stand in the way of scientific research beyond the more
practical goals. He may be right, but replacing practicalism by a quest for the truth
does not alleviate the uncertainty that characterizes psychological research and
stands in the way of obtaining firmer results.

One reviewer put forward the thesis that fuzzy traces must have been present in
childrens’ minds before fuzzy trace theory was posited and found to be the most
explanatory of the three competing theories. Based on what I know now, I prefer to
think of fuzzy trace theory as a way of acknowledging that the mind likes to take
shortcuts (gist information) rather than go all the way (verbatim information), and
that traces function as metaphors rather than real things to be discovered eventually.
More generally, changes in the conception of transitive reasoning have been fed by
inferences from the study of overt behavior, and claims about transitive reasoning
as a material cause of this behavior have been unnecessary to come this far.
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There are two additional problems. First, Borsboom et al.’s (2004) proposal
seems to be too rigorous in its condemnation of the nomological network. Second,
it is not suited for the majority of mental attributes.

Regarding the first problem, I agree with Borsboom et al. (2004) that working
backward in the nomological network to unravel the meaning of the test score is
not a very productive validation strategy. The problem is that this strategy produces
large numbers of correlations that often are interpreted ad hoc without necessarily
leading to theory formation and the testing of theory. Cronbach (1988) and Kane
(2001) made a similar point by labeling this research strategy as the weak program
of construct validity. Also, it is difficult if not impossible to determine when one is
done investigating a construct’s nomological network. Thus, construct validation
becomes a never-ending process (Messick, 1988) and the question of whether a
particular test indeed measures a particular attribute is never answered definitively
(Borsboom, 2006a).

However, Borsboom et al.’s (2004) suggestion to equate construct validity to
testing a cognitive theory about the attribute does not solve this problem. I assume
that this cognitive theory is narrower than its nomological network, which also
contains relationships of the attribute with different attributes and group variables
that are not needed per se to understand the processes described by the theory but
may add to learn as much as possible about the attribute (e.g., Kane, 2001). For
example, given that fuzzy trace theory, the least formalized of the three competing
theories, best explains the item scores, we may conclude that the ability of transitive
reasoning does not rest completely on the application of pure logic or on the bare
retrieval of information from memory. Instead, other abilities may be involved and
we may learn about this by expanding the theory of transitive reasoning to include
relationships with other attributes and background variables; that is, parts of the
nomological network of transitive reasoning may be taken into account. Embretson
and Gorin (2001) restricted this expansion to the study of the nomothetic span,
which only includes implications of the theory. Research of the nomothetic span
of transitive reasoning may produce results that affect the theory and call for
additional testing of particular aspects of the theory. Thus, the theory evolves and
the nomological network plays a role in this evolution.

The second problem is that Borsboom et al.’s (2004) proposal seems to be
suited particularly for relatively simple, albeit important cognitive abilities that
are closely related to some form of logical reasoning. However, most attributes
of interest in psychology are broadly defined, formulated in abstract terms and
often not very articulated and, consequently, rather uncritical regarding direct
behavioral correlates. Examples are creativity, emotional intelligence, leadership,
and empathy, as well as many well-accepted personality traits (e.g., Maraun &
Peters, 2005). As a result, attribute theory is primitive and tests and questionnaires
necessarily may be relatively blunt instruments. Here, theory testing is exploratory,
suggesting hypotheses rather than testing them (also, see Kane, 2001), but may
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lead to a better understanding of the attribute, which in turn may lead to better
items, and so on. The level of articulation is lower than that assumed by Borsboom
et al. (2004) and leads to weaker grips on the quality of measurement of the
attribute. With such attributes one needs all the information one can collect, and
the attributes’ nomological network is a good place to start looking.

The Rationalist Viewpoint: Attributes as Expert Agreement

As an aside, it is interesting to note that discussions on validity are current also in
marketing research. Rossiter (2002) recently challenged Churchill’s (1979) clas-
sical psychometric approach (strongly inspired by Nunnally, 1978) to developing
measures of marketing constructs (e.g., product perception, consumer satisfaction)
by putting forward an approach in which expert agreement determines what the
test measures and how it should be measured. Expert agreement means that expert
raters determine whether the measure is valid. Empirical research determining
relations in a nomological network from collected data or the testing of the theory
behind the item scores by means of latent variable models is deemed unnecessary.
Thus, content validity based on expert judgment takes over from construct valid-
ity based on empirical research, a proposal that not only test constructors would
consider rather militant but also raised resistance among marketers. For example,
Diamantopoulos (2005; also, Finn & Kayande, 2005) criticized Rossiter for adopt-
ing a rationalist approach to validity—extremely stated, an approach that considers
empirical research unnecessary—and condemning construct validation by means
of studying the relations with other attributes as in a nomological network.

For psychological measurement, Kane (2001) suggested restricting expert judg-
ment to so-called observable attributes, such as simple arithmetic items and ge-
ometric analogy items, which he claimed “are defined in terms of a universe of
possible responses or performances, on some range of tasks under some range of
conditions” (ibid., p. 332). The definition need not involve theory. In his view,
evidence supporting the content validity of observable attributes need not only
come from experts but may also come from experience and knowledge accumu-
lated with the definition, relevance, and representation of particular domains and
the statistical analyses of test data. Opposite observable attributes, Kane (2001)
distinguished theoretical constructs, which involve theory testing in the context
of a nomological network as outlined here.

CONCLUSION

It may be noted that Kane’s suggestions seem to be somewhere halfway between
Borsboom et al.’s and Rossiter’s. However, Borsboom et al. would regard all
attributes as theoretical constructs whereas Rossiter would equate all of them with
observable attributes, which can be validated solely through expert judgment (for
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the sake of argument, I am ignoring all kinds of nuances in their opinions and
Kane’s.)

Borsboom et al.’s (2004; also, see Borsboom, 2006a) and Rossiter’s (2005; also
see Bergkvist & Rossiter, 2007) approaches to the measurement of attributes and
the foundation of attribute measurement are extremely different except for one
aspect: They share a strong discontentment with the nomological network as a
basis for validity research (unlike Kane) and come up with a realistic solution
(attributes exist and exercise causation) and a rationalist solution (an attribute’s
condition is decided by experts).

Regarding Rossiter’s position, I think that for psychological measurement, rater
agreement (i.e., an impoverished version of content validity) cannot replace the
empirical study of construct validity; at best, it may be part of it. As concerns
Borsboom et al.’s position, I think that the proposal to place psychological the-
ory construction at the heart of construct validity is a very fruitful idea, but not
without studying the relations with other important attributes. For attributes for
which sound (cognitive) theory is available, this could mean studying the attribute’s
nomothetic span (Embretson & Gorin, 2001). For the multitude of weakly defined
attributes this probably means taking one’s refuge in the nomological network (i.e.,
Cronbach’s weak program of construct validation). Taking (part of) the nomolog-
ical network into account helps to further develop the attribute’s theory. One does
not preclude the other, and together they stand stronger (e.g., Kane, 2006).

RELIABILITY AND BAD HABITS, REMEDIES,
ALTERNATIVES

Typically, discussions about reliability are more mathematical than discussions
about validity. The reason is that reliability formalizes one particular technical
property of the test score whereas validity involves the assessment of what the test
measures, either by means of the exploration of the nomological network or by
means of theory testing. Unlike reliability estimation, validity research revolves
around the use of substantive knowledge about the attribute under consideration
and decision making with respect to which hypotheses to test, how to test them,
how to decide whether they received support or not, and how to continue validity
research in either case. Consequently, validity research produces many statistical
results whereas the final assessment may take the form of a verbal summary
resulting in judgment. Reliability is a much narrower concept and has been found
to be easier to quantify. This does not mean that it is undisputed. Before I discuss
controversial issues, I introduce some notation.

Let the score on item j be denoted by random variable Xj , and let the test
contain J items. An individual’s test performance often is expressed by the test
score, which is defined as X+ = ∑J

j=1 Xj . I will use the classical definition
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of reliability proposed by Lord and Novick (1968). The basis of classical test
theory as defined by Lord and Novick (1968, pp. 29–30) and also present in
the stochastic subject formulation of item response theory (Holland, 1990), is
an individual’s propensity distribution. This is an individual’s distribution of test
scores that would result from the endless administration of the same test under the
same circumstances, such that different test scores are the result of independent
repetitions of the administration procedure. The correlation between only two of
these repetitions in the population of interest is the test-score reliability, ρXX’. The
variation in an individual’s propensity distribution is interpreted as measurement
error variance. Thus, a test score’s reliability answers the question: What would I
find when I could do it all over again? In practical research, only one test score
is available for each individual; hence, the reliability cannot be estimated as the
correlation between two independent repetitions. Often, approximations based on
one test score are used.

Reliability and Internal Consistency

The most common approximation to test-score reliability is coefficient alpha
(Cronbach, 1951). Alpha provides an underestimate, often referred to as a lower
bound, to the reliability, ρXX’, so that alpha ≤ ρXX’. Equality is attained only un-
der unrealistic conditions so that in practice strict inequality holds: alpha < ρXX’.
Rather than using alpha purely as a lower bound, test constructors typically use
alpha as a measure of the test’s internal consistency. The psychometric litera-
ture does not define this concept well (Sijtsma, 2009a). For example, Cronbach
(1951, p. 320) noted that an internally consistent test is “psychologically inter-
pretable” although this does not mean “that all items be factorially similar” (also,
see Cronbach, 2004, pp. 394, 397–398). He also used internal consistency and
homogeneity synonymously (but see Cronbach, 2004, p. 403), whereas Schmitt
(1996) distinguished the two concepts and claimed that internal consistency refers
to the interrelatedness of the items in a set and homogeneity to the unidimension-
ality of the items in a set. Sijtsma (2009a) provided a more elaborate discussion
of internal consistency and concluded that the common denominator of all defi-
nitions is something like “the degree to which the items in the test are associated
due to what they share in common.” Thus, one could argue that alpha is not only
interpreted as a lower bound to the test-score reliability but also as an aspect of the
test’s construct validity, expressing the degree to which the data are unidimensional
or 1-factorial. One would expect that one statistic could not express two concepts,
reliability and validity, that are so much different, but this truism has not withheld
test constructors and test users from simply doing this.

Sijtsma (2009a) argued that alpha is not a measure of internal consistency;
see Bentler (2009), Green and Yang (2009a), and Revelle and Zinbarg (2009)
for more discussion. He constructed data sets that are 1-factorial, 2-factorial, and
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3-factorial, that each had the same alpha value. Thus, tests of highly different
factorial composition can have the same alpha. Reversely, without further knowl-
edge about the test’s factorial composition any realistic alpha value may indicate
a 1-factorial data structure but just as well structures typical of two or more fac-
tors, even when the factors are uncorrelated. This boils down to statements like:
Knowing that alpha = .7, holds no information about the factorial composition
of a test, and neither does knowing that alpha = .2 or alpha = .9. This is not a
revolutionary novel insight (e.g., Cortina, 1993; Schmitt, 1996) but a reiteration
of arguments needed to fight old and highly resistant abuse of coefficient alpha.
Internal consistency, no matter how one defines it precisely, needs to be evaluated
by methods such as factor analyses and item response theory (e.g., Hattie, 1985),
and is best seen as part of construct validity research.

Other Estimates of Test-Score Reliability

Coefficient alpha has persisted in being by far the most popular estimate of test-
score reliability, and has done so in the face of conflicting evidence about its
appropriateness as a reliability estimate. Already since 1945, a coefficient known
as lambda2 (Guttman, 1945) is known that is related to alpha and reliability as:
alpha ≤ lambda2 ≤ ρXX’. Thus, if alpha = .8 and ρXX’ = .9, lambda2 has a value
between .8 and .9. Experience has shown that lambda2 usually is within .01 of
alpha so that the gain of using lambda2 is small. However, from a rational point
of view there is no reason to consistently report the smallest lower bound; yet this
is common practice. Lambda2 is available in SPSS, as the second estimate given
under the option called Guttman (alpha is the third estimate).

Greater lower bounds than lambda2 exist. For example, Guttman (1945) pro-
posed six different methods including alpha and lambda2 that are all available
in SPSS, and Ten Berge and Zegers (1978) proposed a series of progressively
increasing lower bounds, of which alpha and lambda2 are the first two members.
The problem of finding the greatest lower bound (glb) has been solved some
30 years ago (Bentler & Woodward, 1980; Ten Berge, Snijders, & Zegers, 1981).
The glb can be considerably higher in real data than alpha and lambda2 (e.g., up
to .07; see Sijtsma, 2009a, for a real-data example) but thus far suffers from bias
problems. In particular, when the number of items in the test exceeds 10 and the
sample size is smaller than 1,000, the glb tends to be inflated. This is a statistical
problem in need of a solution, especially as the glb by definition comes closest
to the test’s true reliability (also, see Ten Berge & Soc̆an, 2004). Ten Berge and
Kiers (2003) and Bentler (2009) provided computer programs for estimating the
glb. Clearly, there is much to be gained here, meanwhile acknowledging that a
small lower bound such as alpha does not really harm anyone but also does little
to provide the test constructor with a realistic reliability estimate.
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Alternatives to Reliability

Three interesting alternatives to classical reliability are the generalizability coef-
ficient, reliability based on structural equation modeling, and the test information
function.

Generalizability Theory. Depending on the domain of measurements to which
one wishes to generalize conclusions based on test scores, the generalizability
coefficient (Brennan, 2001a; Cronbach, Gleser, Nanda, & Rajaratnam, 1972) ex-
presses repeatability of test scores across different test versions, different time
points, different item formats, and so on. Thus, the concept of generalizability
expresses the idea that we may not only be interested knowing what would hap-
pen when the test could be repeated under exactly the same circumstances, but
acknowledges that these circumstances could be varied in interesting ways.

Thus, the generalizability coefficient broadens the concept of repeatability from
independent repetitions to almost any set of conditions relevant to the use of a
particular test. This is interesting, but one should realize that by doing this, certain
aspects of the test’s validity may be introduced into the reliability concept, and
a sensible question is whether one should do this or keep validity and reliability
sharply separated. For example, generalizability across time refers to the degree
to which the attribute is liable to change over time. This change may be due to
training or learning processes, and may become manifest as a quantitative score
shift on the same scale. But change may also be due to spontaneous developmental
processes and may become manifest qualitatively, as in the disappearance of par-
ticular processes and the emergence of novel processes, apparent from a change
in the items’ factorial composition (Embretson, 1991). Another example is gen-
eralizability across test versions using different item formats. This refers to the
exchangeability of different item formats used for measuring the same attribute
and may be interpreted as an instance of convergent validity.

My intention is not to question the usefulness of the generalizability concept
but only to note that, although similar at the surface, it may be basically different
from reliability (however, see Brennan, 2001b, for a different view). For example,
if I am interested to know my body weight, I would like the scale I use at home
to be reliable in the sense that it does not fluctuate more than, say, one ounce
when I step onto it a couple of times in a row. For my purpose, which is to know
my body weight today using my own scale, it does not help to know that the
correlation is .8 between a set of measurements collected today and another set
collected six months ago. Body weight changes over time, which is a characteristic
of body weight, not of the scale, and so I would not expect a perfect correlation
anyway. Also, it does not help to know that my scale results correlate .7 with the
results obtained by means of another scale as long as I do not know anything
about possible mechanical differences between the scales or whether a scale is
technically flawed.
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Of course, it goes without dispute that generalizability theory answers highly
useful questions in, for example, separating test-score variance due to test form
from variance due to individual variation in the attribute of interest. My point in
this discussion is that one should be careful when introducing validity issues into
reliability matters so as to prevent confusion among the people who work with
them in practice. The issue of distinguishing validity from reliability is an old one;
see Campbell and Fiske (1959).

Structural Equation Modeling. Reliability estimation on the basis of structural
equation modeling amounts to estimating the common factor for the set of items,
and possible group factors that capture variance shared only by subsets of items but
not by all items in the test (Bentler, 2009; Green & Yang, 2009b; Raykov & Shrout,
2002). This provides the possibility to estimate reliability as the ratio of common
variance (which cannot exceed the true-score variance) over total variance, which
by definition cannot exceed the classical reliability. Another possibility is to sepa-
rate variance hypothesized to be due to response styles from the common variance
or to separate variance due to the nesting of items within, for example, text frag-
ments (as in text comprehension tests) or variance due to learning processes that
are active during testing and affect item performance more as items are adminis-
tered later in the test (Green & Yang, 2009a) from the common variance. A key
question to be answered by the researcher is which variance components have to
be included in the numerator of the reliability coefficient and which components
may be seen as error.

Thus, in this approach concerns about the composition of the test-score variance
have become important in determining the test-score components across which
repeatability of test performance should be considered. In other words, repeata-
bility is not limited to the test score per se but is applied to desirable test-score
components, thus excluding unwanted components, which are not only random
(measurement error, as in true-score reliability) but also may be systematic (e.g.,
due to response styles). Again one allows validity considerations to enter the reli-
ability concept, but it is an unresolved issue whether the resulting blur is a good
idea or one, which confuses test users.

Test Information Function. The test information function (e.g., Embretson &
Reise, 2000, pp. 183–186) expresses the accuracy by which the latent variable is
estimated using maximum likelihood methods as a function of the scale for the
attribute. The latent variable often is interpreted to represent a trait or an ability,
which drives examinees’ responses to the items in the test. In item response
theory, the inverse of the test information function gives the standard error of the
maximum likelihood estimate of the latent variable conditional on the true value
of the latent variable. This conditional standard error provides an answer to the
question: What would happen when I would draw another examinee sample of
equal size from the population of interest and estimate this latent variable value
again? This looks like reliability but it is different because, in order to be the
same concept, we would also have to consider drawing scores from an individual’s
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propensity distribution after a new sample has been drawn; see Holland (1990) for
a discussion of this stochastic subject interpretation, and Borsboom (2005, chap.
3) for arguments in favor of a random sampling interpretation without additional
sampling from propensity distributions.

Conclusion. Because of its greater flexibility allowing many highly interesting
applications in a more general latent variable framework, item response theory has
gained greater popularity than generalizability theory. As a result, the information
function has become a more popular tool than the generalizability coefficient.
What both theories have had working against them for a long time compared with
classical test theory and factor analysis is their lower degree of accessibility for
researchers who have not been trained as applied statisticians. Thus, the greater
accessibility of classical test theory has led many test constructors and researchers
to stay with test-score reliability as an index of how accurate their test measures.
Reliability estimation within the framework of structural equation modeling is
relatively new and has not been applied much so far. The use of true-score reliability
in psychological test construction (but also elsewhere, as in marketing and health-
related quality of life measurement) still by far outnumbers the use of the other
methods. Because of its continued popularity, I will use test-score reliability
estimated as the proportion of true-score variance, ρXX’, in what follows.

What Does a Particular Reliability Value Mean?

One often reads in test manuals or papers reporting on test construction or the use
of tests in research that test-score reliability, usually in the form of lower bound
coefficient alpha, equalled, say, .8. The author then goes on to say that this is
sufficiently high for his purposes. What does such a reliability value imply for the
magnitude of score differences to be significant, or for a score to be significantly
different from a given cut-score? Or, even more important, for the consistency by
which individuals are classified in the right treatment category? Such questions
are not new but they are often left unanswered, probably because the answers
are difficult. These questions are even more relevant in the light of present-day
developments in test construction and test use toward shorter tests that maintain the
same reliability level than their longer counterparts. The goal of the next section
is to argue that short tests having high reliability cannot be trusted for classifying
individuals, which often is the primary goal of individual testing. This conclusion
not only questions the usefulness of short scales but also emphasizes the limited
usefulness of the reliability concept.

TEST LENGTH, MEASUREMENT INACCURACY,
CLASSIFICATION CONSISTENCY

It is well known that short tests tend to have lower reliability than long tests.
Yet the present era shows a persistent development toward the construction and

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
i
l
b
u
r
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
2
:
2
5
 
4
 
J
a
n
u
a
r
y
 
2
0
1
0



184 SIJTSMA

the use of short tests in individual testing. The idea is to use only the best items
for measurement, and by doing this, reduce administration time. The best items
measure as accurate as possible in the region of the scale where accuracy is needed,
such as a cut-score, and not necessarily somewhere else. These items have been
selected such that they also cover the essence of the attribute, and not unique factors
that would attenuate a test’s unidimensionality. A small elite of items is thought to
do the measurement job as well as a larger set that also contains many weaker items.

What is a long test? An example is the NEO big five inventory (Costa & McCrae,
1992), which consists of five subtests for measuring the big five personality traits,
each subtest containing 48 items, thus adding to 240 items in total. Another
example is the WISC (originally, Wechsler, 1949), a child intelligence test battery,
which consists of 15 subtests for measuring different aspect of intelligence, making
up several hundreds of items in total, the exact number depending on the test
version under consideration. In contrast with these lengthy tests are the Mini
Mental State Examination (Folstein, Folstein, & McHugh, 1975), which contains
11 items, the test for Pathological Dissociative Experiences (Waller, Putnam, &
Carlson, 1996) consisting of 8 items, the test for Alcohol Drinking Behaviors
(Koppes et al., 2004) holding 7 items, and the Test Anxiety Inventory (Taylor &
Deane, 2002), consisting of 5 items. Authors of short tests generally claim that
the psychometric properties are good enough to justify the use of the test scores
for individual decision making.

The majority of tests and questionnaires consist of tens of items and are located
somewhere between very short and very long. I will concentrate on the very
short tests, and argue that they are insufficiently reliable for individual decision
making. This conclusion does not rule out that test scores based on few items
may be adequate for use in scientific research in which group mean scores and
correlations are of primary interest. This kind of test use is perfectly justifiable. I
also acknowledge that the use of short tests has its practical advantages and that
this use may be necessitated by financial restraints on testing time and physical
and mental restraints on examinees. For example, little children are not able to
concentrate for a long time and patients may simply be too confused or too sick to
be able to answer tens of demanding questions. As real and compelling as these
restraints may be, they cannot make unreliable measurement reliable.

Short Tests and Standard Measurement Errors

Neither classical test theory nor item response theory assume that the error variance
is the same for different individuals. However, applications of tests constructed
by means of classical test theory use one standard measurement error for all
individuals. Applications of item response theory use a standard deviation of the
estimated latent variable conditional on the true value, which varies in magnitude
across the scale. The individual’s propensity distribution can be used to illustrate
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that short tests involve great risks in individual decision making. For simplicity,
I follow the classical practice of using one standard measurement error for all
measurement values.

For person v, let the true score be defined as Tv = E(X+v) and estimated simply
by T̂v = X+v (to keep things simple, I refrain from using Kelley’s formula; Kelley,
1947). The standard error for T̂v is known as the standard measurement error. In
practical applications of test scores it is assumed to be the same for each individual
from the population of interest. Let the standard deviation of the test score be
denoted by SX+ , then the standard measurement error equals SE = SX+

√
1 − rXX’

(in this section, I use sample notation). The standard measurement error is used
for constructing confidence intervals for the true score Tv , for example, a 95%
interval, defined by the bounds X+v ± 1.96SE . When this interval contains a
cut-score, say, Xc, it is concluded that T̂v does not differ significantly from the
cut-score; and when the cut-score is outside the interval, it is concluded that T̂v

differs significantly from the cut-score. It may be noted that estimating confidence
intervals like this assumes that the test score has a normal distribution. In particular
for short tests, this assumption is wrong but I will ignore this in this section.

For person v and person w, the question whether two test scores X+v and
X+w are significantly different from one another is answered as follows. The null
hypothesis is H0: Tv = Tw and the standard measurement error of the difference
Dvw = X+v − X+w equals SE(D) = √

2SE . A 95% confidence interval is obtained
from Dvw ± 1.96SE(D). When this interval contains the value 0 the null hypothesis
is accepted, and when 0 falls outside the interval the null hypothesis is rejected.
Thus, one may check whether |Dvw| < 1.96SE(D).

I present results from a small computational study that clarifies the relation
between test length, reliability, standard measurement error, and scale length. This
study provides insight into the chance mechanism responsible for the failure of
short tests as decision instruments, even when they consist of high-quality items.
Data sets were simulated using the Rasch (1960) model. Let θ denote the latent
variable, δj the difficulty of item j , and a the item discrimination constant, which
is the same for all J items. The Rasch model is often scaled such that a = 1, but
given a fixed standard normal distribution of θ as I will use here, this is impossible
and a becomes visible in the model equation; that is,

P (Xj = 1|θ ) = exp[a(θ − δj )]

1 + exp[a(θ − δj )]
.

I simulated 20 data sets for 500 respondents, taking all combinations of J = 6,
8, 10, 12, 20 and a = 1, 2, 3, 4. The item difficulties were equidistant between –1
and 1. Increasing a values stands for increasing item quality: for a standard normal
θ , a = 1 is modest, a = 2 is good, a = 3 is very high, and a = 4 is extremely high,

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
i
l
b
u
r
g
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
2
:
2
5
 
4
 
J
a
n
u
a
r
y
 
2
0
1
0



186 SIJTSMA

TABLE 1
Guttman’s Lambda2, Standard Measurement Error, Half Confidence Interval for True Score,

and Half Confidence Interval for True Score Difference

Realistic J a Lambda2 SE 1.96SE 1.96
√

2SE

Yes 6 1 .5515 1.0711 2.0994 2.9689
2 .7378 .9212 1.8055 2.5534

No 3 .8085 .8360 1.6386 2.3173
4 .8486 .7699 1.5090 2.1341

Yes 8 1 .6006 1.2381 2.4267 3.4318
2 .8103 1.0699 2.0970 2.9656

No 3 .8656 .9533 1.8685 2.6424
4 .8785 .9054 1.7824 2.5096

Yes 10 1 .6565 1.3964 2.7369 3.8706
2 .8331 1.2072 2.3661 3.3462

No 3 .8848 1.0753 2.1076 2.9806
4 .9119 1.0034 1.9667 2.7813

Yes 12 1 .7091 1.5213 2.9817 4.2168
2 .8686 1.2968 2.5417 3.5945

No 3 .9101 1.1667 2.2867 3.2339
4 .9301 1.0838 2.1242 3.0041

Yes 20 1 .7990 1.9816 3.8839 5.4927
2 .9168 1.6747 3.2824 4.6420

No 3 .9431 1.5109 2.9614 4.1880
4 .9566 1.3966 2.7373 3.8712

almost impossible to reach in practice. I will consider tests with a = 3 and a = 4
as upper benchmarks.

Table 1 shows that for fixed J , as a increases, Guttman’s (1945) lambda2
increases and the standard measurement error decreases. For J = 6 and a = 1
(moderate discrimination), the table shows that when a test score is less than 3
units in range of a cut-score, it is not significantly different from that cut-score.
The same conclusion is true for score differences; |Dvw| < 3 is not significant. It
must be noticed that these differences span half the scale. Imagine a ruler of 6 cm
in length, which could only reliably distinguish objects that differ at least 3 cm in
length. Of course, a scale for psychological attributes is different from a ruler, but
the analogy may help to grasp the degree of inaccuracy that we face when using a
very short test containing items of moderate discrimination. For J = 6 and a = 2
(good discrimination), the situation improves for testing against a cut-score but not
for testing score differences, and for higher, albeit unrealistic upper benchmark a

values, the situation remains the same.
For increasing J , score differences that have to be exceeded to be significant

increase slowly. What happens here is the following. As the test becomes longer,
the true scores Tv and Tw run further apart and so do the observed scores X+v
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and X+w, on average. Also, as Table 1 illustrates, the standard measurement
error grows and, as a result, the confidence interval grows. The fascinating thing
is that as one keeps adding items to the test the distance between true scores
and between corresponding observed scores grows faster than the length of the
confidence interval. Consequently, score differences Dvw that initially are inside
the confidence interval, move out of it as J grows, resulting in the rejection of
the null hypothesis of equal true scores. This is readily formalized for strictly
parallel tests (Lord & Novick, 1968, pp. 47–50). Assume a J -item test is extended
with K − 1 other J -item tests, and that all K tests are parallel. Then, it can be
shown that the initial true score difference, say, Tvw, becomes KTvw and the initial
standard measurement error

√
KSE(D). This shows that the true-score difference

grows by a factor
√

K faster than the standard measurement error of the difference
and the corresponding confidence interval, thus clarifying my point.

The issue of measurement inaccuracy could be tackled from different angles,
such as item response theory, and the use of the standard measurement error surely
is not optimal. However, use of the standard measurement error is simple, makes
the point well and, not unimportant, the standard measurement error continues
to be more popular in test construction and test use than any other measure of
inaccuracy. I conclude that very short tests are highly inaccurate measurement
instruments, no matter how good the quality of the items used, assuming one stays
within realistic limits. The amount of statistical information simply is too small.
This problem may be alleviated readily by using more items without ending up
with an excessively long test (see Table 1).

Short Tests and Classification Consistency

The gravity of two scores having to be at least, say, 3 points apart to be significant
depends on the gravity of the decisions made by means of the test score. This can
be studied mathematically in simple and lucid examples, thus providing straight-
forward lessons for the length of real tests. Assume a simple binary decision with
respect to treatment using a cut-score that separates the scale in two exhaustive
and disjoint segments. In general, the probability of making the right decision for
an individual is larger the further an individual’s true score lies away from the
cut-score. Two proportions are important here (Emons, Sijtsma, & Meijer, 2007;
for different approaches, see Bechger, Maris, Verstralen, & Béguin, 2003; Ercikan
& Julian, 2002; Hambleton & Slater, 1997).

Consider an individual v’s propensity distribution of which the true score Tv

is the expected value, as before. Let Tv be located at the right of a cut-score
Xc (Tv > Xc) that is used to classify people. Thus, based on his true score this
person belongs in the category to the right of the cut-score, which corresponds,
for example, with treatment. When I would repeatedly draw scores X+v at random
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from individual v’s propensity distribution, a sensible question is which proportion
(say, Pv) of these scores would classify individual v at the right side of the cut-
score. Now, assume that for John this proportion equals PJohn = .6 and that for
Mary it equals PMary = .8. Assuming normal propensity distributions (which
are unrealistic for short tests), this means that John’s true score is closer to the
cut-score than Mary’s. It may be noted that knowing these proportions does not
provide information about the test’s quality as a decision-making instrument. A
way to formalize this information is the following.

Let us assume that a decision-maker will only feel confident to make a decision
about an individual when the proportion of correct decisions based on draws
from the individual’s propensity distribution exceeds an a priori determined lower
bound. This lower-bound proportion is called the certainty level (Emons et al.,
2007). The certainty level results from policy considerations, which depend on
the type of problem for which one seeks to make decisions and also on financial
recourses and so on. Important decisions made under strict financial and other
constraints will require a high certainty level. For the sake of argument, I choose
the certainty level (denoted π ) to be equal to π = .9, meaning that I only feel
confident about a decision when at least 90% of the draws from an individual’s
propensity distribution classify him correctly.

Given a particular test and a particular decision-making policy reflected by cer-
tainty level π , the crucial question is which proportion of individuals whose true
score is in one particular category are classified in this category (i.e., the right deci-
sion) on the basis of a proportion of draws from their propensity distributions that is
at least equal to π . This proportion of individuals is the test’s classification consis-
tency (CC) in a particular population. Given that π = .9, for an artificial population
consisting only of John and Mary (and assuming that their true scores place them
in the same category, for example, treatment), we have that PJohn = .6 < π and
also PMary = .8 < π ; thus, the test’s CC for treatment equals 0. This result reflects
that the test does not provide enough evidence for making individual decisions
with sufficient certainty that they are the right decisions for providing treatment.
For the other category of no treatment the typical CC may also be determined.

An example of the situation sketched thus far is that a particular medical treat-
ment must be provided to patients who really need it but not to others because of
potentially damaging side effects (for simplicity, I will only consider the treatment
group). A cut-score delineates the two groups and a high certainty level, such as
π = .9, reflects a particular level of caution. It is important that patients whose
true score is in the treatment category receive treatment and thus as few of these
patients as possible should be classified incorrectly as not needing treatment. A
perfectly reliable test would do the job (assuming perfect construct validity), but
real tests have fallible reliability. For fallible tests the question thus is which CC
value they produce. The closer to 1 the CC value is, the better the test functions
as a classification instrument.
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For given certainty level π , Emons et al. (2007) mathematically investigated
the influence of test length on CC. The latent variable was normally distributed.
Also, persons’ true scores were assumed known. This was necessary to compute
CCs. Decisions about treatment or no treatment were based on one test score and
one cut-score. Although these are strong simplifications of real decision-making
situations, they allow for clear-cut answers to difficult questions, thus getting better
grips on the problem. For a fixed value of certainty level π and all but one design
factor kept constant, Emons et al. (2007) found that CC for treatment (T ≥ Xc)
was larger as the number of items J was larger, item discrimination was higher,
item difficulty was closer to the cut-score on the latent-variable scale, and items
were polytomous instead of dichotomous. CC was smaller as the cut-score was
more extreme (i.e., fewer people had a true score that necessitated treatment).

Some interesting detailed results for certainty level π = .9 were that for a
6-item test consisting of dichotomous items for which a = 1.5 (i.e., between
modest and good) and all items located exactly at the cut-score (which is the ideal
situation), and half of the group needing treatment (based on their true scores),
the CC was only .46. All other things kept equal, for J = 8, 10, 12, 20, the CCs
increased to .53, .58, .61, .70, respectively. For a = 2.5, which is a very high item
discrimination power, for J = 6, 8, 10, 12, 20, the CCs were equal to .66, .70,
.74, .76, .82, respectively. As the group who needed treatment became smaller,
the CCs also became smaller; for example, when this group consisted of the 5%
highest T scores, for J = 6 and a = 1.5, the CC = .17. The interested reader can
find the complete results in Emons et al. (2007).

It is illuminating to let the meaning of these CCs sink into ones mind: If the
decision is important (π = .9), a short 6-item test consisting of items with quite
good discrimination power will classify only 46% of the patients who really need
the treatment with enough certainty. For a 20-item test, the CC = .70. This may
look good but actually means that for 30% of the people who are in need of
treatment, the test does not provide enough certainty to select them as candidates.

The conclusion from this research was that tests must be long if one wants to
make good decisions. This is true even if the test consists of good-quality items.
A sample of only a few item scores cannot consistently classify people correctly.
Although this conclusion may be at odds with practical constraints typical of
particular testees such as young children and patients, reliable information comes
at a price, which involves a relatively long test and a long administration time.
Of course, this time may be spent administering several short tests, possibly at
different occasions, and combined afterwards to reach a consistent decision.

GENERAL CONCLUSION

The three issues in test theory discussed in this article are by no means new, and
the insights presented not revolutionary. However, the practice of test construction
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does not easily absorb the developments offered by psychometrics and some-
times makes choices in the face of conflicting psychometric evidence (also, see
Borsboom, 2006a), thus running into bad practices and in the longer run even bad
habits. Novel psychometric results may not be accepted for very different reasons.
One reason may be that test constructors may not recognize a new method as
particularly relevant for their problems. Perhaps the method only solved a prob-
lem that looked small and unimportant from the test constructor’s perspective, or
perhaps the method was potentially important but the psychometrician failed to
provide convincing examples of its application in test construction. Another reason
may be that new methods have a tendency to be statistically more complex than
old methods, and thus more difficult to access, and then they have to provide big
and visible improvements over the older methods to become accepted in practice.
But improvements may be small or fail to be obvious.

However, I think that the issues discussed in this article are plagued by different
problems. Validity assessment simply is difficult, reliability estimation seems to
be dominated by wrong habits, and diagnosing individuals is under pressure by
practical demands. In particular, construct validity is difficult because the scientific
status of the attributes is liable to dispute and attribute theories as a rule are
simplistic, incomplete, vague, abstract, or sometimes almost absent. This causes
lack of direction, fragmentary exploratory validation research, but also solutions
that are so strict that they may fail to be applicable to the majority of attributes.

Reliability estimation is not so much difficult but plagued by strong habit, which
has created a persistence in using old but inferior lower bounds, coefficient alpha
in particular. The problem also is in the statistical complexity of alternatives, such
as the glb, and estimation based on generalizability theory and structural equation
modeling, which are not readily available to test constructors through a simple
mouse click (Sijtsma, 2009b). Also, the use of alpha as index for the test’s internal
consistency is known to be untenable, but this has not withheld test constructors
from using this interpretation.

Short tests are becoming more popular, for example, in clinical and medical
psychology, health-related quality of life measurement, but also in organizational
psychology because they relieve the burden on testees and because it is believed
that the high reliability that can sometimes be realized for short tests is sufficient
for accurate decision-making. However, it can be shown that a high reliability in
combination with a small score range makes it difficult to accurately distinguish a
test score from a cut score, and thus is likely to result in many classification errors.

My point is not that these positions are new but that they are not well known
nor well accepted in large areas of test construction and test use. Based on the
discussion presented here, my recommendations are the following.

Construct validity does not follow from first assembling a measurement instru-
ment and then trying to derive its meaning from a painstaking exploration of parts
of the nomological network of the attribute of interest, so as to obtain evidence
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afterwards. Instead, whether the instrument measures the attribute has to follow
from the testing of sound substantive theory (Borsboom et al., 2004), which
supports the construction of the test for a particular attribute. Part of construct val-
idation is the testing of this theory through the data collected by means of the test.
Further support for the test’s validity comes from investigating the test’s nomoth-
etic span (e.g., Embretson & Gorin, 2001), which limits the nomological network
to a manageable size. However, it seems to me that this size may be increased given
the degree to which the attribute under consideration has been developed. Experi-
ence accumulated thus far suggests that construct validation remains a long-term
enterprise, mainly due to the unfinished nature of psychological theories. McGrath
(2005; for reactions, see Barrett, 2005, Kagan, 2005, and Maraun & Peters, 2005)
provides a discussion on problems in construct validity of personality traits, and
Zumbo (2007) provides a general overview of validity issues.

Reliability is most often estimated by means of coefficient alpha, which some-
where after 1951 began a dual life as a reliability coefficient and an index for
internal consistency. Alpha is not a sensible indicator of a test’s internal consis-
tency (e.g., Cortina, 1993; Schmitt, 1996; Sijtsma, 2009a). For that purpose, one
should use factor analysis or other methods specifically designed to unravel the
dimensional structure of the data. Alpha is a lower bound to test-score reliability,
but it has been shown a long time ago that it is a small lower bound compared with
other, higher, and sometimes readily available lower bounds. There is no reason
not to use these greater lower bounds or other methods for reliability estimation,
such as structural equation modeling.

Another issue is that to know that a test’s reliability equals .8 or its standard
measurement error equals 1.4 does not mean much when this is not related to
the kind of decision making for which the test is intended. This becomes a more
acute problem as test length is smaller, which is a trend in present-day test use
in clinical, medical, and organizational contexts. Tests must contain, say, at least
20 good-quality items for that purpose. More important is that test constructors’
attention shifts from reliability, standard measurement errors, and other indicators
of accuracy to classification consistency and related concepts. Attention in test
construction and test use must shift again (and back) to decision making using test
scores (e.g., Cronbach & Gleser, 1957, 1965). Clearly much exiting work remains
to be done here.
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