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Preface

Our brain is amazingly good at recognizing objects, faces, or scenes under a large number of
variations. A true appreciation of these capabilities emerges when one attempts to develop com-
puter vision systems and encounters the obstacles that our visual system seems to solve in a
straightforward manner. The ability of the brain to analyze visual information reliably and fast
is the result of a remarkable cooperation of elaborate attentional mechanisms, massive parallel
processing, and sophisticated feature extraction mechanisms. Some of these feature extraction
mechanisms are rather general, such as the initial processing of oriented contours occurring in
the early stages of the visual system, but others are more specific and occur in brain areas, such
as those involved in the recognition of faces.

Already in the research for my M.Sc. thesis, I focused on the extraction of features from
visual data. Specifically, I investigated the extraction of features in handwriting that discriminate
between the writers of the text. Since then, feature extraction has remained the main topic of
my research, although there has been a slight shift from vision towards machine learning, as the
chapters on dimensionality reduction in this thesis illustrate. The thesis presents my contribution
to the solution of two fundamental problems in computer vision, i.e., the dimensionality problem
and the variance problem.

The writing of this thesis (and the research presented therein) would have been impossi-
ble without the help and dedicated guidance of many people. First and foremost, I am greatly
indebted to my supervisors Eric Postma and Jaap van den Herik. I thank Eric for his superb guid-
ance, his unflagging energy and positivism, his great sense of humor, and his interest in a wide
range of topics (pretty much everything except soccer and cars). Without Eric, I probably would
not have withstand the large number of disappointments that are inevitable parts of the life of a
scientific researcher. I thank Jaap for his great enthusiasm and support for my research, and in
particular, for teaching me how to write scientific texts that are so clear that they can readily be
understood by laymen. Even in chaotic times, Jaap always found time to point out the oddities in
my writing in his own very special way.

Throughout the years, I have had the pleasure of working with many inspiring colleagues in
Tilburg, Amersfoort, Maastricht, and Toronto. I would like to thank all colleagues for the lessons
they taught me at some point. In particular, I would like to thank Guido de Croon, Jahn-Takeshi
Saito, Stijn Vanderlooy, and Arnold Binas for the large number of discussions we have had on
a wide range of topics. I am grateful to Ben Torben-Nielsen and Steven de Jong for designing
the stylesheet of this thesis. Moreover, I would like to thank Joke Hellemons for her support, and
Marc Ponsen, Jeroen Janssens, Ildikó Flesh, Guillaume Chaslot, Maarten Schadd, Niek Bergboer,
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Igor Berezhnoy, Sander Bakkes, Joyca Lacroix, Nyree Lemmens, Erik Drenth, Rich Zemel, Iain
Murray, Mark Palatucci, Graham Taylor, Vinod Nair, Ruslan Salakhutdinov, Andriy Mnih, and
Ilya Sutskever for their participation in our discussions on a range of scientific topics.

A special word of thanks goes to Geoffrey Hinton for his hospitality, his enthusiasm and
humor, and for being a great source of inspiration. Probably the most important lesson that Geoff
taught me is never to give up on an idea (even if it takes 17 years to get it right), unless you
completely understand why the idea is wrong.

My RICH team members also deserve a special word of gratitude. In particular, I would like
to thank Guus Lange for his patience and for his support for my research, even if I was not digging
into the past. In the end, our joint work forms a decent contribution to archaeology. I thank Paul
Boon for his cooperation, his perseverance, and for successfully implementing some of our ideas
into the cultural heritage (which, as we experienced, is actually much more challenging than it
sounds). I recognize Hans Paijmans for our discussions, and for his sometimes alarmingly strange
sense of humor.

Then, I would like to recognize Rene Cappers for generously providing the seeds dataset. I
am grateful to the Van Gogh Museum and the Kröller-Muller Museum for providing the dataset
of paintings by Van Gogh and his contemporaries. Louis Vuurpijl and Lambert Schomaker are
acknowledged for creating the Firemaker dataset that formed the basis for the characters dataset.
I am indebted to the Netherlands Organization for Scientific Research (NWO) and the Dutch
State Service for Archaeology (RACM) for their support of my work.

Last and therefore most important, I would like to close by thanking my parents and Danique.
I thank my parents for having supported me troughout my studies. Without their support, I
would not have been where I am today. I thank Danique for her love and support. I admire her
patience at the frequent times that I was distracted by my work. Fortunately, we understand each
other better than anyone else.

Tilburg, May 2009.
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1 Introduction
Contents Worldwide, the number of cheap digital image capturing devices is grow-

ing at a steady pace. This leads to the availability of vast amounts of vi-
sual data. The large collections of visual data pave the way for the devel-
opment of new computer vision systems. The main problems that need to
be addressed in the development of such systems are the dimensionality
problem and the variance problem of image-space representations. The
dimensionality problem is the result of the large number of pixels in an
image. The variance problem is the result of the drastic changes of pixel
values under small variations in the imaging conditions. Both problems
may be addressed with success by extracting features from the visual
data that are non-redundant and invariant under the variations in images.
In the thesis, we study the extraction of features from visual data by in-
vestigating two research questions, which focus on the dimensionality
problem and the variance problem, respectively. This chapter introduces
the problem statement of the thesis, as well the two research questions.

Outline In Section 1.1, we introduce feature extraction, which is an essential part
of many artificially intelligent systems that process visual inputs. Sec-
tion 1.2 presents the problem statement of the thesis, as well as the re-
search questions that the thesis aims to answer. Section 1.3 presents the
research methodology that is employed in order to answer the research
questions. The chapter concludes by a description of the structure of the
thesis in Section 1.4.



2 Introduction

In the decades to come, the number of successful applications of artificially intelligent vision
systems will rapidly increase. The emergence of cheap and portable digital image capturing
devices facilitates the development of a wide range of new systems that assist humans in their
everyday tasks. We mention five examples in different domains of applications.

• Archaeologists performing an excavation can be assisted by a system1 that recognizes the
age and origin of objects retrieved from the soil [van der Maaten et al., 2008].

• Exchange offices and other financial institutes may benefit from a system that automati-
cally sorts coins and banknotes based on their digital reproductions, extending the sorting
capabilities of traditional money-sorting systems to a wide range of currencies [Huber
et al., 2005].

• Public health can be improved by the development of vision-based food quality assessment
systems [Brosnan and Sun, 2004].

• Forensic research may be more effective by the development of new biometric applications
for, e.g., writer recognition [Schomaker et al., 2007].

• Public places such as airports may be made more secure by face recognition systems that
automatically recognize wanted criminals in images from security cameras [Wolf et al.,
2002].

These systems rely on state-of-the-art computer vision and machine learning techniques which
evaluate the input images that are captured by a camera. Machine learning comprises a col-
lection of powerful approaches that allows for learning, e.g., underlying distributions, decision
boundaries, or policies from sets of data [Bishop, 2006]. Vision systems usually train machine
learning techniques on a large dataset of examples. For instance, OCR systems are trained on
large datasets of character images that are labeled according to the depicted character [Mori
et al., 1999], and face detection systems are trained on large datasets of images in which the
locations of all faces are marked [Viola and Jones, 2001]. In the training of the machine learning
techniques, the input images can be represented in various ways.

Typically, grayscale and color images are represented by two-dimensional and three-
dimensional matrices, respectively. Concatenating all elements of the matrix into a long vector
gives rise to an image-space representation. The image is thus represented by a point (or vector)
in a high-dimensional image space. The design of most computer vision systems is hampered by
two main problems of image-space representations: (1) the dimensionality problem and (2) the
variance problem. In what follows, we discuss both problems in more detail.

1) Dimensionality problem: The dimensionality problem follows from the exponential
growth of the volume of the representation space with dimensionality. The large number of
pixels in an image makes image-space representations very high-dimensional. As a result,
image-space representations suffer from the curse of dimensionality and other undesired
properties of high-dimensional spaces [Jimenez and Landgrebe, 1997].

1We recognize that classification of archaeological objects may require contextual data next to visual data.
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2) Variance problem: The variance problem is the result of the drastic changes in pixel
values that occur under the influence of changes in lighting, contrast, camera settings, viewpoint,
or under the presence of translations, three-dimensional rotations, and occlusions of depicted
objects. An image-space representation is not a diagnostic representation for the class of the
depicted object, as two completely different image-space representations may depict the same
object under a small variation in imaging conditions.

The dimensionality problem and variance problem may be resolved by extracting features
from the input images2. Features are statistics that are computed from the input images. In order
to resolve both problems successfully, the features should meet the following three requirements:
(1) the features should be non-redundant to resolve the dimensionality problem as good as pos-
sible, (2) the features should be invariant to natural variations in the input images to resolve the
variance problem, and (3) the features should be diagnostic for the object class under considera-
tion. The extraction of features that meet the three requirements facilitates the successful training
of machine learning techniques. The extraction of informative features from input images (or any
other kind of data) is called feature extraction, and it is the main topic of this thesis.

The development of feature extraction techniques has a long tradition, see, e.g., [Yuille et al.,
1992; Reed and du Buf, 1993; Liu and Motoda, 1998; Forsyth and Ponce, 2003]. Our contribution
is that we develop a new feature extraction technique that attempts to address the dimensionality
problem by performing dimensionality reduction (see Chapter 2, 3, and 4), and new invariant
texture features that aim to address the variance problem (see Chapter 5 and 6). Moreover, we
apply the new feature extraction techniques in the challenging cultural heritage domain (see
Chapter 7).

The outline of this chapter is as follows. Section 1.1 identifies and briefly discusses two
main types of features: dimensionality reduction features and image features. In Section 1.2, we
discuss the problem statement of the thesis and we present our two research questions. In Sec-
tion 1.3, the methodology employed in addressing the research questions is discussed. Section 1.4
concludes the chapter by a description of the structure of the thesis.

1.1 Feature extraction

As described above, feature extraction is the process of extracting statistics from input images
that are preferably (1) non-redundant, (2) invariant under natural image variations, and (3) di-
agnostic for the class of the depicted object. In this thesis, we distinguish two main types of
features: (1) dimensionality reduction features and (2) image features. Dimensionality reduction
features aim to address the dimensionality problem of image-space representations. Image fea-
tures aim to address the variance problem of image-space representations. We briefly introduce
both types of features below.

Dimensionality reduction features mitigate the undesired effects of the high dimensionality
of image-space representations by exploiting the (non)linear relations between the pixel values
in the input images. They do so by exploiting (non)linear relations between individual input

2We should note that some recent studies take a different approach, and construct invariant image classifiers without
extracting features by training on massive datasets that are gathered by crawling the Internet [Torralba et al., 2007].
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variables (i.e., pixels), without explicitly using the spatial stucture of images. As a result, dimen-
sionality reduction features can be applied to virtually any type of data. We study dimensionality
reduction features in the first part of this thesis. In particular, we identify the main weaknesses of
state-of-the-art dimensionality reduction features and develop a technique for the extraction of
new dimensionality reduction features that aims to address some of these weaknesses.

Image features mitigate the variance problem by constructing representations that are similar
for images that depict the same object under different imaging conditions. For instance, image
features may construct a representation for the texture of a surface in such a way that the repre-
sentation is invariant under local affine transformations. In contrast to dimensionality reduction
features, image features are explicitly designed to exploit the spatial structure in images.

Image features can be subdivided into local and global features. Local image features (such
as SIFT features [Lowe, 2004]) represent small parts of an image, whereas global image features
provide a representation for a complete image (or for the complete object depicted in the im-
age). For some features, the assignment is ambiguous, for instance, global image features such
as shape contexts (see Appendix A.2.4) may also be considered as local image features. Local
image features are usually employed in object detection tasks (such as face detection), because
they facilitate the use of matching algorithms that are invariant to occlusions. In contrast, global
image features provide more detailed object representations, making them well suited for object
classification tasks (such as face recognition). In the second part of this thesis, we investigate
global image features. In particular, we develop novel features that provide invariant representa-
tions for the texture of an object’s surface.

1.2 Problem statement

Above, we outlined the importance of features in addressing the two problems of image-space
representations. We aim to develop non-redundant invariant image representations in an attempt
to resolve both problems. This leads us to formulate the following problem statement.

How can we mitigate the problems of image-space representations?

To address the problem statement we focus on the development of two types of features:
(1) dimensionality reduction features and (2) texture features. We opt for the investigation of
dimensionality reduction features, because these features are well suited to address the high
dimensionality of image-space representations, and because of the recent popularity of a large
number of novel nonlinear dimensionality reduction techniques [Lee and Verleysen, 2007].
Texture features are investigated because they are important image features for which, in contrast
to many other image features, the susceptibility to variations has not been the subject of much
study (although [Lazebnik et al., 2005; Mellor et al., 2008] are notable exceptions). Moreover,
the two selected types of features are well suitable for the two computer vision systems presented
in Chapter 7. From the problem statement above, we derive two research questions.

• Research question 1 (RQ1): How can we improve existing dimensionality reduction fea-
tures?
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• Research question 2 (RQ2): How can existing texture features be adapted to be invariant
to variations that occur in uncontrolled environments, such as lighting changes, rotations,
and affine transformations?

The two main contributions of the thesis are (1) the development of a new technique for the
extraction of dimensionality reduction features, called t-SNE, and (2) the development of a new
affine-invariant texture feature.

1.3 Research methodology

The research methodology followed is based on review of the relevant literature, analysis of
the findings from the literature, and development and evaluation of new features. We evaluate
features in a quantitative and qualitative manner.

The quantitative evaluation is based on the determination of the generalization performance
of classifiers trained with the developed features. By employing the cross-validation proce-
dure [Bishop, 2006] we estimate the generalization performance as a measure of the quality of
the features. The use of this validation procedure is commonplace in machine-learning research
and provides a reliable estimate of the true generalization error. The generalization performance
is defined as the average performance over all folds. The standard deviation of the performance
over the folds may offer an indication of the reliability of the estimate of the generalization per-
formance. When comparing the features under consideration, we simply compare the associated
generalization performances. We do not employ statistical tests such as ANOVA [Lindman, 1974]
to establish whether the difference in performance of different features is statistically significant,
because the standard deviation of the generalization performance is typically very small (due to
the large number of instances in each fold), which makes the use of statistical tests superfluous.
Differences are considered to be significant whenever the average performances are separated
by at least two standard deviations. The evaluation of the generalization performance allows us
to determine whether the developed features capture information that is diagnostic to the class
labels of the images [Cohen, 1995].

The qualitative evaluation is a visualization of the feature-based image representations in
two-dimensional maps. It provides some intuition for which information in the image data is
captured by the extracted features. Moreover, the visualizations may provide additional evidence
for phenomena observed in the quantitative evaluation.

The image data on which we evaluate the features under investigation is selected in such
a way that it meets the following three requirements: (1) the image data is labeled in order to
facilitate the training and testing of classifiers, (2) the image data contains (some of) the variations
that occur in natural images, and (3) the image data is publicly available in order to facilitate
comparisons with results obtained in other studies. The only exception to the last requirement is
in Chapter 7, where we employ the developed features in two computer vision systems that are
trained on image data which is not publicly available.
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1.4 Structure of the thesis

The remainder of this thesis consists of two main parts. The first part of the thesis attempts to
answer research question RQ1 (in Chapter 2, 3, and 4). The second part of the thesis strives to
answer research question RQ2 (in Chapter 5 and 6). The two main parts of the thesis are followed
by a chapter in which we apply the developed features in the cultural heritage domain. Below,
we briefly discuss the contents of each of the chapters of the thesis.

Chapter 1 presents the problem statement, research questions, and research methodology of
the thesis. In Chapter 2, we compare state-of-the-art dimensionality reduction features in a range
of classification tasks, and identify the main weaknesses of the underlying techniques. Chapter 3
presents a new dimensionality reduction technique called t-SNE that aims to address some of the
weaknesses that were identified in Chapter 2. In Chapter 4, we extend t-SNE to two alternative
learning settings, i.e., a learning setting in which a parametric mapping between the data space
and the latent space is required and a learning setting in which the latent space is non-metric. In
Chapter 5, our focus shifts towards texture features. The chapter presents a literature survey of
state-of-the-art texture features, and concludes that so-called texton-based texture features form
an interesting alternative to traditional texture features based on filter banks or Markov Random
Fields. In Chapter 6, we present new texton-based color-texture features that are invariant to all
main variations occurring in images that are captured in uncontrolled environments. Chapter 7
presents applications of the developed features in two applications. Chapter 8 concludes the thesis
and presents the answers to the research questions posed in this chapter, as well as to the problem
statement. Moreover, the chapter provides five directions of future research.



2 Dimensionality
reduction

Contents The dimensionality problem of image-space representations may be ad-
dressed by extracting dimensionality reduction features from images.
However, it is unclear which dimensionality reduction techniques are
most appropriate for this task, and what the main limitations of the tech-
niques are. Motivated by this observation, the chapter presents a com-
parative review of dimensionality reduction techniques. We identify the
main weaknesses of current dimensionality reduction techniques in order
to (partially) answer research question RQ1. The chapter presents rec-
ommendations for the development of future dimensionality reduction
techniques, some of which we will implement in a new dimensionality
reduction techique in Chapter 3.

Based on L.J.P. van der Maaten, E.O. Postma, and H.J. van den Herik. Dimen-
sionality Reduction: A Comparative Review. Submitted to Journal of
Machine Learning Research.

Outline Section 2.1 gives a formal definition of dimensionality reduction. Sec-
tion 2.2 describes and discusses nine convex techniques for dimension-
ality reduction. In Section 2.3, we describe and discuss four non-convex
techniques for dimensionality reduction. Section 2.4 evaluates all tech-
niques on theoretical characteristics. In Section 2.5, we present an em-
pirical evaluation of techniques for dimensionality reduction on artificial
and natural datasets. Section 2.6 discusses the results of the experiments
and identifies weaknesses and points of improvement of the nonlinear
techniques for dimensionality reduction. Section 2.7 concludes the chap-
ter.
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Dimensionality reduction is the transformation of high-dimensional data into a meaningful rep-
resentation of reduced dimensionality. Ideally, the reduced representation should have a dimen-
sionality that corresponds to the intrinsic dimensionality of the data. The intrinsic dimensionality
of data is the minimum number of parameters needed to account for the observed properties
of the data [Fukunaga, 1990]. Dimensionality reduction is important in many domains, since it
mitigates the curse of dimensionality and other undesired properties of high-dimensional spaces
that are the result of the exponential growth of volume with dimensionality [Jimenez and Land-
grebe, 1997]. As a result, dimensionality reduction facilitates, among others, classification, vi-
sualization, and compression of high-dimensional data. Traditionally, dimensionality reduction
was performed using linear techniques such as Principal Components Analysis (PCA) [Pearson,
1901; Hotelling, 1933] and factor analysis [Spearman, 1904]. However, these linear techniques
cannot adequately handle complex nonlinear data.

Therefore, in the last decade, a large number of nonlinear techniques for dimensionality re-
duction have been proposed (see for an overview, e.g., [Burges, 2005; Saul et al., 2006; Lee and
Verleysen, 2007; Venna, 2007]). In contrast to the traditional linear techniques, the nonlinear
techniques have the ability to deal with complex nonlinear data. In particular for real-world data,
the nonlinear dimensionality reduction techniques may offer an advantage, because real-world
data is likely to be highly nonlinear. Previous studies have shown that nonlinear techniques out-
perform their linear counterparts on complex artificial tasks (see, e.g., [Roweis and Saul, 2000;
Tenenbaum et al., 2000]). For instance, the Swiss roll dataset comprises a set of points that lie
on a spiral-like two-dimensional manifold that is embedded within a three-dimensional space.
A vast number of nonlinear techniques are perfectly able to find this embedding, whereas linear
techniques fail to do so. In contrast to these successes on artificial datasets, successful applica-
tions of nonlinear dimensionality reduction techniques on natural datasets are less convincing.
Beyond this observation, it is not clear to what extent the performances of the various dimen-
sionality reduction techniques differ on artificial and natural tasks (a comparison is performed
by Niskanen and Silvén [2003], but this comparison is very limited in scope with respect to the
number of techniques and tasks that are addressed).

Motivated by the lack of a systematic comparison of dimensionality reduction techniques,
this chapter presents a comparative study of the most important linear dimensionality reduction
technique (PCA), and twelve frontranked nonlinear dimensionality reduction techniques. The
aims of the chapter are (1) to investigate to what extent novel nonlinear dimensionality reduc-
tion techniques outperform the traditional PCA on real-world datasets and (2) to identify the
inherent weaknesses of the twelve nonlinear dimensionality reduction techniques. The investiga-
tion is performed by both a theoretical and an empirical evaluation of the dimensionality reduc-
tion techniques. The identification is performed by a careful analysis of the empirical results on
specifically designed artificial datasets and on a selection of real-world datasets.

Next to PCA, the chapter investigates the following twelve nonlinear techniques: (1) Ker-
nel PCA, (2) Isomap, (3) Maximum Variance Unfolding, (4) diffusion maps, (5) Locally Lin-
ear Embedding, (6) Laplacian Eigenmaps, (7) Hessian LLE, (8) Local Tangent Space Analy-
sis, (9) Sammon mapping, (10) multilayer autoencoders, (11) Locally Linear Coordination, and
(12) manifold charting. Although our comparative review includes the most important nonlin-
ear techniques for dimensionality reduction, it is not exhaustive. The review does not include
self-organizing maps [Kohonen, 1989] and their probabilistic extension GTM [Bishop et al.,
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1998], because we consider these techniques to be clustering techniques. Techniques for Inde-
pendent Component Analysis [Bell and Sejnowski, 1995] are not included in our review, because
they were mainly designed for blind-source separation. Linear Discriminant Analysis [Fisher,
1936], Generalized Discriminant Analysis [Baudat and Anouar, 2000], and Neighborhood Com-
ponents Analysis [Goldberger et al., 2005; Salakhutdinov and Hinton, 2007] are not included
in the review, because of their supervised nature. Furthermore, our comparative review does not
cover a number of techniques that are variants or extensions of the thirteen reviewed dimension-
ality reduction techniques. These variants include factor analysis [Spearman, 1904], principal
curves [Chang and Ghosh, 1998], kernel maps [Suykens, 2007], conformal eigenmaps [Sha and
Saul, 2005], Geodesic Nullspace Analysis [Brand, 2004], various variants of multidimensional
scaling [Faloutsos and Lin, 1995; Demartines and Hérault, 1997; Agrafiotis, 2003], techniques
that (similarly to LLC and manifold charting) globally align a mixture of linear models [Roweis
et al., 2001; Verbeek, 2006; Sanguinetti, 2008], and linear variants of LLE [He et al., 2005;
Kokiopoulou and Saad, 2007], Laplacian Eigenmaps [He and Niyogi, 2004], and LTSA [Zhang
et al., 2007].

The outline of the remainder of this chapter is as follows. In Section 2.1, we give a formal
definition of dimensionality reduction and subdivide the thirteen dimensionality reduction tech-
niques into nine convex techniques and four non-convex techniques. Section 2.2 presents and
discusses the nine convex dimensionality reduction techniques. Subsequently, Section 2.3 de-
scribes and discusses the four non-convex techniques for dimensionality reduction. Section 2.4
lists all techniques by theoretical characteristics. Then, in Section 2.5, we present an empirical
comparison of all described techniques for dimensionality reduction on five artificial datasets and
five natural datasets. Section 2.6 discusses the results of the experiments; moreover, it identifies
weaknesses and points of improvement of the selected nonlinear techniques. Section 2.7 provides
our conclusions.

2.1 Dimensionality reduction

The problem of (nonlinear) dimensionality reduction can be defined as follows. Assume we have
a dataset represented in a n × D matrix X consisting of n datavectors xi (i ∈ {1, 2, . . . , n})
with dimensionality D. Assume further that this dataset has intrinsic dimensionality d (where
d < D, and often d� D). Here, in mathematical terms, intrinsic dimensionality means that the
points in dataset X are lying on or near a manifold with dimensionality d that is embedded in the
D-dimensional space. Note that we make no assumptions on the structure of this manifold: the
manifold may be non-Riemannian because of discontinuities (i.e., the manifold may consist of a
number of disconnected submanifolds). Dimensionality reduction techniques transform dataset X
with dimensionality D into a new dataset Y with dimensionality d, while retaining the geometry
of the data as much as possible. In general, neither the geometry of the data manifold, nor the
intrinsic dimensionality d of the dataset X are known. Therefore, dimensionality reduction is an
ill-posed problem that can only be solved by assuming certain properties of the data (such as its
intrinsic dimensionality). Throughout the thesis, we denote a high-dimensional datapoint by xi,
where xi is the ith row of the D-dimensional data matrix X. The low-dimensional counterpart of
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xi is denoted by yi, where yi is the ith row of the d-dimensional data matrix Y. In the remainder
of the thesis, we adopt the notation presented above, and we assume the dataset X is zero-mean.

Figure 2.1 shows a taxonomy of techniques for dimensionality reduction. We subdivide tech-
niques for dimensionality reduction into convex and non-convex techniques. Convex techniques
optimize an objective function that does not contain any local optima, whereas non-convex tech-
niques optimize objective functions that do contain local optima. The further subdivisions in the
taxonomy are discussed in Section 2.2 (convex techniques) and Section 2.3 (non-convex tech-
niques).

Dimensionality 
reduction

Laplacian
Eigenmaps

Autoencoder

LLE

Kernel-based
Neighborhood graph 

Laplacian

Hessian LLE
LTSA

Reconstruction 
weights

Local tangent space

Convex

Full spectral

PCA 
Class. scaling

Nonconvex

LLC
Man. charting
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Alignment of local 
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Neural network
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Isomap Diffusion maps
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MVU

Weighted Euclidean 
distances

Sammon 
mapping

Figure 2.1 Taxonomy of dimensionality reduction techniques.

2.2 Convex techniques for dimensionality reduction

Convex techniques for dimensionality reduction optimize an objective function that does not
contain any local optima (i.e., the solution space is convex) [Boyd and Vandenberghe, 2004].
Most of the selected dimensionality reduction techniques fall in the class of convex techniques.
In these techniques, the objective function has the form of a (generalized) Rayleigh quotient: the
objective function is of the form φ(X) = XT AX

XT BX . It is well known that a function of this form
can be optimized by solving a generalized eigenproblem. One technique (Maximum Variance
Unfolding) solves an additional semidefinite program using an interior point method. We subdi-
vide convex dimensionality reduction techniques into techniques that perform a spectral analysis
of a full matrix (subsection 2.2.1) and those that perform a spectral analysis of a sparse matrix
(subsection 2.2.2).

2.2.1 Full spectral techniques

Full spectral techniques for dimensionality reduction perform an eigendecomposition of a full
matrix that captures the covariances between dimensions or the pairwise similarities between
datapoints (possibly in a feature space that is constructed by means of a kernel function). In this
subsection, we discuss five such techniques: (1) PCA / classical scaling, (2) Isomap, (3) Kernel
PCA, (4) Maximum Variance Unfolding, and (5) diffusion maps.
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PCA / Classical scaling

Principal Components Analysis (PCA) [Pearson, 1901; Hotelling, 1933] is a linear technique for
dimensionality reduction, which means that it performs dimensionality reduction by embedding
the data into a linear subspace of lower dimensionality. Although there exist various techniques
to do so, PCA is by far the most popular (unsupervised) linear technique. Therefore, in our
comparison, we only include PCA.

PCA constructs a low-dimensional representation of the data that describes as much of the
variance in the data as possible. This is done by finding a linear basis of reduced dimensionality
for the data, in which the amount of variance in the data is maximal.

In mathematical terms, PCA attempts to find a linear mapping M that maximizes
MT cov(X)M, where cov(X) is the sample covariance matrix of the data X. It can be shown
that this linear mapping is formed by the d principal eigenvectors (i.e., principal components) of
the sample covariance matrix of the zero-mean data1. Hence, PCA solves the eigenproblem

cov(X)M = λM. (2.1)

The eigenproblem is solved for the d principal eigenvalues λ. The low-dimensional data repre-
sentations yi of the datapoints xi are computed by mapping them onto the linear basis M, i.e.,
Y = XM.

PCA is identical to the traditional technique for multidimensional scaling called classical
scaling [Torgerson, 1952]. The input into classical scaling is, like the input into most other multi-
dimensional scaling techniques, a pairwise Euclidean distance matrix D of which the entries dij

represent the Euclidean distance between the high-dimensional datapoints xi and xj . Classical
scaling finds the linear mapping that minimizes the cost function

φ(Y) =
∑
ij

(
d2

ij − ‖yi − yj‖2
)
, (2.2)

in which ‖yi−yj‖2 is the squared Euclidean distance between the low-dimensional datapoints yi

and yj . It can be shown [Torgerson, 1952; Williams, 2002] that the minimum of this cost function
is given by the eigendecomposition of the Gram matrix K = XXT of the high-dimensional
data. The entries of the Gram matrix can be obtained by double-centering the pairwise squared
Euclidean distance matrix, i.e., by computing

kij = −1
2

(
d2

ij −
1
n

∑
l

d2
il −

1
n

∑
l

d2
jl +

1
n2

∑
lm

d2
lm

)
. (2.3)

The minimum of the cost function in Equation 2.2 can now be obtained by multiplying the prin-
cipal eigenvectors of the double-centered squared Euclidean distance matrix (i.e., the principal
eigenvectors of the Gram matrix) with the square root of their corresponding eigenvalues. The
similarity of classical scaling to PCA is the result of a relation between the eigenvectors of the

1PCA maximizes MT cov(X)M with respect to M, under the constraint that the L2-norm of each column mj of M is
1, i.e., that ‖mj‖2 = 1. This constraint can be enforced by introducing a Lagrange multiplier λ. Hence, an unconstrained
maximization of mT

j cov(X)mj + λ(1 − mT
j mj) is performed. The stationary points of this quantity are to be found

when cov(X)mj = λmj .
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covariance matrix and the Gram matrix of the high-dimensional data: it can be shown that the
eigenvectors ui and vi of the matrices XT X and XXT are related through

√
λivi = Xui [Chat-

field and Collins, 1980]. The connection between PCA and classical scaling is described in more
detail in, e.g., [Williams, 2002; Platt, 2005].

PCA and classical scaling have been successfully applied in a large number of domains such
as face recognition [Turk and Pentland, 1991], coin classification [Huber et al., 2005], and seis-
mic series analysis [Posadas et al., 1993]. PCA and classical scaling suffer from two main draw-
backs.

First, in PCA, the size of the covariance matrix is proportional to the dimensionality of the
datapoints. As a result, the computation of the eigenvectors might be infeasible for very high-
dimensional data. In datasets in which n < D, this drawback may be overcome by performing
classical scaling instead of PCA, because the classical scaling scales with the number of data-
points instead of with the number of dimensions in the data. Alternatively, iterative techniques
such as Simple PCA [Partridge and Calvo, 1997] or probabilistic PCA [Roweis, 1997] may be
employed.

Second, the cost function in Equation 2.2 reveals that PCA and classical scaling focus mainly
on retaining large pairwise distances d2

ij , instead of retaining the small pairwise distances, which
is much more important.

Isomap

Classical scaling has proven to be successful in many applications, but it suffers from the fact that
it mainly aims to retain pairwise Euclidean distances, and does not take into account the distribu-
tion of the neighboring datapoints. If the high-dimensional data lies on or near a curved manifold,
such as in the Swiss roll dataset [Tenenbaum et al., 2000], classical scaling might consider two
datapoints as near points, whereas their distance over the manifold is much larger than the typical
interpoint distance. Isomap [Tenenbaum et al., 2000] is a technique that resolves this problem by
attempting to preserve pairwise geodesic (or curvilinear) distances between datapoints. Geodesic
distance is the distance between two points measured over the manifold.

In Isomap [Tenenbaum et al., 2000], the geodesic distances between the datapoints xi

(i = 1, 2, . . . , n) are computed by constructing a neighborhood graph G, in which every dat-
apoint xi is connected with its k nearest neighbors xij (j = 1, 2, . . . , k) in the dataset X. The
shortest path between two points in the graph forms an estimate of the geodesic distance be-
tween these two points, and can easily be computed using Dijkstra’s or Floyd’s shortest-path
algorithm [Dijkstra, 1959; Floyd, 1962]. The geodesic distances between all datapoints in X are
computed, thereby forming a pairwise geodesic distance matrix. The low-dimensional represen-
tations yi of the datapoints xi in the low-dimensional space Y are computed by applying classical
scaling (see 2.2.1) on the resulting pairwise geodesic distance matrix.

An important weakness of the Isomap algorithm is its topological instability [Balasubrama-
nian and Schwartz, 2002]. Isomap may construct erroneous connections in the neighborhood
graph G. Such short-circuiting [Lee and Verleysen, 2005] can severely impair the performance
of Isomap. Several approaches have been proposed to overcome the problem of short-circuiting,
e.g., by removing datapoints with large total flows in the shortest-path algorithm [Choi and
Choi, 2007] or by removing nearest neighbors that violate local linearity of the neighborhood
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graph [Saxena et al., 2004]. A second weakness is that Isomap may suffer from ‘holes’ in the
manifold. This problem can be dealt with by tearing manifolds with holes [Lee and Verleysen,
2005]. A third weakness of Isomap is that it can fail if the manifold is non-convex [Tenenbaum,
1998]. Despite these three weaknesses, Isomap was successfully applied on tasks such as wood
inspection [Niskanen and Silvén, 2003], visualization of biomedical data [Lim et al., 2003], and
head pose estimation [Raytchev et al., 2004].

Kernel PCA

Kernel PCA (KPCA) is the reformulation of traditional linear PCA in a high-dimensional space
that is constructed using a kernel function [Schölkopf et al., 1998]. In recent years, the reformula-
tion of linear techniques using the ‘kernel trick’ has led to the proposal of successful techniques
such as kernel ridge regression and Support Vector Machines [Shawe-Taylor and Christianini,
2004]. Kernel PCA computes the principal eigenvectors of the kernel matrix, rather than those
of the covariance matrix. The reformulation of PCA in kernel space is straightforward, since a
kernel matrix is similar to the dot product of the datapoints in the high-dimensional space that
is constructed using the kernel function. The application of PCA in the kernel space provides
Kernel PCA with the property of constructing nonlinear mappings. Kernel PCA computes the
kernel matrix K of the datapoints xi. The entries in the kernel matrix are defined by

kij = κ(xi, xj), (2.4)

where κ is a kernel function [Shawe-Taylor and Christianini, 2004], which may be any function
that gives rise to a positive-semidefinite kernel K. Subsequently, the kernel matrix K is double-
centered using the following modification of the entries

kij = −1
2

(
kij −

1
n

∑
l

kil −
1
n

∑
l

kjl +
1
n2

∑
lm

klm

)
. (2.5)

The centering operation corresponds to subtracting the mean of the features in traditional PCA:
it subtracts the mean of the data in the feature space defined by the kernel function κ. As a result,
the data in the features space defined by the kernel function is zero-mean. Subsequently, the
principal d eigenvectors vi of the centered kernel matrix are computed. The eigenvectors of the
covariance matrix ai (in the feature space constructed by κ) can now be computed, since they
are related to the eigenvectors of the kernel matrix vi (see, e.g., [Chatfield and Collins, 1980])
through

ai =
1√
λi

vi. (2.6)

In order to obtain the low-dimensional data representation, the data is projected onto the eigen-
vectors of the covariance matrix ai. The result of the projection (i.e., the low-dimensional data
representation Y) is given by

yi =


n∑

j=1

a
(j)
1 κ(xj , xi), . . . ,

n∑
j=1

a
(j)
d κ(xj , xi)

 , (2.7)
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where a(j)
1 indicates the jth value in the vector a1 and κ is the kernel function that was also

used in the computation of the kernel matrix. Since Kernel PCA is a kernel-based method, the
mapping performed by Kernel PCA relies on the choice of the kernel function κ. Possible choices
for the kernel function include the linear kernel (making Kernel PCA equal to traditional PCA),
the polynomial kernel, and the Gaussian kernel that is given in Equation 2.8 [Shawe-Taylor
and Christianini, 2004]. Notice that when the linear kernel is employed, the kernel matrix K is
equal to the Gram matrix, and the procedure described above is thus identical to classical scaling
(see 2.2.1).

An important weakness of Kernel PCA is that the size of the kernel matrix is proportional
to the square of the number of instances in the dataset. An approach to resolve this weakness is
proposed by Tipping [2000]. Kernel PCA has been successfully applied to, e.g., face recogni-
tion [Kim et al., 2002], speech recognition [Lima et al., 2004], and novelty detection [Hoffmann,
2007].

MVU

As described above, Kernel PCA allows for performing PCA in the feature space that is defined
by the kernel function κ. However, it is unclear how the kernel function κ should be selected.
Maximum Variance Unfolding (MVU, formerly known as Semidefinite Embedding) is a tech-
nique that attempts to resolve this problem by learning the kernel matrix. MVU learns the kernel
matrix by defining a neighborhood graph on the data (as in Isomap) and retaining pairwise dis-
tances in the resulting graph [Weinberger et al., 2004]. MVU is different from Isomap in that it
explicitly attempts to ‘unfold’ the data manifold. It does so by maximizing the Euclidean dis-
tances between the datapoints, under the constraint that the distances in the neighborhood graph
are left unchanged (i.e., under the constraint that the local geometry of the data manifold is not
distorted). The resulting optimization problem can be solved using semidefinite programming.

MVU starts with the construction of a neighborhood graph G, in which each datapoint xi

is connected to its k nearest neighbors xij
(j = 1, 2, . . . , k). Subsequently, MVU attempts to

maximize the sum of the squared Euclidean distances between all datapoints, under the constraint
that the distances inside the neighborhood graphG are preserved. In other words, MVU performs
the following optimization problem.

Maximize
∑
ij

‖yi − yj‖2 subject to (1), with:

(1) ‖yi − yj‖2 =‖xi − xj‖2 for ∀(i, j) ∈ G

MVU reformulates the optimization problem as a semidefinite programming problem
(SDP) [Vandenberghe and Boyd, 1996] by defining the kernel matrix K as the inner product
of the low-dimensional data representation Y. The optimization problem then reduces to the
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following SDP, which learns the kernel matrix K.

Maximize trace(K) subject to (1), (2), and (3), with:

(1) kii + kjj − 2kij = ‖xi − xj‖2 for ∀(i, j) ∈ G

(2)
∑
ij

kij = 0

(3) K � 0

The solution K of the SDP is the kernel matrix that is used as input for Kernel PCA. The low-
dimensional data representation Y is obtained by performing an eigendecomposition of the kernel
matrix K that was constructed by solving the SDP.

MVU has a weakness similar to Isomap: short-circuiting may impair the performance of
MVU, because it adds constraints to the optimization problem that prevent successful unfolding
of the manifold. Despite this weakness, MVU was successfully applied to, e.g., sensor localiza-
tion [Weinberger et al., 2007] and DNA microarray data analysis [Kharal, 2006].

Diffusion maps

The diffusion maps (DM) framework [Lafon and Lee, 2006; Nadler et al., 2006] originates from
the field of dynamical systems. Diffusion maps are based on defining a Markov random walk on
the graph of the data. By performing the random walk for a number of timesteps, a measure for
the proximity of the datapoints is obtained. Using this measure, the so-called diffusion distance
is defined. In the low-dimensional representation of the data, the pairwise diffusion distances are
retained as good as possible. The key idea behind the diffusion distance is that it is based on
integrating over all paths through the graph. This makes the diffusion distance more robust to
short-circuiting than, e.g., the geodesic distance that is employed in Isomap.

In the diffusion maps framework, a graph of the data is constructed first. The weights of the
edges in the graph are computed using the Gaussian kernel function, leading to a matrix W with
entries

wij = e−
‖xi−xj‖

2

2σ2 , (2.8)

where σ indicates the variance of the Gaussian. Subsequently, normalization of the matrix W
is performed in such a way that its rows add up to 1. In this way, a matrix P(1) is formed with
entries

p
(1)
ij =

wij∑
k wik

. (2.9)

Since diffusion maps originate from dynamical systems theory, the resulting matrix P(1) is con-
sidered a Markov matrix that defines the forward transition probability matrix of a dynamical
process. Hence, the matrix P(1) represents the probability of a transition from one datapoint to
another datapoint in a single timestep. The forward probability matrix for t timesteps P(t) is
thus given by (P(1))t. Using the random walk forward probabilities p(t)

ij , the diffusion distance is
defined by

D(t)(xi, xj) =

√√√√√∑
k

(
p
(t)
ik − p

(t)
jk

)2

ψ(xk)(0)
. (2.10)
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In Equation 2.10, ψ(xi)(0) is a term that attributes more weight to parts of the graph with high
density. It is defined by ψ(xi)(0) = miP

j mj
, where mi is the degree of node xi defined by

mi =
∑

j pij . From Equation 2.10, it can be observed that pairs of datapoints with a high forward
transition probability have a small diffusion distance. Since the diffusion distance is based on in-
tegrating over all paths through the graph, it is more robust to short-circuiting than the geodesic
distance that is employed in Isomap. In the low-dimensional representation of the data Y, diffu-
sion maps attempt to retain the diffusion distances. Using spectral theory on the random walk, it
has been shown (see, e.g., [Lafon and Lee, 2006]) that the low-dimensional representation Y that
retains the diffusion distances D(t)(xi, xj) as good as possible (under a squared error criterion)
is formed by the d nontrivial principal eigenvectors of the eigenproblem

P(t)v = λv. (2.11)

Because the graph is fully connected, the largest eigenvalue is trivial (viz. λ1 = 1), and its
eigenvector v1 is thus discarded. The low-dimensional representation Y is given by the next d
principal eigenvectors. In the low-dimensional representation, the eigenvectors are normalized
by their corresponding eigenvalues. Hence, the low-dimensional data representation is given by

Y = {λ2v2, λ3v3, . . . , λd+1vd+1}. (2.12)

Diffusion maps have been successfully applied to, e.g., shape matching [Rajpoot et al., 2007]
and gene expression analysis [Xu et al., 2007].

2.2.2 Sparse spectral techniques

In the previous subsection, we discussed five techniques that construct a low-dimensional repre-
sentation of the high-dimensional data by performing an eigendecomposition of a full matrix. In
contrast, the four techniques discussed in this subsection solve a sparse (generalized) eigenprob-
lem. All presented sparse spectral techniques only focus on retaining local structure of the data.
We discuss four sparse spectral dimensionality reduction techniques, viz. (1) LLE, (2) Laplacian
Eigenmaps, (3) Hessian LLE, and (4) LTSA.

LLE

Local Linear Embedding (LLE) [Roweis and Saul, 2000] is a technique that is similar to Isomap
(and MVU) in that it constructs a graph representation of the datapoints. In contrast to Isomap, it
attempts to preserve solely local properties of the data. As a result, LLE is less sensitive to short-
circuiting than Isomap, because only a small number of local properties are affected if short-
circuiting occurs. Furthermore, the preservation of local properties allows for successful embed-
ding of non-convex manifolds. In LLE, the local properties of the data manifold are constructed
by writing the high-dimensional datapoints as a linear combination of their nearest neighbors. In
the low-dimensional representation of the data, LLE attempts to retain the reconstruction weights
in the linear combinations as good as possible.

LLE describes the local properties of the manifold around a datapoint xi by writing the data-
point as a linear combination Wi (the so-called reconstruction weights) of its k nearest neighbors
xij

. Hence, LLE fits a hyperplane through the datapoint xi and its nearest neighbors, thereby
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assuming that the manifold is locally linear. The local linearity assumption implies that the re-
construction weights Wi of the datapoints xi are invariant to translation, rotation, and rescaling.
Because of the invariance to these transformations, any linear mapping of the hyperplane to a
space of lower dimensionality preserves the reconstruction weights in the space of lower dimen-
sionality. In other words, if the low-dimensional data representation preserves the local geometry
of the manifold, the reconstruction weights Wi that reconstruct datapoint xi from its neighbors
in the high-dimensional data representation also reconstruct datapoint yi from its neighbors in
the low-dimensional data representation. As a consequence, finding the d-dimensional data rep-
resentation Y amounts to minimizing the cost function

φ(Y) =
∑

i

‖yi −
k∑

j=1

wijyij
‖2 subject to ‖y(k)‖2 = 1 for ∀k, (2.13)

where y(k) represents the kth column of the solution matrix Y. Roweis and Saul [2000] showed2

that the coordinates of the low-dimensional representations yi that minimize this cost function
are found by computing the eigenvectors corresponding to the smallest d nonzero eigenvalues of
the inproduct (In − W)T (In − W), where W is a sparse n × n matrix of which the entries are
set to 0 if i and j are not connected in the neighborhood graph, and equal to the corresponding
reconstruction weight otherwise. In this formula, In is the n× n identity matrix.

The popularity of LLE has led to the proposal of linear variants of the algorithm [He
et al., 2005; Kokiopoulou and Saad, 2007], and to successful applications, e.g., to superreso-
lution [Chang et al., 2004] and sound source localization [Duraiswami and Raykar, 2005]. How-
ever, there also exist experimental studies that report weak performance of LLE. Lim et al. [2003]
report that LLE fails in the visualization of even simple synthetic biomedical datasets. Jenkins
and Mataric [2002] claim that LLE performs worse than Isomap in the derivation of perceptual-
motor actions. A possible explanation lies in the difficulties that LLE has when confronted with
manifolds that contain holes [Roweis and Saul, 2000]. In addition, LLE tends to collapse large
portions of the data close together in the low-dimensional space.

Laplacian Eigenmaps

Similar to LLE, Laplacian Eigenmaps find a low-dimensional data representation by preserving
local properties of the manifold [Belkin and Niyogi, 2002]. In Laplacian Eigenmaps, the local
properties are based on the pairwise distances between near neighbors. Laplacian Eigenmaps
compute a low-dimensional representation of the data in which the distances between a datapoint
and its k nearest neighbors are minimized. This is done in a weighted manner, i.e., the distance
in the low-dimensional data representation between a datapoint and its first nearest neighbor
contributes more to the cost function than the distance between the datapoint and its second
nearest neighbor. Using spectral graph theory, the minimization of the cost function is defined as
an eigenproblem.

The Laplacian Eigenmap algorithm first constructs a neighborhood graph G in which every
datapoint xi is connected to its k nearest neighbors. For all points xi and xj in graph G that are

2φ(Y) = (Y−WY)2 = YT (In−W)T (In−W)Y is the function that has to be minimized. Hence, the eigenvectors
of (In − W)T (In − W) corresponding to the smallest nonzero eigenvalues form the solution that minimizes φ(Y).
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connected by an edge, the weight of the edge is computed using the Gaussian kernel function
(see Equation 2.8), leading to a sparse adjacency matrix W. In the computation of the low-
dimensional representations yi, the cost function that is minimized is given by

φ(Y) =
∑
ij

‖yi − yj‖2wij . (2.14)

In the cost function, large weights wij correspond to small distances between the high-
dimensional datapoints xi and xj . Hence, the difference between their low-dimensional repre-
sentations yi and yj highly contributes to the cost function. As a consequence, nearby points in
the high-dimensional space are put as close together as possible in the low-dimensional repre-
sentation.

The computation of the degree matrix M and the graph Laplacian L of the graph W allows
for formulating the minimization problem in Equation 2.14 as an eigenproblem [Anderson and
Morley, 1985]. The degree matrix M of W is a diagonal matrix, of which the entries are the row
sums of W (i.e., mii =

∑
j wij). The graph Laplacian L is computed by L = M−W. It can be

shown that the following holds3

φ(Y) =
∑
ij

‖yi − yj‖2wij = 2YT LY. (2.15)

Hence, minimizing φ(Y) is proportional to minimizing YT LY subject to YT MY = In, a co-
variance constraint that is similar to that of LLE. The low-dimensional data representation Y can
thus be found by solving the generalized eigenvalue problem

Lv = λMv (2.16)

for the d smallest nonzero eigenvalues. The d eigenvectors vi corresponding to the smallest
nonzero eigenvalues form the low-dimensional data representation Y.
Laplacian Eigenmaps (and its variants) have been successfully applied, e.g., to clustering [Weiss,
1999; Shi and Malik, 2000; Ng et al., 2001], face recognition [He et al., 2005], and the analysis
of fMRI data [Brun et al., 2003]. In addition, variants of Laplacian Eigenmaps may be applied
to supervised or semi-supervised learning problems [Belkin and Niyogi, 2004; Costa and Hero,
2005]. A linear variant of Laplacian Eigenmaps is presented by He and Niyogi [2004].

Hessian LLE

Hessian LLE (HLLE) [Donoho and Grimes, 2005] is a variant of LLE that minimizes the ‘curvi-
ness’ of the high-dimensional manifold when embedding it into a low-dimensional space, under
the constraint that the low-dimensional data representation is locally isometric. This is done by
an eigenanalysis of a matrixH that describes the curviness of the manifold around the datapoints.
The curviness of the manifold is measured by means of the local Hessian at every datapoint. The
local Hessian is represented in the local tangent space at the datapoint, in order to obtain a rep-
resentation of the local Hessian that is invariant to differences in the positions of the datapoints.

3Note that φ(Y) =
P

ij‖yi−yj‖2wij =
P

ij(‖yi‖2 +‖yj‖2−2yiyT
j )wij =

P
i‖yi‖2mii +

P
j‖yj‖2mjj−

2
P

ij yiyT
j wij = 2YT MY − 2YT WY = 2YT LY
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It can be shown4 that the coordinates of the low-dimensional representation can be found by
performing an eigenanalysis of H.

Hessian LLE starts with identifying the k nearest neighbors for each datapoint xi using Eu-
clidean distance. In the neighborhood, local linearity of the manifold is assumed. Hence, a basis
for the local tangent space at point xi can be found by applying PCA on its k nearest neighbors
xij . In other words, for every datapoint xi, a basis for the local tangent space at point xi is de-
termined by computing the d principal eigenvectors M = {m1,m2, . . . ,md} of the covariance
matrix cov(xi·). Note that the above requires that k ≥ d. Subsequently, an estimator for the Hes-
sian of the manifold at point xi in local tangent space coordinates is computed. In order to do this,
a matrix Zi is formed that contains (in the columns) all cross products of M up to the dth order
(including a column with ones). The matrix Zi is orthonormalized by applying Gram-Schmidt
orthonormalization [Afken, 1985]. The estimation of the tangent Hessian Hi is now given by
the transpose of the last d(d+1)

2 columns of the matrix Zi. Using the Hessian estimators in local
tangent coordinates, a matrix H is constructed with entries

Hlm =
∑

i

∑
j

((Hi)jl × (Hi)jm) . (2.17)

The matrix H represents information on the curviness of the high-dimensional data manifold.
An eigenanalysis of H is performed in order to find the low-dimensional data representation
that minimizes the curviness of the manifold. The eigenvectors corresponding to the d small-
est nonzero eigenvalues of H are selected and form the matrix Y, which contains the low-
dimensional representation of the data. A successful application of Hessian LLE to sensor lo-
calization has been presented by Patwari and Hero [2004].

LTSA

Similar to Hessian LLE, Local Tangent Space Analysis (LTSA) is a technique that describes local
properties of the high-dimensional data using the local tangent space of each datapoint [Zhang
and Zha, 2004]. LTSA is based on the observation that, if local linearity of the manifold is
assumed, there exists a linear mapping from a high-dimensional datapoint to its local tangent
space, and that there exists a linear mapping from the corresponding low-dimensional datapoint
to the same local tangent space [Zhang and Zha, 2004]. LTSA attempts to align these linear
mappings in such a way, that they construct the local tangent space of the manifold from the low-
dimensional representation. In other words, LTSA simultaneously searches for the coordinates
of the low-dimensional data representations, and for the linear mappings of the low-dimensional
datapoints to the local tangent space of the high-dimensional data.

Similar to Hessian LLE, LTSA starts with computing bases for the local tangent spaces at
the datapoints xi. This is done by applying PCA on the k datapoints xij that are neighbors of
datapoint xi. This results in a mapping Mi from the neighborhood of xi to the local tangent
space Zi. A property of the local tangent space Zi is that there exists a linear mapping Li from
the local tangent space coordinates zij to the low-dimensional representations yij

. Using this

4The derivation can be found in [Donoho and Grimes, 2005].



20 Dimensionality reduction

property of the local tangent space, LTSA performs the following minimization

min
Yi,Li

∑
i

‖YiJk − LiZi‖2, (2.18)

where Jk is the centering matrix (i.e., the matrix that performs the transformation in Equation 2.5)
of size k [Shawe-Taylor and Christianini, 2004]. Zhang and Zha [Zhang and Zha, 2004] have
shown that the solution of the minimization is formed by the eigenvectors of an alignment matrix
B, that correspond to the d smallest nonzero eigenvalues of B. The entries of the alignment matrix
B are obtained by iterative summation (for all matrices Vi and starting from b

(0)
ij = 0 for ∀i, j)

B(t)
NiNi

= B(t−1)
NiNi

+ Jk

(
I− ViVT

i

)
Jk, (2.19)

whereNi is the set of indices of the nearest neighbors of datapoint xi and t represents the number
of the iteration. Subsequently, the low-dimensional representation Y is obtained by computation
of the eigenvectors corresponding to the d smallest nonzero eigenvectors of the symmetric matrix
1
2 (B + BT ).

[Teng et al., 2005] report on a successful application of LTSA to microarray data. A linear
variant of LTSA is proposed by Zhang et al. [2007].

2.3 Non-convex techniques for dimensionality reduction

In the previous section, we discussed techniques that construct a low-dimensional data repre-
sentation by optimizing a convex objective function by means of an eigendecomposition. In this
section, we discuss four techniques that optimize a non-convex objective function. Specifically,
we discuss a non-convex technique for multidimensional scaling that forms an alternative to clas-
sical scaling called Sammon mapping, a technique based on training multilayer neural networks
(multilayer autoencoders), and two techniques that compute a mixture of local linear models and
perform a global alignment of these linear models (LLC and manifold charting).

Sammon mapping

In subsection 2.2.1, we discussed classical scaling, a convex technique for multidimensional
scaling [Torgerson, 1952], and noted that the main weakness of this technique is that it mainly
focuses on retaining large pairwise distances, and not on retaining the small pairwise distances,
which are much more important. Several multidimensional scaling variants have been proposed
that aim to address this weakness [Sammon, 1969; Demartines and Hérault, 1997; Lee et al.,
2000; Hinton and Roweis, 2002; Agrafiotis, 2003; Nam et al., 2004]. In this subsection, we
discuss one of these variants called Sammon mapping [Sammon, 1969].

Sammon mapping (SM) adapts the classical scaling cost function (see Equation 2.2) by
weighting the contribution of each pair (i, j) to the cost function by the inverse of their pair-
wise distance in the high-dimensional space dij . In this way, the cost function assigns roughly
equal weight to retaining each of the pairwise distances, and thus retains the local structure of
the data better than classical scaling. Mathematically, the Sammon cost function is given by

φ(Y) =
1∑

ij dij

∑
i 6=j

(dij − ‖yi − yj‖)2

dij
, (2.20)
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where dij represents the pairwise Euclidean distance between the high-dimensional datapoints
xi and xj , and the constant in front is added in order to simplify the gradient of the cost function.
The minimization of the Sammon cost function is generally performed using a pseudo-Newton
method [Cox and Cox, 1994]. Sammon mapping is mainly used for visualization purposes.

Multilayer autoencoders

Multilayer autoencoders (AE) are feed-forward neural networks with an odd number of hidden
layers [DeMers and Cottrell, 1993; Hinton and Salakhutdinov, 2006]. The middle hidden layer
has d nodes, and the input and the output layer have D nodes. An example of an autoencoder is
shown schematically in Figure 2.2. The network is trained to minimize the mean squared error
between the input and the output of the network (ideally, the input and the output are equal).
Training the neural network on the datapoints xi leads to a network in which the middle hidden
layer gives a d-dimensional representation of the datapoints that preserves as much structure in
X as possible. The low-dimensional representations yi can be obtained by extracting the node
values in the middle hidden layer, when datapoint xi is used as input. In order to allow the
autoencoder to learn a nonlinear mapping between the high-dimensional and low-dimensional
data representation, sigmoid activation functions are generally used (except in the middle layer,
where a linear activation function is used).

Multilayer autoencoders usually have a high number of connections. Therefore, backprop-
agation approaches converge slowly and are likely to get stuck in local minima. Hinton et al.
[2006] overcome this drawback is by a learning procedure that consists of three main stages.

First, the recognition layers of the network (i.e., the layers from X to Y) are trained one-
by-one using Restricted Boltzmann Machines (RBMs). An RBM is a Markov Random Field
with a bipartite graph structure of visible and hidden nodes. Typically, the nodes are binary
stochastic random variables (i.e., they obey a Bernoulli distribution) but for continuous data
the binary nodes may be replaced by mean-field logistic or exponential family nodes [Welling
et al., 2004]. RBMs can be trained efficiently using an unsupervised learning procedure that
minimizes the so-called contrastive divergence [Hinton, 2002]. We describe the training of RBMs
in more detail in Appendix D. Second, the reconstruction layers of the network (i.e., the layers
from Y to X′) are formed by the inverse of the trained recognition layers. In other words, the
autoencoder is unrolled. Third, the unrolled autoencoder is finetuned in a supervised manner
using backpropagation as to minimize the mean squared error between the input and the output
of the autoencoder.

Autoencoders have succesfully been applied to problems such as missing data imputa-
tion [Abdella and Marwala, 2005] and HIV analysis [Betechuoh et al., 2006].

LLC

Locally Linear Coordination (LLC) [Teh and Roweis, 2002] computes a number of locally linear
models and subsequently performs a global alignment of the linear models. This process consists
of two steps: (1) computing a mixture of local linear models on the data by means of an Expec-
tation Maximization (EM) algorithm and (2) aligning the local linear models in order to obtain
the low-dimensional data representation using a variant of LLE.
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Figure 2.2 Schematic structure of an autoencoder.

LLC first constructs a mixture of m factor analyzers (MoFA)5 using the EM algo-
rithm [Dempster et al., 1977; Ghahramani and Hinton, 1996a; Kambhatla and Leen, 1997]. Al-
ternatively, a mixture of probabilistic PCA model (MoPPCA) [Tipping and Bishop, 1999] could
be employed. The local linear models in the mixture are used to construct m data representa-
tions zij and their corresponding responsibilities rij (where j ∈ {1, . . . ,m}) for every datapoint
xi. The responsibilities rij describe to what extent datapoint xi corresponds to the model j; they
satisfy

∑
j rij = 1. Using the local models and the corresponding responsibilities, responsibility-

weighted data representations uij = rijzij are computed. The responsibility-weighted data rep-
resentations uij are stored in a n × mD block matrix U. The alignment of the local models is
performed based on U and on a matrix M that is given by M = (In−W)T (In−W). Herein, the
matrix W contains the reconstruction weights computed by LLE (see 2.2.2), and In denotes the
n× n identity matrix. LLC aligns the local models by solving the generalized eigenproblem

Av = λBv, (2.21)

for the d smallest nonzero eigenvalues6. In Equation 2.21, A is the inner product of MT U and
B is the inner product of U. The d eigenvectors vi form a matrix L, that can be shown to define
a linear mapping from the responsibility-weighted data representation U to the underlying low-
dimensional data representation Y. The low-dimensional data representation is thus obtained by
computing Y = UL.

LLC has been successfully applied to face images of a single person with variable pose and
expression, and to handwritten digits [Teh and Roweis, 2002].

5Note that the mixture of factor analyzers (and the mixture of probabilistic PCA model) is a mixture of Gaussians
model with a restriction on the covariance of the Gaussians.

6The derivation of this eigenproblem can be found in [Teh and Roweis, 2002].
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Manifold charting

Similar to LLC, manifold charting constructs a low-dimensional data representation by aligning a
MoFA model or a MoPPCA model [Brand, 2002]. In contrast to LLC, manifold charting does not
minimize a cost function that corresponds to another dimensionality reduction technique (such
as the LLE cost function). Manifold charting minimizes a convex cost function that measures the
amount of disagreement between the linear models on the global coordinates of the datapoints.
The minimization of this cost function can be performed by solving a generalized eigenproblem.

Manifold charting first performs the EM algorithm to learn a mixture of factor analyzers, in
order to obtain m low-dimensional data representations zij and corresponding responsibilities
rij (where j ∈ {1, . . . ,m}) for all datapoints xi. Manifold charting finds a linear mapping from
the data representations zij to the global coordinates yi that minimizes the cost function

φ(Y) =
n∑

i=1

m∑
j=1

rij‖yi − yij‖2, (2.22)

where yi =
∑m

k=1 rikyik, and yij = Mzij . The intuition behind the cost function is that when-
ever there are two linear models in which a datapoint has a high responsibility, these linear
models should agree on the final coordinate of the datapoint. The cost function can be rewritten
in the form

φ(Y) =
n∑

i=1

m∑
j=1

m∑
k=1

rijrik‖yij − yik‖2, (2.23)

which allows the cost function to be rewritten in the form of a Rayleigh quotient. The Rayleigh
quotient can be constructed by the definition of a block-diagonal matrix D with m blocks by

D =

D1 . . . 0
...

. . .
...

0 . . . Dm

 , (2.24)

where Dj is the sum of the weighted covariances of the data representations zij . Hence, Dj is
given by

Dj =
n∑

i=1

rij cov(
[
Zj 1

]
). (2.25)

In Equation 2.25, the 1-column is added to the data representation Zj in order to facilitate trans-
lations in the construction of yi from the data representations zij . Using the definition of the
matrix D and the n×mD block-diagonal matrix U with entries uij = rij

[
zij 1

]
, the manifold

charting cost function can be rewritten as

φ(Y) = LT (D− UT U)L, (2.26)

where L represents the linear mapping on the matrix Z that can be used to compute the final
low-dimensional data representation Y. The linear mapping L can thus be computed by solving
the generalized eigenproblem

(D− UT U)v = λUT Uv, (2.27)

for the d smallest nonzero eigenvalues. The d eigenvectors vi form the columns of the linear
combination L from

[
U 1

]
to Y.
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2.4 Characterization of the techniques

In Section 2.2 and 2.3, we provided an overview of techniques for dimensionality reduction.
This section lists the techniques by three theoretical characterizations. First, relations between
the dimensionality reduction techniques are identified (subsection 2.4.1). Second, we list and
discuss a number of general properties of the techniques such as the nature of the objective
function that is optimized and the computational complexity of the technique (subsection 2.4.2).
Third, the out-of-sample extension of the techniques is discussed (subsection 2.4.3).

2.4.1 Relations

Many of the techniques discussed in Section 2.2 and 2.3 are highly interrelated, and in certain
special cases even equivalent. In the previous sections, we already mentioned some of these
relations, but in this subsection, we discuss the relations between the techniques in more detail.
Specifically, we discuss three types of relations between the techniques.

First, traditional PCA is identical to performing classical scaling and to performing Kernel
PCA with a linear kernel, due to the relation between the eigenvectors of the covariance matrix
and the double-centered squared Euclidean distance matrix [Williams, 2002] (which is in turn
equal to the Gram matrix). Autoencoders in which only linear activation functions are employed
are very similar to PCA as well [Kung et al., 1994].

Second, performing classical scaling on a pairwise geodesic distance matrix is identical to
performing Isomap. Similarly, performing Isomap with the number of nearest neighbors k set
to n − 1 is identical to performing classical scaling (and thus also to performing PCA and to
performing Kernel PCA with a linear kernel). Diffusion maps are also very similar to classical
scaling, however, they attempt to retain a different type of pairwise distances (the so-called dif-
fusion distances). The main discerning property of diffusion maps is that its pairwise distance
measure between the high-dimensional datapoints is based on integrating over all paths through
the graph defined on the data.

Third, the spectral techniques Kernel PCA, Isomap, LLE, and Laplacian Eigenmaps can all
be viewed upon as special cases of the more general problem of learning eigenfunctions [Hamm
et al., 2003; Bengio et al., 2004a]. As a result, Isomap, LLE, and Laplacian Eigenmaps7 can be
considered as special cases of Kernel PCA that use a specific kernel function κ. For instance,
this relation is visible in the out-of-sample extensions of Isomap, LLE, and Laplacian Eigen-
maps [Bengio et al., 2004b]. The out-of-sample extension for these techniques is performed by
means of a so-called Nyström approximation [Baker, 1977; Platt, 2005], which is known to be
equivalent to the Kernel PCA projection [Schölkopf et al., 1998] (see 2.4.3 for more details). Dif-
fusion maps in which t = 1 are fairly similar to Kernel PCA with the Gaussian kernel function.
There are two main differences between the two: (1) no centering of the Gram matrix is per-
formed in diffusion maps (although centering is generally not essential in Kernel PCA [Shawe-
Taylor and Christianini, 2004]) and (2) diffusion maps do not employ the principal eigenvector
of the kernel matrix, whereas Kernel PCA does. MVU can also be viewed upon as a special case
of Kernel PCA, in which the solution of the SDP is the kernel matrix. In turn, Isomap can be

7The same also holds for Hessian LLE and LTSA, but up to our knowledge, the kernel functions for these techniques
have never been derived.
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Technique Parametric Parameters Computational Memory
PCA yes none O(D3) O(D2)
Class. scaling no none O(n3) O(n2)
Isomap no k O(n3) O(n2)
Kernel PCA no κ(·, ·) O(n3) O(n2)
MVU no k O((nk)3) O((nk)3)
Diffusion maps no σ, t O(n3) O(n2)
LLE no k O(pn2) O(pn2)
Laplacian Eigenmaps no k, σ O(pn2) O(pn2)
Hessian LLE no k O(pn2) O(pn2)
LTSA no k O(pn2) O(pn2)
Sammon mapping no none O(in2) O(n2)
Autoencoders yes net size O(inw) O(w)
LLC yes m, k O(imd3) O(nmd)
Manifold charting yes m O(imd3) O(nmd)

Table 2.1 Properties of techniques for dimensionality reduction.

viewed upon as a technique that finds an approximate solution to the MVU problem [Xiao et al.,
2006]. Evaluation of the dual MVU problem has also shown that LLE and Laplacian Eigenmaps
show great resemblance to MVU [Xiao et al., 2006].

As a consequence of the relations between the techniques, our empirical comparative evalu-
ation in Section 2.5 does not include (1) classical scaling, (2) Kernel PCA using a linear kernel,
and (3) autoencoders with linear activation functions, because they are similar to PCA. Further-
more, we do not evaluate Kernel PCA using a Gaussian kernel in the experiments, because of its
resemblance to diffusion maps; instead we use a polynomial kernel.

2.4.2 General properties

In Table 2.1, the thirteen dimensionality reduction techniques are listed by four general prop-
erties: (1) the parametric nature of the mapping between the high-dimensional and the low-
dimensional space, (2) the main free parameters that have to be optimized, (3) the computational
complexity of the main computational part of the technique, and (4) the memory complexity of
the technique. We discuss the four general properties below.

For property 1, Table 2.1 shows that most techniques for dimensionality reduction are non-
parametric. This means that the technique does not specify a direct mapping from the high-
dimensional to the low-dimensional space (or vice versa). The non-parametric nature of most
techniques is a disadvantage for two main reasons: (1) it is not possible to generalize to held-out
or new test data without performing the dimensionality reduction technique again and (2) it is not
possible to obtain insight into how much information of the high-dimensional data was retained
in the low-dimensional space by reconstructing the original data from the low-dimensional data
representation and measuring the error between the reconstructed and true data.
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For property 2, Table 2.1 shows that the objective functions of most nonlinear techniques for
dimensionality reduction all have free parameters that need to be optimized. By free parameters,
we mean parameters that directly influence the cost function that is optimized. The reader should
note that non-convex techniques for dimensionality reduction have additional free parameters,
such as the learning rate and the permitted maximum number of iterations. Moreover, LLE uses
a regularization parameter in the computation of the reconstruction weights. The presence of
free parameters has both advantages and disadvantages. The main advantage of the presence
of free parameters is that they provide more flexibility to the technique, whereas their main
disadvantage is that they need to be tuned to optimize the performance of the dimensionality
reduction technique.

For properties 3 and 4, Table 2.1 provides insight into the computational and memory com-
plexities of the computationally most expensive algorithmic components of the techniques. The
computational complexity of a dimensionality reduction technique is of importance to its prac-
tical applicability. If the memory or computational resources needed are too large, application
becomes infeasible. The computational complexity of a dimensionality reduction technique is
determined by: (1) properties of the dataset such as the number of datapoints n and their dimen-
sionality D and (2) parameters of the techniques, such as the target dimensionality d, the number
of nearest neighbors k (for techniques based on neighborhood graphs), and the number of itera-
tions i (for iterative techniques). In Table 2.1, p denotes the ratio of nonzero elements in a sparse
matrix to the total number of elements, m indicates the number of local models in a mixture
of factor analyzers, and w is the number of weights in a neural network. Below, we discuss the
computational complexity and the memory complexity of each of the entries in the table.

The computationally most demanding part of PCA is the eigenanalysis of the D×D covari-
ance matrix8, which is performed using a power method in O(D3). The corresponding memory
complexity of PCA is O(D2). In datasets in which n < D, the computational and memory com-
plexity of PCA can be reduced to O(n3) and O(n2), respectively (see subection 2.2.1). Classical
scaling, Isomap, diffusion maps, and Kernel PCA perform an eigenanalysis of an n × n matrix
using a power method in O(n3). Because these full spectral techniques store a full n× n kernel
matrix, the memory complexity of these techniques is O(n2).

In addition to the eigendecomposition of Kernel PCA, MVU solves a semidefinite program
(SDP) with nk constraints. Both the computational and the memory complexity of solving an
SDP are cube in the number of constraints [Borchers and Young, 2007]. Since there are nk
constraints, the computational and memory complexity of the main part of MVU is O((nk)3).
Training an autoencoder using RBM training or backpropagation has a computational complexity
of O(inw). The training of autoencoders may converge rather slowly, especially in cases where
the input and target dimensionality are high (since this yields a high number of weights in the
network). The memory complexity of autoencoders is O(w).

The main computational part of LLC and manifold charting is the computation of the MoFA
or MoPPCA model, which has computational complexity O(imd3). The corresponding memory
complexity is O(nmd). Sammon mapping has a computational complexity of O(in2). The cor-
responding memory complexity is O(n2), although the memory complexity may be reduced by
computing the pairwise distances on-the-fly.

8In cases in which n � D, the main computational part of PCA may be the computation of the covariance matrix.
We ignore this for now.
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Similar to, e.g., Kernel PCA, sparse spectral techniques perform an eigenanalysis of an n×n
matrix. However, for these techniques the n × n matrix is sparse which is beneficial, because
it lowers the computational complexity of the eigenanalysis. Eigenanalysis of a sparse matrix
(using Arnoldi methods [Arnoldi, 1951] or Jacobi-Davidson methods [Fokkema et al., 1999])
has computational complexity O(pn2), where p is the ratio of nonzero elements in the sparse
matrix to the total number of elements. The memory complexity is O(pn2) as well.

From the discussion of the four general properties of the techniques for dimensionality reduc-
tion above, we make four observations: (1) most nonlinear techniques for dimensionality reduc-
tion do not provide a parametric mapping between the high-dimensional and the low-dimensional
space, (2) all nonlinear techniques require the optimization of one or more free parameters, (3)
when D < n (which is true in most cases), nonlinear techniques have computational disad-
vantages compared to PCA, and (4) a number of nonlinear techniques suffer from a memory
complexity that is square or cube with the number of datapoints n. From these observations, it
is clear that nonlinear techniques impose considerable demands on computational resources, as
compared to PCA. Attempts to reduce the computational and/or memory complexities of non-
linear techniques have been proposed for, e.g., Isomap [de Silva and Tenenbaum, 2003; Law and
Jain, 2006], MVU [Weinberger et al., 2005, 2007], and Kernel PCA [Tipping, 2000].

2.4.3 Out-of-sample extension

An important requirement for dimensionality reduction techniques is the ability to embed new
high-dimensional datapoints into an existing low-dimensional data representation. So-called out-
of-sample extensions have been developed for a number of techniques to allow for the embedding
of such new datapoints. They can be subdivided into parametric and nonparametric out-of-sample
extensions.

In a parametric out-of-sample extension, the dimensionality reduction technique provides all
parameters that are necessary in order to transform new data from the high-dimensional to the
low-dimensional space (see Table 2.1 for an overview of parametric dimensionality reduction
techniques). In linear techniques such as PCA, this transformation is defined by the linear map-
ping M that was applied to the original data. For Kernel PCA, a similar transformation is avail-
able, although this transformation requires additional kernel function computations [Schölkopf
et al., 1998]. For autoencoders, the trained network defines the transformation from the high-
dimensional to the low-dimensional data representation.

For the other nonlinear dimensionality reduction techniques, a parametric out-of-sample ex-
tension is not available, and therefore, a nonparametric out-of-sample extension is required. Non-
parametric out-of-sample extensions perform an estimation of the transformation from the high-
dimensional to the low-dimensional space. For instance, a nonparametric out-of-sample exten-
sion for Isomap, LLE, and Laplacian Eigenmaps has been presented by Bengio et al. [2004b],
in which the techniques are redefined as kernel methods and the the out-of-sample extension
is performed using the Nyström approximation [Platt, 2005]. The Nyström approximation ap-
proximates the eigenvectors of a large n × n matrix based on the eigendecomposition of a
smaller m ×m submatrix of the large matrix. Similar nonparametric out-of-sample extensions
for Isomap are proposed in [de Silva and Tenenbaum, 2003; Choi and Choi, 2007]. For MVU,
an approximate out-of-sample extension has been proposed that is based on computing a linear



28 Dimensionality reduction

transformation from a set of landmark points to the complete dataset [Weinberger et al., 2005].
An alternative out-of-sample extension for MVU finds this linear transformation by comput-
ing the eigenvectors corresponding to the smallest eigenvalues of the graph Laplacian (similar
to Laplacian Eigenmaps) [Weinberger et al., 2007]. A third out-of-sample extension for MVU
approximates the kernel eigenfunction using Gaussian basis functions [Chin and Suter, 2008].

A nonparametric out-of-sample extension that can be applied to all nonlinear dimensionality
reduction techniques is proposed by Li et al. [2005]. The technique finds the nearest neighbor of
the new datapoint in the high-dimensional representation, and computes the linear mapping from
the nearest neighbor to its corresponding low-dimensional representation. The low-dimensional
representation of the new datapoint is found by applying the same linear mapping to this data-
point.

From the description above, we may observe that linear and nonlinear techniques for di-
mensionality reduction are quite similar in that they allow the embedding of new datapoints.
However, for a number of nonlinear techniques, only nonparametric out-of-sample extensions
are available, which leads to estimation errors in the embedding of new datapoints.

2.5 Experiments

In this section, a systematic empirical comparison of the performance of the linear and nonlinear
techniques for dimensionality reduction is performed. We perform the comparison by measuring
generalization errors in classification tasks on two types of datasets: (1) artificial datasets and
(2) natural datasets. In addition to generalization errors, we measure the ‘trustworthiness’ of the
low-dimensional embeddings as proposed by Venna and Kaski [2006].

The setup of our experiments is described in subsection 2.5.1. In subsection 2.5.2, the results
of our experiments on five artificial datasets are presented. Subsection 2.5.3 presents the results
of the experiments on five natural datasets.

2.5.1 Experimental setup

In our experiments on both the artificial and the natural datasets, we apply the thirteen techniques
for dimensionality reduction on the high-dimensional representation of the data. Subsequently,
we assess the quality of the resulting low-dimensional data representation by evaluating to what
extent the local structure of the data is retained. The evaluation is performed by measuring the
generalization errors of 1-nearest neighbor classifiers that are trained on the low-dimensional
data representation. A similar evaluation scheme is employed by Sanguinetti [2008]. In addition,
we measure the ‘trustworthiness’ that was proposed for the assessment of the quality of dimen-
sionality reduction embeddings by Venna and Kaski [2006]. The trustworthiness measures the
proportion of points that are too close together in the low-dimensional space. The trustworthiness
measure is defined as

T (k) = 1− 2
nk(2n− 3k − 1)

n∑
i=1

∑
j∈U

(k)
i

(r(i, j)− k) , (2.28)
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(a) True underlying manifold. (b) Reconstructed manifold up
to a nonlinear warping.

Figure 2.3 Two low-dimensional data representations.

where r(i, j) represents the rank of the low-dimensional datapoint j according to the pair-
wise distances between the low-dimensional datapoints. The variable U (k)

i indicates the set of
points that are among the k nearest neighbors in the low-dimensional space but not in the high-
dimensional space. Both the generalization errors of the 1-nearest neighbor classifiers and the
trustworthiness evaluate to what extent the local structure of the data is retained (the 1-nearest
neighbor classifier does so because of its high variance). We opt for an evaluation of the local
structure of the data, because for successful visualization or classification of data only its local
structure needs to be retained. An evaluation of the quality based on generalization errors and
trustworthiness has an important advantage over measuring reconstruction errors, because a high
reconstruction error does not necessarily imply that the dimensionality reduction technique per-
formed poorly. For instance, if a dimensionality reduction technique recovers the true underlying
manifold in Figure 2.3(a) up to a nonlinear warping, such as in Figure 2.3(b), this leads to a high
reconstruction error, whereas the local structure of the two manifolds is nearly identical (as the
circles indicate). In other words, reconstruction errors measure the quality of the global structure
of the low-dimensional data representation, and not the quality of the local structure. Moreover,
for real-world datasets the true underlying manifold of the data is usually unknown, and as a
result, reconstruction errors cannot be computed.

For all dimensionality reduction techniques except for Isomap, MVU, and sparse spectral
techniques (the so-called manifold learners), we performed experiments without out-of-sample
extension, because our main interest is in the performance of the dimensionality reduction tech-
niques, and not in the quality of the out-of-sample extension. In the experiments with Isomap,
MVU, and sparse spectral techniques, we employ out-of-sample extensions (see subsection 2.4.3)
in order to embed datapoints that are not connected to the largest component of the neighborhood
graph which is constructed by these techniques. The use of the out-of-sample extension of the
manifold learners is necessary because the traditional implementations of Isomap, MVU, and
sparse spectral techniques can only embed the points that comprise the largest component of the
neighborhood graph.

The parameter settings employed in our experiments are listed in Table 2.2. Most parameters
were optimized using an exhaustive grid search within a reasonable range, which is shown in
Table 2.2. For two parameters (σ in diffusion maps and Laplacian Eigenmaps), we employed
fixed values in order to restrict the computational requirements of our experiments. The value of
k in the k-nearest neighbor classifiers was set to 1. We determined the target dimensionality in
the experiments by means of the maximum likelihood intrinsic dimensionality estimator [Levina
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and Bickel, 2004]. Note that for Hessian LLE and LTSA, the dimensionality of the actual low-
dimensional data representation cannot be higher than the number of nearest neighbors that was
used to construct the neighborhood graph. The generalization errors were obtained using leave-
one-out validation.

Technique Parameter settings
PCA None
Isomap 5 ≤ k ≤ 15
Kernel PCA κ = (XXT + 1)5

MVU 5 ≤ k ≤ 15
Diffusion maps 10 ≤ t ≤ 100 σ = 1
LLE 5 ≤ k ≤ 15
Laplacian Eigenmaps 5 ≤ k ≤ 15 σ = 1
Hessian LLE 5 ≤ k ≤ 15
LTSA 5 ≤ k ≤ 15
Sammon mapping None
Autoencoders Three hidden layers
LLC 5 ≤ k ≤ 15 5 ≤ m ≤ 25
Manifold charting 5 ≤ m ≤ 25

Table 2.2 Parameter settings for the experiments.

Five artificial datasets

We performed experiments on five artificial datasets, most of which are often used in the manifold
learning literature (see, e.g., Roweis and Saul [2000]; Tenenbaum et al. [2000]). The datasets
were specifically selected to investigate how the dimensionality reduction techniques deal with:
(i) data that lies on a low-dimensional manifold that is isometric to the Euclidean space, (ii) data
lying on a low-dimensional manifold that is not isometric to the Euclidean space, (iii) data that
lies on or near a discontinuous manifold, and (iv) data forming a manifold with a high intrinsic
dimensionality. The artificial datasets on which we performed experiments are: the Swiss roll
dataset (addressing i), the helix dataset (addressing ii), the twin peaks dataset (addressing ii),
the broken Swiss roll dataset (addressing iii), and the high-dimensional (HD) dataset (addressing
iv). Figure 2.4 shows plots of the first four artificial datasets. The HD dataset consists of points
randomly sampled from a 5-dimensional non-linear manifold embedded in a 10-dimensional
space. In order to ensure that the generalization errors of the k-nearest neighbor classifiers reflect
the quality of the data representations produced by the dimensionality reduction techniques, we
assigned all datapoints to one of two classes according to a checkerboard pattern on the manifold.
All artificial datasets consist of 5,000 samples. We opted for a fixed number of datapoints in each
dataset, because in real-world applications, obtaining more training data is usually expensive.



2.5 Experiments 31

−10 −5 0 5 10 15
−20

0
20

40
−15

−10

−5

0

5

10

15

(a) Swiss roll dataset.
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(b) Helix dataset.
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(c) Twinpeaks dataset.
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(d) Broken Swiss roll
dataset.

Figure 2.4 Four of the artificial datasets.

Dataset (d) None PCA Isom. KPCA MVU DM LLE LEM HLLE LTSA SM AE LLC MC
Swiss roll (2D) 3.68% 30.32% 2.94% 28.60% 5.90% 28.76% 7.32% 22.74% 3.38% 3.42% 24.44% 48.38% 20.86% 13.58%
Helix (1D) 1.24% 30.40% 6.18% 42.60% 3.86% 35.08% 26.72% 12.24% 52.22% 0.86% 52.22% 32.14% 29.22% 21.94%
Twinpeaks (2D) 0.40% 0.28% 0.40% 0.00% 0.50% 0.12% 1.16% 0.74% 0.12% 0.00% 0.22% 0.22% 8.66% 0.54%
Broken Swiss (2D) 2.14% 26.92% 14.43% 30.62% 30.84% 23.76% 40.86% 11.88% 4.64% 2.46% 28.00% 29.74% 39.38% 22.78%
HD (5D) 24.19% 21.73% 21.15% 27.87% 26.30% 38.30% 26.62% 42.34% 50.02% 40.93% 21.50% 32.03% 34.69% 20.06%

Table 2.3 Generalization errors of 1-NN classifiers trained on artificial datasets.

Five natural datasets

For our experiments on natural datasets, we selected five datasets that represent tasks from a va-
riety of domains: (1) the MNIST dataset, (2) the COIL-20 dataset, (3) the NiSIS dataset, (4) the
ORL dataset, and (5) the HIVA dataset. The MNIST dataset is a dataset of 60,000 handwritten
digits. For computational reasons, we randomly selected 10,000 digits for our experiments. The
images in the MNIST dataset have 28× 28 pixels, and can thus be considered as points in a 784-
dimensional space. The COIL-20 dataset contains images of 20 different objects, depicted from
72 viewpoints, leading to a total of 1,440 images. The size of the images is 32× 32 pixels, yield-
ing a 1,024-dimensional space. The NiSIS dataset is a publicly available dataset for pedestrian
detection, which consists of 3,675 grayscale images of size 36× 18 pixels (leading to a space of
dimensionality 648). The ORL dataset is a face recognition dataset that contains 400 grayscale
images of 112× 92 pixels that depict 40 faces under various conditions (i.e., the dataset contains
10 images per face). The HIVA dataset is a drug discovery dataset with two classes. It consists
of 3,845 datapoints with dimensionality 1,617.

Dataset (d) None PCA Isom. KPCA MVU DM LLE LEM HLLE LTSA SM AE LLC MC
Swiss roll (2D) – 0.88 1.00 0.89 1.00 0.89 0.97 0.93 1.00 1.00 0.90 0.72 0.84 0.88
Helix (1D) – 0.78 0.96 0.74 0.94 0.76 0.86 0.96 0.35 1.00 0.35 0.78 0.79 0.83
Twinpeaks (2D) – 0.98 1.00 0.97 0.99 0.96 0.99 0.99 0.99 0.99 1.00 0.95 0.87 0.99
Broken Swiss (2D) – 0.96 0.98 0.96 0.97 0.96 0.95 0.97 0.94 0.95 0.97 0.96 0.84 0.96
HD (5D) – 1.00 0.99 1.00 0.98 0.99 0.99 0.92 0.26 0.95 1.00 0.92 0.88 1.00

Table 2.4 Trustworthinesses T (12) on the artificial datasets.
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2.5.2 Experiments on artificial datasets

In Table 2.3, we present the generalization errors of 1-nearest neighbor classifiers that were
trained and tested on the low-dimensional data representations obtained from the dimensionality
reduction techniques. We ran the experiments for all parameter settings described in Table 2.2,
and for each technique, we report the best generalization error of all runs in Table 2.3. In the
table, the left column indicates the name of the dataset and the target dimensionality to which
we attempted to transform the high-dimensional data. The best performing technique for each
dataset is shown in boldface. Table 2.4 presents the corresponding trustworthiness values of the
low-dimensional embeddings (again, only the best trustworthiness of all runs is reported). From
the results in Table 2.3 and Table 2.4, we make four observations.

First, the results reveal the strong performance of techniques based on neighborhood graphs
(Isomap, MVU, LLE, Laplacian Eigenmaps, Hessian LLE, and LTSA) on artificial datasets such
as the Swiss roll dataset. Of the techniques based on neighborhood graphs, Isomap slightly out-
performs the other five techniques. Within the sparse spectral techniques, LTSA seems to be
the best-performing technique. Techniques that do not employ neighborhood graphs (viz. PCA,
diffusion maps, Kernel PCA, Sammon mapping, and autoencoders) perform poorly on artificial
datasets such as the Swiss roll dataset. The performance of the two techniques that align local
linear models (LLC and manifold charting) on the Swiss roll dataset are comparable to those of
techniques that do not employ neighborhood graphs.

Second, from the results of the experiments on the helix dataset, we observe that Hessian
LLE, a technique that performs strong on the Swiss roll dataset, may perform less well on mani-
folds that are not isometric to the Euclidean space. The performance of LLE on the helix dataset
is also notably worse than its performance on the Swiss roll dataset. The other techniques based
on neighborhood graphs (Isomap, MVU, LLE, Laplacian Eigenmaps, and LTSA) perform strong
on the helix dataset, despite the non-isometric nature of the dataset.
Third, the high generalization errors on the broken Swiss roll dataset indicate that most nonlinear
techniques for dimensionality reduction do not perform well under the presence of disconnected
(i.e., non-smooth) manifolds in the data.

Fourth, from the results on the HD dataset, we observe that nonlinear techniques may have
problems when they are faced with a dataset with a high intrinsic dimensionality. In particular,
Hessian LLE performs disappointingly on the dataset with a high intrinsic dimensionality. On the
HD dataset, the performance of PCA is surprisingly strong: it is only outperformed by Sammon
mapping and manifold charting, which is the best performing technique on this dataset.

Taken together, the results show that manifold learners perform well on data that forms a
low-dimensional manifold. However, the results also reveal that the strong performance on, e.g.,
the Swiss roll dataset does not always generalize to more complex datasets, such as datasets with
disconnected manifolds, manifolds that are non-isometric to the Euclidean space, or manifolds
with a high intrinsic dimensionality.

2.5.3 Experiments on natural datasets

Table 2.5 presents the generalization errors of 1-nearest neighbor classifiers that were trained on
the low-dimensional data representations obtained from the dimensionality reduction techniques.
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Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA SM AE LLC MC
MNIST (20D) 5.11% 5.70% 12.36% 11.90% 12.12% 27.90% 9.99% 14.84% 69.54% 90.10% 65.32% 8.58% 16.70% 11.16%
COIL-20 (5D) 0.14% 3.82% 14.51% 7.78% 25.14% 4.51% 22.29% 95.00% 49.10% 5.63% 1.11% 15.83% 5.07% 38.26%
ORL (8D) 2.50% 4.75% 27.25% 6.25% 24.25% 49.00% 11.00% 97.50% 56.00% 12.75% 2.75% 6.25% 15.00% 60.05%
NiSIS (15D) 8.24% 7.95% 13.91% 9.50% 16.05% 22.97% 17.77% 47.59% 48.98% 24.74% 48.98% 8.57% 23.55% 19.02%
HIVA (15D) 4.63% 5.44% 4.81% 5.07% 4.81% 5.15% 4.89% 4.81% 3.51% 3.51% 3.51% 4.97% 3.51% 4.55%

Table 2.5 Generalization errors of 1-NN classifiers trained on natural datasets.

Dataset (d) None PCA Isomap KPCA MVU DM LLE LEM HLLE LTSA SM AE LLC MC
MNIST (20D) – 1.00 0.98 0.99 0.94 0.93 0.96 0.89 0.64 0.56 0.78 1.00 0.93 0.98
COIL-20 (5D) – 0.99 0.93 0.98 0.91 0.99 0.93 0.27 0.69 0.96 0.99 0.97 0.97 0.88
ORL (8D) – 0.99 0.94 0.98 0.95 0.84 0.95 0.29 0.85 0.93 0.99 0.99 0.80 0.77
NiSIS (15D) – 0.99 0.93 0.99 0.91 0.89 0.90 0.47 0.47 0.82 0.47 0.99 0.85 0.89
HIVA (15D) – 0.97 0.94 0.89 0.84 0.76 0.80 0.78 0.42 0.54 0.42 0.99 0.91 0.95

Table 2.6 Trustworthinesses T (12) on the natural datasets.

Table 2.6 presents the corresponding trustworthinesses. From the results in Table 2.5 and 2.6, we
make two observations.

First, we observe that the performance of manifold learners on the natural datasets is disap-
pointing compared to the performance of these techniques on the artificial datasets. In contrast,
many techniques that do not employ neighborhood graphs such as PCA, Kernel PCA, Sammon
mapping, and autoencoders perform well on (most of) the natural datasets. In particular, PCA
and autoencoders outperform the other techniques on four of the five datasets (when the tech-
niques are assessed based on the trustworthiness of their embeddings). On the COIL-20 dataset,
the performance of autoencoders is slightly less strong, most likely due to the small number of
instances that constitute this dataset, which hampers the successful training of the large number
of weights in the network. Globally, the difference between the results of the experiments on the
artificial and the natural datasets is remarkable: techniques that perform well on artificial datasets
perform poorly on natural datasets, and vice versa.

Second, the results show that on some natural datasets, the classification performance of our
classifiers was not improved by performing dimensionality reduction. Most likely, this is due to
errors in the intrinsic dimensionality estimator we employed. As a result, the target dimension-
alities may not be optimal (in the sense that they minimize the generalization error of the trained
classifier). However, since we aim to compare the performance of dimensionality reduction tech-
niques, and not to minimize generalization errors on classification problems, this observation is
of no relevance to our study.

2.6 Discussion

In the previous sections, we presented a comparative study of techniques for dimensionality re-
duction. We observed that most nonlinear techniques do not outperform PCA on natural datasets,
despite their ability to learn the structure of complex nonlinear manifolds. This section discusses
the main weaknesses of current nonlinear techniques for dimensionality reduction that explain
the results of our experiments. In addition, the section presents ideas on how to overcome these
weaknesses. The discussion is subdivided into four parts. Subsection 2.6.1 discusses the main
weaknesses of full spectral dimensionality reduction techniques. In subsection 2.6.2, we address
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five weaknesses of sparse spectral techniques for dimensionality reduction. Subsection 2.6.3 dis-
cusses the main weaknesses of the non-convex dimensionality reduction techniques. Subsec-
tion 2.6.4 summarizes the main weaknesses of current nonlinear techniques for dimensionality
reduction and presents some concluding remarks on the future development of dimensionality
reduction techniques.

2.6.1 Full spectral techniques

Our discussion on the results of full spectral techniques for dimensionality reduction is subdi-
vided into two parts. First, we discuss the results of the two neighborhood graph-based tech-
niques, Isomap and MVU. Second, we discuss weaknesses explaining the results of the two
kernel-based techniques, Kernel PCA and diffusion maps.

For the first part, we remark that full spectral techniques for dimensionality reduction that
employ neighborhood graphs, such as Isomap and MVU, are subject to many of the weaknesses
of sparse spectral techniques that we will discuss in subsection 2.6.2. In particular, the construc-
tion of the neighborhood graph is susceptible to the curse of dimensionality, overfitting, and the
presence of outliers (see 2.6.2 for a detailed explanation). In addition to these three problems,
Isomap suffers from short-circuiting: a single erroneous connection in the neighborhood graph
may severely affect the pairwise geodesic distances, as a result of which the data is poorly em-
bedded in the low-dimensional space. Moreover, Isomap uses classical scaling to construct a
low-dimensional embedding from the pairwise geodesic distances. The cost function of classi-
cal scaling causes Isomap to focus on retaining the large geodesic distances, instead of on the
small geodesic distance that constitute the local structure of the data. A possible solution to this
problem is presented by Yang [2004]. MVU suffers from a similar problem as Isomap: a single
short-circuit in the neighborhood graph may lead to an erroneous constraint in the semidefinite
program that severely affects the performance of MVU.

For the second part, we remark that kernel-based techniques for dimensionality reduction
(i.e., Kernel PCA and diffusion maps) do not suffer from the weaknesses of neighborhood graph-
based techniques. However, the performance of Kernel PCA and diffusion maps on the Swiss roll
dataset indicates that (similar to PCA) these techniques are incapable of modeling complex non-
linear manifolds. The main reason for this incapability is that kernel-based methods require the
selection of a proper kernel function. In general, model selection in kernel methods is performed
using some form of hold-out testing [Golub et al., 1979], leading to high computational costs.
Alternative approaches to model selection for kernel methods are based on, e.g., maximizing the
between-class margins or the data variance using semidefinite programming (as in MVU) [Grae-
pel, 2002; Lanckriet et al., 2004]. Despite these alternative approaches, the construction of a
proper kernel remains an important obstacle for the successful application of Kernel PCA. In
addition, depending on the selection of the kernel, kernel-based techniques for dimensionality
reduction may suffer from similar weaknesses as other manifold learners. In particular, when a
Gaussian kernel with a small value of σ is employed, Kernel PCA and diffusion maps may be
susceptible to the curse of intrinsic dimensionality (see 2.6.2). Diffusion maps largely resolve the
short-circuiting problems of Isomap by integrating over all paths through a graph defined of the
data, however, they are still subject to the second problem of Isomap: diffusion maps focus on
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retaining large diffusion distances in the low-dimensional embedding, instead of on retaining the
small diffusion distances that constitute the local structure of the data.

2.6.2 Sparse spectral techniques

The results of our experiments show that the performance of the popular sparse spectral tech-
niques, such as LLE, is rather disappointing on many real-world datasets. Most likely, the poor
performance of these techniques is due to one or more of the following five weaknesses.

First, sparse spectral techniques for dimensionality reduction suffer from a fundamental
weakness in their cost function. For instance, the optimal solution of the cost function of LLE
(see Equation 2.13) is the trivial solution in which the coordinates of all low-dimensional points
yi are zero. This solution is not selected because LLE has a constraint on the covariance of the
solution, viz., the constraint ‖y(k)‖2 = 1 for ∀k. Although the covariance constraint may seem
to have resolved the problem of selecting a trivial solution, it is easy to ‘cheat’ on it. In particu-
lar, LLE often constructs solutions in which most points are embedded on the origin, and there
are a few ‘strings’ coming out of the origin that make sure that the covariance constraint is met
(at a relatively small cost). Moreover, the simple form of the covariance constraint in LLE may
give rise to undesired rescalings of the manifold [Goldberg et al., 2008]. The same problems
also apply to Laplacian Eigenmaps, Hessian LLE, and LTSA, which have similar covariance
constraints.

Second, all sparse spectral dimensionality reduction techniques suffer from the curse of di-
mensionality of the embedded manifold (i.e., the intrinsic dimension of the data) [Bengio and
Monperrus, 2004; Weinberger et al., 2005; Bengio and LeCun, 2007], because the number of
datapoints that is required to characterize a manifold properly grows exponentially with the in-
trinsic dimensionality of the manifold. The susceptibility to the curse of dimensionality is a
fundamental weakness of all local learners, and therefore, it also applies to learning techniques
that employ Gaussian kernels (such as Support Vector Machines). For artificial datasets with low
intrinsic dimensionality such as the Swiss roll dataset, this weakness does not apply. However,
in most real-world tasks, the intrinsic dimensionality of the data is much higher. For instance,
the face space is estimated to consist of at least 100 dimensions [Meytlis and Sirovich, 2007].
As a result, the performance of local techniques is poor on many real-world datasets, which is
illustrated by the results of our experiments with the natural datasets.

Third, the inferior performance of sparse spectral techniques for dimensionality reduction
arises from the eigenproblems that the techniques attempt to solve. Typically, the smallest eigen-
values in these problems are very small (around 10−7 or smaller), whereas the largest eigenvalues
are fairly big (around 102 or larger). Eigenproblems with these properties are extremely hard to
solve, even for state-of-the-art eigensolvers. The eigensolver may not be able to identify the
smallest eigenvalues of the eigenproblem, and as a result, the dimensionality reduction technique
might produce suboptimal solutions. The good performance of Isomap and MVU (that search
for the largest eigenvalues) compared to sparse spectral techniques (that search for the smallest
eigenvalues) may be explained by the difficulty of solving eigenproblems.

Fourth, local properties of a manifold do not necessarily follow the global structure of the
manifold (as noted in, e.g., [Roweis et al., 2001; Brand, 2004]) in the presence of noise around
the manifold. In other words, sparse spectral techniques suffer from overfitting on the manifold.
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Moreover, sparse spectral techniques suffer from folding [Brand, 2002]. Folding is caused by a
value of k that is too high with respect to the sampling density of (parts of) the manifold. Folding
causes the local linearity assumption to be violated, leading to radial or other distortions. In real-
world datasets, folding is likely to occur because the data density may vary over the manifold
(i.e., because the data distribution is not uniform over the manifold). An approach that might
overcome this weakness for datasets with small intrinsic dimensionality is adaptive neighborhood
selection. Techniques for adaptive neighborhood selection are presented in, e.g., [Wang et al.,
2005; Mekuz and Tsotsos, 2006; Samko et al., 2006]. Furthermore, sparse spectral techniques for
dimensionality reduction are sensitive to the presence of outliers in the data [Chang and Ghosh,
1998]. In local techniques for dimensionality reduction, outliers are connected to their k nearest
neighbors, even when they are very distant. As a consequence, outliers degrade the performance
of local techniques for dimensionality reduction. A possible approach to resolve this problem is
the usage of an ε-neighborhood. In an ε-neighborhood, datapoints are connected to all datapoints
that lie within a sphere with radius ε. A second approach to overcome the problem of outliers is
preprocessing the data by removing outliers [Zhang and Zha, 2003; Park et al., 2004].

Fifth, the local linearity assumption of sparse spectral techniques for dimensionality reduc-
tion implies that the techniques assume that the manifold contains no discontinuities (i.e., that the
manifold is smooth). The results of our experiments with the broken Swiss dataset illustrate the
incapability of sparse spectral dimensionality reduction techniques to model non-smooth man-
ifolds. In real-world datasets, the underlying manifold is not likely to be smooth. For instance,
a dataset that contains different object classes is likely to constitute a disconnected underlying
manifold. In addition, most sparse spectral techniques cannot deal with manifolds that are not
isometric to the Euclidean space, which is illustrated by the results of our experiments with the
helix and twinpeaks datasets. This may be a problem, because for instance, a dataset of objects
depicted under various orientations gives rise to a manifold that is closed (similar to the helix
dataset).

In addition to these five weaknesses, Hessian LLE and LTSA cannot transform data to a
dimensionality higher than the number of nearest neighbors in the neighborhood graph, which
might lead to difficulties with datasets with a high intrinsic dimensionality.

2.6.3 Non-convex techniques

Obviously, the main problem of non-convex techniques is that they optimize non-convex objec-
tive functions, as a result of which they suffer from the presence of local optima in the objective
functions. For instance, the EM algorithm that is employed in LLC and manifold charting is
likely to get stuck in a local maximum of the log-likelihood function. In addition, LLC and man-
ifold charting are hampered by the presence of outliers in the data. In techniques that perform
global alignment of linear models (such as LLC), the sensitivity to the presence of outliers may
be addressed by replacing the mixture of factor analyzers by a mixture of t-distributed subspaces
(MoTS) model [de Ridder and Franc, 2003b,a]. The intuition behind the use of the MoTS model
is that a t-distribution is less sensitive to outliers than a Gaussian (which tends to overestimate
variances) because it has heavier tails.

For autoencoders, the presence of local optima in the objective function has largely been
overcome by the pretraining of the network using RBMs. A limitation of autoencoders is that
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they are only applicable on datasets of reasonable dimensionality. If the dimensionality of the
dataset is high, the number of weights in the network is too large to find an appropriate setting
of the network. This limitation of autoencoders may be addressed by preprocessing the data
using PCA. Moreover, successful training of autoencoders requires the availibility of sufficient
amounts of data, as illustrated by our results with autoencoders on the COIL-20 dataset.

Despite the problems of the non-convex techniques mentioned above, our results show that
convex techniques for dimensionality reduction do not necessarily outperform non-convex tech-
niques for dimensionality reduction. In particular, multilayer autoencoders perform very well
on all five natural datasets. Most likely, these results are due to the larger freedom in designing
non-convex techniques, allowing the incorporation of procedures that circumvent many of the
problems of (both full and sparse) spectral techniques mentioned above. In particular, multilayer
autoencoders provide a deep architecture (i.e., an architecture with multiple nonlinear layers), as
opposed to shallow architectures such of the convex techniques that we discussed [Bengio and
LeCun, 2007]. The main advantage of such a deep architecture is that it requires exponentially
less datapoints to learn the structure of highly varying manifolds, as illustrated for a d-bits parity
dataset by Bengio [2007]. Hence, although convex techniques are much more popular in dimen-
sionality reduction (and in machine learning in general), our results suggest that suboptimally
optimizing a sensible objective function is a more viable approach than optimizing a convex
objective function that contains obvious flaws. This claim is supported by the strong results of
t-SNE, a non-convex multidimensional scaling variant, that we present in Chapter 3.

2.6.4 Main weaknesses

When collecting all the above observations, there is sufficient ground to state that the results of
our experiments indicate that nonlinear techniques for dimensionality reduction do not yet clearly
outperform the traditional PCA. This result agrees with the results of studies reported in the liter-
ature. On selected datasets, nonlinear techniques for dimensionality reduction outperform linear
techniques [Niskanen and Silvén, 2003; Teng et al., 2005], but nonlinear techniques perform
poorly on various other natural datasets [Graf and Wichmann, 2002; Jenkins and Mataric, 2002;
Hughes and Tarassenko, 2003; Lim et al., 2003]. In particular, our results establish three main
weaknesses of the popular sparse spectral techniques for dimensionality reduction: (1) flaws in
their objective functions, (2) numerical problems in their eigendecompositions, and (3) their sus-
ceptibility to the curse of dimensionality. Some of these weaknesses also apply to Isomap and
MVU.

From the first weakness, we may infer that a requirement for future dimensionality reduction
techniques is that the minimum of the cost function is a non-trivial solution, even if this may
prompt the use of a non-convex objective function. In the design of a non-convex technique,
there is much more freedom to construct a sensible objective function that is not hampered by
obvious flaws. The strong results of autoencoders support this claim, as well as the results we
will present for t-SNE in Chapter 3.

The second weakness leads to exactly the same suggestion, but for a different reason: convex
objective functions are often hard to optimize as well. In particular, sparse eigendecompositions
are subject to numerical problems because it is hard to distinguish the smallest eigenvalues from
the trivial zero eigenvalue. Moreover, interior point methods such as those employed to solve
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the SDP in MVU require the computation of the Hessian, which may be prohibiting successful
optimization for computational reasons (on medium-sized or large datasets, MVU can only be
performed using a variety of approximations that result in suboptimal solutions).

From the third weakness, we may infer that a requirement for future techniques for dimen-
sionality reduction is that they do not rely completely on local properties of the data. It has been
suggested that the susceptibility to the curse of dimensionality may be addressed using tech-
niques in which the global structure of the data manifold is represented in a number of linear
models [Bengio and Monperrus, 2004]. However, the performance of LLC and manifold chart-
ing in our experiments is not sufficiently well to support this suggestion. The strong performance
of autoencoders does suggest that it is beneficial to use deep architectures that contain more than
one layer of nonlinearity.

2.7 Chapter conclusions

The chapter presented a review and comparative study of techniques for dimensionality reduc-
tion. From the results obtained, we may conclude that nonlinear techniques for dimensionality
reduction are, despite their large variance, not yet capable of outperforming traditional PCA. In
the future, we foresee the development of new nonlinear techniques for dimensionality reduction
that (i) do not suffer from trivial optimal solutions, (ii) may be based on non-convex objective
functions, and (iii) do not rely on neighborhood graphs to model the (local) structure of the data
manifold. The other important concern in the development of novel techniques for dimensional-
ity reduction is their optimization, which should be computationally and numerically feasible in
practice.



3 t-Distributed Stochastic
Neighbor Embedding

Contents In the previous chapter we observed that, although dimensionality reduc-
tion may form a good approach to address the dimensionality problem of
image-space representations, state-of-the-art techniques for dimension-
ality reduction are hampered by fundamental limitations that are often
related to their convex nature. Motivated by our observations in the pre-
vious chapter, the chapter develops a new technique for dimensionality
reduction, called t-Distributed Stochastic Neighbor Embedding (t-SNE),
that aims to address the limitations of current state-of-the-art dimen-
sionality reduction techniques. The results obtained with t-SNE provide
novel insights into the answer to research question RQ1.

Based on L.J.P. van der Maaten and G.E. Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research 9(Nov):2431–2456, 2008.

Outline Section 3.1 presents Stochastic Neighbor Embedding (SNE), which is a
variant of multidimensional scaling that we use as a basis for our new
technique. In Section 3.2, we present the new technique for dimension-
ality reduction called ‘t-Distributed Stochastic Neighbor Embedding’ or
‘t-SNE’, and explain why it is better than the original SNE technique.
Section 3.3 presents our experiments with t-SNE, which reveal that the
new technique outperforms existing techniques in the visualization of
real-world data. Section 3.4 presents an extension of t-SNE that allows
it to be performed on datasets that contain large numbers of datapoints,
and applies t-SNE with the extension on a dataset of 60, 000 datapoints.
Section 3.5 discusses the results of our experiments, and explains why
t-SNE outperforms the dimensionality reduction techniques that were
investigated in Chapter 2. Section 3.6 concludes the chapter.
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In the previous chapter, we compared current state-of-the-art techniques for dimensionality re-
duction. Our experiments revealed that in general, nonlinear techniques do not outperform a
traditional linear dimensionality reduction technique such as PCA [Hotelling, 1933]. We also
noted that PCA is identical to classical multidimensional scaling [Torgerson, 1952], as a result
of which it focuses on keeping the low-dimensional representations of dissimilar datapoints far
apart. For high-dimensional data that lies on or near a low-dimensional, non-linear manifold it is
usually more important to keep the low-dimensional representations of similar datapoints close
together, which is typically not possible with a linear mapping. This idea forms the basis of lo-
cal dimensionality reduction techniques such as LLE and Laplacian Eigenmaps, however, for
reasons discussed in subsection 2.6.2, these techniques do not work well.

In this chapter, we focus on reducing the dimensionality of data to only two dimensions,
in order to facilitate visualization of the high-dimensional data1. Not surprisingly, the nonlinear
dimensionality reduction techniques we discussed in Chapter 2 are often not successful at visu-
alizing high-dimensional data. In particular, most of the techniques are not capable of retaining
both the local and the global structure of the data in a single low-dimensional map. For instance,
a recent study reveals that even a semi-supervised variant of MVU is not capable of separating
handwritten digits into their natural clusters [Song et al., 2007].

The chapter describes a way of converting a high-dimensional dataset into a matrix of pair-
wise similarities and it introduces a new technique for dimensionality reduction called ‘t-SNE’.
t-SNE is capable of capturing much of the local structure of high-dimensional data very well,
while also revealing global structure such as the presence of clusters at several scales. We illus-
trate the strong performance of t-SNE by comparing it to PCA, Isomap, and LLE (the three most
popular techniques for dimensionality reduction) on fivee datasets from a variety of domains.
The maps that we present in the chapter are sufficient to demonstrate the superiority of t-SNE.

The outline of the chapter is as follows. In Section 3.1, we outline SNE as presented by [Hin-
ton and Roweis, 2002], which forms the basis for t-SNE. In Section 3.2, we present t-SNE, which
has two important differences when compared to SNE. In Section 3.3, we describe the experi-
mental setup and the results of our experiments. Subsequently, Section 3.4 shows how t-SNE can
be modified to visualize real-world datasets that contain many more than 10, 000 datapoints. The
results of our experiments are discussed in more detail in Section 3.5. The conclusions of the
chapter are presented in Section 3.6.

3.1 Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) models the similarity of datapoint xj to datapoint xi as
the conditional probability, pj|i, that xi would pick xj as its neighbor if neighbors were picked
in proportion to their probability density under a Gaussian centered at xi. For nearby datapoints,
pj|i is relatively high, whereas for widely separated datapoints, pj|i will be almost infinitesi-
mal (for reasonable values of the variance of the Gaussian, σi). Mathematically, the conditional

1In this chapter, we refer to the two-dimensional representations of the data as map points, and to the complete
low-dimensional data representation Y = {y1, y2, ..., yn} as a map.
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probability pj|i is given by

pj|i =
exp

(
−‖xi − xj‖2/2σ2

i

)∑
k 6=i exp (−‖xi − xk‖2/2σ2

i )
, (3.1)

where σi is the variance of the Gaussian that is centered on datapoint xi. The method for de-
termining the value of σi is presented later in this section. Because we are only interested in
modeling pairwise similarities, we set the value of pi|i to zero. For the low-dimensional counter-
parts yi and yj of the high-dimensional datapoints xi and xj , it is possible to compute a similar
conditional probability, which we denote by qj|i. We set2 the variance of the Gaussian that is
employed in the computation of the conditional probabilities qj|i to 1√

2
. Hence, we model the

similarity of map point yj to map point yi by

qj|i =
exp

(
−‖yi − yj‖2

)∑
k 6=i exp (−‖yi − yk‖2)

. (3.2)

Again, since we are only interested in modeling pairwise similarities, we set qi|i = 0.
If the map points yi and yj correctly model the similarity between the high-dimensional

datapoints xi and xj , the conditional probabilities pj|i and qj|i will be equal. Motivated by this
observation, SNE aims to find a low-dimensional data representation that minimizes the mis-
match between pj|i and qj|i. A natural measure of the faithfulness with which qj|i models pj|i is
the Kullback-Leibler divergence. SNE minimizes the sum of Kullback-Leibler divergences over
all datapoints using a gradient descent method. The cost function C is given by

C =
∑

i

KL(Pi||Qi) =
∑

i

∑
j

pj|i log
pj|i

qj|i
, (3.3)

in which Pi represents the conditional probability distribution over all other datapoints given
datapoint xi, and Qi represents the conditional probability distribution over all other map points
given map point yi. Because the Kullback-Leibler divergence is not symmetric, different types of
error in the pairwise distances in the low-dimensional map are not weighted equally. In particular,
there is a large cost for using widely separated map points to represent nearby datapoints (i.e.,
for using a small qj|i to model a large pj|i), but there is only a small cost for using nearby map
points to represent widely separated datapoints. This small cost comes from wasting some of the
probability mass in the relevant Q distributions. In other words, the SNE cost function focuses
on retaining the local structure of the data in the map (for reasonable values of the variance of
the Gaussian in the high-dimensional space, σi).

The remaining parameter to be selected is the variance σi of the Gaussian that is centered
over each high-dimensional datapoint, xi. It is not likely that there is a single value of σi that
is optimal for all datapoints in the dataset because the density of the data is likely to vary. In
dense regions, a smaller value of σi is usually more appropriate than in sparser regions. Any
particular value of σi induces a probability distribution, Pi, over all of the other datapoints. This
distribution has an entropy which increases as σi increases. SNE performs a binary search for the
value of σi that produces a Pi with a fixed perplexity that is specified by the user3. The perplexity

2Setting the variance to another value only results in a rescaled version of the final map. Note that by using the same
variance for every datapoint in the low-dimensional map, we lose the property that the data is a perfect model of itself if
we embed it in a space of the same dimensionality.

3Note that the perplexity increases monotonically with the variance σi.
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is defined as
Perp(Pi) = 2H(Pi), (3.4)

where H(Pi) is the Shannon entropy of Pi measured in bits

H(Pi) = −
∑

j

pj|i log2 pj|i. (3.5)

The perplexity can be interpreted as a smooth measure of the effective number of neighbors. The
performance of SNE is fairly robust to changes in the perplexity, and typical values are between
5 and 50.

The minimization of the cost function in Equation 3.3 is performed using a gradient descent
method. The gradient has a surprisingly simple form

δC

δyi

= 2
∑

j

(pj|i − qj|i + pi|j − qi|j)(yi − yj). (3.6)

Physically, the gradient may be interpreted as the resultant force created by a set of springs
between the map point yi and all other map points yj . All springs exert a force along the direction
(yi − yj). The spring between yi and yj repels or attracts the map points depending on whether
the distance between the two in the map is too small or too large to represent the similarities
between the two high-dimensional datapoints. The force exerted by the spring between yi and
yj is proportional to its length, and also proportional to its stiffness, which is the mismatch
(pj|i − qj|i + pi|j − qi|j) between the pairwise similarities of the data points and the map points.

The gradient descent is initialized by sampling map points randomly from an isotropic Gaus-
sian with small variance that is centered around the origin. In order to speed up the optimization
and to avoid poor local minima, a relatively large momentum term is added to the gradient. In
other words, the current gradient is added to an exponentially decaying sum of previous gradi-
ents in order to determine the changes in the coordinates of the map points at each iteration of the
gradient search. In addition, in the early stages of the optimization, Gaussian noise is added to
the map points after each iteration. Gradually reducing the variance of this noise performs a type
of simulated annealing that helps the optimization to escape from poor local minima in the cost
function. If the variance of the noise changes very slowly at the critical point at which the global
structure of the map starts to form, SNE tends to find maps with a better global organization.
However, this requires sensible choices of the initial amount of Gaussian noise and the rate at
which it decays. Moreover, these choices interact with the amount of momentum and the step
size that are employed in the gradient descent. It is therefore common to run the optimization
several times on a dataset to find appropriate values for the parameters4. In this respect, SNE is
inferior to methods that allow convex optimization and it would be useful to find an optimiza-
tion method that gives good results without requiring the extra computation time and parameter
choices introduced by the simulated annealing.

4Picking the best map after several runs as a visualization of the data is not nearly as problematic as picking the model
that does best on a test set during supervised learning. In visualization, the aim is to see the structure in the training data,
not to generalize to held out test data.
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3.2 t-Distributed Stochastic Neighbor Embedding

Section 3.1 discussed SNE as it was presented by Hinton and Roweis [2002]. Although SNE
constructs reasonably good visualizations, it is hampered by a cost function that is difficult to
optimize and by a problem we refer to as the ‘crowding problem’. In this section, we present
a new technique called ‘t-Distributed Stochastic Neighbor Embedding’ or ‘t-SNE’ that aims to
alleviate these problems. The cost function used by t-SNE differs from the one used by SNE
in two ways: (1) it uses a symmetrized version of the SNE cost function with simpler gradients
that was briefly introduced by Cook et al. [2007] and (2) it uses a Student-t distribution rather
than a Gaussian to compute the similarity between two points in the low-dimensional space. In
effect, t-SNE employs a heavy-tailed distribution in the low-dimensional space to alleviate both
the crowding problem and the optimization problems of SNE.

In this section, we first discuss the symmetric version of SNE (subsection 3.2.1). Subse-
quently, we discuss the crowding problem (subsection 3.2.2), and the use of heavy-tailed distri-
butions to address this problem (subsection 3.2.3). We conclude the section by describing our
approach to the optimization of the t-SNE cost function (subsection 3.2.4).

3.2.1 Symmetric SNE

As an alternative to minimizing the sum of the Kullback-Leibler divergences between the con-
ditional probabilities pj|i and qj|i, it is also possible to minimize a single Kullback-Leibler di-
vergence between a joint probability distribution, P , in the high-dimensional space and a joint
probability distribution, Q, in the low-dimensional space

C = KL(P ||Q) =
∑

i

∑
j

pij log
pij

qij
, (3.7)

where again, we set pii and qii to zero. We refer to this type of SNE as symmetric SNE, because
it has the property that pij = pji and qij = qji for ∀i, j. In symmetric SNE, the pairwise
similarities in the low-dimensional map qij are given by

qij =
exp

(
−‖yi − yj‖2

)∑
k 6=l exp (−‖yk − yl‖2)

. (3.8)

The obvious way to define the pairwise similarities in the high-dimensional space pij is

pij =
exp

(
−‖xi − xj‖2/2σ2

)∑
k 6=l exp (−‖xk − xl‖2/2σ2)

, (3.9)

but this causes problems when a high-dimensional datapoint xi is an outlier (i.e., all pairwise
distances ‖xi − xj‖2 are large for xi). For such an outlier, the values of pij are extremely small
for all j, so the location of its low-dimensional map point yi has very little effect on the cost
function. As a result, the position of the map point is not well determined by the positions of the
other map points. We circumvent this problem by defining the joint probabilities pij in the high-
dimensional space to be the symmetrized conditional probabilities, i.e., we set pij = pj|i+pi|j

2n .
This ensures that

∑
j pij >

1
2n for all datapoints xi, as a result of which each datapoint xi makes
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a significant contribution to the cost function. In the low-dimensional space, symmetric SNE
simply uses Equation 3.8. The main advantage of the symmetric version of SNE is the simpler
form of its gradient, which is faster to compute. The gradient of symmetric SNE is fairly similar
to that of asymmetric SNE, and is given by

δC

δyi

= 4
∑

j

(pij − qij)(yi − yj). (3.10)

In preliminary experiments, we observed that symmetric SNE seems to produce maps that are
just as good as asymmetric SNE, and sometimes even a little better.

3.2.2 The crowding problem

Consider a set of datapoints that lie on a two-dimensional curved manifold which is approx-
imately linear on a small scale, and which is embedded within a higher-dimensional space.
It is possible to model the small pairwise distances between datapoints fairly well in a two-
dimensional map, which is often illustrated on toy examples such as the ‘Swiss roll’ dataset. Now
assume that the manifold has ten intrinsic dimensions5 and is embedded within a space of much
higher dimensionality. There are several reasons why the pairwise distances in a two-dimensional
map cannot faithfully model distances between points on the ten-dimensional manifold. For in-
stance, in ten dimensions, it is possible to have 11 datapoints that are mutually equidistant and
there is no way to model this faithfully in a two-dimensional map. A related problem is the dif-
ferent distribution of pairwise distances in the two spaces. The volume of a sphere centered on
datapoint i scales as rm, where r is the radius and m the dimensionality of the sphere. So if the
datapoints are approximately uniformly distributed in the region around i on the ten-dimensional
manifold, and we try to model the distances from i to the other datapoints in the two-dimensional
map, we get the following ‘crowding problem’: the area of the two-dimensional map that is avail-
able to accommodate moderately distant datapoints will not be nearly large enough compared
with the area available to accommodate nearby datapoints. Hence, if we want to model the small
distances (fairly) accurately in the map, most of the huge number of points that are at a moderate
distance from datapoint i will have to be placed much too far away in the two-dimensional map.
In SNE, the spring connecting datapoint i to each of these too-distant map points will thus exert
a very small attractive force. Although these attractive forces are very small, the large number
of such forces crushes together the points in the center of the map, which prevents gaps from
forming between the natural clusters. It should be remarked that the crowding problem is not
specific to SNE, but that it also occurs in other techniques for multidimensional scaling such as
Sammon mapping.

Cook et al. [2007] attempted to address the crowding problem by adding a slight repulsion
to all springs. The slight repulsion is created by introducing a uniform background model with a
small mixing proportion, ρ. So regardless of how far apart two map points are, qij can never fall
below ρ

n(n−1) . As a result, for datapoints that are far apart in the high-dimensional space, qij will
always be larger than pij , leading to a slight repulsion. This technique is called UNI-SNE and
although it usually outperforms standard SNE, the optimization of the UNI-SNE cost function

5This is approximately correct for the images of handwritten digits we use in our experiments in Section 3.3.
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is tedious. The best optimization method, so far, is to start by setting the background mixing
proportion to zero (i.e., by performing standard SNE). Once the SNE cost function has been op-
timized using simulated annealing, the background mixing proportion can be increased to allow
some gaps to be formed between natural clusters as shown by Cook et al. [2007]. Optimizing the
UNI-SNE cost function directly does not work because two map points that are far apart will get
almost all of their qij from the uniform background. So even if their pij is large, there will be no
attractive force between them, because a small change in their separation will have a vanishingly
small proportional effect on qij . This means that if two parts of a cluster become separated early
on in the optimization, there is no force to pull them back together.

3.2.3 Mismatched tails compensate for mismatched dimensionalities

Since symmetric SNE is actually matching the joint probabilities of pairs of datapoints in the
high-dimensional and the low-dimensional spaces rather than their distances, we have a natural
way of alleviating the crowding problem. In the high-dimensional space, we convert distances
into probabilities using a Gaussian distribution. In the low-dimensional map, we can use a prob-
ability distribution that has much heavier tails than a Gaussian to convert distances into probabil-
ities, and as a result, eliminate the undesired attractive forces between dissimilar datapoints. This
allows a moderate distance in the high-dimensional space to be faithfully modeled by a much
larger distance in the map.

In t-SNE, we employ a Student t-distribution with one degree of freedom (which is the same
as a Cauchy distribution) as the heavy-tailed distribution in the low-dimensional map. Using this
distribution, the joint probabilities qij are defined as

qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l (1 + ‖yk − yl‖2)

−1 . (3.11)

We use a Student t-distribution with a single degree of freedom, because it has the particularly
nice property that

(
1 + ‖yi − yj‖2

)−1
approaches an inverse square law for large pairwise dis-

tances ‖yi − yj‖ in the low-dimensional map. This makes the map’s representation of joint
probabilities (almost) invariant to changes in the scale of the map for map points that are far
apart. It also means that large clusters of points that are far apart interact in just the same way as
individual points, so the optimization operates in the same way at all but the finest scales. A com-
putationally convenient property is that it is much faster to evaluate the density of a point under
a Student t-distribution than under a Gaussian because it does not involve an exponential, even
though the Student t-distribution is equivalent to an infinite mixture of Gaussians with different
variances.

The gradient of the Kullback-Leibler divergence between P (computed using Equation 3.9)
and the Student-t based joint probability distribution Q (computed using Equation 3.11) is de-
rived in Appendix B, and is given by

δC

δyi

= 4
∑

j

(pij − qij)(yi − yj)
(
1 + ‖yi − yj‖2

)−1
. (3.12)

In Figure 3.1(a) to 3.1(c), we show the gradients between two low-dimensional datapoints yi

and yj as a function of their pairwise distances in the high-dimensional and the low-dimensional
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(a) Gradient of SNE.
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(b) Gradient of UNI-SNE.
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(c) Gradient of t-SNE.

Figure 3.1 Gradients between two low-dimensional datapoints for three types of SNE as a function of their
pairwise distance in the high-dimensional and low-dimensional data representation.

space (i.e., as a function of ‖xi− xj‖2 and ‖yi− yj‖2) for the symmetric versions of SNE, UNI-
SNE, and t-SNE. In the figures, positive values of the gradient represent an attraction between
the low-dimensional datapoints yi and yj , whereas negative values represent a repulsion between
the two datapoints. From the figures, we observe two main advantages of the t-SNE gradient over
the gradients of SNE and UNI-SNE.

First, the t-SNE gradient strongly repels dissimilar datapoints that are modeled by a small
pairwise distance in the low-dimensional representation. SNE has such a repulsion as well, but
its effect is minimal compared to the strong attractions elsewhere in the gradient (the largest at-
traction in our graphical representation of the gradient is approximately 19, whereas the largest
repulsion is approximately 1). In UNI-SNE, the amount of repulsion between dissimilar data-
points is slightly larger, however, this repulsion is only strong when the pairwise distance be-
tween the points in the low-dimensional representation is already large (which is often not the
case, since the low-dimensional representation is initialized by sampling from a Gaussian with a
very small variance that is centered around the origin).

Second, although t-SNE introduces strong repulsions between dissimilar datapoints that are
modeled by small pairwise distances, these repulsions do not go to infinity. In this respect, t-SNE
differs from UNI-SNE, in which the strength of the repulsion between very dissimilar datapoints
is proportional to their pairwise distance in the low-dimensional map, which may cause dissimilar
datapoints to move much too far away from each other.

Taken together, t-SNE puts emphasis on (1) modeling dissimilar datapoints by means of large
pairwise distances, and (2) modeling similar datapoints by means of small pairwise distances.
Moreover, as a result of these characteristics of the t-SNE cost function (and as a result of the
approximate scale invariance of the Student t-distribution), the optimization of the t-SNE cost
function is much easier than the optimization of the cost functions of SNE and UNI-SNE. In
particular, good local optima can be found without resorting to simulated annealing.

3.2.4 Optimization methods for t-SNE

We start by presenting a relatively simple gradient descent procedure for optimizing the t-SNE
cost function. This procedure uses a momentum term to reduce the number of iterations required
and it works best if the momentum term is small until the map points have become moderately
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well organized. Pseudocode for this simple algorithm is presented in Algorithm 1. The algorithm
can be sped up using the adaptive learning rate scheme that is described by Jacobs [1988], which
gradually increases the learning rate in directions in which the gradient is stable.

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: dataset X = {x1, x2, ..., xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T , learning rate η, momentum α(t).
Result: low-dimensional data representation Y(T ) = {y1, y2, ..., yn}.
begin

compute pairwise affinities pj|i with perplexity Perp (using Equation 3.1)
set pij = pj|i+pi|j

2n

sample initial solution Y(0) = {y1, y2, ..., yn} from N (0, 10−4I)
for t=1 to T do

compute low-dimensional affinities qij (using Equation 3.11)
compute gradient δC

δY (using Equation 3.12)

set Y(t) = Y(t−1) + η δC
δY + α(t)

(
Y(t−1) − Y(t−2)

)
end

end

Although the algorithm described above produces visualizations that are often much better
than those produced by other non-parametric dimensionality reduction techniques, the results can
be improved further by using either of two tricks. The first trick, which we call ‘early compres-
sion’, is to force the map points to stay close together at the start of the optimization. When the
distances between map points are small, it is easy for clusters to move through one another so it is
much easier to explore the space of possible global organizations of the data. Early compression
is implemented by adding an additional L2-penalty to the cost function that is proportional to the
sum of squared distances of the map points from the origin. The magnitude of this penalty term
and the iteration at which it is removed are set by hand, but the behavior is fairly robust across
variations in these two additional optimization parameters.

A less obvious way to improve the optimization, which we call ‘early exaggeration’, is to
multiply all of the pij’s by, e.g., 4, in the initial stages of the optimization. This means that
almost all of the qij’s, which still add up to 1, are much too small to model their corresponding
pij’s. As a result, the optimization is encouraged to focus on modeling the large pij’s by fairly
large qij’s. The effect is that the natural clusters in the data tend to form tight widely separated
clusters in the map. This creates too much relatively empty space in the map, which makes it
much easier for the clusters to move around relative to one another in order to find a good global
organization.

In all the visualizations presented in this chapter and in the supporting material, we used
exactly the same optimization procedure. We used the early exaggeration method with an exag-
geration of 4 for the first 50 iterations. The number of gradient descent iterations T was set to
1000, and the momentum term was set to α(t) = 0.5 for t < 250 and α(t) = 0.8 for t ≥ 250.
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The learning rate η is initially set to 100 and it is updated after every iteration by means of the
adaptive learning rate scheme described by Jacobs [1988].

3.3 Experiments

To evaluate t-SNE, we performed experiments in which t-SNE is compared to three other tech-
niques for dimensionality reduction. We compare t-SNE with the three most popular dimension-
ality reduction techniques: (1) PCA, (2) Isomap, and (3) LLE. The three techniques were already
introduced in Chapter 2, which is why we do not describe them here. We performed experiments
on five datasets that represent a variety of application domains.

In subsection 3.3.1, the datasets that we employed in our experiments are introduced. The
setup of the experiments is presented in subsection 3.3.2. In subsection 3.3.3, we present the
results of our experiments.

3.3.1 Datasets

The five datasets we employed in our experiments are: (1) the MNIST dataset, (2) the ORL
dataset, (3) the COIL-20 dataset, (4) the word-features dataset, and (5) the Netflix dataset. We
briefly describe the five datasets below (note that the first three datasets were also employed in
Chapter 2).

The MNIST dataset contains a training set of 60, 000 grayscale images of handwritten digits.
For our experiments, we randomly selected 6,000 of the digit images for computational reasons.
The digit images have 28 × 28 = 784 pixels (i.e., dimensions). The ORL dataset consists of
images of 40 individuals with small variations in viewpoint, large variations in expression, and
occasional addition of glasses. The dataset consists of 400 images (10 per individual) of size
92 × 112 = 10, 304 pixels. The COIL-20 dataset [Nene et al., 1996] contains images of 20
different objects viewed from 72 equally spaced orientations, yielding a total of 1,440 images.
The images contain 32×32 = 1, 024 pixels. The word-features dataset [Mnih and Hinton, 2007]
consists of 100-dimensional real-valued feature vectors for the 1,000 most common words in
corpus of news articles from the period 1994-1996. The feature vectors were learned by trying to
make the identity of the next word be as predictable as possible from the identities of the previous
ve words when the predictions are made using the feature vectors (see [Mnih and Hinton, 2007]
for details). The Netflix dataset contains ratings of 17,770 movies originating from over 400,000
movie viewers. A Restricted Boltzmann Machine with 30 hidden units was trained on these
ratings (see Salakhutdinov et al. [2007] for details of the training), yielding a dataset of 30-
dimensional movie-specic features. In our experiments on the Netflix dataset, we constructed
visualizations for the 500 most popular movies.

3.3.2 Experimental setup

In all of our experiments, we start by using PCA to reduce the dimensionality of the data to
30. This speeds up the computation of pairwise distances between the datapoints and suppresses
some noise without severely distorting the interpoint distances. We then use each of the dimen-
sionality reduction techniques to convert the 30-dimensional representation to a two-dimensional
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map and we show the resulting map as a scatterplot. For all of the datasets, there is information
about the class of each datapoint, but the class information is only used to select a color and/or
symbol for the map points. The class information is not used to determine the spatial coordinates
of the map points. The coloring thus provides a way of evaluating how well the map preserves
the similarities within each class.

The cost function parameter settings we employed in our experiments are listed in Table 3.1.
In the table, Perp represents the perplexity of a Gaussian kernel and k represents the number of
nearest neighbors employed in a neighborhood graph. In the experiments with Isomap and LLE,
we only visualize datapoints that correspond to vertices in the largest connected component of
the neighborhood graph6.

Technique Cost function parameters
t-SNE Perp = 40
PCA none
Isomap k = 12
LLE k = 12

Table 3.1 Cost function parameter settings for the experiments.

3.3.3 Results

In Figure 3.2, we show the results of our experiments with t-SNE, PCA, Isomap, and LLE on the
MNIST dataset. The results reveal the strong performance of t-SNE compared to the other tech-
niques. In particular, PCA constructs a ‘ball’ in which only three classes (representing the digits
0, 1, and 7) are somewhat separated from the other classes. Isomap and LLE produce solutions
in which there are large overlaps between the digit classes. In contrast, t-SNE constructs a map
in which the separation between the digit classes is almost perfect. Moreover, detailed inspection
of the t-SNE map reveals that much of the local structure of the data (such as the orientation of
the ones) is captured as well. This is illustrated in more detail in Section 3.4 (see Figure 3.6). The
map produced by t-SNE contains some points that are clustered with the wrong class, but most
of these points correspond to distorted digits that are often quite difficult to identify.

Figure 3.3 shows the results of applying t-SNE, PCA, Isomap, and LLE to the ORL dataset.
Again, Isomap and LLE produce solutions that provide little insight into the class structure of the
data. The map constructed by PCA seems slightly better, however, it does not reveal the natural
classes in the data. In contrast, t-SNE does a much better job of revealing the natural classes in
the data. Some individuals have their ten images split into two clusters, usually because a subset
of the images have the head facing in a significantly different direction, or because they have a
different expression or glasses. For these individuals, it is not clear that their ten images form a
natural class when using the Euclidean distance in pixel space.

Figure 3.4 shows the results of applying t-SNE, PCA, Isomap, and LLE to the COIL-20
dataset. For many of the 20 objects, t-SNE accurately represents the one-dimensional manifold

6Isomap and LLE require data that gives rise to a neighborhood graph that is connected.
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(a) Visualization by t-SNE.

 

 

(b) Visualization by PCA.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 3.2 Visualizations of 6,000 handwritten digits from the MNIST dataset.

of viewpoints as a closed loop. For objects which look similar from the front and the back, t-
SNE distorts the loop so that the images of front and back are mapped to nearby points. For
the three types of toy cars in the COIL-20 dataset (the aligned ‘sausages’ in the bottom-left of
the t-SNE map), the three rotation manifolds are aligned to capture the high similarity between
different cars at the same orientation. This prevents t-SNE from keeping the four manifolds
clearly separate. Figure 3.4 also reveals that the other three techniques are not nearly as good
at cleanly separating the manifolds that correspond to different objects. In addition, Isomap and
LLE only visualize a small number of classes from the COIL-20 dataset, because the dataset
comprises a large number of widely separated submanifolds that give rise to small connected
components in the neighborhood graph.

Because of space limitations7, the visualizations of the word-features dataset and the Netflix
dataset are not presented in the thesis. The visualizations are available online in the supplemental

7If the words or the names of the movies are plotted in such a way that they do not overlap, the characters are too
small to be easily read.
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(a) Visualization by t-SNE.

 

 

(b) Visualization by PCA.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 3.3 Visualizations of the ORL dataset.

material of [van der Maaten and Hinton, 2008]. In order to quantify the performance of t-SNE
relative to the three other techniques, we measured the trustworthinesses (see 2.5.1) of the vi-
sualizations constructed by the dimensionality reduction techniques. The trustworthinesses are
presented in Table 3.2. The best trustworthiness of each experiment is typeset in boldface. The
results presented in the table confirm the observations we made from the visualizations, as t-SNE
outperforms the three other dimensionality reduction techniques in all experiments.

Technique MNIST ORL COIL-20 Words Netflix
t-SNE 0.90 0.97 0.99 0.83 0.89
PCA 0.77 0.86 0.89 0.69 0.83
Isomap 0.52 0.30 0.88 0.65 0.42
LLE 0.69 0.80 0.76 0.59 0.70

Table 3.2 Trustworthinesses T (12) of the visualizations of the five datasets.
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(a) Visualization by t-SNE.

 

 

(b) Visualization by PCA.

 

 

(c) Visualization by Isomap.

 

 

(d) Visualization by LLE.

Figure 3.4 Visualizations of the COIL-20 dataset.

3.4 Applying t-SNE to large datasets

Like many other visualization techniques, t-SNE has a computational and memory complexity
that is quadratic in the number of datapoints. This makes it infeasible to apply the standard
version of t-SNE to datasets that contain many more than, say, 10,000 points. Obviously, it is
possible to pick a random subset of the datapoints and display them using t-SNE, but such an
approach fails to make use of the information that the undisplayed datapoints provide about the
underlying manifolds. Assume, for example, that A, B, and C are all equidistant in the high-
dimensional space. If there are many undisplayed datapoints between A and B and none between
A and C, it is much more likely that A and B are part of the same cluster than A and C. This
is illustrated in Figure 3.5. In this section, we show how t-SNE can be modified to display a
random subset of the datapoints (so-called landmark points) in a way that uses information from
the entire (possibly very large) dataset.

We start by choosing a desired number of neighbors and creating a neighborhood graph for
all of the datapoints. Although this is computationally intensive, it is only done once. Then, we
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A B

C

Figure 3.5 An illustration of the advantage of the random walk version of t-SNE over a standard landmark
approach. The shaded points A, B, and C are three (almost) equidistant landmark points, whereas the non-
shaded datapoints are non-landmark points. The arrows represent a directed neighborhood graph where
k = 3. In a standard landmark approach, the pairwise affinity between A and B is approximately equal to the
pairwise affinity between A and C. In the random walk version of t-SNE, the pairwise affinity between A and
B is much larger than the pairwise affinity between A and C, and therefore, it reflects the structure of the data
much better.

define a random walk on the neighborhood graph for each of the landmark points, starting at that
landmark point and terminating as soon as it lands on another landmark point. During a random
walk, the probability of choosing an edge emanating from node xi to node xj is proportional
to e−‖xi−xj‖2 . We define8 pj|i to be the fraction of random walks starting at landmark point xi

that terminate at landmark point xj . This has some resemblance to the way Isomap measures
pairwise distances between points. However, as in diffusion maps [Lafon and Lee, 2006; Nadler
et al., 2006], rather than looking for the shortest path through the neighborhood graph, the ran-
dom walk-based affinity measure integrates over all paths through the neighborhood graph. As
a result, the random walk-based affinity measure is much less sensitive to ‘short-circuits’ [Lee
and Verleysen, 2005], in which a single noisy datapoint provides a bridge between two regions
of dataspace that should be far apart in the map. Similar approaches using random walks have
also been successfully applied to, e.g., semi-supervised learning [Szummer and Jaakkola, 2001;
Zhu et al., 2003] and image segmentation [Grady, 2006].

The most obvious way to compute the random walk-based similarities pj|i is to perform the
random walks explicitly on the neighborhood graph, which works very well in practice, given
that one can easily perform one million random walks per second. Alternatively, Grady presents
an analytical solution to compute the pairwise similarities pj|i that involves solving a sparse lin-
ear system [Grady, 2006]. The analytical solution to compute the similarities pj|i is sketched in
Appendix C. In preliminary experiments, we did not find significant differences between per-
forming the random walks explicitly and the analytical solution. In the experiment presented
below, we explicitly performed the random walks because this is computationally less expensive.

8Note that t-SNE estimates the joint probabilities pij by symmetrizing: pij =
pj|i+pi|j

2n
.



54 t-Distributed Stochastic Neighbor Embedding

However, for very large datasets in which the landmark points are sparse, the analytical solution
may be more appropriate.

Figure 3.6 shows the results of an experiment, in which we applied the random walk version
of t-SNE to 6,000 randomly selected digits from the MNIST dataset, using all 60, 000 digits in
the trainingset to compute the pairwise affinities pj|i. In the experiment9, we used a neighbor-
hood graph that was constructed using a value of k = 20. The inset of the figure shows the
same visualization as a scatterplot in which the colors represent the labels of the digits. In the
t-SNE map, all classes are clearly separated and the ‘continental’ sevens10 form a small separate
cluster. Moreover, t-SNE reveals the main dimensions of variation within each class, such as
the orientation of the ones, fours, sevens, and nines, or the ‘loopiness’ of the twos. The strong
performance of t-SNE is also reflected in the generalization error of nearest neighbor classifiers
that are trained on the low-dimensional representation. Whereas the generalization error (mea-
sured using 10-fold cross validation) of a 1-nearest neighbor classifier trained on the original
784-dimensional datapoints is 5.75%, the generalization error of a 1-nearest neighbor classifier
trained on the two-dimensional data representation produced by t-SNE is only 5.13%. The com-
putational requirements of random walk t-SNE are reasonable: it took only one hour of CPU time
to construct the map in Figure 3.6.

3.5 Discussion

The results presented in Section 3.3 and 3.4 illustrate the strong performance of t-SNE on a wide
variety of datasets. In this section, we discuss the performance of t-SNE relative to other non-
parametric techniques (subsection 3.5.1), and we discuss a number of weaknesses and possible
improvements of t-SNE (subsection 3.5.2).

3.5.1 Comparison with related techniques

PCA [Pearson, 1901; Hotelling, 1933] and classical scaling [Torgerson, 1952] find a linear map-
ping that minimizes the squared error of the pairwise Euclidean distances in the low-dimensional
map (see subsection 2.2.1 for details). This leads to two main weaknesses of PCA and classical
scaling: (1) the techniques can only project data onto a linear subspace of the original high-
dimensional space and (2) the cost function of the techniques assigns relatively large importance
to retaining large pairwise distances. In other words, PCA and classical scaling are not capable of
identifying data that lies on or near complex nonlinear manifolds in the original high-dimensional
space, and do not preserve the local structure of the data (that is generally more important than
the global structure of the data that PCA and classical scaling retain).

In contrast to PCA and classical scaling, the Gaussian kernel employed in the high-
dimensional space by t-SNE defines a soft border between the local and global structure of the
data. For pairs of datapoints that are close together relative to the standard deviation of the Gaus-
sian, the importance of modeling their separations is almost independent of the magnitudes of
those separations. Moreover, t-SNE determines the local neighborhood size for each datapoint

9In preliminary experiments, we found the performance of random walk t-SNE to be robust under changes of k.
10A ‘continental’ seven is a seven that has a horizontal cross-bar.
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Figure 3.6 Visualization of 6,000 digits from the MNIST dataset produced by the random walk version of
t-SNE (employing all 60,000 digit images).
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separately based on the local density of the data (by forcing each conditional probability distri-
bution Pi to have the same perplexity).

The experiments presented in the chapter reveal that t-SNE outperforms multidimensional
scaling techniques such as Sammon mapping, and that it also outperforms more recent mani-
fold learners such as Isomap and LLE. The strong performance of t-SNE compared to Isomap
is partly explained by Isomap’s susceptibility to ‘short-circuiting’ (see subsection 2.6.1). More-
over, Isomap mainly focuses on retaining large geodesic distances instead of on retaining small
geodesic distances. The strong performance of t-SNE compared to LLE is due to the weak-
nesses of local dimensionality reduction techniques as discussed in subsection 2.6.2. The results
of our experiments reveal that the poor performance of LLE is mainly due to the cost func-
tion problem of LLE: the only thing that prevents all datapoints from collapsing onto a single
point is a constraint on the covariance of the low-dimensional representation. In practice, this
constraint is often satisfied by placing most of the map points near the center of the map and
using a few widely scattered points to create large covariance (see Figure 3.2(d) and 3.3(d)). For
neighborhood graphs that are almost disconnected, the covariance constraint can also be satis-
fied by a ‘curdled’ map in which there are a few widely separated, collapsed subsets. Moreover,
neighborhood-graph based techniques (such as Isomap and LLE) are not capable of visualizing
data that consists of two or more widely separated submanifolds, because such data does not
give rise to a connected neighborhood graph. It is possible to construct a map for each connected
component, but this loses information about the similarities between the separate components.

Like Isomap and LLE, the random walk version of t-SNE employs neighborhood graphs, but
it does not suffer from short-circuiting problems because the pairwise similarities between the
high-dimensional datapoints are computed by integrating over all paths through the neighbor-
hood graph. Because of the diffusion-based interpretation of the conditional probabilities under-
lying the random walk version of t-SNE, it is useful to compare t-SNE to diffusion maps (see sub-
section 2.2.1). Recall that diffusion maps define a ‘diffusion distance’ on the high-dimensional
datapoints that is given by

D(t)(xi, xj) =

√√√√√∑
k

(
p
(t)
ik − p

(t)
jk

)2

ψ(xk)(0)
, (3.13)

where p(t)
ij represents the probability of a particle traveling from xi to xj in t timesteps (through a

graph on the data with Gaussian emission probabilities). The term ψ(xk)(0) is a measure for the
local density of the points, and serves a similar purpose to the fixed perplexity Gaussian kernel
that is employed in SNE. The diffusion map is formed by the principal non-trivial eigenvectors
of the Gaussian kernel. It can be shown that when all (n − 2) non-trivial eigenvectors11 are
employed, the Euclidean distances in the diffusion map are equal to the diffusion distances in
the high-dimensional data representation [Lafon and Lee, 2006]. Mathematically, diffusion maps
minimize

C =
∑

i

∑
j

(
D(t)(xi, xj)− ‖yi − yj‖

)2

. (3.14)

11Notice that both the major and the minor eigenvalues are trivial: the major eigenvalue is 1, whereas the minor
eigenvalue is 0.
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As a result, diffusion maps are susceptible to the same problems as PCA and classical scaling:
they assign much higher importance to modeling the large pairwise diffusion distances than the
small ones and as a result, they are not good at retaining the local structure of the data. Moreover,
in contrast to the random walk version of t-SNE, diffusion maps do not have a natural way of
selecting the length, t, of the random walks.

In preliminary experiments, we also performed experiments in which we compared t-SNE
to CCA [Demartines and Hérault, 1997], MVU [Weinberger et al., 2004], and Laplacian Eigen-
maps [Belkin and Niyogi, 2002]. The results with these techniques are not shown here because
of space limitations (the plots are shown in the supplemental material of [van der Maaten et al.,
2009]). On all datasets, we found t-SNE to outperform these techniques. For CCA and the closely
related CDA [Lee et al., 2000], these results can be partially explained by the hard border λ that
these techniques define between local and global structure, as opposed to the soft border of t-
SNE. Moreover, within the range λ, CCA suffers from the same weakness as Sammon mapping:
retaining a pairwise distance of, say, 0.001 is much more important than retaining a pairwise
distance of 0.003, due to the quadratic cost function. For MVU, the results may be partially
explained from the fact that MVU, just like Isomap, suffers from short-circuiting: a single erro-
neous constraint may severely affect the performance of MVU. Also, MVU makes no attempt
to model longer range structure. For Laplacian Eigenmaps, the results may be explained from
the weaknesses discussed in subsection 2.6.2. Most importantly, Laplacian Eigenmaps have the
same covariance constraint as LLE, and it is easy to cheat on this constraint.

3.5.2 Weaknesses

Although we have shown that t-SNE compares favorably to other techniques for data visual-
ization, t-SNE has three potential weaknesses: (1) it is unclear how t-SNE performs on general
dimensionality reduction tasks, (2) the relatively local nature of t-SNE makes it sensitive to the
curse of the intrinsic dimensionality of the data, and (3) t-SNE is not guaranteed to converge to
a global optimum of its cost function. Below, we discuss the three weaknesses in more detail.

1) Dimensionality reduction for other purposes. It is not obvious how t-SNE will perform
on the more general task of dimensionality reduction (i.e., when the dimensionality of the data
is not reduced to two or three, but to d > 3 dimensions). To simplify evaluation issues, this
chapter only considers the use of t-SNE for data visualization. The behavior of t-SNE when
reducing data to two or three dimensions cannot readily be extrapolated to d > 3 dimensions
because of the heavy tails of the Student-t distribution. In high-dimensional spaces, the heavy
tails comprise a relatively large portion of the probability mass under the Student-t distribution,
which might lead to d-dimensional data representations that do not preserve the local structure
of the data as well. In Chapter 4, we discuss this issue in more detail and we present an approach
that addresses this weakness.

2) Curse of intrinsic dimensionality. t-SNE reduces the dimensionality of data mainly
based on local properties of the data, which makes t-SNE sensitive to the curse of the intrinsic
dimensionality of the data [Bengio, 2007]. In datasets with a high intrinsic dimensionality and
an underlying manifold that is highly varying, the local linearity assumption on the manifold
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that t-SNE implicitly makes (by employing Euclidean distances between near neighbors) may
be violated. As a result, t-SNE might be less successful if it is applied on datasets with a high
intrinsic dimensionality (for instance, a recent study estimates the face space to be constituted of
approximately 100 dimensions [Meytlis and Sirovich, 2007]). Manifold learners such as Isomap
and LLE suffer from exactly the same problems (see, e.g., [Bengio, 2007]). A possible way
to (partially) address this issue is by performing t-SNE on a data representation obtained from
a model that represents the highly varying data manifold efficiently in a number of nonlinear
layers such as an autoencoder [Hinton and Salakhutdinov, 2006]. Such deep-layer architectures
can represent complex nonlinear functions in a much simpler way, and as a result, require fewer
datapoints to learn an appropriate solution (as is illustrated for a d-bits parity task by [Bengio,
2007]). Performing t-SNE on a data representation produced by, e.g., an autoencoder is likely
to improve the quality of the constructed visualizations, because autoencoders can identify
highly-varying manifolds better than a local method such as t-SNE. However, the reader
should note that it is by definition impossible to fully represent the structure of intrinsically
high-dimensional data in two or three dimensions.

3) Non-convexity of the t-SNE cost function. A nice property of most state-of-the-art dimen-
sionality reduction techniques (such as classical scaling, Isomap, LLE, and diffusion maps) is
the convexity of their cost functions. A major weakness of t-SNE is that the cost function is not
convex, as a result of which several optimization parameters need to be chosen. The constructed
solutions depend on the choices of the optimization parameters and may be different each time
t-SNE is run from an initial random configuration of map points. We have demonstrated that the
same choice of optimization parameters can be used for a variety of different visualization tasks,
and we found that the quality of the optima does not vary much from run to run. Therefore, we be-
lieve that the weakness of the optimization method is insufficient reason to reject t-SNE in favor
of methods that lead to convex optimization problems but produce noticeably worse visualiza-
tions. A local optimum of a cost function that accurately captures what we want in a visualization
is often preferable to the global optimum of a cost function that fails to capture important aspects
of what we want. Moreover, the convexity of cost functions can be misleading, because their
optimization is often computationally infeasible for large real-world datasets, prompting the use
of approximation techniques [de Silva and Tenenbaum, 2003; Weinberger et al., 2007].

3.6 Chapter conclusions

The chapter presented a new technique for the extraction of dimensionality reduction features,
called t-SNE, that is capable of retaining local structure of the data while also revealing some
important global structure of the data (such as clusters). We showed the strong performance
of t-SNE in a number of experiments on five datasets. Both the computational and the mem-
ory complexity of t-SNE are O(n2). Yet, we presented an approach that makes it possible to
visualize successfully large real-world datasets with limited computational demands. From the
experimental results, we may conclude that t-SNE is a valuable new technique for the extraction
of dimensionality reduction features.



4 Extensions of
t-Distributed Stochastic
Neighbor Embedding

Contents Even though the strong performance of t-SNE is of high value in vi-
sualization tasks, t-SNE cannot readily be employed to resolve the di-
mensionality problem in many computer vision systems, because these
systems often require a parametric mapping between the data space and
the latent space. Moreover, the performance of t-SNE may be hampered
by the metric nature of the low-dimensional map, as a result of which
it is not possible to model, e.g., asymmetric similarities in the map. To
resolve these problems, the chapter develops two new variants of t-SNE
in order to gain more insight into the answer of research question RQ1.
The first variant of t-SNE provides a parametric mapping between the
data space and the low-dimensional latent space, as is required in many
computer vision systems. The second variant of t-SNE employs a latent
space with a non-metric nature, which provides the capability to model
non-metric similarities between objects.

Based on L.J.P. van der Maaten. Learning a Parametric Embedding by Preserving
Local Structure. In Proceedings of the Twelfth International Conference
on Artificial Intelligence and Statistics (AISTATS), JMLR W&CP 5:384-
391, 2009.

Outline In Section 4.1, we present the parametric version of t-SNE. In Sec-
tion 4.2, we present a variant of t-SNE that constructs multiple maps
instead of a single map, as a result of which the latent space is non-
metric. Section 4.3 concludes the chapter.
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In this chapter, we extend t-SNE to two learning settings that were not addressed in the previous
chapter. First, we present a parametric version of t-SNE that can be used in learning settings in
which generalization to unseen test data is required (Section 4.1). Second, we present a variant
of t-SNE that can embed objects whose pairwise similarities do not obey the metric axioms, such
as semantic similarities, by constructing a collection of multiple maps (Section 4.2).

4.1 Parametric t-SNE

Like other techniques for multidimensional scaling, t-SNE is a non-parametric technique for
dimensionality reduction. Therefore, it cannot readily be applied in learning settings in which
the goal is to generalize to held-out test data or to new datapoints. Generalization to held-out or
new datapoints may be desirable if not all datapoints are available at training time, for instance,
in typical classification tasks or when rapid visualization of new data is required. In this section,
we describe a parametric version of t-SNE that allows for rapid generalization by providing a
parametric mapping from the high-dimensional space to the low-dimensional space.

In parametric t-SNE, we parametrize the mapping f : X → Y from the high-dimensional
data space X to the low-dimensional space Y by means of a feed-forward neural network with
weights W . We opt for the use of a (deep) neural network, because a neural network with suf-
ficient hidden layers (with nonlinear activation functions) is capable of parametrizing arbitrarily
complex functions. The main drawback of the use of deep neural networks is that the millions of
weights in the network cannot be learned successfully using backpropagation, as backpropaga-
tion tends to get stuck in poor local minima due to the complex interactions between the layers
in the network. In order to circumvent this problem, we use a training procedure that is inspired
by the training of autoencoders that we described in Section 2.3.

The training procedure of a parametric t-SNE network consists of three main stages. First, a
stack of Restricted Boltzmann Machines (RBMs) is trained. Second, the stack of RBMs is used
to construct a pretrained feed-forward neural network. Third, the pretrained feed-forward neural
network is finetuned in order to minimize the t-SNE cost function. The training procedure is
illustrated in Figure 4.1. We describe the three main stages of the training of a parametric t-SNE
network separately below.

First, the multilayer network is pretrained by greedily training a stack of Restricted Boltz-
mann Machines (RBMs) using the procedure initially proposed by Hinton and Salakhutdinov
[2006]. This greedy training procedure consists of three steps that are repeated for each layer in
the neural network: (i) the RBM that corresponds to the first layer is trained on the input data (the
training of RBMs is described in Appendix D), (ii) the most likely values for the hidden nodes of
the RBM are inferred for each datapoint, and (iii) these values are used as input data to train the
RBM that corresponds to the second layer. This process is repeated for all layers in the network.
The RBMs that correspond to the bottom layers of the neural network have Bernoulli distributed
hidden units and a linear energy function, because this gives rise to a sigmoid activation function
in the network (see Appendix D). The RBM that corresponds to the top layer of the neural net-
work uses Gaussian distributed hidden units and a quadratic energy function, because this gives
rise to a linear activation function in the network. The top layer of a neural network typically has
a linear activation function to make the outputs of the network more stable.
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Figure 4.1 Overview of the three-stage training procedure of a parametric t-SNE network.

Second, the undirected weights of the RBMs are untied and the biases on the visible units of
the respective RBMs are dropped, which transforms the stack of RBMs into a pretrained feed-
forward network. Even though the resulting neural network was trained in a completely unsuper-
vised manner, it usually forms an appropriate initialization for backpropagation approaches. For
instance, the pretrained neural network can be used to initialize autoencoders (as we explained
in 2.3) or nonlinear variants of Neighborhood Components Analysis [Salakhutdinov and Hinton,
2007]. Here, we use the pretrained network as an initial solution to the procedure that minimizes
the t-SNE cost function with respect to the weights of the neural network.

Third, the weights of the pretrained feed-forward network are finetuned in such a way that
the network minimizes the t-SNE cost function that was given in Equation 3.7. The introduction
of the parametric mapping requires the pairwise similarities qij to be redefined. We denote the
mapping from the high-dimensional to the low-dimensional space, which depends on the setting
of the weights W of the neural network, as f : X → Y . Using the mapping f , the pairwise
similarities qij in the low-dimensional space are redefined as

qij =

(
1 + ‖f(xi|W )− f(xj |W )‖2/v

)− v+1
2∑

k 6=l (1 + ‖f(xk|W )− f(xl|W )‖2/v)−
v+1
2

, (4.1)
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where v represents the number of degrees of freedom of the Student t-distribution. Note that
we treat the degrees of freedom v as a free parameter here, whereas in Chapter 3, we simply
set v = 1. As we will explain in detail later in this section, a higher value of v may be more
appropriate if we reduce the data dimensionality to, say, 30 dimensions.

The new definition of the low-dimensional pairwise similarities qij allows us to minimize
the ‘normal’ t-SNE cost function C (see Equation 3.7) with respect to the network weights W .
Because of its large resemblance to the gradient of non-parametric t-SNE, the derivation of the
gradient of parametric t-SNE is not given here. The required gradient δC

δW is given by

δC

δW
=

δC

δf(xi|W )
δf(xi|W )
δW

, (4.2)

where δf(xi|W )
δW is computed using standard backpropagation, and δC

δf(xi|W ) is given by

δC

δf(xi|W )
=

2v + 2
v

∑
j

(pij−qij) (f(xi|W )− f(xj |W ))
(
1 + ‖f(xi|W )− f(xj |W )‖2/v

)− v+1
2 .

(4.3)
The minimization of the cost function usually has to be performed using batches of a few thou-
sand points, as the number of pij’s and qij’s grows quadratically with the number of datapoints
in the batch.

A potential weakness of parametric t-SNE is that the tails of the Student-t distribution that is
used in the low-dimensional space may contain a large portion of the probability mass under the
distribution, because the volume of the low-dimensional space Y grows exponentially with its
dimensionality. This problem may be addressed by setting the degrees of freedom v as to correct
for the exponential growth of the volume of the low-dimensional space, because increasing
the degrees of freedom v gives rise to a distribution with lighter tails. In fact, the parameter v
determines to what extent the low-dimensional space is ‘filled up’: lower values of v lead to
larger separations in the low-dimensional space between the natural clusters in the data, because
they give rise to stronger repulsive forces between dissimilar datapoints. In contrast, higher
values of v lead to smaller separations between the natural clusters in the data, as a result of
which more space is available in the low-dimensional space to appropriately model the local
structure of the data. Below, we discuss two approaches to set the degrees of freedom of the
Student-t distribution that is used to measure pairwise similarities in the low-dimensional space.

1) Linear dependency. As the thickness of the tail of a Student-t distribution decreases
exponentially with the degrees of freedom v, it seems likely that the parameter setting for
degrees of freedom v should be linearly dependent on the dimensionality of the low-dimensional
space d. Hence, it seems reasonable to set v = d − 1 in order to obtain a single degree of
freedom in two-dimensional maps (as in Chapter 3).

2) Learning v. A potential problem of the approach presented above is that the appropriate
value of v does not only depend on the dimensionality of the low-dimensional space. In fact, the
most appropriate setting of v depends on the magnitude of the crowding problem, which in turn
depends on the ratio between the intrinsic dimensionality of the data and the dimensionality of
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the low-dimensional space. For instance, if the intrinsic dimensionality is equal to the dimen-
sionality of the low-dimensional space, the crowding problem does not occur at all, and the most
appropriate value is thus v = ∞ (note that a Student-t distribution with infinite degrees of free-
dom is equal to a Gaussian distribution). As the intrinsic dimensionality of the data at hand is
usually unknown, it seems reasonable to treat v as a free parameter that should be optimized with
respect to the cost function as well. The required gradient of the cost function C with respect to
v is given by

δC

δv
=
∑
i 6=j

 (−v − 1)d2
ij

2v2
(
1 +

d2
ij

v

) +
1
2

log

(
1 +

d2
ij

v

) (pij − qij) , (4.4)

where d2
ij represents ‖f(xi|W )− f(xj |W )‖2. In the following section, we present experiments

in which we used three different settings for v: (i) v = 1, (ii) v = d − 1, and (iii) learn v using
the gradient presented above.

4.1.1 Experiments

This subsection describes experiments in which we compare the performance on two datasets
of parametric t-SNE with two other unsupervised parametric techniques for dimensionality re-
duction, viz., PCA and autoencoders. The subsection separately describes (i) the setup of the
experiments and (ii) the results of the experiments.

Experimental setup

We performed experiments on two handwritten character datasets, one of which we already used
in Chapter 2 and 3: (1) the MNIST dataset and (2) the characters dataset. The MNIST dataset
contains 70, 000 images of handwritten digits of size 28 × 28 pixels. The dataset has a fixed
division into 60, 000 training images and held out 10, 000 test images. The characters dataset
consists of 40,121 grayscale images of handwritten upper-case characters and numerals of size
90× 90 pixels [van der Maaten, 2009], of which we used 35, 000 images as training data and the
remainder as test data. The characters dataset comprises 35 classes, viz. 10 numeric classes and
25 alpha classes (the character ‘X’ is missing in the dataset).

In our experiments, we compared parametric t-SNE with two other unsupervised paramet-
ric techniques for dimensionality reduction, viz., PCA and multilayer autoencoders [Hinton
and Salakhutdinov, 2006]. We evaluated the performance of the three techniques by means
of plotting two-dimensional visualizations, measuring generalization performances of nearest-
neighbor classifiers, and evaluating the trustworthiness [Venna and Kaski, 2006] of the low-
dimensional embeddings. In order to make the comparison between parametric t-SNE and au-
toencoders as fair as possible, we used the same layout for both neural networks (where it should
be noted that a parametric t-SNE network does not have the decoder part of an autoencoder).
Motivated by the experimental setup employed by Salakhutdinov and Hinton [2007], we used
28 × 28 − 500 − 500 − 2000 − 2 parametric t-SNE networks and autoencoders in our experi-
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ments on the MNIST dataset1. In our experiments on the characters dataset, we used networks
with a similar structure, viz. 90× 90− 500− 500− 2000− 2 networks. The autoencoders were
trained using the same three-stage training approach as parametric t-SNE, but the autoencoder is
finetuned by performing backpropagation as to minimize the sum of squared errors between the
input and the output of the autoencoder (see [Hinton and Salakhutdinov, 2006] for details).

We used exactly the same procedure and parameter settings in the pretraining of the paramet-
ric t-SNE networks and the autoencoders. In the training of the RBMs of which the hidden units
have sigmoid activation functions (the RBMs in the first three layers), the learning rate is set to
0.1, and the weight decay is set to 0.0002. The training of the RBMs with a linear activation
function in the hidden units (the RBMs in the fourth layer) is performed using a learning rate
of 0.01 and a weight decay of 0.0002. In the training of all RBMs, the momentum is set to 0.5
for the first five iterations, and to 0.9 afterwards. The RBMs are all trained using 50 iterations of
contrastive divergence with one complete Gibbs sweep per iteration (CD-1).

Both parametric t-SNE and the autoencoders were finetuned using 30 iterations of backprop-
agation using conjugate gradients on batches of 5, 000 datapoints. The subdivision of training
data into batches was fixed in order to facilitate the precomputation of the P matrices that are
required in parametric t-SNE. In the experiments with parametric t-SNE, the variance σi of the
Gaussian distributions was set such that the perplexity of the conditional distributions Pi was
equal to 30.

Results

In Figure 4.2, we present the visualizations of the MNIST dataset that were constructed by PCA,
the 28×28−500−500−2000−2 autoencoder, and the 28×28−500−500−2000−2 parametric t-
SNE network. The visualizations were constructed by transforming the MNIST test images, that
were held out during training, to two dimensions using the trained models. The results reveal the
strong performance of parametric t-SNE compared to PCA and autoencoders. In particular, the
PCA visualization mixes up most of the natural classes in the data. The autoencoder outperforms
PCA, but cannot successfully separate the classes 4, 9, 6, and 8. In contrast, parametric t-SNE
clearly separates all classes (although the visualization contains some debris that is mainly due
to the presence of distorted digits in the data). Parametric t-SNE does not only outperform other
parametric techniques, it even outperforms the non-parametric techniques for which we presented
visualizations in Figure 3.2.

In Figure 4.3, we present visualizations of the characters dataset that were constructed by
PCA, the multilayer autoencoder, and the parametric t-SNE network. Again, the visualization
only depicts test images that were held out during the training of the dimensionality reduction
techniques. The results reveal that parametric t-SNE reveals the natural clusters in the data much
better than PCA and autoencoders. The separation between the classes on the parametric t-SNE
visualization is not perfect, but this is mainly due to the fact that it is impossible to discriminate
between, for instance, the character ’O’ and the numeral ’0’ if no context is available. The strong
performance of parametric t-SNE compared to PCA and autoencoders is also revealed by gen-

1In the notation of the network structure, each number represents the number of units in a layer. The numbers are
ordered such that the first number corresponds to the number of input units, whereas the last number indicates the number
of units in either the output layer of the parametric t-SNE network, or the middle layer of the autoencoder.
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(a) Visualization by PCA.

 

 

(b) Visualization by an autoencoder.

 

 

(c) Visualization by parametric t-SNE.

Figure 4.2 Visualizations of 10, 000 digits from the MNIST dataset by parametric dimensionality reduction
techniques.

 

 

(a) Visualization by PCA.

 

 

(b) Visualization by an autoencoder.

 

 

(c) Visualization by parametric t-SNE.

Figure 4.3 Visualizations of 5, 000 characters from the characters dataset by parametric dimensionality
reduction techniques.

eralization errors of nearest neighbor classifiers trained and tested on the low-dimensional data
representations.

In Table 4.1, we present the generalization errors of nearest neighbor classifiers that were
trained on the low-dimensional representations obtained from the three parametric dimensional-
ity reduction techniques (using three different dimensionalities for the low-dimensional space).
The generalization errors were measured on test data that was held out during the training of both
the dimensionality reduction techniques and the classifiers. The corresponding trustworthiness-
eses T (12) of the embeddings are presented in Table 4.2. In both tables, the best performance in
each experiment is typeset in boldface. From the results presented in Table 4.1 and 4.2, we can
make the following two observations.

First, we observe that parametric t-SNE performs better or on par with the other techniques in
most experiments. In particular, the performance of parametric t-SNE is strong if the dimension-
ality of the low-dimensional space is not sufficiently large to accommodate for all properties
of the data. In this case, the heavy tails of the distribution of parametric t-SNE in the low-
dimensional space push the natural clusters in the data apart, whereas PCA and autoencoders
construct embeddings in which these natural clusters (partially) overlap. The high trustworthi-
nesses of the parametric t-SNE embeddings indicate that parametric t-SNE preserves the local
structure of the data in the low-dimensional space well.
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MNIST Characters
2D 10D 30D 2D 10D 30D

PCA 78.16% 43.03% 10.78% 86.72% 60.73% 20.50%
Autoencoder 66.84% 6.33% 2.70% 82.93% 17.91% 11.11%
Par. t-SNE, v = 1 9.90% 5.38% 5.41% 43.90% 26.01% 23.98%
Par. t-SNE, v = d− 1 9.90% 4.58% 2.76% 43.90% 17.13% 13.55%
Par. t-SNE, learned v 12.68% 4.85% 2.70% 44.78% 17.30% 14.31%

Table 4.1 Generalization errors of 1-nearest neighbor classifiers on low-dimensional representations of the
MNIST and characters dataset.

MNIST Characters
2D 10D 30D 2D 10D 30D

PCA 0.744 0.991 0.998 0.735 0.971 0.994
Autoencoder 0.729 0.996 0.999 0.721 0.976 0.992
Par. t-SNE, v = 1 0.926 0.983 0.983 0.866 0.957 0.959
Par. t-SNE, v = d− 1 0.927 0.997 0.999 0.866 0.988 0.995
Par. t-SNE, learned v 0.921 0.996 0.999 0.861 0.988 0.995

Table 4.2 Trustworthiness T (12) of low-dimensional representations of the MNIST and characters dataset.

Second, we observe that it is disadvantageous to use a single degree of freedom in the low-
dimensional space if that low-dimensional space has more than, say, two dimensions. Our results
reveal that it is better to make the number of degrees of freedom v linearly dependent on the
dimensionality of the low-dimensional space d, for reasons we already stated above. The results
also show that learning the appropriate number of degrees of freedom v leads to similar results.
In fact, the learned value of v was often close to d− 1 in our experiments.

4.1.2 Discussion

From the results of our experiments, we observe that parametric t-SNE often outperforms two
other unsupervised parametric dimensionality reduction techniques, in particular, if the dimen-
sionality of the low-dimensional space is relatively low. These results are due to the main differ-
ences of parametric t-SNE compared to PCA and autoencoders, which we discuss below.

The strong performance of parametric t-SNE compared to PCA can be explained from the two
main problems of PCA (that were also discussed in Chapter 2 and 3). First, the linear nature of
PCA is too restrictive for the technique to find appropriate embeddings for non-linear real-world
data. Second, PCA focuses primarily on retaining large pairwise distances in the low-dimensional
space (which can be understood from its relation to classical scaling [Williams, 2002]), whereas
it is more important to retain the local structure of the data in the low-dimensional space.

The strong performance of parametric t-SNE compared to autoencoders, especially if the
low-dimensional space has a relatively low dimensionality, can be understood from the follow-
ing difference between parametric t-SNE and autoencoders. Parametric t-SNE aims to model



4.1 Parametric t-SNE 67

the local structure of the data appropriately in the low-dimensional space, and it attempts to
create separation between the natural clusters in the data (by means of the heavy-tailed distri-
bution in the low-dimensional space). In contrast, autoencoders mainly aim to maximize the
variance of the data in the low-dimensional space, in order to achieve low reconstruction errors.
As a result of the maximization of the variance, autoencoders generally do not construct low-
dimensional data representations in which the natural classes in the data are widely separated
(as this would decrease the variance of the low-dimensional data representation, and increase the
reconstruction error). The relatively poor separation between natural classes in low-dimensional
data representations constructed by autoencoders leads to inferior generalization performance of
nearest neighbor classifiers compared to parametric t-SNE; in particular, if the dimensionality of
the low-dimensional space is relatively low. Moreover, parametric t-SNE provides computational
advantages over autoencoders. An autoencoder consists of an encoder part and a decoder part,
whereas parametric t-SNE only employs an encoder network. As a result, errors have to be back-
propagated through half the number of layers in parametric t-SNE (compared to autoencoders),
which gives it an computational advantage over autoencoders (even though the computation of
the errors is somewhat more expensive in parametric t-SNE).

A notable advantage of autoencoders is that they provide the capability to reconstruct the
original data from its low-dimensional representation in the low-dimensional space. In other
words, autoencoders do not only provide a parametric mapping from the data space to the low-
dimensional space, but also the other way around. A possible approach to address this shortcom-
ing is to use the decoder part of an autoencoder as a regularizer on the parametric t-SNE network,
i.e., to minimize a weighted sum of the parametric t-SNE cost function and the reconstruction
error (as is done for non-linear NCA by Salakhutdinov and Hinton [2007]).

As the number of parameters in parametric t-SNE and autoencoders is larger than in PCA,
these techniques are likely to be more susceptible to overfitting. However, we did not observe
overfitting effects in our experiments, probably because of the relatively large number of in-
stances in our training data. If parametric t-SNE or autonencoders are trained on smaller datasets,
it may be necessary to use early stopping [Caruana et al., 2001]

The results of our experiments not only reveal the strong performance of parametric t-SNE
compared to PCA and autoencoders, but also provide insight into the nature of the crowding
problem. In particular, the results reveal that the severity of the crowding problem depends on
the ratio between the intrinsic dimensionality of the data and the dimensionality of the low-
dimensional space. The number of degrees of freedom v should thus be set accordingly. We
suggested to treat v as a parameter that has to be learned as well, and although competitive,
learning v does not always outperform a setting in which v depends linearly on the dimensionality
of the low-dimensional space. Presumably, this observation is due to the following. When v is
learned, it is set in such a way as to ‘fill up’ the low-dimensional space. This decreases the
Kullback-Leibler divergence that parametric t-SNE minimizes, because it provides more space
to model the local structure of the data appropriately (recall that the cost function focuses on
retaining local structure). Although the ‘filling up’ of the space is advantageous for modeling the
local structure of the data (as is illustrated by the high trustworthinesses which were obtained
when v is learned), it has a negative influence on the generalization performance of nearest
neighbor classifiers on the low-dimensional data representation, as it decreases the separation
between the natural clusters in the data.
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4.2 Multiple-maps t-SNE

In our discussions on (1) dimensionality reduction techniques in Chapter 2, (2) t-SNE in Chap-
ter 3, and (3) parametric t-SNE in Section 4.1, we made an assumption that has remained implicit
until now. We assumed that the space in which the dimenionality reduction techniques construct
their low-dimensional embeddings has a metric nature. In other words, we assumed that the low-
dimensional space in which we embed the data obeys the four metric axioms: (1) non-negativity
of distances, (2) identity of indiscernibles, (3) symmetry of distances, and (4) the triangle in-
equality. If we denote the distance between object A and object B by d(A,B), the four metric
axioms [Munkres, 2000] are given by

d(A,B) ≥ 0, (4.5)

d(A,B) = 0 iff A = B, (4.6)

d(A,B) = d(B,A), (4.7)

d(A,C) ≤ d(A,B) + d(B,C). (4.8)

Until now, the assumption that the low-dimensional data representations reside in a metric space
was no limitation, since the input data (such as images) resided in a metric space itself. How-
ever, the input into a variant of multidimensional scaling such as t-SNE may equally well be a
collection of objects of which the pairwise similarities do not obey the four metric axioms. For
instance, the collection of objects may be a set of words, and the pairwise similarities may be
co-occurrences or association values between the words. Such semantic similarities are likely to
be non-metric, as a result of which they cannot successfully be embedded in a low-dimensional
space that obeys the four metric axioms. Traditional multidimensional scaling techniques such
as classical scaling [Torgerson, 1952], Sammon mapping [Sammon, 1969], and t-SNE will thus
perform inferior when used to model, e.g., semantic similarities2.

The metric axioms give rise to three limitations of metric spaces in terms of the similarities
that can be represented in the space: (1) the triangle inequality induces transitivity of similarities,
(2) the number of points that can have the same point as their nearest neighbor is limited3, and
(3) similarities have to be symmetric. We discuss the three limitations of metric spaces in more
detail below. In the discussion, we assume that the input objects are words that are described in
terms of their semantic similarities to other words.

The first limitation of metric spaces is the result of the triangle inequality. The triangle in-
equality basically states that in a metric space, if point A is close to point B and B is close to
point C, point A has to be close to C as well. In practice, this constraint may well be violated
by objects such as words. Consider, for instance, the word tie, which is semantically similar to a
word such as tuxedo. In a low-dimensional metric map of words, the two words should thus be
modeled close to each other. However, the word tie has more than one meaning, as a result of
which it also is semantically similar to a word such as knot. The word tie should thus be modeled

2The same observation holds for the similarity choice model [Shepard, 1957; Luce, 1963], which is actually very
similar to SNE.

3This is not the only limitation on the neighborhood relations of points in a metric space. For instance, the maximum
number of equidistant points in a metric space is limited as well.
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close to knot as well. As a result, the words tuxedo and knot are modeled close together in the
low-dimensional metric map, even though the words exhibit no obvious semantic similarity. The
triangle inequality thus induces transitivity of semantic similarities, which may be undesired.

The second limitation of a metric space is that only a limited number of points can have the
same point as their nearest neighbor. For instance, in a two-dimensional space, maximally five
points can have the same point as their nearest neighbor (by arranging them in a pentagon that is
centered onto the point). As a result, it is not possible to model the large number of similarities
of ‘central’ objects with other objects appropriately in a low-dimensional metric map. This is
problematic because many collections of objects are characterized by a high ‘centrality’, i.e., by
the presence of objects that are similar or related to a large portion of the other objects [Tversky
and Hutchinson, 1986]. For instance, a collection of words is typically characterized by a high
centrality. The high centrality of word collections can be understood from the properties of se-
mantic networks: like many other networks, semantic networks are scale-free networks that are
characterized by a high clustering coefficient [Steyvers and Tenenbaum, 2005]. The high cluster-
ing coefficient indicates the presence of ‘central’ words. For instance, large numbers of mammals
are semantically similar to the word mammal, as a result of which all mammals would like to
have the word mammal as a near neighbor in a low-dimensional map. However, because in a two-
dimensional metric map only five points can have the same nearest neighbor, it is impossible to
model the large number of mammals in such a way that they all have the word mammal as a near
neighbor.

The third limitation of metric spaces is that similarities in these spaces are symmetric,
whereas the similarities between objects in the world are often asymmetric. Tversky illustrated
this problem with a famous example on the similarity between China and North Korea [Tversky
and Hutchinson, 1986]: “People typically have the intuition that North Korea is more similar to
China than China is to North Korea”. The reason for the asymetry in these similarities is that a
person’s representation of China typically comprises a large number of features, of which only
some features are shared with North Korea, whereas the representation of North Korea involves
a small number of features, most of which are shared with China. Loosely speaking, we could
state that ‘specific’ objects are more similar to ‘general’ objects than the other way around. A
metric map cannot represent such asymmetric similarities appropriately.

The three limitations of low-dimensional metric spaces discussed above led Tversky to argue
against techniques for multidimensional scaling (such as t-SNE), since the fundamental limita-
tions of metric space make multidimensional scaling techniques not suitable as computational
models for semantic representation [Tversky and Hutchinson, 1986]. In the remainder of this
section, we present a variant of t-SNE that constructs multiple maps that complement each other.
We show that the resulting technique, called multiple-maps t-SNE, can avoid the three limitations
of low-dimensional metric spaces. The presented technique thus resolves the arguments of Tver-
sky against multidimensional scaling techniques, and as a result, it gives rise to an interesting
computational cognitive model for semantic representation. The section compares the charac-
teristics of multiple-maps t-SNE to that of three alternative computational models for semantic
representation.

The outline of the remainder of this section is as follows. In 4.2.1, we present the multiple
maps variant of t-SNE and we explain why it is not hampered by the three limitations of metric
spaces discussed above. In 4.2.2, we present our experiments with multiple maps t-SNE, which
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show that our technique is capable of addressing all three problems of multidimensional scaling
techniques.

4.2.1 Formulating t-SNE using multiple maps

The probabilistic nature of t-SNE allows for natural extensions to variants that construct multiple
maps, and not a single map. This is a desirable property, because the use of multiple maps allows
for the three limitations of metric spaces to be avoided [Cook et al., 2007]. In this section, we
first present a multiple maps version of asymmetric t-SNE. Subsequently, we discuss how the
presented technique avoids the three limitations of low-dimensional metric spaces.

Multiple-maps t-SNE constructs a collection of M low-dimensional maps, all of which con-
tain all N datapoints. In each map with index m, the point with index i has a so-called mixing
proportion π(m)

i that measures the ‘weight’ of point i in map m. Because of the probabilistic
interpretation of the technique, we require that the mixing proportions of a single point in all
maps have to sum up to 1. In other words, the mixing proportions π(m)

i are constrained to make
sure that

∑
m π

(m)
i = 1. We define the conditional probability distribution qj|i, which represents

the similarity between the objects with index i and j under the model, as the weighted sum of the
pairwise similarities between the points corresponding to the objects i and j over all M maps.
Mathematically, we define qj|i in multiple maps t-SNE as

qj|i =

∑
m π

(m)
i π

(m)
j

(
1 + ‖y(m)

i − y(m)
j ‖2

)−1

∑
m′
∑

k 6=i π
(m′)
i π

(m′)
k

(
1 + ‖y(m′)

i − y(m′)
k ‖2

)−1 . (4.9)

Note that in the remainder of this section, we use the asymmetric definition of pairwise similarity
qj|i, and not the symmetric qij that we used in Chapter 3. The cost function of multiple maps
t-SNE is given by the cost function presented in Equation 3.3. However, it is now optimized with
respect to the N ×M low-dimensional map points y(m)

i and with respect to the N ×M mixing
proportions π(m)

i .
Because the mixing proportions π(m)

i for a single point i should sum to 1 over all maps, direct
optimization of the cost function C with respect to the parameters π(m)

i is tedious. To avoid this
problem, we represent the mixing proportions π(m)

i in terms of mixing weights using an idea that
is similar to that of softmax units, which are commonly used in neural networks [Bridle, 1989].
The mixing proportions π(m)

i are represented in terms of the mixing weights w(m)
i as follows

π
(m)
i =

e−w
(m)
i∑

m′ e−w
(m′)
i

. (4.10)

By defining the mixing proportions in this way, they are guaranteed to be positive and to sum up
to 1, as a result of which the minimization of the cost function can be performed with respect to
the unconstrained mixing weights w(m)

i . This significantly simplifies the optimization of the cost
function using a gradient descent method.

The gradients that are necessary to perform the minimization of the cost function are derived
in Appendix E. In our experiments, we used the same optimization procedure as in Chapter 3,
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Figure 4.4 Illustration of how multiple-maps t-SNE can resolve the three weaknesses of metric spaces.

i.e., we used a simple gradient descent method that employs: (i) an additional momentum term
to stabilize the gradient search and (ii) the early exaggeration method described in 3.2.4.

Multiple-maps t-SNE has three main advantages over single map multidimensional scaling
techniques such as t-SNE: (1) it can represent similarities for which the triangle inequality does
not hold, (2) it can represent data with high centrality, and (3) it can represent asymmetric sim-
ilarities. We separately discuss the three advantages of multiple-maps t-SNE over single-map
multidimensional scaling techniques below.

1) Triangle inequality. Consider our introductory example with the word tie, which is se-
mantically similar to tuxedo and to knot. The word tie should be modeled close to tuxedo and
knot, but the words tuxedo and knot should not be modeled close to each other. In contrast to
single-map multidimensional scaling techniques, multiple-maps t-SNE can appropriately model
this example as follows.

Assume we have three datapoints A, B, and C that are embedded into two maps (see
Figure 4.4(a)). Multiple-maps t-SNE can give point A a mixing proportion of 1 in the first map,
point B a mixing proportion of 1 in the second map, and point C a mixing proportion of 1

2 in
both maps, and it can give all three points have the same spatial location in both maps. Then, the
pairwise similarity between point A and C is equal to 1 × 1

2 = 1
2 , and the pairwise similarity

between point B and C is also equal to 1
2 . However, the pairwise similarity between point A

and B is 0, because the points A and B have no mixing proportion in each others maps. Hence,
the representation constructed by multiple-maps t-SNE does not satisfy the triangle inequality,
as a result of which it can model intransitive semantic similarities such as our example with tie,
tuxedo, and knot.

2) High centrality. In a metric space, only a limited number of points can have the same
point as their nearest neighbor, as a result of which it is not possible to model the large number of
similarities of ‘central’ objects with other objects appropriately in a low-dimensional metric map.
Data with high centrality can be modeled appropriately by multiple-maps t-SNE, essentially,
because multiple maps provide much more space than a single map. We illustrate the capability
of multiple-maps t-SNE to model data with high centrality by an example.

Assume we have six objects that all have the same ‘central’ object A as their most similar
object. In a single map, only five of the objects can be modeled in such a way that they have the
low-dimensional model of object A as their nearest neighbor. In contrast, when two maps are
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available, the data can be modeled in such a way that the low-dimensional models of the all six
objects have the model of object A as their nearest neighbor. For instance, this can be achieved
by giving A a mixing proportion of 1

2 in both maps, modeling the first three objects close to the
model of object A in the first map with mixing proportion 1, and modeling the remaining three
objects close to the model of objectA in the second map with mixing proportion 1. This example
is illustrated in Figure 4.4(b).

Multiple-maps t-SNE can thus successfully model ‘central’ objects in the data, such as
the mammal in our introductory example. The number of points that can have the same point
as their nearest neighbor in multiple-maps t-SNE depends on the number of maps and on the
dimensionality of these maps.

3) Symmetry. A metric low-dimensional map constructed by a single map multidimensional
scaling technique (such as t-SNE) cannot appropriately model asymmetric similarities, such as
the similarity between China and North Korea. In contrast, asymetric similarities between objects
can be modeled by multiple maps t-SNE. We illustrate this capability using Tversky’s famous
example on the similarity between China and North-Korea, which may be modeled by multiple
maps t-SNE as follows.

Assume (1) that we have two maps, (2) that North Korea has a mixing proportion of 1 in the
first map and a mixing proportion of 0 in the second map, and (3) that China has a mixing pro-
portion of 1

4 in the first map and a mixing proportion of 3
4 in the second map. In addition, assume

(4) that North Korea and China are mapped close to each other in map 1, and (5) that China is
modeled close to other countries in map 2. This example is illustrated in Figure 4.4(c). In the
example, North Korea is modeled as very similar to China, whereas China is much less similar
to North Korea, because it shares a large number of features with other countries as well. The
actual similarity between China to North Korea under the model depends on the locations and
mixing proportions of the other countries in both maps, i.e., on the amount of features that China
shares with North Korea, relative to the amount of features that China shares with other coun-
tries. Nevertheless, the representation constructed by multiple-maps t-SNE successfully models
asymmetric similarities.

4.2.2 Experiments

Above, we introduced multiple-maps t-SNE and we explained how multiple-maps t-SNE can
overcome the limitations of metric spaces that hamper techniques for multidimensional scaling.
In this subsection, we present experiments with multiple-maps t-SNE, in which we employ the
technique to visualize a set of word association data. We selected a word association dataset
for our experiments, because word associations cannot be modeled well by single-map multi-
dimensional scaling techniques: word association data typically contains intransitive semantic
relations, central concepts, and asymmetric semantic similarities. Below, we discuss the setup of
the experiments and the results of the experiments separately.
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Experimental setup

In the evaluation of the performance of multiple-maps t-SNE, we performed experiments in
which we visualize the Florida State University word association dataset [Nelson et al., 1998].
The Florida State University word association dataset contains association data for 10, 617 words,
of which 5, 019 were used as input stimuli. The word association data was gathered as follows.
Human subjects were given one of the 5, 019 words as input stimulus and were instructed to
write down the first word that came to mind that they associated with the input stimulus. In
total, over 6, 000 participants produced approximately 750, 000 responses to the 5, 019 words.
Each subject was presented with 100 to 120 randomly selected words, as a result of which on
average 149 subjects produced a response to a single word. In the processing of the responses, the
counts for singular and plural forms of the same word were pooled and the majority response was
employed as a label for the pooled counts. After normalization of the word association counts per
word, a condition probability pj|i is obtained that measures the probability that a human subject
produces word j as response after being presented with word i as input stimulus. In other words,
the conditional probability pj|i represents the probability that a human subject associates word
j with word i. The conditional probabilities pj|i are used as the input for multiple-maps t-SNE.
In the computation of the conditional probabilities pj|i, we ignored all words that were given as
a response but that were not used as an input stimulus (because multiple-maps t-SNE expects a
square similarity matrix as input).

The word association dataset has three characteristics that make it difficult to visualize the
data using single-map multidimensional scaling techniques. First, it contains numerous exam-
ples of intransitive semantic relations, such as our introductory example with tie, tuxedo, and
knot. Second, it contains a number of fairly ‘general’ words that have semantic relations with
many other words. The high centrality of the Florida State University word association dataset is
reflected in the high clustering coefficient of the dataset [Steyvers and Tenenbaum, 2005]. The
most central word in the data is the word field, which has a semantic similarity to 33 other words
in the data. Third, the word association data contains numerous examples of asymmetric similar-
ities. For instance, the probability that a human thinks of the word cut after being presented with
the word scissors is 0.879, whereas the probability that a human thinks of scissors after being
presented with the word cut is only 0.034.

In our experiments, we set the number of maps to 40. The dimensionality of each map is set
to 2 in order to facilitate the visualization of the resulting maps. The optimization is performed
using 2, 000 iterations of gradient descent, in which we employed an additional momentum term.
The momentum term was set to 0.5 in the first 250 iterations, and to 0.8 afterwards. The initial
learning rate was set to 0.1, and the learning rate was updated after every iteration using the
adaptive learning weight scheme described by Jacobs [1988]. The results are visualized in an
annotated scatter plot, in which the size of a dot represents the mixing proportion of a word in
a specific map. To prevent the visualizations from being too cluttered, datapoints with a small
mixing proportion (below 0.1) were removed from the visualization. To increase the readibility
of the plots, the annotations in the scatter plot were manually aligned to minimize the overlap
between the annotations, while keeping the word labels close to their corresponding point in the
map.



74 Extensions of t-Distributed Stochastic Neighbor Embedding

Results

Figure 4.5 presents the results of our experiments on the word association data. The figure shows
6 of the 40 maps that were constructed by multiple-maps t-SNE. The results reveal that the maps
retain the similarity structure of the association data well4. Because the data contains too many
‘topics’, a single map does not generally visualize a single topic. Instead, most maps reveal two
or three main topics, as well as some very small separate structures. For instance, map 4.5(d)
visualizes the topics sports and clothing, and it shows small local structures that are related to,
e.g., the Statue of Liberty: monument - statue - liberty - freedom.

The results reveal how multiple-maps t-SNE avoids the limitations of low-dimensional
spaces. In particular, multiple-maps t-SNE successfully models intransitive similarities of words.
For instance, the semantic relation of the word tie with words such as suit, tuxedo, and prom is
modeled in map 4.5(a), whereas in map 4.5(d), the semantic relation of the word tie with rope
and knot is modeled. In addition, map 4.5(e) reveals the semantic relation of tie with words such
as ribbon and bow. As a second example, the semantic relation of the word cheerleader with
various kinds of sports is modeled in map 4.5(d), whereas map 4.5(f) reveals the association of
the word cheerleader with words such as gorgeous, beauty, and sexy. A third example is the
word monarchy, which is modeled close to words that are related to royalty such as king, queen,
crown, and royal in map 4.5(c). In map 4.5(f), the word monarchy is modeled close to other
governmental forms such as oligarchy, anarchy, democracy, and republic.

From the results of the experiments, it is hard to assess whether multiple maps t-SNE was
successful in modeling concepts with high centrality. We believe that establishing whether mul-
tiple maps t-SNE successfully model central concepts can best be done on artificial data, such as
the example in Figure 4.4(b). We leave such an experiment for future work.

The results of our experiments do reveal how multiple-maps t-SNE represents asymmetric
pairwise similarities. For instance, map 4.5(c) reveals that the word dynasty is more often asso-
ciated with the word China than the other way around. In map 4.5(c), the representations of both
words are close to one another, however, the word China has a much smaller mixing proportion
than dynasty in map 4.5(c). As a result, the denominator of Equation 4.9 is higher for China than
for dynasty, which implies that dynasty is closer to China than the other way around.

4Please note that the word association data does not exactly capture semantic similarity. For instance, in map 4.5(f),
the word beauty shown next to the word beast, revealing the word association that results from a famous Disney movie.
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Figure 4.5 Maps of the word association dataset constructed by multiple-maps t-SNE (a-c). Because of
space limitations, we only show 6 of the original 40 maps.
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Figure 4.5 Maps of the word association dataset constructed by multiple-maps t-SNE (d-f). Because of
space limitations, we only show 6 of the original 40 maps.
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4.2.3 Discussion

In the previous subsection, we presented the results of experiments that reveal the merits of
multiple-maps t-SNE over single-map multidimensional scaling techniques such as t-SNE.
Multiple-maps t-SNE may have applications in information retrieval and visualization. More-
over, the quality of the visualizations constructed by multiple maps t-SNE suggests that it may
provide a basis for computational cognitive models of semantic representation that overcome
many of the problems of cognitive models based on semantic spaces [Shepard, 1968; Tversky
and Hutchinson, 1986; Landauer and Dumais, 1997]. Below, we compare the theoretical
properties of multiple maps t-SNE with those of three alternative cognitive models for semantic
representation: (1) semantic space models, (2) semantic networks, and (3) Bayesian latent
variable models.

1) Semantic space models. Semantic space models are similar to multiple maps t-SNE in
that they represent semantic concepts as points in a space in such a way, that similar concepts
are represented close together in the space. In other words, semantic space models are based on
the idea of implementing a second-order isomorphism between the representation space and the
concepts in the world [Edelman and Duvdevani-Bar, 1997], which means that words with similar
semantics should have a similar representation in the space.

Traditionally, multidimensional scaling models have been the most popular semantic space
models [Torgerson, 1952; Shepard, 1968; Sammon, 1969], but these models are hampered by the
limitations of metric spaces that we discussed in Section 4.2. For classical scaling (see 2.2.1), it is
possible to exploit structure from the eigenvectors that correspond to the negative eigenvalues of
the Gram matrix when modeling non-metric similarities, as these eigenvectors contain structural
information on the metricity violations in the pairwise dissimilarity matrix [Laub and Müller,
2004; Laub et al., 2007]. However, such an approach is limited in that it can only construct
two maps: one map that corresponds to the positive part of eigenspectrum and one map that
corresponds to the negative part of the eigenspectrum.

More recently, the Latent Semantic Analysis (LSA) model has gained popularity. LSA is a
model for semantic representation that was originally designed for use in information retrieval
systems [Landauer and Dumais, 1997]. It computes a low-rank approximation of a word associ-
ation or word co-occurence matrix by means of singular value decomposition (SVD). The most
important output of LSA is formed by the k principal left-singular vectors of the low-rank ap-
proximation, where the importance of the singular vectors is determined by their corresponding
singular values. The left-singular vectors provide a spatial representation for the words in the
data in an orthogonal basis spanned by k vectors, hence, they represent words as points in the k-
dimensional metric space Rk. Semantic similarity in this space is typically represented in terms
of the cosine distance between word vectors, as a result of which semantic similarities under
the LSA model obey all metric axioms. Therefore, LSA (and its probabilistic counterpart [Hof-
mann, 1999]) is not fundamentally different from other semantic representation models that rely
on second-order isomorphic representations. LSA is thus subject to all of the objections against
multidimensional scaling that were formulated by Tversky5 [Tversky and Hutchinson, 1986], as

5We are not the first authors to note the limitations of Latent Semantic Analysis. See for a more extensive coverage
of the limitations of LSA, e.g., [Griffiths et al., 2007].



78 Extensions of t-Distributed Stochastic Neighbor Embedding

a result of which multiple-maps t-SNE has important advantages over (probabilistic) LSA. In
contrast to (probabilistic) LSA, multiple-maps t-SNE can successfully model intransitive simi-
larities and asymmetric similarities between objects.

Other important semantic space models are models based on distributed representations that
are typically employed in connectionist models of semantic representation [McClelland and
Rumelhart, 1981; Kawamoto, 1993; Plaut, 1997; Rodd et al., 2004]. Distributed representations
are fairly similar to multiple-maps t-SNE in that they allow an object to be represented by
multiple points. However, an important problem of the distributed representations is that
automatically extracting a distributed semantic representation from text involves significant
computational challenges, such as deciding how many senses each word should have and when
those senses are being used. Until now, these problems have been alleviated by constructing the
networks based on data that consists of labeled pairs of words and their meanings. In contrast,
multiple-maps t-SNE provides a way to learn automatically a semantic representation from word
associations (that can, in turn, be automatically extracted from text corpora), and infers from the
data how many senses each word has. Herein, the only restriction is that the number of senses for
a single word cannot exceed the predefined number of maps, but it is unlikely that this restriction
is violated if a sensible number of maps is employed. This property of multiple-maps t-SNE
gives it an important advantage over current connectionist models for semantic representation.

2) Semantic networks. Semantic associative networks provide an intuitive way to model se-
mantic similarities, and they provide simple solutions to problems such as word prediction, word
disambiguation, and gist extraction [Collins and Loftus, 1975]. A semantic network consists of
nodes that represent the words, and edges that represent the semantic similarities between the two
words that the edges connect. When a word is observed, the node that corresponds to this word
is activated. The resulting activation spreads through the semantic network, thereby activating
nodes that are nearby in terms of the diffusion distance through the network. The strength of the
activations in the nodes represents the semantic similarity of their corresponding words with the
observed word.

Activations in undirected semantic networks can readily be represented in a distributed
semantic representation [Hinton, 1981; Shastri and Ajjanagadde, 1993], and as a result, an
undirected semantic network can be converted into a semantic space model using a bijective
mapping. The semantic space corresponding to an undirected semantic network typically has
a very high dimensionality, as a result of which the model has no problems with representing
‘central’ concepts. However, undirected semantic networks cannot represent asymmetric or in-
transitive semantic relations, because they obey the symmetry axiom and the triangle inequality,
respectively. The former problem can be overcome by defining semantic networks as directed
graphs, in which the weight of an edge from A to B may be different from the weight of the
edge between B and A, causing similarities in the network to become asymmetric. However,
this does not resolve problems with intransitive similarities. If node A has a strong connection
to node B, and node B has a strong connection to node C, activation from node A will spread
to node C, which makes A and C semantically related under the model. Multiple-maps t-SNE
thus has significant advantages over models based on semantic networks, in particular, because
it can represent asymmetric similarities.
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Figure 4.6 Generative process of Latent Dirichlet Allocation.

3) Bayesian latent variable models. Recently, Bayesian latent variable models that originate
from information retrieval have been proposed as computational cognitive models for semantic
representation [Griffiths et al., 2007]. The most important examples of such models are the so-
called topic models. Recently proposed topic models include Latent Dirichlet Allocation [Blei
et al., 2003], the author model [McCallum, 1999], the author-topic model [Rosen-Zvi et al.,
2004], and the author-topic-recipient model [McCallum et al., 2004]. Because of the popularity
of Latent Dirichlet Allocation (LDA6), we will focus on that model here. However, our discussion
also holds for many other Bayesian latent variable models.

LDA was originally developed to model large text corpora. The key idea of LDA is that each
word x has a topic z that is drawn from a topic distribution θ that is specific for a document.
The graphical model of LDA is shown in Figure 4.6. The corresponding underlying generative
process is given by

• For each of the N documents in the corpus:

– Choose a topic distribution θ ∼ Dirichlet(v)

– For each of the M words in the document:

∗ Choose a topic z ∼Multinomial(θ)
∗ Choose a word x ∼Multinomial(βz)

The latent variables in LDA are formed by: (i) k multinomial distributions z over all words
and (ii) a distribution θ over these multinomial distributions7. The k multinomial distributions z
can be viewed upon as topics, and each topic has its own multinomial distribution over words.
The variable k is a parameter that sets the number of topics that is employed in the semantic
representation. It may either be set by the user, or it may be learned from the data using non-
parametric Bayesian techniques [Blei et al., 2004; Teh et al., 2004].

Under a topic model, two words can be viewed upon as semantically related if they both have
a high probability under at least one of the k topics [Griffiths et al., 2007]. This provides topic

6Please note that here, the abbreviation LDA refers to Latent Dirichlet Allocation, and not to Linear Discriminant
Analysis.

7The distribution over the multinomial distributions over all words is parametrized by means of a Dirichlet distribu-
tion, which is the conjugate prior of the multinomial distribution (see, e.g., [Gelman et al., 1995]).
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models with the same desirable properties that multiple-maps t-SNE has. In particular, a topic
model is capable of modeling intransitive semantic similarities in different topics. Analogous to
our example with tie, tuxedo, and knot, in LDA, tie and tuxedo could be given a high probability
in one topic and tie and knot could be given high probability in another topic, which would not
make tuxedo similar to knot under the model. In the same way, LDA can model ‘central’ objects
by giving them a high probability in a large number of topics, which automatically gives rise
to asymmetric similarities. The only requirement is that (as in multiple-maps t-SNE) sufficient
topics are available to model the required centrality. The topics in LDA can be thought of as an
equivalent for the maps in multiple maps t-SNE.

The main difference between topic models and multiple-maps t-SNE is that, in contrast to
LDA, multiple-maps t-SNE can (1) be used to model word association data and (2) capture sub-
tle semantic structure in the spatial structure of the maps. The first capability may be relevant
depending on the input data that is available. The merits of the second capability are illustrated,
for instance, in the ‘sports’ cluster in Figure 4.5(d), where the subtle semantic difference between
physical sports such as football, baseball, and volleybal, and mental sports such as chess, check-
ers, and poker is captured in the spatial structure of the cluster (from left to right). In addition,
multiple-maps t-SNE has the advantage that it can model small semantic structures that are not
closely related to other semantic structures, such as the Popeye - spinach - cartoon cluster in
Figure 4.5(c), without resorting to the construction of a new map or topic.

A minor disadvantage of multiple-maps t-SNE is that, like all other second-order isomorphic
models, it implicitly assumes that every concept is at least similar to some other concept. In
multiple-maps t-SNE, an object that is not similar to any other object can only be modeled
by placing its corresponding map points infinitely far away from the other map points, or by
constructing a map in which all other concepts have zero mixing proportion. In contrast, topic
models can easily give a concept zero probability under all topics, as a result of which they have
a more natural way to model objects that are not similar to any other object.

A remaining relevant question is to what types of data multiple-maps t-SNE can be applied.
Clearly, multiple-maps t-SNE is good at visualizing word association data, and we surmise it
performs equally well on other datasets that have a high clustering coefficient. However, multiple-
maps t-SNE is not very well capable of modeling, e.g., the handwritten character datasets we
employed in Section 4.1. On a handwritten characters dataset, multiple-maps t-SNE will exploit
the additional space that the multiple maps provide to model the local structure of the data better,
because the cost function focuses on modeling the local data structure. As a result, all maps will
have a similar global layout, but each of the maps will model only parts of the local structure
of the data, which is not very informative for human observers. Multiple-maps t-SNE is thus
primarily tailored to modeling datasets that comprise large numbers of relatively small clusters
(i.e., on modeling data that gives rise to a scale-free similarity network), such as human similarity
judgements that are often collected in cognitive psychology.
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4.3 Chapter conclusions

In the chapter, we presented experiments with two variants of t-SNE that are applicable in learn-
ing settings in which the original t-SNE does not apply. First, we presented a parametric ver-
sion of t-SNE that can be employed in learning settings in which generalization to unseen test
data or reconstruction is required. The results of our experiments reveal the strong performance
of parametric t-SNE compared to two other unsupervised parametric dimensionality reduction
techniques. Second, we presented a variant of t-SNE that constructs multiple maps instead of
a single map, as a result of which it is capable of modeling objects of which the similarities
are intransitive or asymmetric, or that may have a high centrality. Our experiments revealed
the strong performance of the multiple maps t-SNE model in representing semantic similarities,
which suggests it is a suitable computational cognitive model for semantic representation. Then,
we performed a theoretical comparison of multiple-maps t-SNE with alternative computational
models for semantic representation, from which we may conclude that multiple-maps t-SNE has
significant advantages over semantic space models, and shares many desirable properties with
the recently proposed topic models.





5 Texture features
Contents Up to this point, the thesis has focused on resolving the dimensional-

ity problem of image-space representations, but the variance problem
has remained unaddressed. In this chapter, we describe how the variance
problem can be addressed in images that contain textured surfaces. In or-
der to (partially) answer research question RQ2, the chapter provides an
overview of the four main types of texture features. We describe the ra-
tionale of the four types of texture features and we discuss their main ad-
vantages and disadvantages. The features presented in this chapter form
the basis for the new texture features that we develop in Chapter 6.

Outline The chapter discusses the four main types of texture features in four
separate sections. First, we present and discuss graylevel co-occurrence
features (in 5.1). Second, features based on Markov Random Fields are
discussed (in 5.2). Third, we discuss the large class of filter-based fea-
tures (in 5.3). Fourth, the chapter presents texton-based features (in 5.4).
Section 5.5 concludes the chapter.
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(a) Artificial texture. (b) Periodic natural texture. (c) Aperiodic natural texture.

Figure 5.1 Examples of textures.

In this chapter, we shift our focus from feature extraction using dimensionality reduction tech-
niques towards feature extraction using texture features. Texture features aim to model the (poten-
tially colored) texture of the surface of an object. We define texture as a homogeneous structure
on a surface that consists of repeated elements which may be subject to randomness in, e.g., their
location and orientation, and which may contain noise (often assumed to be additive Gaussian
noise). Texture can be subdivided into two main types: (i) artificial texture and (ii) natural tex-
ture. In artificial textures, the repeated elements are neither subject to randomness in location or
orientation, nor are they distorted by noise. An example of such an artificial texture is given in
Figure 5.1(a). In contrast, randomness plays an important role in natural textures. Natural tex-
tures can be further subdivided into periodic and aperiodic textures. Periodic textures contain
regularly repeating elements, whereas in aperiodic textures the elements do not occur regularly.
Examples of periodic and aperiodic natural textures are given in Figure 5.1(b) and 5.1(c).

In natural textures, color and texture are highly interrelated. Changing the texture of a surface
usually changes the perceived color of a surface, and a change of the color of texture often
changes the visual appearance of the texture. Moreover, the visual appearance of texture is highly
dependent on, for instance, changes in lighting of the textured surface. This is illustrated for a
natural texture in Figure 5.2. Ideally, the texture features extracted from both images in Figure 5.2
are identical (because they represents the same texture), which makes the extraction of features
from textures surfaces a challenging task.

Figure 5.2 Visual appearance of a texture photographed under different lighting conditions.
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The main feature extraction approaches for texture modeling can roughly be subdivided into
four main types: approaches based on (1) measuring graylevel co-occurrences, (2) Markov Ran-
dom Field models, (3) statistics of high-pass filter responses, and (4) small texture patches (so-
called textons [Julesz, 1981]). In this chapter, we perform a literature survey of these four ap-
proaches to the extraction of texture features from texture images. We discuss the four approaches
separately in Section 5.1 to 5.4. Admittedly, there are more texture features. They include, e.g.,
blob features [Xu and Chen, 2006], and autocorrelation or autoregressive features [Kashyap and
Khotanzed, 1986; Kang et al., 2005], but because they are relatively less popular, we do not dis-
cuss them in this chapter. For other reviews of texture features, we refer to, e.g., [Tuceryan and
Jain, 1998; Zang and Tan, 2002; Blunsden, 2004].

5.1 Graylevel co-occurrence features

Graylevel co-occurrence features represent a feature using statistics from the co-occurence of a
graylevel at a specific location with a graylevel at a location relative to that location [Haralick
and Dinstein, 1973]. In order to compute graylevel co-occurrence features, first, a graylevel co-
occurrence matrix (GLCM) C is computed. The entries Cij of the GLCM counts how often two
pixels with relative angle θ and pairwise distance d (which are two free parameters) have the
respective values i and j. Typically, GLCMs are computed for a large number of angle-distance
pairs (θ, d). After normalization, the matrices represent the joint probability of grayvalues i and
j occurring in the image (for a given angle-distance pair).

From the normalized GLCMs, descriptive statistics are computed that form the feature rep-
resentation of the texture. Although many different statistics have been proposed, the most im-
portant statistics are angular second moment, contrast, correlation, and entropy [Haralick and
Dinstein, 1973; Strand and Taxt, 1994].

The main disadvantage of graylevel co-occurrence features is that they require the computa-
tion of a large number of graylevel co-occurrence matrices, which is computationally expensive,
in particular, for large images. Empirical results indicate that, e.g., features based on filter-banks
slightly outperform graylevel co-occurrence features [Randen, 1997].

5.2 Markov Random Fields

A Markov Random Field (MRF) is an undirected probabilistic graphical model. In order to make
inference in Markov Random Fields tractable (up to a constant), it is necessary to restrict the
MRFs to have a structure in which most of the nodes are conditionally independent, because
the computational complexity of the model grows exponentially with the maximum clique size
in the graph. Examples of such restricted structures are chains (as employed in Hidden Markov
Models [Viterbi, 1967; Rabiner and Juang, 1986] and linear dynamical systems [Kalman, 1963;
Ghahramani and Hinton, 1996b]) or bipartite graphs (the Restricted Boltzmann Machines [Ack-
ley et al., 1985] we employed in Chapter 4).

In texture modeling, Markov Random Fields are often assumed to have a grid structure, in
which the intensity value of a pixel is governed by the intensity values of its directly neighbor-
ing pixels only [Cross, 1980]. The pixel values are usually quantized into k bins, and the nodes
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are assumed to represent k-nomial distributions. An example of such an MRF model (using a
4-connected neighborhood) is shown schematically in Figure 5.3. In the figure, a circle repre-
sents a single pixel and the lines indicate the dependencies between the pixel values. Texture
might be viewed upon as a Markov Random Field that generates pixel values according to the
corresponding conditional probability distributions. As a result of the Hammersley-Clifford the-
orem [Clifford, 1990], the joint distribution P (x) over the MRF model is given by

P (x) =
1
Z

∏
c

Vc(xc), (5.1)

in which c represents a maximal clique, xc represents the nodes in this clique, and Vc(xc) rep-
resents the potential function defined over this clique, which usually takes the form of the expo-
nential of the negative of an energy function E(xc) (a so-called Boltzmann distribution). Notice
that because the multinomial distribution belongs to the exponential family, the product P (x)
of the cliques Vc(xc) is a Boltzmann distribution as well. The variable Z indicates the partition
function of the model that makes sure that P (x) is a valid probability distribution, and is given
by

Z =
∑

x

∏
c

Vc(xc). (5.2)

In general, it is not possible to compute the likelihood of a data vector under an MRF model
due to the presence of the partition function: the evaluation of the partition function of an MRF
model with n k-nomial nodes requires summing over kn states. This prohibits the comparison
of different MRF models based on the likelihood of the training data under the model, but it
is possible to compare the likelihood of two data vectors under a single model based on their
density (because under a single model, the partition function Z is constant).

Evaluation of this density in an MRF is relatively straightforward, since it requires evaluation
of the conditional probability distribution P (xi|∀xj ∈ Ni), whereNi indicates the neighborhood
set of xi. The maximum likelihood estimate for this conditional probability distribution can read-
ily be computed by normalizing the co-occurrence statistics of the cliques in the input images.
Note that when a 4-connected neighborhood and k states per node are employed, the conditional
probability distribution P (xi|∀xj ∈ Ni) is parameterized by 4k2 parameters (because it involves
4 cliques of size 2). Because P (xi|∀xj ∈ Ni) specifies the conditional probability of a single
node given all other nodes, sampling from the joint distribution of the model (e.g., to perform
texture synthesis) can be performed using, e.g., Gibbs sampling.

MRF-based texture models have two main advantages: (1) they are well suited for the mod-
eling of artificial textures and (2) since they are probabilistic models, generating new texture im-
ages from a trained model can be performed by sampling from the joint distribution P (x). The
latter makes MRF models well suitable for texture synthesis and inpainting [Efros and Leung,
1999; Zalesny and van Gool, 2001]. An important disadvantage of MRF models is that they are
often not well capable of modeling natural textures, because an MRF’s decision on a pixel value
depends solely on the pixel values of the surrounding pixels. This weakness can be addressed by
enlarging the neighborhood of a pixel, however, this may lead to computational problems due to
the rapid growth of the number of cliques in the MRF. These computational problems of MRF
models are typically addressed by assuming that the Markov Random Field is homogeneous, i.e.,
that all potential functions Vc are identical to a single (shared) function V . Another disadvantage
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Figure 5.3 Graphical model of a Markov Random Field with a grid structure (using a 4-connected neigh-
borhood). In line with the conventions for probabilistic graphical models, the nodes are shaded because they
represent observed variables (i.e., pixels).

of MRF models is that it is unclear how the potential functions Vc should be defined. Recent
work suggests to resolve this problem by learning the shared potential function V from the data,
for instance, by defining it as a the energy of a product of experts model1 [Roth and Black, 2005].

5.3 Filter-based features

Filter-based texture features measure the presence of high spatial frequencies in a texture image at
certain scales and orientations. The intuition behind filter-based features is that fine image details,
which contain most information on the texture, are contained in high spatial frequencies. In
contrast, low spatial frequencies carry information on the global structure of the surface. Hence,
if we are interested in texture representations, we should mainly focus extracting statistics from
the high spatial frequencies. Hence, filter-based approaches to texture modeling apply a filter
bank that contains high-pass filters on the texture image. An additional advantage of applying a
high-pass filter bank is that it gives rise to sparse image representations, because a filter response
is only nonzero when the local structure of the image closely resembles the structure of the filter2.
Sparse image representations are advantageous because they lead to more efficient codes of the
input images [Olshausen and Field, 1996; Hyvärinen et al., 2008].

After the filter bank is applied on the texture images, statistics are extracted from the re-
sulting activation images. Such an approach is motivated by the Julesz conjecture, which states
that textures with similar higher-order (filter response) statistics are perceptually similar [Julesz,
1962]. As a result, higher-order statistics of texture images convolved with high-pass filters are
informative texture features. The Julesz conjecture has been proven to be incorrect by Julesz
himself by the construction of a set of texture images with identical second-order and third-order
statistics that are perceptually different [Caelli and Julesz, 1978; Julesz et al., 1978]. However,
the Julesz conjecture still appears to hold well for real-world textures [Portilla and Simoncelli,

1The product of experts model is a generalization of the Restricted Boltzmann Machine that is described in Ap-
pendix D [Hinton, 2002].

2In natural images, the Fourier amplitude is approximately inversely proportional to the frequency. Hence, high spatial
frequencies are rare in natural images.
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2000]. The human brain extracts statistics from a range of filtered images as well. For instance,
the primal visual cortex (V1) consists of neurons that respond to edges with a certain scale and
orientation [Jones and Palmer, 1987]; there exists evidence that the skewness of the resulting
responses (a third-order statistic) plays an important role in the human brain [Motoyoshi et al.,
2007]. Computer vision systems generally use statistics such as image histograms, autocorrela-
tions, and standard deviations [Portilla and Simoncelli, 2000].

Over the years, a large number of filter banks have been proposed in order to compute filter-
based texture features. Below, we discuss five important filter banks that we use in our exper-
iments in Chapter 6: (1) the Gabor filter bank, (2) the Maximum Response (MR) filter banks,
(3) the Schmid filter bank, (4) steerable pyramids, and (5) the complex wavelet transform. The
five types of filter banks are discussed separately in Section 5.3.1 to 5.3.5. For a more extensive
overview of filtering approaches to texture classification, we refer to [Randen and Husoy, 1999].

5.3.1 Gabor filter bank

A Gabor filter bank is formed by a collection of Gabor filters with various orientations and scales.
The Gabor filter is a high-pass filter that responds to edges with the same spatial frequency and
orientation as the filter. Mathematically, the Gabor filter is the product of a Gaussian envelope
and a complex sinusoid. It is given by the equation

G(x, y) =
1
2π

e−
1
2 (x′2+y′2)+iκx′︸ ︷︷ ︸

complex sinusoid

− e−
κ2

σ2︸ ︷︷ ︸
envelope

. (5.3)

In this equation, the variable σ indicates the variance of the Gaussian, whereas the variable κ is
given by

κ =
√

2 ln(2)
2φ + 1
2φ − 1

, (5.4)

in which φ is the bandwidth in octaves. The value of φ is typically 0.5 < φ < 1.5. The variables
x′ and y′ define the orientation of the sinusoid, and thereby of the function response. They are
defined by the equations

x′ = x cos θ + y sin θ, (5.5)

y′ = −x sin θ + y cos θ. (5.6)

In these equations, θ is the orientation of the filter in radians. The real and imaginary parts of a
Gabor filter with θ = 0 are shown in Figure 5.4.

A Gabor filter bank is typically formed by a set of Gabor filters with a number of orientations
and scales. For instance, if eight orientations and three scales are employed, the Gabor filter
bank consists of 8 × 3 = 24 filters. The use of a collection of filters with various scales and
orientations allows for the measurement of the presence of edges at these scales and orientations,
and thereby, it provides more information than simple edge-detecting filters such as the Laplace
and Sobel filters. The human primal visual cortex V1 consists of neurons that respond to edges
at a certain scale and orientation as well [Daugman, 1985; Jones and Palmer, 1987], and thereby,
the use of Gabor filter banks may be motivated biologically.

Throughout the years, the Gabor filter bank has been applied in many variations. For instance,
Bovik [1991] suggests the use of narrow-band Gabor filters of which the central frequencies are



5.3 Filter-based features 89

Figure 5.4 Real and imaginary parts of a Gabor filter.

tuned to the spectral peaks of the textures. In other words, the central frequency of the Gabor
filters is set equal to the spatial frequency corresponding to the main spectral peaks in the image.
Hereby, the image representation may be optimized. A Gabor filter design scheme that optimizes
feature separation between two texture classes is proposed by Dunn and Higgins [1995]. In the
scheme, the optimal central frequency of the filter is determined by the evaluation of a large
number of frequencies, from which the frequency that minimizes the generalization error on a
classification task is selected. A generalization of this scheme to texture classification problems
with multiple classes is proposed by Weldon and Higgins [1996a,b]. Bianconi and Fernández
[2007] investigate the effect of various parameter settings on the performance of Gabor filters in
texture classification. The most important conclusion of this study is that the number of scales
and orientations that is used in the filter bank is of limited influence on the performance on texture
classification, whereas smoothing of x′ and y′ (by dividing them by fixed values γx′ and γy′ that
are determined empirically) may improve the performance of Gabor filter banks significantly.

5.3.2 Maximum Response filter bank

One of the main problems with Gabor filter banks is the large number of filter responses it
produces, which gives rise to a feature space of very high dimensionality. Maximum Response
(MR) filter banks address this problem by identifying the maximum filter responses (produced
by orientation-sensitive filters) over all orientations.

The MR filter bank consists of a collection of (1) edge filters and box filters at three scales
and six orientations, (2) a Gaussian filter, and (3) a Laplacian of Gaussian filter [Varma and Zis-
serman, 2005]. After the filter bank is applied on the texture images, the responses of the edge
filters and the box filters are combined by identifying the maximum response at each location
over all orientations. This leads to the responses of the so-called MR8 filter bank, which con-
structs eight filter responses from the 2× 3× 6 + 1 + 1 = 38 filter responses. Two of these filter
responses are obtained from the rotation-invariant Gaussian and Laplacian of Gaussian filters.
The remaining six filter responses are formed by the maximal responses of the anisotropic filters
across all orientations. The advantage of such an approach over, e.g., a traditional Gabor filter
bank is twofold: (1) the resulting filter coefficients are rotation-invariant and (2) the dimension-
ality of the filter responses is reduced. An important disadvantage of the MR filter banks is the
large number of filters that is employed, leading to high computational costs. An alternative to
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the MR8 filtering is the MR4 filter bank, in which a single scale filtering is performed, leading
to just four filter responses.

Figure 5.5 The basis of the Maximum Response (MR) filter banks.

5.3.3 Schmid filter bank

The Schmid filter bank consists of 13 circular filters that are rotationally invariant [Schmid,
2001]. All filters are of the form

F (r, σ, τ) = F0(σ, τ) + cos
(πτr
σ

)
e−

r2

2σ2 . (5.7)

in which r controls the radius of the filter. The term F0(σ, τ) is added to the filter in order to
obtain a zero DC component. The 13 filters in the Schmid filter bank are constructed by setting
the pair (σ, τ) to (2, 1), (4, 1), (4, 2), (6, 1), (6, 2), (6, 3), (8, 1), (8, 2), (8, 3), (10, 1), (10, 2),
(10, 3) and (10, 4). The resulting filters are shown in Figure 5.6. The main advantage of the
Schmid filter bank is its rotation-invariance. Furthermore, the Schmid filter bank is computation-
ally more efficient than, e.g., the Maximum Response filter banks, due to the limited number of
filters that is applied on the image.
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Figure 5.6 The Schmid filter bank.

5.3.4 Steerable pyramids

Steerable pyramids [Simoncelli and Freeman, 1995; Portilla and Simoncelli, 2000] are circular
filters with multiple scales and orientations. The main advantage of steerable pyramids over
other orientation-sensitive filters (such as Gabor filters and MR filters) is that steerable pyramids
provide an image decomposition3, as a result of which the original image can be reconstructed
from the filter responses. The main disadvantage of steerable pyramids are the computational
and memory requirements, that result from the strong overcompleteness of the transform: the
transform is 4k

3 times complete when k orientations are employed. The steerable pyramid filters
are illustrated in Figure 5.7.

One of the main advantages of steerable pyramids over other orientation-sensitive filters, is
that they are steerable [Freeman and Adelson, 1991]. Steerability means that given the responses
of a few filters with different orientations, it is possible to compute the response of a filter with
any other orientation without actually convolving the input image with this filter. A filter is steer-
able if it can be expressed as the product of an orientation-invariant filter (such as the Schmid
filters) and an angular weighting function. The minimum number of oriented filters required is
equal to the number of nonzero coefficients of the Fourier expansion of the angular weighting
function. The filter bank shown in Figure 5.7 reveals that steerable pyramids are indeed such a
product.

5.3.5 Complex wavelet transform

The wavelet transform expands a signal into a collection of frequency components (similar to
the Fourier transform). Unlike the Fourier transform, the wavelet transform does so by using a

3In wavelet literature, a transform that provides a decomposition is often referred to as a ‘tight frame’. This means
that the transform obeys Parseval’s inequality: the L2-norm of the coefficients is equal to the L2-norm of the input image.



92 Texture features

Figure 5.7 A steerable pyramid filter bank with three levels and three orientations (k = 3).

collection of localized basis functions. In this way, the wavelet transform resolves the Gibbs phe-
nomenon [Wilbraham, 1848; Gibbs, 1898] from which the Fourier transform suffers. The Gibbs
phenomenon occurs when the Fourier transform is applied on a discrete signal; it is illustrated
in Figure 5.8. In practice, the wavelet transform is implemented as a dyadic filter tree in which
a low-pass filter g and a high-pass filter h are employed. Both filters are applied on the signal,
the low-pass filter response is downsampled, both filters are applied on the result, and this pro-
cess is iterated. If both filters meet certain requirements (such as orthogonality of the filters), the
responses of the high-pass filters provide the wavelet coefficients. An extensive introduction on
wavelet theory can be found in [Chui, 1992; Daubechies, 1992].
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Figure 5.8 Illustration of the Gibbs phenomenon. The figure shows a reconstruction of a square wave using
50 sinusoids. The Gibbs phenomenon is visible around the discrete changes in the signal.
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The complex wavelet transform (CWT) is capable of capturing more phase information than
the traditional wavelet transform by the use of complex filters, and thereby, it provides approxi-
mate shift invariance to the wavelet transform [Kingsbury, 2001]. The CWT is implemented by
means of a dual dyadic filter tree, of which a one-dimensional version is shown schematically in
Figure 5.9. In the figure, square boxes indicate a filtering with either the high-pass filter hi or the
low-pass filter gi, and ↓ 2 indicates a downsampling of the signal by 2.

g0(n) h0(n)↓2

g0(n) h0(n)↓2

g0(n) h0(n)↓2

g0(n)

g1(n) h1(n)↓2

g1(n) h1(n)↓2

g1(n) h1(n)↓2

g1(n)

x(n)

Figure 5.9 Complex wavelet transform filter tree.

Figure 5.10 Wavelets corresponding to the complex wavelet transform. The upper row represents the
real parts of the six wavelets, whereas the middle row represents the imaginary parts of the wavelets. The
magnitude of the filters is depicted in the bottom row, revealing that the real and imaginary parts of the
wavelets are 90◦ phase-shifted, and thus orthogonal. The wavelets were obtained using the filters proposed
by Abdelnour and Selesnick [2001].

In addition to the restrictions on the filters in the traditional wavelet transform, the filters in
the two branches of the filter tree should form Hilbert pairs. In other words, filter g1 should be
the Hilbert transform4 of filter g0, and filter h1 should be the Hilbert transform of filter h0. If this
requirement is met, the responses of the filters can be shown to complement each other, leading
to a lower susceptibility of the wavelets transform to shifts in the signal (i.e., small translations

4The Hilbert transform [Hilbert, 1953] of a function f(x) is the convolution of the function with 1
π

x, which leads
to a shift of +90◦ to the phase of negative frequency components, and a phase shift of −90◦ of positive frequency
components.
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in the image). In the 2D case, the wavelets in the CWT show great resemblance to orientation-
sensitive filters such as Gabor filters, as is illustrated in Figure 5.10. The wavelets in Figure 5.10
were obtained using the filters proposed by Abdelnour and Selesnick [2001]. Although the re-
sulting wavelets look similar to Gabor filters, the CWT has three important advantages over other
orientation-sensitive filters. First, CWT coefficients are less redundant than Gabor wavelet coef-
ficients (the 2D CWT is only four times complete), leading to an image representation of lower
dimensionality that can be computed more efficiently. Second, the support of the filters that are
used in the CWT is generally small, allowing for a better estimation of the texton generation
distribution and for an additional computational advantage. Third, similar to steerable pyramids,
the CWT has an inverse transform, which implies that the original image can be reconstructed
from the wavelet coefficients for, e.g., visualization purposes.

5.4 Texton-based features

In MRF-based texture features (see Section 5.2), texture is viewed upon as a probabilistic gener-
ator of pixel values. In contrast, in texton-based features, texture is viewed upon as a generator
of small texture patches [Leung and Malik, 2001; Varma and Zisserman, 2002, 2003; Cula and
Dana, 2004; Caputo et al., 2005; Varma and Zisserman, 2005; Xie and Mirmehdi, 2007]. The
representations of these texture patches (e.g., by means of filter bank responses or as a concate-
nation of pixel values) are called textons, and can be viewed upon as the fundamental building
blocks of texture [Julesz, 1981]. Texture generates textons according to some underlying prob-
ability distribution (assuming neighboring textons are independent), which can be estimated by
means of a texton frequency histogram. The texton frequency histogram measures the relative
frequency of textons from a texton codebook in a texture image. A texton codebook is con-
structed by applying vector quantization on a set of randomly selected textons. An example of
a texton codebook is shown in Figure 5.11. A texton frequency histogram is constructed from
a texture image by scanning over the texture image and extracting small texture patches. The
small texture patches are converted into the representation that is used in the codebook in order
to obtain a collection of textons. For each texton in the collection, the texton is compared to the
textons in the codebook in order to identify the most similar texton from the codebook, and the
texton frequency histogram bin corresponding to this texton is incremented. After normalization,
the texton frequency histogram forms a feature vector that models the texture.

The main advantages of texton-based features over MRF-based features and filter-based fea-
tures are (1) its simplicity and (2) its computational efficiency. Furthermore, texton-based fea-
tures have been shown to perform strongly on well-known texture datasets [Varma and Zis-
serman, 2007]. Successful applications of texton-based features are reported in, e.g., anomaly
detection [Xie and Mirmehdi, 2007] and the classification of hematologic malignancies [Tuzel
et al., 2007]. The main disadvantage of texton-based features is their susceptibility to the pres-
ence of rotations, rescalings, or other affine transformations in the texture images. In Chapter 6,
we discuss texton-based texture features in more detail, and we present approaches to address
their susceptibility to, e.g., affine transformations.
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Figure 5.11 An example of a (pixel-based) texton codebook with pixel-based textons of size 7× 7 pixels.

5.5 Chapter conclusions

In the chapter, we presented a literature review of state-of-the-art texture features, and we dis-
cussed the main limitations and weaknesses of the features. The texture features discussed can be
subdivided into techniques based on graylevel co-occurrences, techniques based on Markov Ran-
dom Fields, techniques based on statistics of filter responses, and techniques based on textons. In
Chapter 6, we discuss texton-based texture models in more detail, and we present approaches to
overcome the main weakness of texton-based texture models: their susceptibility to (local) affine
transformations of the texture. In Chapter 7, we present applications of texton-based texture fea-
tures to the analysis of Van Gogh paintings and to the automatic classification of seeds.





6 Texton-based texture
features

Contents Over the last decade, filter-based features have dominated the field of
texture modeling and analysis. The previous chapter briefly discussed,
among others, texton-based texture features that do not employ filter-
based images representations, but are claimed to perform on par with
filter-based features. The current chapter investigates this claim in com-
parative experiments, the results of which challenge the supremacy of
filter-based features. The success of the texton-based texture features
opens up the way for the development of new types of invariant fea-
tures. In order to answer research question RQ2, the chapter develops
three new invariant texture features based on textons, two of which are
invariant to rotations and one of which is invariant to local affine trans-
formations. We investigate the invariance properties of the new texture
features in a collection of texture classification experiments.

Based on L.J.P. van der Maaten and E.O. Postma. Texton-Based Texture Features
with Local Affine Invariance. Submitted to British Machine Vision Con-
ference.

L.J.P. van der Maaten and E.O. Postma. Texton-Based Texture Classi-
fication. In Dastani, M. and de Jong, E., editors, Proceedings of the
19th Belgian-Dutch Conference on Artificial Intelligence, pages 213–
220, 2007.

Outline In Section 6.1, we discuss the extraction of texton-based texture features
in more detail. Section 6.2 discusses image-based and filter-based texton
representations. We empirically compare image-based and filter-based
texton representations in Section 6.3. We present two rotation-invariant
texton representations and one affine-invariant texton representation in
Section 6.4. In Section 6.5, we present our experiments with the newly
developed texton representations. The results of these experiments are
discussed in more detail in Section 6.6. Section 6.7 concludes the chap-
ter.
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In this chapter, we focus on texton-based texture features (which were already briefly discussed
in Chapter 5). In particular, we investigate which texton representations are most appropriate
for the construction of texton-based texture features that are invariant to, for instance, lighting
changes, rotations, and changes in viewpoint. In most studies on texton-based texture features,
the textons are represented as a collection of filter bank responses to obtain invariance to lighting
changes [Leung and Malik, 2001; Varma and Zisserman, 2002; Cula and Dana, 2004; Caputo
et al., 2005]. However, the use of filter-based textons was recently challenged [Varma and Zis-
serman, 2003]. Instead, Varma and Zisserman [2003] advocate the use of image-based textons,
which is controversial, because image-based representations are generally considered to be inap-
propriate for image modeling.

In this chapter, we perform texture classification experiments that compare image-based tex-
tons with filter-based textons, and establish the strong performance of image-based textons. An
advantage of the use of image-based textons is that they allow for the development of new tex-
ton representations that are invariant to rotations or affine transformations, as a result of which
they may address the variance problem of many state-of-the-art texture features. In particular,
the development of affine-invariant texton representations is of high interest because such a tex-
ton representation leads to texture features that are invariant under local affine transformations,
as a result of which they can be used to model the texture on non-planar surfaces that typically
constitute real-world objects.

The remainder of this chapter consists of two main parts. First, in Section 6.1 to 6.3, we com-
pare image-based textons with textons based on five different filter banks: (1) the Leung-Malik
filter bank, (2) a Maximum Response filter bank, (3) the Schmid filter bank, (4) a steerable pyra-
mid filter bank, and (5) a complex wavelet transform. The last four filter banks were discussed
in Chapter 5, whereas the Leung-Malik filter bank is described by Leung and Malik [2001]. Sec-
ond, in Section 6.4 and 6.5, we address the susceptibility to rotations and affine transformations
of image-based texton representations by developing and investigating (1) two new rotation-
invariant texton representations and (2) one texton representation that is invariant to the affine
transformations (as a result of which the resulting texture feature is invariant to local affine trans-
formations). The results of our experiments are discussed in more detail in Section 6.6. The main
conclusion of the chapter is presented in Section 6.7, and reads that image-based texton repre-
sentations are an appropriate alternative to filter-based texton representations that open up the
way for the development of texton-based texture features that are not hampered by the variance
problem.

6.1 Feature construction

As we already discussed in Section 5.4, texton-based texture features represent texture images
by means of a texton frequency histogram. The construction of texton-based texture features is
discussed in more detail below. It consists of two main stages: (1) the construction of a texton
codebook and (2) the construction of a texton frequency histogram. We discuss the two stages
separately in subsection 6.1.1 and 6.1.2.
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6.1.1 Codebook construction

A texton codebook is a collection of textons that contains prototypes of the texture patches that
occur in a set of texture images. The codebook of prototypical textons can be used to extract
statistics from texture images in a similar way as, for instance, grapheme codebooks are used in
the extaction of writer-specific features from handwriting [Schomaker et al., 2007].

The construction of a texton codebook consists of three main steps. First, small texture
patches are extracted from random positions in a collection of texture images that correspond to
a specific texture class. Second, textons are obtained by converting the extracted texture patches
into an appropriate image representation (such as a collection of filter bank responses or a con-
catenation of normalized pixel values). Third, vector quantization is performed on the resulting
collection of textons using, e.g., k-means clustering [Bishop, 2006], Kohonen maps [Kohonen,
1989], or affinity propagation [Frey and Dueck, 2007] to obtain prototypical textons for the tex-
ture class at hand. The process is repeated for every texture class in the texture dataset, and the
texton codebook is formed by gathering all prototypical textons of each of the texture classes. If
the texture dataset is a representative subset of real-world textures, the texton codebook contains
the most important textons that occur in real-world textures.

6.1.2 Texton frequency histogram

The rationale behind texton-based texture features is that texture is viewed upon as a probabilistic
generator of textons. The underlying probability distribution of the generator can be estimated
with the help of the texton codebook. Specifically, it can be estimated by means of a texton
frequency histogram that measures the relative frequency of textons from the codebook in a
texture image.

The texton frequency histogram of a texture image is computed by sliding a window over
the texture image and extracting a texture patch at each location of the window. The small tex-
ture patches are converted to the same image representation that was used in the construction
of the texton codebook (for instance, a collection of filter responses). The resulting textons are
compared to the textons in the codebook in order to identify the most similar texton from the
codebook, for instance, in terms of their pairwise Euclidean distance, and the texton frequency
histogram bin corresponding to this texton is incremented. After normalization, the texton fre-
quency histogram forms an estimator of the texton probability distribution that underlies the tex-
ture image at hand, as a result of which is a suitable feature representation of the texture image. In
the experiments in this chapter, we compute texton frequency histograms using an overcomplete
texture patch basis, i.e., there is overlap in the texture patches that are extracted from the texture
images.

6.2 Texton representations

In the previous section, we discussed (i) the construction of texton codebooks and (ii) the com-
putation of texton frequency histograms. Our discussion of the two topics is independent of the
image representation that is employed in order to represent the textons (although the employed
texton representation may be of relevance to the distance metric that is used to assess the simi-
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larity of textons). In the remainder of the chapter, we focus on the texton representations that can
be used in texton-based texture features.

As discussed above, most studies on texton-based texture features [Leung and Malik, 2001;
Varma and Zisserman, 2002; Cula and Dana, 2004] represent textons by means of a collection of
filter bank responses obtained from large filter banks (such as those discussed in Section 5.3). We
discuss these filter-based texton representations in subsection 6.2.1. In [Varma and Zisserman,
2003], the supremacy of filter-based textons was questioned and the use of image-based textons
was proposed. We discuss image-based textons in subsection 6.2.2.

6.2.1 Filter-based textons

Most studies on texton-based texture features employ a texton representation based on a collec-
tion of filter bank responses. For instance, Leung and Malik [2001] employ texton representations
based on Leung-Malik filter bank responses, Varma and Zisserman [2002] use textons based on
Maximum Response filter responses, and Cula and Dana [2004] employ a subset of the filters in
the Leung-Malik filter bank to represent textons. Motivated by the lack of comparisons between
these filter-based texton representations, we investigate texton representations that are based on
five filter banks, four of which we discussed in Chapter 5: (1) the Leung-Malik filter bank, (2) the
Maximum Response filter bank, (3) the Schmid filter bank, (4) the steerable pyramid filter bank,
and (5) the complex wavelet transform. Our selection of these filter banks is motivated by their
use in previous studies and by their different characteristics (which are described in Chapter 5).
As a result, we believe that our selection of filter banks provides a good basis for a comparison
of various filter-based texton representations.

The construction of filter-based textons is rather straightforward, and consists of two main
steps. First, the input image is convolved with all filters that constitute the filter bank at hand.
Second, the texton representation is constructed by gathering the responses of the filters at all
scales and orientations that are measurements at the same spatial location in the texture image.

The only exception to this approach is formed by textons based on the complex wavelet trans-
form, as the complex wavelet transform provides an expansion of the texture image at hand. In
the construction of these textons, we extract a small image patch and we transform the extracted
image patch to the complex wavelet domain by applying the complex wavelet transform on the
image patch. Because a wavelet decomposition requires the length of a signal to be a power of
two, the dimensions of the extracted image patch should be powers of two (such as 4×4 or 8×8
pixels).

6.2.2 Image-based textons

Image-based textons are small image patches extracted from a texture image of which the pixel
values were normalized by (i) making them zero-mean and (ii) dividing them by their variance
or standard deviation. The strong performance of image-based textons reported by Varma and
Zisserman [2003] leads to questions about the necessity of applying filter banks for the analy-
sis of texture. Varma and Zisserman [2003] suggest three main reasons for the relative strong
performance of image-based textons [Varma and Zisserman, 2003].
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First, the use of filter banks reduces the number of textons that can be extracted from a texture
image. This reduction is a consequence of the large support of filter banks; the number of patches
that can be extracted from a, say, 200 × 200 pixel texture image is significantly reduced when
this image is convolved with a 50 × 50 filter. The presence of a reduced number of textons af-
fects the quality of the texton frequency histogram estimations, leading to inferior generalization
performances. Second, the large support of filter banks leads to small errors in the localization of
edges. Imprecise edge localization may significantly change the geometry of the textons, lead-
ing to errors in the estimation of the texton frequency histogram. Third, the application of most
filters leads to some blurring on the texture images, which is the result of the Gaussian envelope
in these filters. The blurring might remove local details in the textons, that are of interest in the
classification of the texture.

Although the three suggestions presented by Varma and Zisserman [2003] are interesting,
the general claim that image-based textons outperform filter-based textons remains controver-
sial [Mellor et al., 2008]. In particular, there are two main reasons why image-based textons
are not expected to lead to informative texture features: (1) image-based textons do not con-
tain information on the presence of different orientations in the texture despite the fact that the
measurement of edge orientations is known to be important in human vision [Jones and Palmer,
1987] and (2) image-based textons are relatively sensitive to the presence of noise in the image.

6.3 Experiments with filter-based textons

As a sequel to the controversial claim in [Varma and Zisserman, 2003] that image-based tex-
tons outperform filter-based textons, we investigate this claim below by performing experiments
in which we use texton-based texture features in a texture classification task. The setup of the
experiments is discussed in subsection 6.3.1. The results of the experiments are presented in
subsection 6.3.2.

6.3.1 Experimental setup

We evaluated the quality of the texton-based texture features (constructed using filter-based or
image-based textons) in texture classification experiments on the CUReT texture dataset [Dana
et al., 1999]. The CUReT dataset contains images of 61 different materials that were pho-
tographed under 205 different viewpoints. The differences in viewpoints led to a large variability
in the visual appearance of the same material (as illustrated in Figure 5.2). From the 205 images
of each texture class, we selected the 116 images that allow for the extraction of a texture image
of 200× 200 pixels. The selection of a part of the image is required as the images in the CUReT
dataset do not only reveal the texture of the photographed surfaces, but also their environment.
Because we are interested in the texture of the surface, we extract image parts of size 200× 200
pixels that only contain the texture of the surface. Examples of the selected image parts for all 61
texture classes of the CUReT dataset are depicted in Figure 6.1. Because the color in the images
provides too much information on the texture class, and our aim is to evaluate the quality of our
texture descriptors, we converted all images in the dataset to grayscale images.

In our experiments, we constructed texton codebooks by performing k-means clustering on
116 × 500 = 58, 000 textons from each texture class, that were obtained by random selection
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from the training images. In our experiments, we used a value of k = 10, leading to texton
codebooks consisting of 61×10 = 610 textons. All experiments except those with textons based
on the CWT were performed with texture patches of size 3× 3 to 8× 8 pixels. The experiments
with textons based on CWT features were performed with texture patches of 4 × 4 and 8 × 8
pixels, because wavelet transforms require a signal length that is a power of 2. In our experiments,
the classification is performed by a 1-nearest neighbor classifier. The generalization performance
of the classifiers is evaluated using 10-fold cross validation. Our experimental setup is roughly
similar to the setup employed by Varma and Zisserman [2003].

Figure 6.1 The 61 texture classes in the CUReT texture dataset.

6.3.2 Results

In Table 6.1, we present the generalization errors of 1-nearest neighbor classifiers that were
trained on texton frequency histograms using six texton representations. The table compares
the generalization errors of classifiers trained using image-based textons with that of the five
filter-based textons: (1) textons based on the Leung-Malik filter bank, (2) textons based on the
Maximum Response-8 filter bank, (3) textons based on the Schmid filter bank, (4) textons based
on steerable pyramids, and (5) textons based on the complex wavelet transform. The best gener-
alization error for each texton size is typeset in boldface. From the results presented in the table,
we make three main observations.
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First, we observe the relatively strong performance of texton-based texture features that em-
ploy image-based texton representations. In three of the six experiments, the image-based texton
representations outperform most filter-based textons (although the differences are often not statis-
tically significant). In the other three experiments, the image-based textons perform only slightly
worse than the best-performing textons. The best performance of all experiments was obtained
using image-based textons of size 6 × 6 pixels. The results in Table 6.1 thus confirm the con-
troversial claims about the performance of image-based textons by Varma and Zisserman [2003]
that we discussed above.

Second, we observe that the best generalization performance of filter-based textons in our
experiments was obtained using CWT-based textons of size 8 × 8 pixels. This result illustrates
the potential advantage of the use of filters with small support (that are employed in the complex
wavelet transform). Unlike other filter-based texton features, the CWT-based textons are not
hampered by information loss at the borders or by the smoothing problem.

Third, we observe that filter-based textons that use steerable pyramids perform disappoint-
ing compared to image-based and other filter-based textons. This result may be due to the high
sensitivity of steerable pyramids to their parameter settings.

Texton size Image Leung-Malik MR8 Schmid Steerable pyramids CWT
3× 3 0.0264± 0.0053 0.0259± 0.0061 0.0205 ± 0.0060 0.0229± 0.0052 0.1197± 0.0076 –
4× 4 0.0206 ± 0.0064 0.0222± 0.0044 0.0212± 0.0033 0.0245± 0.0057 0.1146± 0.0133 0.0260± 0.0056
5× 5 0.0204± 0.0062 0.0243± 0.0060 0.0201 ± 0.0057 0.0235± 0.0082 0.1112± 0.0096 –
6× 6 0.0177 ± 0.0044 0.0246± 0.0054 0.0208± 0.0071 0.0248± 0.0045 0.1065± 0.0103 –
7× 7 0.0195 ± 0.0057 0.0236± 0.0049 0.0223± 0.0058 0.0249± 0.0079 0.1195± 0.0115 –
8× 8 0.0187± 0.0051 0.0257± 0.0054 0.0219± 0.0066 0.0283± 0.0078 0.1158± 0.0135 0.0179 ± 0.0038

Table 6.1 Generalization errors of 1-nearest neighbor classifiers trained on texton-based texture features on
the CUReT dataset.

6.4 Invariant texton representations

In the previous section, we obtained results that support the claim by Varma and Zisserman
[2003] that image-based textons perform on par with filter-based textons, and even tend to out-
perform filter-based textons in texture classification experiments. The success of image-based
texton representations provides new ways in which invariant texture features can be developed.

In this section, we develop three new image-based texton representations: two of them are
invariant under rotations of the texture images and one of them is invariant under affine transfor-
mations. The rotation-invariant representations are based on spin images (subsection 6.4.1) and
on polar Fourier features (subsection 6.4.2). The affine-invariant texton representation is based
on an eigenanalysis of the second-order matrix (subsection 6.4.3).

6.4.1 Spin images

Spin images estimate the joint intensity-radius distribution of an image in a coarse his-
togram [Johnson and Hebert, 1999; Schmid et al., 2004]. In the construction of a spin image,
the distance of every pixel to the center of the image (i.e., the radius) is computed. The radiuses
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and the corresponding pixel values are quantized and binned in a joint histogram. The construc-
tion of spin images is illustrated in Figure 6.2. The main advantage of the use of spin images is
that they are invariant to changes in the orientation of the image.

In our texton-based texture features, we construct spin images with 8 intensity bins from the
normalized textons that were extracted from the texture images. The number of radius bins is set
to the width (or height) of the texture patches in pixels.
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Image Spin image

Figure 6.2 Illustration of the construction of a spin image.

6.4.2 Polar Fourier features

Polar Fourier features start by converting the texture patch to the polar space. In the polar space,
one axis represents the distance to the center of the image, whereas the other axis represents
the angle from the baseline (which is the horizontal line through the center of the image). As
a result, a rotation of the original image leads to a circular shift in the ‘distance bands’ of the
polar image. Subsequently, polar Fourier features employ the property that the magnitude of the
Fourier transform of a histogram is invariant under circular shifts, because all phase information
is in the sign of the Fourier coefficients [Szoplik and Arsenault, 1985]. Polar Fourier features
make the polar image rotation-invariant by computing the magnitude of the Fourier transform of
every distance band in the polar image.

The construction of polar Fourier features is illustrated in Figure 6.3. The middle image in
Figure 6.3 shows that rotations in the original texture patch are reflected by circular shifts in the
distance bands of the polar image. The right image in Figure 6.3 reveals that the magnitude of
the Fourier transform of the distance bands is invariant under these circular shifts.

An important difference between spin images and polar Fourier features is that polar Fourier
features implicitly assign more weight to the center of the texture patch, because pixels are
‘added’ by means of interpolation in the construction of the polar image representation. It is
unclear whether assigning more weight to the center of the texture patch is advantageous or not,
but the use of the (log)polar transform has been proven useful in other domains, such as image
registration [Wolberg and Zokai, 2000].
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Polar transform

magn(FFT)

magn(FFT)

Figure 6.3 Illustration of the construction of polar Fourier features. The right image contains a single line,
because the input image was designed to contain a single frequency.

6.4.3 Affine-invariant textons

The construction of a texton representation that is invariant to affine transformations can be
performed using an eigenanalysis of the so-called second-order matrix. The construction of the
affine-invariant texton representation consists of three main stages: (1) the computation of the
second-order matrix, (2) the identification of an affine-covariant image region, and (3) the con-
struction of the texton representation. We discuss the three stages separately below.

In order to construct the affine-invariant texton representation, in the first stage, we compute
the second-order matrix Mx,y at location (x, y). The second-order matrix is a 2 × 2 matrix that
is computed from the horizontal and vertical image derivatives IX and IY . It is defined as

Mx,y =
[ ∑(

Wx,y · I2X
) ∑

(Wx,y · IX · IY )∑
(Wx,y · IX · IY )

∑(
Wx,y · I2Y

) ]
, (6.1)

where · represents the element-wise or Hadamard product of two matrices, Wx,y is a matrix
(with the same size as IX and IY ) that weights the image derivatives, and the sum is over all
elements of the weighted product of the image derivatives. Typically, the weight matrix Wx,y

is selected as to contain a localized Gaussian kernel (with a relatively small variance σ) that is
centered onto the spatial location (x, y).

In the second stage, we identify an affine-covariant image region by employing properties
of the eigenvectors of the matrix Mx,y . The second-order matrix Mx,y may be viewed upon as
the (weighted) local covariance of the horizontal and vertical image derivatives, as a result of
which the principal eigenvector of the second-order matrix represents the dominant direction
of the image derivative; the corresponding eigenvalue determines how dominant this direction
is. The eigenvectors and eigenvalues of the second-order matrix Mx,y can thus be visualized
as an ellipse, as illustrated in Figure 6.4. In Figure 6.5, we show a grayscale image in which
the second-order matrix at each spatial location is visualized by means of such an ellipse. The
ellipse that is constructed from the eigenvectors and eigenvalues of the second-order matrix can
be viewed upon as the ‘characteristic region’ of the image at that specific spatial location. This
means that if an affine transformation is applied to the image, the ellipse will be transformed
accordingly (for the proof, we refer to [Mikolajczyk and Schmid, 2004]). In other words, the
ellipse covaries with affine transformations, and thus forms an affine-covariant image region. If
the contents of the ellipsoid affine-covariant image region are normalized to the unit circle, the
result is thus invariant up to rotations of the unit circle and errors due to interpolation effects.
This is illustrated by an example in Figure 6.6.
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In the third and final stage, we construct the affine-invariant texton representation (after hav-
ing normalized the contents of the affine-covariant region to the unit circle) by transforming the
unit circle to polar space and computing the magnitude of the Fourier coefficients of all distance
bands of the polar representation (as we did in polar Fourier features). The magnitude of the
resulting coefficients is invariant to affine transformations.

(λmin)
-1/2

(λmax)
-1/2

direction of
fastest change

direction of
slowest change

Figure 6.4 Illustration of the second-order ellipse.

6.5 Experiments with invariant textons

In the previous section, we developed three new texton representations that overcome the sus-
ceptibility of texton representations to rotations and/or affine transformations. This section in-
vestigates the performance of the new texton representations on four texture classification tasks:
(1) a task in which there are no transformations applied on the textures, (2) a task in which the
classifier has to deal with rotations of the textures, (3) a task in which the classifier has to deal
with affine transformations of the texture, and (4) a task in which the input images contain natural
local affine transformations of the depicted textures. The setup of our experiments is described
in subsection 6.5.1. Subsection 6.5.2 presents the results of our experiments.

6.5.1 Experimental setup

In order to evaluate the performance of the invariant textons discussed above, we performed ex-
periments on the CUReT dataset. The texture images were preprocessed as described in 6.3.1.
Because the main aim of our experiments is to investigate the invariance properties of the new tex-
ture features, we performed experiments in which we apply rotations and affine transformations
on the test images (but not on the training images). In particular, we performed three different
experiments on the CUReT dataset: (1) an experiment in which there are no artificial transfor-
mations, (2) an experiment in which the test images are rotated by 90◦, and (3) an experiment in
which the test images are transformed using an affine transformation. In particular, we used an
affine transformation that rotates the test images by 90◦ and scales up the test images by a factor
of 2 (using bicubic interpolation). We opt for rotations of the test images of 90◦, because such
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Figure 6.5 Second-order ellipses drawn onto a grayscale image.

a rotation does not degrade the quality of the test images as a result of interpolation and border
artefacts. The remainder of the experimental setup of our experiments on the CUReT dataset is
identical to that described in 6.3.1.

Next to the experiments on the CUReT dataset, we performed experiments on the UIUCTex
dataset [Lazebnik et al., 2005]. The UIUCTex dataset contains 40 images for each of 25 texture
classes, giving rise to a dataset with 1, 000 images. The images in the dataset have size 640 ×
480 pixels. The 25 texture classes are shown in Figure 6.7. The main difference between the
UIUCTex dataset and the CUReT dataset is that the textures that are depicted in the UIUCTex
dataset are subject to local affine transformations. These local affine transformations are the
result of viewpoint variations and the bending of some of the textured surfaces. As our texton-
based texture features are theoretically invariant to local affine tranformations, they are likely to
outperform other texton-based texture features on the UIUCTex dataset.
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(a) Original image with affine-covariant region.

(b) Affine transformed image with affine-covariant re-
gion.

(c) Polar representation of affine-covariant region of
original image.

(d) Polar representation of affine-covariant region of
affine transformed image.

Figure 6.6 Illustration of affine-covariant image regions. Notice that the affine transformation of the image is
reflected in a vertical shift in the polar images.

In the experiments on the UIUCTex dataset, we constructed texton codebooks by performing
k-means clustering on 40 × 500 = 20, 000 randomly selected textons for each texture class. As
in the experiments on the CUReT dataset, we used a setting of k = 10, as a result of which the
final codebooks contain 25× 10 = 250 textons. The experiments with the image-based textons,
spin image-based textons, and polar Fourier textons were performed using textons of size 3 × 3
to 8× 8 pixels. In the experiments with the affine-invariant textons, we used settings of the scale
s of the second-order ellipses between 1 and 7. The quality of the resulting texture features is
evaluated by measuring the generalization error of 1-nearest neighbor classifiers using 10-fold
cross validation.

6.5.2 Results

In Table 6.2, we present the generalization errors of 1-nearest neighbor classifiers on the CUReT
dataset. The 1-nearest neighbor classifiers were trained on texton frequency histograms using
image-based textons and the three invariant texton representations: (1) textons based on spin
images, (2) textons based on polar Fourier features, and (3) affine-invariant textons. In the ex-
periments, the texture images were not rotated, rescaled, or affinely transformed. In Table 6.3,
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Bark 1 Bark 2 Bark 3 Wood 1 Wood 2

Wood 3 Water Granite Marble Floor 1

Floor 2 Pebbles Wall Brick 1 Brick 2

Glass 1 Glass 2 Carpet 1 Carpet 2 Upholstery

Wallpaper Fur Knit Curduroy Plaid

Figure 6.7 The 25 texture classes in the UIUCTex texture dataset.

we present the results of similar experiments in which 1-nearest neighbor classifiers were trained
on normal texture images, but tested on texture images that were rotated 90◦ in a clockwise di-
rection. Table 6.4 presents the results of similar experiments in which the 1-nearest neighbor
classifiers were trained on normal texture images, but tested on texture images that were scaled
up by a factor of 2 (using bicubic interpolation), and rotated by 90 degrees in a clockwise di-
rection. In the tables, we do not typeset any generalization errors in boldface, as the setting of
the patch size cannot readily be compared to the setting of the scale parameter of affine-invariant
textons. From the results presented in Table 6.2, 6.3, and 6.4, we make the following three main
observations.

First, we observe that the use of invariant textons slightly degrades the performance of the
classifiers (compared to image-based textons) in experiments in which no transformations are
applied on the test images. For spin images, the degradation of the performance of the classi-
fiers is approximately 3%. For the affine-invariant textons, the degradation of the generalization
performance lies between 6 and 10%. Our polar Fourier features are least hampered by the loss
of information that is the result of the additional invariance: the generalization performance of
classifiers trained using polar Fourier-based textons is only degraded by 1 to 2% (compared to
image-based textons).

Second, from the results in Table 6.3 and 6.4, we observe that the presence of rotations
severely degrades the performance of image-based textons. Specifically, the presence of rotations
degrades the performance of image-based textons by 50 to 60%. In contrast, textons based on spin
images and polar Fourier features are not hampered at all by the presence of rotations in the test
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images: the performance of these textons in Table 6.2 and 6.3 is approximately equal. The same
observation holds for affine-invariant texton representations.

Third, we observe that the performance of texture features that employ image-based textons,
textons based on spin images, and textons based on polar Fourier features is severely detoriated
due to the presence of affine transformations in the test images. The generalization error obtained
using these three texton representations is approximately 90% in all experiments. In contrast, the
performance of classifiers trained on texture features that employ affine-invariant texton repre-
sentations is more robust under the presence of affine transformations in the test images. The best
generalization error we obtained on the CUReT dataset (with affine transformations applied to
the test images) was 26.42%. We do note that the results show that the quality of affine-invariant
texton representations depends strongly on the scale parameter that is used to determine the size
of the affine-covariant regions.

Texton size Image Spin image Polar Fourier Scale Affine-invariant
3× 3 0.0264± 0.0053 0.0649± 0.0100 – 1 0.2320± 0.0152
4× 4 0.0206± 0.0064 0.0546± 0.0073 0.0466± 0.0072 2 0.0921± 0.0124
5× 5 0.0204± 0.0062 0.0509± 0.0121 – 3 0.0873± 0.0071
6× 6 0.0177± 0.0044 0.0530± 0.0123 – 4 0.0810± 0.0098
7× 7 0.0195± 0.0057 0.0516± 0.0102 – 5 0.0810± 0.0153
8× 8 0.0187± 0.0051 0.0530± 0.0085 0.0243± 0.0070 6 0.0767± 0.0068

Table 6.2 Generalization errors of 1-nearest neighbor classifiers trained on invariant texton-based features
on the CUReT dataset (no transformations).

In order to investigate the performance of the texton-based texture features under the pres-
ence of local affine transformations, we also performed experiments on the UIUCTex dataset.
Table 6.5 presents the generalization errors of 1-nearest neighbor classifiers on this dataset. Here
too, we performed experiments with image-based textons and the three invariant texton repre-
sentations. From the results presented in Table 6.5, we make two main observations.

First, we observe that affine-invariant textons perform strongly compared to the other texton
representations in the experiments on the UIUCTex dataset. However, the best generalization
performance of 9.30% was obtained using texton representations based on spin images (of size

Texton size Image Spin image Polar Fourier Scale Affine-invariant
3× 3 0.5369± 0.0143 0.0622± 0.0099 – 1 0.2734± 0.0150
4× 4 0.5597± 0.0119 0.0541± 0.0082 0.0630± 0.0121 2 0.1000± 0.0173
5× 5 0.6104± 0.0153 0.0540± 0.0061 – 3 0.0902± 0.0081
6× 6 0.6512± 0.0050 0.0543± 0.0093 – 4 0.0826± 0.0090
7× 7 0.6778± 0.0144 0.0523± 0.0062 – 5 0.0823± 0.0074
8× 8 0.6971± 0.0179 0.0520± 0.0107 0.0253± 0.0062 6 0.0837± 0.0142

Table 6.3 Generalization errors of 1-nearest neighbor classifiers trained on invariant texton-based features
on the CUReT dataset (rotations).
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Texton size Image Spin image Polar Fourier Scale Affine-invariant
3× 3 0.9050± 0.0093 0.9741± 0.0061 – 1 0.7410± 0.0124
4× 4 0.8979± 0.0094 0.9632± 0.0067 0.9686± 0.0064 2 0.4911± 0.0157
5× 5 0.8963± 0.0144 0.9496± 0.0108 – 3 0.3827± 0.0183
6× 6 0.8911± 0.0079 0.9464± 0.0053 – 4 0.3093± 0.0143
7× 7 0.8973± 0.0154 0.9315± 0.0105 – 5 0.2741± 0.0103
8× 8 0.8909± 0.0057 0.9385± 0.0106 0.9635± 0.0075 6 0.2642± 0.0130

Table 6.4 Generalization errors of 1-nearest neighbor classifiers trained on invariant texton-based features
on the CUReT dataset (affine transformations).

8 × 8 pixels). Presumably, the affine-invariant textons do not clearly outperform spin images
due to two main problems: (1) the affine-invariant texton representation may be hampered by the
presence of areas in the texture images that are somewhat out-of-focus and (2) the affine-invariant
textons appear to be quite sensitive to the setting of the scale parameter. The first problem is the
result of the image gradients being relatively small in out-of-focus image regions, as a result of
which the affine-covariant ellipses are somewhat smaller than they would have been if the texture-
images were in-focus. This may give rise to larger differences in texton frequency histograms of
texture images that correspond to the same class. The second problem is the result of the influence
of the scale parameter on the identified affine-covariant regions. If the scale parameter is too small
or too large1, the identified regions are not perfectly affine-covariant. As a result, affine-invariant
textons with a scale of, say, 2.5 may obtain a lower generalization error on the UIUCTex dataset
than the generalization errors reported for affine-invariant textons in Table 6.5.

Second, we observe that the performance of spin image-based textons on the UIUCTex
dataset is strong compared to, e.g., the performance of texton representations based on polar
Fourier features. This result is most likely due to that spin images are hampered less by the pres-
ence of out-of-focus regions. Spin images represent intensity value measurements in a coarse
histogram, as a result of which they are less suspectible to errors that occur in image regions that
are somewhat out-of-focus. The spin images constructed from out-of-focus regions are blurred
versions of their counterparts constructed from in-focus image regions. The blurring of spin im-
ages does not have a strong negative influence on the matching with the texton codebook (blurring
histograms may even slightly increase the performance of codebook approaches [Faichney and
Gonzalez, 2002]).

In addition to the classification experiments on the UIUCTex dataset, we performed an ex-
periment in which we visualized the UIUCTex dataset in a two-dimensional map by performing
t-SNE on the affine-invariant texture features extracted from the texture images. The result of this
experiment is shown in Figure 6.8. The insets show magnifications of parts of the visualization.

From the visualization in Figure 6.8, we can make two observations. First, we observe that the
affine-invariant texture features separate the texture classes in the dataset quite well. For instance,
the plaid texture images are widely separated from the other texture classes. Second, we observe
that the texture features are clearly invariant under affine transformations. For instance, the brick

1We also note that the optimal value for the scale parameter may very between texture classes or imaging conditions.
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Figure 6.8 Map of the UIUCTex dataset constructed by performing t-SNE on affine-invariant texture features.
The insets show magnifications of parts of the map.
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Texton size Image Spin image Polar Fourier Scale Affine-invariant
3× 3 0.2020± 0.0343 0.2710± 0.0318 – 1 0.1480± 0.0388
4× 4 0.1830± 0.0495 0.1820± 0.0305 0.3410± 0.0570 2 0.1100± 0.0306
5× 5 0.1680± 0.0266 0.1610± 0.0407 – 3 0.1210± 0.0484
6× 6 0.1740± 0.0306 0.1390± 0.0256 – 4 0.1230± 0.0306
7× 7 0.1810± 0.0357 0.1260± 0.0395 – 5 0.1270± 0.0411
8× 8 0.1830± 0.0275 0.0930± 0.0267 0.2950± 0.0490 6 0.1370± 0.0313

Table 6.5 Generalization errors of 1-nearest neighbor classifiers trained on invariant texton-based features
on the UIUCTex dataset.

texture images are modeled close together despite the large variation in the viewpoints under
which the bricks were photographed.

6.6 Discussion

In the previous sections, we presented the results of experiments with one image-based, five
filter-based and three invariant texton representations on two texture datasets. In this section, we
discuss four observations made from the results of our experiments.

First, the performance of textons based on the filter-based responses supports the claim by
Varma and Zisserman [2003] that, in contrast to popular belief, it is not required to measure
filter responses in order to extract informative texture features. We surmise that the main dis-
advantage of the filter-based textons that are employed by Varma and Zisserman [2003] is the
reduction of the number of textons (due to the large support of the filters). Since textons based
on the complex wavelet transform do not suffer from this weakness, they outperform the other
filter-based textons. This result is due to the small support of the filters we applied in the complex
wavelet transform, and due to the low redundancy of the complex wavelet transform. Despite the
advantages of the complex wavelet transform, CWT-based textons do not significantly outper-
form image-based textons, which suggests that imprecise edge localization is a problem in all
filter-based textons.

Second, next to the arguments presented by Varma and Zisserman [2003], we believe that
there is an important additional reason for the strong performance of image-based textons. The
main aim of the application of filters in texture analysis is to extract information on the high spa-
tial frequencies in the image, and to discard information on the low spatial frequencies. Although
this aim of filters is relevant when, for instance, the extracted texture features are formed by sim-
ple statistics of the filter responses such as an intensity histogram, it is not so relevant when
textons are employed. When textons are employed, most low spatial frequency information is
already discarded anyway, thanks to the small size of the employed image patches. The selection
of high spatial frequencies using filters is thus superfluous in texton-based texture features.

Third, the results of our experiments show that current texton-based texture features are very
sensitive to the presence of rotations or (local) affine transformations in the texture images. The
results of our experiments show that invariant textons may degrade the accuracy of the texture
features somewhat. This degradation is the result of the loss of information that necessarily oc-
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curs when invariances are built into image representations. For instance, our rotation-invariant
texture features model each ‘distance band’ separately in a rotation-invariant model, as a result
of which the information on the alignment of the distance bands is lost. However, our exper-
iments showed that the degradation of the performance as a result of the information loss is
limited. For instance, polar Fourier features almost perform comparable to their image-based
counterparts that are sensitive to changes in the orientation of the texture in experiments on the
CuRET dataset.

Fourth, we observe that the invariance under local affine transformations of our texture
features based on affine-invariant textons leads to strong generalization performances on the
UIUCTex dataset. However, the results also suggest that affine-invariant textons are sensitive to
(1) the setting of the scale of the affine-covariant regions and (2) the presence of out-of-focus
regions in the texture images. We discuss potential solutions to both problems below.

The first problem may be resolved by (1) performing the feature extraction using multiple
scales and comparing the features of two images across all combinations of scales, or (2) by
employing automatic scale selection techniques such as those presented in [Lindeberg, 1998;
Kadir and Brady, 2001]. Typically, automatic scale selection techniques analyze multi-scale filter
responses to obtain a series of local scale estimates. For instance, Lindeberg [1998] finds local
maxima in the scale space pyramid of Laplacian of Gaussian (LoG) responses, which results in
a series of local scale estimates of which the median may provide an estimate for the salient
scale of the texture image. An alternative approach selects the scale for which the entropy of a
collection of local Fourier and wavelet descriptors as the salient scale of the image [Kadir and
Brady, 2001].

The second problem may be addressed by one of the following three approaches. The prob-
lem may be addressed by (1) only extracting patches at keypoint locations in the texture images,
as is done in, e.g., [Lazebnik et al., 2005]. A possible drawback of this approach is that homo-
geneous textures typically contain a small number of keypoint locations, as a result of which
the resulting texton frequency histograms may be subject to large errors. The problem may also
be addressed by (2) identifying out-of-focus regions in the texture images by locally comparing
filter responses (see, e.g., [Shoa et al., 2004]). The identified out-of-focus regions can then be
ignored in the construction of the texton frequency histograms using affine-invariant textons (or
the weight of the corresponding textons can be set accordingly). Another alternative to address
the problem may be to (3) represent the normalized affine-covariant image regions using spin
images instead of polar Fourier features. The relatively strong performance of texton representa-
tions based on spin images on the UIUCTex dataset suggests the spin image representation may
outperform the polar Fourier representation.

6.7 Chapter conclusions

Texton-based texture features form an interesting alternative to traditional texture classification
approaches such as Markov Random Fields or filter bank models. The results in this chapter
suggest the use of (invariant) image-based textons over filter-based textons. We may conclude
that the extraction of texture features from images can be performed well without the computa-
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tionally expensive application of large filter banks on the texture images. Moreover, the use of
image-based textons facilitates the development of invariant texton representations that give rise
to the texture features that are invariant under local transformations.

We developed three invariant texton representations, two of which are invariant under rota-
tions, and one of which is invariant under affine transformations. The results of our experiments
on the CUReT dataset revealed the invariance properties of our texture features, which come at
a relatively small degradation in performance. We showed that it is possible to construct texture
features that are invariant to local affine transformations by employing affine-invariant textons.
The results of our experiments revealed that affine-invariant textons outperform all other texton
representations on the UIUCTex dataset.

Future work focuses on (1) developing an approach that resolves the susceptibility of affine-
invariant textons to the setting of the scale parameter and (2) developing an approach that is
more robust to the presence of out-of-focus image regions. Moreover, future work may focus
on the development of invariant texton-based texture features that employ the color information
in the texture images, because color (and its interplay with texture) is an important feature of
many textures. Color may be used in texton-based texture features, for instance, using one of the
schemes proposed by Burghouts and Geusebroek [2008].





7 Applications to the
cultural heritage

Contents The previous chapters have presented features that address the redun-
dancy and variance problems of image-space representations in an at-
tempt to improve the performance of state-of-the-art computer vision
systems. In order to investigate whether our features are effective in real-
world computer vision systems, we investigate the performance of the
newly developed features in the challenging cultural heritage domain.
Specifically, we employ the developed features in the analysis of paint-
ings that are (allegedly) painted by Van Gogh and some of his contempo-
raries, and we use the new features in the analysis of digital photographs
of seeds.

Outline In Section 7.1, we present the application of texton-based texture features
and t-SNE in the analysis of paintings. The application of these features
in seed analysis is presented in Section 7.2.
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In the previous chapters, we investigated dimensionality reduction features and texture features,
and we developed new features of both types. In this chapter, we apply the developed features
on two real-world visual tasks from the cultural heritage domain. Specifically, we investigate
the applicability of the developed features in (1) painting analysis and (2) seed analysis. We
discuss the two applications separately in Section 7.1 and 7.2. The conclusions of this chapter
are presented in Section 7.4. In Appendix F, we present an additional application of computer
vision to the cultural heritage domain. There, we apply edge-based statistical features to the
classification of ancient coins.

7.1 Painting analysis

The analysis of paintings is an important task in the cultural heritage that aims to give informa-
tion about the attribution and the creation process of a painting. In particular, the attribution of a
painting to an artist (i.e., artist identification) is of high importance to the monetary value of the
painting. Currently, artist identification is performed by art experts who have considerable ex-
perience with the works by one or more painters. Although experts have a variety of techniques
at their disposal – such as canvas weave count, dendrochronological analysis of the wood of the
frame, chemical analysis of the pigments, and x-radiography of the painting or support – visual
assessment of the painting is still one of their most important tools. An important cue in identi-
fying the artist of a painting is the “handwriting” of the painter: the brushstrokes and brushstroke
configurations that reveal the painter’s style. Despite the variations in form and appearance of a
painter’s brushstrokes, the artist’s handwriting can be recognized by skilled art experts, although
it is hard to explicate to laymen what the characteristic elements of a painter’s handwriting are.
Intelligent image analysis and machine learning techniques that are sensitive to the brushstroke
texture may support the art expert in detecting and visualizing painter-specific brushstrokes, and
provide objective evidence for the attribution of a painting to an artist.

Previous work on artist identification and painting analysis using digital analysis tech-
niques focused on the assessment of color use in (Van Gogh) paintings using filter-based ap-
proaches [Berezhnoy et al., 2007], and on capturing statistical information from segmented or
outlined brushstrokes [Sablatnig et al., 1998]. In this section, we build an effective representa-
tion of the brushwork of paintings using the texton-based texture features developed in Chapter 6.
Moreover, we visualize the representations by means of t-SNE (which was developed in Chap-
ter 3). We motivate our approach to painting analysis below.

Given that the segmentation of individual brushstrokes from a painting is unfeasible [John-
son et al., 2008], from an image analysis perspective, brushstroke analysis corresponds to the
analysis of the texture of the painting. The wildly overlapping brushstrokes form a textural cue
of the painter’s handwriting. As we already discussed in Chapter 5, texture analysis is typically
performed by applying a bank of filters that respond to intensity transitions in the input image.
Various studies also use texture features based on filter responses in painting analysis [Sablatnig
et al., 1998; Johnson et al., 2008]. As we explained in Chapter 6, one of the main arguments
against the use of filter-based approaches is that they employ filters with a Gaussian envelope, as
a result of which the filters smooth the image before they measure the presence of (oriented) high
spatial frequencies. The smoothing is necessary to remove noise that masks image gradients.
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However, the smoothing may distort or remove pivotal information of relevance to the texture
analysis task. In the case of the brushstroke texture in paintings, such details may correspond to
individual hairs in the brush used by the painter that contain valuable cues for artist identification.
For instance, the extent to which such hairs are visible in the painting may provide information
on the amount of pressure the artist exerted on the brush in the various stages of a brushstroke.
The image-based texton features described in 6.2.2 are not hampered by the smoothing problem,
as a result of which they are well suitable for the analysis of brushstroke texture.

Our approach to painting analysis consists of two stages. We analyze the brushstroke tex-
ture of the paintings by means of image-based texton features (stage 1), as motivated above. The
texture analysis results in high-dimensional feature vectors, which we reduce to two dimensions
using t-SNE in order to facilitate visualization in a scatter plot (stage 2). Even though alleged
attributions by art experts are available, we opt for the visualization of the results of the brush-
stroke analysis instead of for an automatic artist classification experiment, because the number
of negative examples (i.e., non-Van Gogh paintings) in our dataset is too small to facilitate such
a classification experiment.

Below, we present our experiments with the approach described above on a dataset of digital
reproductions of paintings by Van Gogh and his contemporaries. The setup of these experiments
is described in 7.1.1. The results of the experiments are presented in 7.1.2, and are discussed in
more detail in 7.1.3.

7.1.1 Experimental setup

We apply the approach that was outlined above on a recently released dataset of 117 high-
resolution digital reproductions of Van Gogh paintings. The dataset contains high-resolution dig-
ital 48-bit color reproductions of 117 paintings attributed to Van Gogh and related painters, which
we transformed to 8-bit grayscale images for our experiments. The reproductions were created
using ektachromes made available by the Van Gogh Museum and the Kröller-Müller Museum
(both in the Netherlands). The paintings were normalized in such a way that a square inch of the
painting is represented by 196.3 × 196.3 pixels. Of the 117 paintings, 13 are known not to be
painted by Van Gogh and 6 are of disputed authorship. The remaining 98 paintings are generally
accepted as authentic Van Gogh paintings. Each painting is labeled with its authenticity (Van
Gogh, non Van Gogh, or disputed), and all authentic Van Gogh paintings are labeled by their
creation date (ranging from 1884 to 1890) and creation place.

In order to evaluate our approach to painting analysis, we extracted texton histograms for
image-based textons of six different sizes: 25 × 25, 35 × 35, 45 × 45, 55 × 55, 65 × 65, and
75 × 75 pixels. The six texton codebooks employed in the experiment were constructed using
affinity propagation, and contained approximately 500 textons each. Figure 7.1 shows one of
the constructed texton codebooks. Altogether, the six texton histograms form feature vectors
with approximately 3, 000 dimensions, which were first reduced to 50 dimensions using PCA.
Subsequently, we use t-SNE to reduce the dimensionality of the resulting feature vectors to 2
dimensions. In the high-dimensional space, we set the variance parameters σi in such a way that
the conditional distributions Pi had a perplexity of 10.
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Figure 7.1 An example of one of the texton codebooks. This codebook was constructed using affinity
propagation on textons of size 35× 35 pixels.

7.1.2 Results

In Figure 7.2, we present one of the visualizations obtained with our approach. Each dot rep-
resents a single texton histogram (i.e., a single painting). The green dots represent Van Gogh’s
paintings, whereas the red dots represent established non Van Gogh paintings. Paintings of which
the attributions are disputed are indicated by blue dots. The visualization reveals that all-but-two
non Van Gogh paintings are depicted in the periphery of the visualization. Apparently, the brush-
stroke texture in these paintings is appropriately captured by the texture histograms and offers an
effective, albeit crude, indication of textural differences and similarities. The two paintings that
do not stand out in the visualization are the so-called Wacker forgery and a painting by Gauguin.
The Wacker forgery is one of a series of forgeries, which fooled renowned Van Gogh experts for
years [Koldehoff, 2002]. The Wacker forgery in our collection is quite easy to discriminate from
the genuine Van Gogh paintings using global texture analysis [Johnson et al., 2008]: the Wacker
forgery contains more high spatial frequencies than the genuine Van Gogh’s. Presumably, the
local textons do not capture these global statistics. The same may apply to the painting created
by Gauguin. Further analysis is needed to establish this. Despite these two anomalies, the visu-
alization places 11 of the 13 non-Van Gogh paintings in the periphery of the visualization. This
is quite a remarkable result, given that our approach is completely data-driven and does not rely
on any domain knowledge. The visualizations obtained also suggest attributions of the disputed
paintings: some are located in the middle of a cluster of genuine Van Gogh paintings, whereas
others are located close to the non Van Gogh paintings in the periphery.

Figure 7.3 shows a visualization obtained by applying our approach to established Van Gogh
paintings only. The dots are colored according to the two main periods in Van Gogh’s oeuvre:
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Figure 7.2 Visualization of the dataset of Van Gogh, non Van Gogh, and disputed Van Gogh paintings. The
points in the scatter plot are labeled according to the authenticity of the paintings.

the Dutch period (1883-1886; red dots) and the French period (1886-1890; blue dots). The visu-
alization shows a clear separation between the paintings from both periods (all Dutch paintings
are captured in one of three small clusters), and thus captures diagnostic textural elements of the
development of Van Gogh’s paintings style from his originally sober style (the Dutch period)
to his later lively impressionistic painting style (the French period). Art historians may use our
approach to create visualizations of subsets of paintings to examine more subtle textural differ-
ences.

7.1.3 Discussion

The results presented above illustrate the potential of our approach to support art historians in
their analysis of paintings. Of course, our approach only offers an initial crude characterization of
paintings. A complete approach to computer-assisted artist identification should integrate more
information than just the local texture characteristics that our texton histograms capture. For in-
stance, the interaction between brushstrokes should be captured, prompting the use of textural
features that are less local than our texton features. Moreover, the color use by Van Gogh (and
more specifically, the use of complementary colors) should be captured in global painting fea-
tures such as those proposed by Berezhnoy et al. [2007]. The development of such a combined
approach is the most viable way to obtain clear separation between paintings that are created
by different artists based on the visual assessment of the paintings. Typically, the numerical re-
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 Dutch period
French period

Figure 7.3 Visualization of the authentic Van Gogh paintings in the dataset. The points in the scatterplot are
labeled according to the period in which they are painted.

sults obtained with our approach and other image analysis methods on digital reproductions of
paintings will complement the results obtained by other types of analysis (such as provenance
analysis, canvas weave count, and dendrochronological measurements).

Also, additional work is needed in order to present the results of the image analysis in intu-
itive ways to the art expert, because the true value for art historians is in the visualization and
understanding of the visual characteristics (e.g., textons or configurations of textons) that give
rise to the visualization. We envisage the future development of software that allows art experts
to map and visualize subsets of paintings and selected regions of paintings. In that respect, the
software that incorporates our approach may become one of the many tools at the disposal of the
art historian.

7.2 Seed analysis

A seed is a small embryonic plant that is usually enclosed in a so-called seed coat, and is essential
in the reproduction of plants. Four examples of seeds are shown in Figure 7.4. The analysis and
classification of seeds is of relevance to, among others, biological, geological, and climatological
research. Moreover, the analysis of seeds may be of interest to archaeological research, as seeds
that are found in archaeological excavations provide information on the food habits of prehistoric
humans. Since the analysis of seeds is a specialistic task, it is typically performed by biologists
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Figure 7.4 Four examples of seeds.

or archaeobotanic experts. The analysis of seeds is a time-consuming and error-prone process, in
particular, due to the large number of seed species that exist worldwide. In the Netherlands alone,
the number of different seeds that are found in nature exceeds 2, 000 species [Cappers et al.,
2006]. As a result, biologists and archaeobotanic experts would benefit from systems that assist
in the analysis and classification of seeds. As state-of-the-art microscopes are often equipped
with built-in digital photocameras, such systems can now readily be integrated into the analysis
process.

From a computer vision perspective, two types of features are distinctive between seed
classes: (1) color-texture features and (2) shape features. In this section, we investigate the per-
formance of an approach that uses image-based texton features, shape context features, and t-
SNE in the analysis of digital photographs of seeds. Our approach in this section is similar to
the approach we used in the analysis of paintings, but consists of three stages. First, we extract
image-based texton features (see 6.2.2) to capture color and texture information in the seeds,
and compute pairwise Euclidean distances between the texton features. Second, we supplement
the pairwise distances based on texton features with pairwise dissimilarities that are based on
matching shape context features (see Appendix A.2.4 for details on shape contexts) that capture
the shape information in the seeds. Herein, the shape dissimilarities are given the same weight
as the texture dissimilarities. Third, we construct a two-dimensional representation of the seed
data by using the sum of the two pairwise dissimilarity matrices as input into t-SNE. We opt for
performing visualization based on the pairwise dissimilarities and not classification, because in
our seed dataset only one image per taxon (i.e., seed class) is typically available.

Below, we evaluate our approach on a dataset of digital seed photographs. We discuss the
setup of the experiments in 7.2.1. The results of the experiments are presented in 7.2.2, and
discussed in more detail in 7.2.3.
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7.2.1 Experimental setup

In the evaluation of our approach to seed analysis, we performed experiments on a dataset of
2, 434 photographs of seeds. For all seeds, various types of class information (i.e., taxon names)
are available, but the class information is not used in our experiments because for most taxons
only one seed image is available in the dataset. We employed image-based texton features using
textons of size 7×7 pixels. The pairwise Euclidean distances between the texton features form the
pairwise dissimilarity matrix D1. In the shape matching, we employed shape contexts features
(see A.2.4 for an explanation of shape contexts) using 200 shape context descriptors with 12
radius bins and 5 distance bins (on a logarithmic scale). In the matching of the shape contexts,
we employed 20 dummy nodes and 5 matching iterations (i.e., we performed the thin-plate spline
warping and the Hungarian matching five times [Belongie et al., 2001]). The result of the shape
context matching is a pairwise dissimilairity matrix D2. We normalized both matrices D1 and
D2 to lie in the range between 0 and 1 (i.e., we subtracted the minimum of the matrix values and
we divided them by their maximum values). The sum of both normalized dissimilarity matrices
is used as input into t-SNE. In t-SNE, the perplexity of that was used to compute the pairwise
similarities in the data space was set to 20.

7.2.2 Results

In Figure 7.5, we present a visualization that was constructed using the approach described above.
The insets show magnifications of the indicated regions of the visualization that illustrate the
structure in the data that was captured by our approach. From the results, we observe that our
approach successfully captured some of the structure in the shapes and textures of the seeds. For
instance, the upper right inset shows that our approach successfully identified seeds from the
Orchidaceae family, which are seeds that consist of a brown core within a transparent wrapping.
The lower right inset shows that our approach successfully captured the members of the Carex
family. The lower left inset shows that our approach identified seeds from the Pinaceae family,
i.e., seeds with the form of a single helicopter rotor. Of course, the current visualization is far
from perfect, as it is unlikely that all differences within the visual appearance of seeds can be
captured within a mere two dimensions. However, finer structure within the visual appareance
of seeds should become visible if our approach is applied onto subsets of the seed dataset, for
instance, on a single family of seeds.

7.2.3 Discussion

The results obtained by a combination of texton features, shape contexts, and t-SNE illustrate
the potential of our approach to the analysis of seeds. The approach may be seen as a first step
towards the development of a system for the automatic classification of archaeological seeds. In
order for the development of such a system to be successful, three problems need to be addressed.

First, the texture of many seeds is non-homogeneous. For instance, the texture of the periph-
ery of the seed is often different from the texture of the center of the seed. An example of the
variety in texture on a single seed surface is shown in the second seed in Figure 7.4, which con-
sists of green surface with a brown navel. The texture features discussed in Chapter 5 and 6 are
not tailored to work on non-homogeneous textures, because in the construction of the features,
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Figure 7.5 A seed map constructed by t-SNE based on texton and shape context features. The insets show
magnifications of parts of the map.
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they simply sum or average over all locations in the texture images. A possible solution to this
problem may be to perform texture segmentation first, and model each part of the segmented
texture image separately. A drawback of this approach is that it is unclear how the separate mod-
els should be combined, as summing or averaging would re-introduce the homogeneity problem.
Moreover, such an approach cannot deal successfully with gradual changes in the seed texture.
A more viable solution to the homogeneity problem may be to use an image model that is based
on the topic models discussed in 4.2.3. Examples of such image topic models can be found in,
e.g., [Fei-Fei and Perona, 2005; Sudderth et al., 2005; He and Zemel, 2008]. The future success
of these models in texture modeling largely depends on how well they can be trained in prac-
tice: inference in most topic models is intractable, which prompts the use of variational or Monte
Carlo approximations. Also, it may be a good idea to add dependencies between neighboring
pixels in the models.

Second, it is unlikely that classification of seeds can successfully be performed without ad-
ditional domain knowledge, especially, since datasets with thousands of examples per seed class
are not likely to become available in the near future. Such domain knowledge should include
information on (1) the size and weight of the seed, (2) the order of the various dissection stages
of the seed, (3) the three-dimensional shape of the seed (which can usually not be observed well
from a single two-dimensional image), and (4) the relevance of the respective elements of the
seed to its class. For instance, the shape and position of the navel of a seed may be of high
relevance to the seed class.

Third, the system should be able to work on seeds that are found in archaeological excava-
tions. Archaelogical seeds are often charred or highly degraded due to being buried in the soil,
which significantly alters their visual appearance. In particular, the shape of seeds is altered when
seeds are (partially) burnt. The classification of degraded or charred seeds is challenging, even
for archaeobotanic experts. A system for the automatic classification of such seeds should thus
also rely on non-visual information such as domain knowledge, and knowledge about the context
in which the seed was found. In this thesis, we were not able to develop such a system due to a
lack of (digitized) archaeological seed data.

7.3 General discussion

The results presented in this chapter (but also those in the previous chapters) raise questions
about which characteristics of the data lead to the observed structure. Is the structure in the map
of Figure 7.5 the best way to represent the structure in the visual appearance of seeds on a two-
dimensional plane? In Figure 7.2, the prevailing question reads: are the paintings by contempo-
raries separated from Van Gogh paintings because they have a different brushstroke texture? And
if so, what are the main textural elements that cause the difference between Van Gogh paintings
and paintings by his contemporaries?

These questions amount to a single more fundamental question that is not addressed hitherto
in this thesis: how should we evaluate unsupervised learning or feature extraction techniques?
Although visualizations such as those presented in this thesis may be informative, they do not
give a quantative measure for the quality of the extracted features. A simple quantitative evalua-
tion that is used in the thesis is to use the labels that are assigned to the data instances to train a
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classifier, and to measure the generalization performance of the trained classifier. However, this
approach is not generally applicable for two main reasons. First, class labels may not be avail-
able for the data and obtaining them may be hard or costly. Second, the measured generalization
performances are not necessarily informative on the quality of the features that were extracted
from the data. This is illustrated by our results with parametric t-SNE in Chapter 4: the use of
a (relatively) high number of degrees of freedom v sometimes leads to inferior generalization
performances compared to the use of a single degree of freedom. However, in terms of the trust-
worthiness (which measures the extent to which the local structure of the data is retained), using
a high number of degrees of freedom is benificial compared to using a single degree of freedom.
In other words, parametric t-SNE with a high number of degrees of freedom retains the local
structure of the data better, i.e., it extracts better features, but the extracted features give rise to a
lower generalization performance.

As a counterargument, one may argue that trustworthiness is probably a poor evaluation
criterion, but up to the best of our knowledge, there are no obvious reasons why trustworthiness is
a bad measure. The main disadvantage of the trustworthiness measure is that it is biased towards
techniques that retain the local structure of the data, as a result of which PCA will typically
perform inferior in terms of trustworthiness compared to t-SNE. In contrast, if the amount of
variance that is retained is used as an evaluation measure, PCA will most probably outperform
t-SNE (in particular, because the variance in a t-SNE map does not depend on the ‘scale’ of the
data). In other words, there is not a single most appropriate evaluation measure. In fact, if such an
evaluation measure existed, this would give rise to a single most appropriate technique, because
the evaluation criterion can be optimized directly using techniques for non-convex optimization
(assuming it is a continuous measure). Because the no-free-lunch theorem states that a single
most appropriate technique does not exist [Wolpert and Macready, 1997], consequently, a single
most appropriate evaluation criterion does not exist either. It thus seems unlikely that there will
ever be consensus on what the most appropriate evaluation criterion for unsupervised learning or
feature extraction is.

An interesting alternative to evaluating the quality of extracted features is to project the fea-
tures back into the original data space. Whether this is possible depends on the feature extraction
technique at hand. For instance, for PCA the backprojection can readily be performed, and for
parametric t-SNE it can be performed by training decoder layers on top of the network (as sug-
gested in 4.1.2). Texton-based texture features also facilitate backprojection into the data space.
In particular, it is possible to compute the difference between the texton histograms of two tex-
ture images, and to highlight regions in one of the texture images that occur often in that texture
image, but not in the other texture image (using a sliding scale). In Figure 7.6, we demonstrate
this way of backprojecting texton-based texture features into the dataspace. In the example, we
compare a Van Gogh painting with a painting by one of his contemporaries (viz., Claude Monet),
and highlight the regions in the contemporary painting that are not very ‘Van Gogh-like’. The
resulting visualization indicates that the sky of the contemporary painting is very different from
the Van Gogh painting in terms of texton measurements, a result that was acknowledged by art
experts.



128 Applications to the cultural heritage

(a) Van Gogh painting. (b) Monet painting. (c) Monet painting with highlights.

Figure 7.6 Illustration of the backprojection of texton-based texture features onto the data space. The right
painting is a highlighted version of the middle painting, in which only textons are highlighted that do not occur
frequently in the Van Gogh painting on the left.

7.4 Chapter conclusions

The chapter presented two applications of the texton and t-SNE features developed in this thesis
to the cultural heritage domain: (1) a painting analysis application and (2) an application to
the analysis of seeds. From the results obtained with the texton and t-SNE features in these
two domains, we may conclude that there is a large potential for using these features in the
automatic visual analysis of our cultural heritage. However, it should be noted that the successful
development of classification systems for the cultural heritage also requires the incorporation of
relevant domain knowledge.



8 Conclusion
Contents Our investigations in the previous chapters have led to many observa-

tions and new insights. This chapter discusses the main observations and
provides answers to the two research questions of the thesis. The chapter
also addresses the problem statement, which leads to a general conclu-
sion. Finally, the chapter presents five interesting directions for future
research.

Outline In Section 8.1, we answer the two research questions. Section 8.2 ad-
dresses the problem statement and draws the general conclusion of the
thesis. Five directions for future research are presented in Section 8.3.
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In this chapter, we first answer our two research questions (in 8.1). Subsequently, we address the
problem statement, and draw a general conclusion from the work presented (in 8.2). We conclude
the chapter by indicating directions for future research (in 8.3).

8.1 Answers to the research questions

Research question 1: How can we improve existing dimensionality reduction features?

Obviously, existing dimensionality reduction features can be improved by identifying and
addressing their main weaknesses. An important weakness of many existing dimensionality re-
duction features is that they are designed to give rise to convex optimization problems, which
is a commandable objective in itself, but often leads to structural problems in the resulting ob-
jective functions. In particular, sparse spectral dimensionality reduction techniques suffer from
the simple form of their covariance constraint on the solution, which is often not capable of pre-
venting the techniques of identifying solutions that are close to the trivial solution. Full spectral
techniques focus too much on retaining large pairwise distances between datapoints, as a result
of which they are not capable of preserving the local structure of the data, which is much more
important.

When convexity is not a requirement in the design of a dimensionality reduction technique, it
is possible to develop dimensionality reduction techniques that address the problems mentioned
above. If the resulting technique is not hampered too much by the presence of poor local
optima in the objective function, it may obtain superior results, as is illustrated by the strong
performance of t-SNE. In addition, the development of non-convex dimensionality reduction
may facilitate (1) a nonlinear parametrization of the mapping between the data space and the
latent space and (2) the use of a non-metric latent space.

Research question 2: How can existing texture features be adapted to be invariant to variations
that occur in uncontrolled environments, such as lighting changes, rotations, and affine trans-
formations?

Invariance to lighting changes is usually obtained by employing a bank of filters on the input
images. Even though these filter-based texture features have dominated over the last decade, our
results illustrate that invariance to lighting changes can also be obtained by simply normalizing
the pixel values of the input images. This facilitates the development of image-based texture
features that are invariant to rotations and (local) affine transformations.

Rotation invariance of image-based texture features can be obtained by (1) the construction
of coarse rotation-invariant intensity histograms such as spin images or (2) by exploiting the
invariance properties of the Fourier coefficients of polar image representations.

Invariance to affine transformations can be obtained by performing an eigenanalysis of the
second-order matrix to identify affine-covariant image regions. The affine-covariant image re-
gions can be normalized and represented using rotation-invariant features. This gives rise to
texture features that are invariant to local affine transformations.
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8.2 Answer to the problem statement

On the basis of the answers to the research questions, we are now able to answer the problem
statement.

How can we mitigate the problems of image-space representations?

The dimensionality problem of image-space representations that hampers computer vision
systems can successfully be addressed by means of dimensionality reduction techniques such
as t-SNE. This conclusion is supported by, among others, our results on the handwritten digit
dataset. We showed that is possible to reduce the hundreds of dimensions that constitute hand-
written digit images to only two dimensions by exploiting the redundancy in the image-space
representations, despite the fact that dimensionality reduction techniques do not exploit the spa-
tial structure of images.

The variance problem of image-space representations that hampers computer vision systems
may be addressed by exploiting the characteristics of, among others, the Fourier coefficients of
polar image representations and the eigenvectors of the second-order matrix. This conclusion is
supported by the results of our invariant texture representations, but readily extends to image
representations in general.

Did our research contribute to achieving the general goal mentioned in Chapter 1? The goal is
to improve the performance of computer vision systems. We believe that t-SNE and, in particular,
its parametric counterpart form an important contribution that may help developers of computer
vision systems to resolve the dimensionality problem by exploiting the strong (non)linear rela-
tions between pixel values in their input images. We specifically mention the parametric version
of t-SNE, as computer vision systems generally require parametric transformations to facilitate
rapid processing of input images. Our contribution to the solution of the variance problem is
that we showed that the use of image-based representations facilitates the development of image
features that are invariant under local affine transformations.

Based on our research findings, we arrive at the following two conclusions.

Conclusion 1: We may conclude that dimensionality reduction (e.g., by t-SNE) forms
an important approach to address the dimensionality problem, in particular, when it
is combined with feature extraction approaches that exploit the spatial structure of
natural images.
Conclusion 2: We may conclude that the variance problem can be addressed by im-
age representations that are invariant to lighting changes and to local affine trans-
formations by making use of normalization, affine-covariant regions, and the Fourier
coefficients of polar image representations.

8.3 Future research

Below, we mention five directions for future research.
First, future work should focus on investigating variants of t-SNE. Even though we gave some

theoretical reasons for selecting the use of a Student-t distribution in the low-dimensional map
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(i.e., its relation to the Gaussian distribution and its approximate scale invariance), it is not clear
whether the Student-t distribution is the most suitable distribution to address the crowding prob-
lem. It would be interesting to investigate whether it is possible to resolve the crowding problem
the other way around: by using a light-tailed distribution (such as the raised cosine distribution)
in the high-dimensional space and a Gaussian distribution in the low-dimensional space. A pos-
sible advantage of such an approach is that it might facilitate the use of convex optimization
machinery: if a Gaussian distribution is used in the low-dimensional map, the resulting mini-
mization problem is convex with respect to the Gram matrix of the solution1 [Globerson et al.,
2007].

Second, an interesting direction for future work is to investigate models that combine para-
metric t-SNE with other dimensionality reduction techniques based on deep-layer neural net-
works such as (i) autoencoders or (ii) nonlinear NCA [Salakhutdinov and Hinton, 2007]. In
combination (i), the autoencoder may serve as a regularizer that forces parametric t-SNE to max-
imize the variance of the data in the low-dimensional representation, i.e., to exploit optimally
the low-dimensional latent space available. In combination (ii), nonlinear NCA may serve as an
additional learning signal to parametric t-SNE in semi-supervised learning settings, which is ad-
vantageous, because it facilitates the use of both the complete set of (labeled and unlabeled) data
and the available class information.

Third, future work may focus on the development of various adaptations of multiple maps
t-SNE. For instance, it is possible to develop a mixture of maps model, in which the similarity
between two points under the model is equal to a weighted sum of the similarities between the
two points in the maps. Another interesting idea is to learn multiple maps in a two-stage ap-
proach: (1) cluster the datapoints based on their pairwise similarities to obtain a collection of soft
cluster assignments and (2) use these soft cluster assignments as fixed mixing proportions in the
optimization of multiple maps t-SNE. The advantage of such an approach is that it may make the
optimization of the multiple maps t-SNE model easier, because there are no interactions between
the maps anymore (since the mixing proportions are fixed). Alternatively, one may encourage
the construction of clean clusterings (or topics) in the maps by introducing a “background” map
for each of the maps in which all points have pairwise distance 0 (as in UNI-SNE [Cook et al.,
2007]). As a result, each pair of points that have high mixing proportions in the same map are
slightly similar under the model, which may lead to the emergence of cleaner data clusterings in
the maps.

Fourth, future work should focus on the development of texture features that are capable
of modeling non-homogeneous textures. Today, the most promising approaches for modeling
non-homogeneous texture are topic models that are tailored to work on image data, such as the
models presented by Fei-Fei and Perona [2005]; Sudderth et al. [2005]; He and Zemel [2008].
Currently, the most important problems of these models that need to be addressed are (i) their
intractable nature and (ii) their lack of sufficient dependencies between neighboring pixel values
in the model. Also, it is unclear if these topic models (which are essentially mixture models)
are more appropriate probabilistic models for images than product models such as the field of
experts model [Roth and Black, 2005].

1An additional difficulty is that there is no constraint on the rank of the Gram matrix of the solution, as a result of
which a trivial solution may be selected. This problem may be addressed by introducing an L1-regularizer on the trace
of the Gram matrix.
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Fifth, interesting future work can be performed in incorporating color information into our
affine-invariant texture features. Even though color is an important cue in human vision, it has
largely remained unexplored in texture modeling and image modeling in general. A notable ex-
ception is the study that is presented by Burghouts and Geusebroek [2008], which develops a
number of color invariants using the Gaussian opponent color model [Geusebroek et al., 2001]
that are invariant to (i) regional intensity variation, (ii) Lambertian reflectance, and (iii) Fresnel
reflectance2. Burghouts and Geusebroek [2006] developed color invariants for use in texton-
based texture features, as a result of which they can readily be incorporated into our affine-
invariant texton-based texture features.

2Invariance to Lambertian reflectance implies that the representations are invariant under shadows and shading. In-
variance to the Fresnel coefficient implies that the representations are invariant to “highlights” in the image.
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A Image features

In this appendix, we give an overview of alternative techniques for feature extraction that are not
covered in the thesis. In particular, we focus on three types of features: (1) local image features,
(2) shape features, and (3) edge-based statistical features. We discuss the three types of image
fetaures separately in Section A.1 to A.3.

A.1 Local image features

This section only gives a brief overview of local image features. Local image features aim to
model a small region of an image. Local image features are usually employed in object detection
tasks, in which first keypoints are obtained using a keypoint detector such as the Harris detector
or the SIFT detector. Subsequently, the small image regions around the keypoints are represented
using local image features for matching purposes.

In this section, we discuss two local image features: (1) SIFT features and (2) RIFT features,
discussed separately in subsection A.1.1 and A.1.2. For a comprehensive review of such features,
we refer to [Li and Allinson, 2007].

A.1.1 SIFT features

Scale-Invariant Feature Transform (SIFT) features construct a histogram of the magnitude and
orientation of the image gradient in a small image patch, which is typically a small image region
around a keypoint identified by a keypoint detector [Lowe, 2004]. The histogram consists of
16 orientation sub-histograms, each of which has 8 bins, leading to a 128-dimensional feature.
The construction of the SIFT feature consists of three main steps: (1) the gradient magnitude
and orientation at each pixel in the image patch are computed, (2) the gradient magnitudes are
weighted using a Gaussian window that is centered onto the image patch, and (3) the weighted
gradient magnitudes are then accumulated into orientation histograms measured over subregions
of size 4×4 pixels. The construction is illustrated in Figure A.1, in which the length of the arrows
correspond to the magnitude of the gradient, and the direction of the arrows to the orientation of
the gradient.

A.1.2 RIFT features

Rotation-Invariant Feature Transform (RIFT) features are a generalization of SIFT features that
are invariant to rotations of the small image patch that is represented by the features [Lazebnik
et al., 2005]. The feature divides the local image path into concentric rings with equal ring widths.
For each of the concentric rings, a gradient orientation histogram is computed in the same way
as in the SIFT features. The orientations are measured with respect to the gradient orientation at
the center of the image patch. The resulting feature vectors are invariant to rotations of the image
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Image gradient SIFT descriptor

Figure A.1 Illustration of the construction of SIFT features.

patches, however, like the SIFT features, RIFT features are not invariant to flipping of the image
patches.

A.2 Shape features

Shape features aim at modeling the outer shape of an object by means of descriptors that are in-
variant to changes in scale and orientation of the objects. In addition, shape features aim to have
a certain degree of invariance to distortions of the shape caused by scale changes, 3D rotations,
and non-rigidness of the depicted object. For instance, humans perceive the three shapes in Fig-
ure A.2 as depicting similar chickens, despite the non-rigid motions that the depicted chickens
exhibit.

Figure A.2 Visual appearance of three chickens under non-rigid motions.

A large number of shape features and shape similarity measures has been presented trough-
out the years, including techniques based on Zernike moments [Kim et al., 2000], the angular
radial transform [Ricard et al., 2005], Hausdorff distances [Huttenlocher et al., 1993], Fourier
descriptors [Zhang and Lu, 2003], curvature scale spaces [Mokhtarian et al., 1996], shape con-
texts [Belongie et al., 2001; Mori et al., 2005], distance sets [Grigorescu and Petkov, 2003], and
turning functions [Tanase et al., 2007]. An overview and comparison of a variety of shape fea-
tures is given by Veltkamp and Latecki [2006]. Roughly, shape features can be subdivided into
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two main types: region-based features and contour-based features. Region-based shape features
take into account the entire region that is filled by the shape when representing a shape, whereas
contour-based shape features represent solely the outer contour of the object. The main advan-
tage of region-based descriptors over contour-based descriptors is that they are more robust to
small changes in complex shape contours. This robustness is due to taking into account not only
contour pixels but all pixels that constitute the shapes. Figure A.3 shows an example in which
region-based shape features would perform better than contour-based shape features, because
disconnecting the star from the circle has a great influence on the shape contours, whereas the
shape region hardly changes. In contrast, contour-based shape features are better at capturing
small details in shape contours.

Figure A.3 Example of two perceptually similar shapes with a very different contour.

This section describes four important shape features, two of which are region-based fea-
tures, and two of which are contour-based features. The two region-based shape features that
are discussed are Zernike moments (subsection A.2.1) and the angular radial transform features
(subsection A.2.2). The contour-based shape features that are addressed are curvature scale space
features (subsection A.2.3) and shape contexts (subsection A.2.4).

A.2.1 Zernike moments

Zernike moments are statistical moments that are computed from the product of a shape image
with a collection of Zernike polynomials [Teague, 1979; Kim et al., 2000]. Statistical moments
are measurements that provide a characterization for an underlying probability distibution. For
instance, the mean and the variance of a distribution correspond to the first and second central
moments. Zernike moments measure statistics of the product of the shape image with a collection
of so-called Zernike polynomials. Mathematically, the (n,m)-order moment of an image f(x, y)
is given by

Fm
n =

∫ ∞

−∞

∫ ∞

−∞
V m

n (x)f(x, y)dxdy, m 6= n. (A.1)

In the equation, V m
n (x) is a function that is based on the Zernike polynomial, whereas the func-

tion f(x) is given by the shape image. The Zernike polynomial arises in the expansion of the
wavefront function of an optical system with circular pupils, and is commonly applied in op-
tics [Zernike, 1934; Bezdidko, 1974]. The Zernike polynomial Rm

n with order (n,m) (in polar
coordinates (ρ, θ)) is given by

Rm
n (ρ) =

{∑(n−|m|)/2
i=0

(−1)i(n−i)!

i!( 1
2 (n+|m|)−i)!( 1

2 (n−|m|)−i)!
ρn−2i , if (n− |m|) even,

0 , if (n− |m|) odd,
(A.2)

where n is a positive integer, m is a non-zero positive integer, and |m| ≤ n, and 0 ≤ ρ ≤ 1
(i.e., we assume a unit circle). It can be shown that the set of Zernike polynomials is completely
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orthogonal. The (n,m) order of the Zernike polynomial is given by

V m
n (ρ, θ) = Rm

n (ρ)eimθ. (A.3)

As an example, the (4, 4)-order Zernike polynomial is shown in Figure A.4. The Zernike moment
Fm

n of the shape image is defined as

Fm
n =

n+ 1
π

∫ 2π

0

∫ 1

0

(V m
n )∗f(ρ, θ)dρdθ. (A.4)

In the equation, (V m
n )∗ is the complex conjugate of V m

n , and f(ρ, θ) is the polar version of the
shape image (scaled to the unit disk). Because of the orthogonality of the Zernike basis functions,
the moment values are independent. The absolute value of Zernike moments can be proven to
be rotation-invariant. In addition, Zernike moments are robust to small variations in the shape.
In [Kim et al., 2000], a shape is characterized by all possible Zernike moments up to n = 10,
which leads to a total of 36 moments. Due to the limited number of Zernike moments that has
to be computed and stored, Zernike moments provide an efficient feature representation of shape
images.

Figure A.4 Real and imaginary part of the (4, 4) order of a Zernike polynomial (in Cartesian coordinates).

A.2.2 Angular radial transform features

The angular radial transform [Kim and Kim, 1999] is similar to the Zernike moments described
in the previous subsection in that it computes moments from a collection of basis functions
applied on the shape image. The angular radial transform differs from Zernike moments in the
basis functions it employs. The angular radial transform employs the basis function Rn(ρ) that
is given (in polar coordinates (ρ, θ)) by

Rn(ρ) =
{

2 cos(πnρ) , if n 6= 0,
0 , if n = 0.

(A.5)

Similar to the Zernike basis functions, the set of basis functions is orthogonal, which leads to
completely independent moment values. The (n,m) order of the polynomial is then given by



A.2 Shape features 161

Equation A.3. The corresponding moment is computed using Equation A.4. Similar to Zernike
moments, the angular radial transform is rotation-invariant and robust to small shape variations
(e.g., due to non-rigidness of the depicted object).

The angular radial transform was selected as the region-based image descriptor in the MPEG-
7 standard. In addition, the angular radial transform may be generalized to grayscale images [Ri-
card et al., 2005], which makes it applicable to other vision tasks than shape matching as well.
For instance, a successful application of the generalized angular radial transform features to face
detection is presented by Fang and Qiu [2003].

Figure A.5 Real and imaginary part of the (4, 4) order of the angular radial transform (in Cartesian coordi-
nates).

A.2.3 Curvature scale-space features

Curvature scale-space (CSS) features are based on a multi-scale analysis of the curvature of the
shape contour [Mokhtarian et al., 1996]. Curvature is a measure for the curviness of a line. The
curvature of a circle with radius r is 1

r , and the curvature of a straight line is 0. The curvature
function C of a contour function (x, y) is given by

C(x, y) =
x′y′′ − y′x′′

(x′2 + y′2)3/2
, (A.6)

where x′ and x′′ represent the first and second derivative of x respectively. A zero-crossing
of the curvature function of a contour corresponds to an inflection point on the contour. The
locations of inflection points are important shape features, because they do not change under
affine transformations of the shape contour. CSS features measure the position of the inflection
points of the contour through the scale space1. The extraction of CSS features consists of three
main steps that are performed iteratively. First, the contour is convolved with a Gaussian kernel
with increasing variance σ in order to obtain the contour representation at a coarser scale. Second,
the curvature function of the contour at this scale is computed. Third, the zero-crossings of the
curvature function are computed and plotted in an image that depicts the locations of the zero-
crossings of the curvature function (i.e., the locations of the inflection points) of the contour as a

1For an extensive overview on scale space theory, we refer to [Koenderink, 1984].
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function of the scale parameter σ. The process is iterated until all inflection points in the shape
contour have vanished (due to the blurring of the contour function), and results in a so-called
curvature scale space image. An example of such a CSS image is shown in Figure A.6.

Figure A.6 Example of a CSS image.

The CSS image represents information on all inflection points of the original contour, how-
ever, only the main peaks in the CSS image are of interest, because they correspond to the most
important inflection points in the contour. The small peaks reflect information that is under large
influence of small changes in the shape, and therefore, they are generally considered as noise and
thus ignored. The positions of the main peaks are stored and form the final CSS features. A sim-
ple matching procedure that aligns two CSS images and sums the Euclidean distances between
the main peaks is described by Mokhtarian et al. [1996], and allows for the computation of the
similarity between shapes.

Curvature scale space features have been selected as the MPEG-7 standard contour descriptor.
Successful applications of CSS features have been presented to, e.g., fish classification [Parisi-
Baradad et al., 2005] and corner detection [Mokhtarian and Suomela, 1998].

A.2.4 Shape contexts

Shape contexts are shape features that represent a shape by means of a collection of points that
are sampled from the shape contour [Belongie et al., 2001]. The sampling of points from the
shape contour may be performed using a method that selects points as uniformly as possible over
the shape contour, or by means of a method that selects the boundary points in such a way that
the number of sampled points is proportional to the curvature of the shape contour. The points
that are sampled from the contour are represented by means as shape context descriptors. Shape
context descriptors represent a point on the shape boundary by measuring its distance and relative
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angle to all other points. The distances and angles to all other points are coarsely quantized2 and
a joint angle-distance histogram is contructed from the quantized values. An example of a shape
context descriptor is shown in Figure A.7.

!"#$%&'(

)
&
*
+(

Figure A.7 Example of a shape context descriptor. The shape descriptor for the highlighted point is shown.

A complete set of shape context descriptors (a so-called shape context) contains global in-
formation about the shape contour. In order to compute the dissimilarity between two shape
contexts, the Hungarian algorithm [Kuhn, 1955] is applied on the pairwise Euclidean distances
between the shape context descriptors in the two shape contexts. The Hungarian algorithm finds
the optimal assignment between the points sampled from the first shape and the points sampled
from the second shape (based on the Euclidean distances between the shape context descrip-
tors) in O(n3). The costs of the assignment form the dissimilarity between the two shapes. The
bending energy of the thin plate spline warping3 that describes the warping between both shapes
indicates to what extent the first shape contour has to be warped in order to match the second
shape contour [Bookstein, 1989], and may be added to the dissimilarity measure in order to
enhance it. The main advantage of shape contexts are its intuitiveness and straightforward imple-
mentation. The main disadvantage of the use of shape contexts is the computationally expensive
matching that is necessary in order to compute the similarity between two shapes represented by
shape contexts. An approach to partially resolve this weakness by performing vector quantization
on the shape context descriptors is presented by Mori et al. [2005].

A.3 Edge-based statistical features

Edge-based statistical features aim at representing the contours of objects. Edge-based statistical
features compute statistics of edge-detected versions of images. The edge detection is generally
performed by means of an edge detector, such as the Sobel edge detector or the Harris edge
detector [Forsyth and Ponce, 2003]. Contour-based shape features (such as shape contexts and
CSS features) may also be considered edge-based statistical features. However, we assume that

2In the quantization of the distance values, a logarithmic scale is usually employed.
3The thin plate spline is a two-dimensional generalization of B-splines [Duchon, 1977].
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edge-based statistical features represent not only the outer shape of an object, but attempt to
capture all edge information obtained from the edge-detected image. For instance, such features
may be used to model the layout of the stamp on a coin or a stroke of handwriting.

In this section, we present two edge-based statistical features, viz. edge-hinge features and
edge angle-distance features. In Appendix F, we present the results of experiments in which
these features are applied in writer identification and coin classification. Edge-hinge features are
discussed in subsection A.3.1. In subsection A.3.2, we present edge angle-distance features.

A.3.1 Edge-hinge features

Edge-hinge features characterize the changes in the direction of a connected line, such as a stroke
of handwritten text. This makes them very well applicable to, e.g., writer identification [Bulacu
et al., 2003; van der Maaten and Postma, 2005]. Edge-hinge features are extracted from hand-
writing images by means of a window that is slid over an edge-detected handwriting image.
Whenever the central pixel of the window is on, the two edge fragments (i.e., connected se-
quences of pixels) emerging from this central pixel are considered. Their directions are measured
and stored as pairs. A joint probability distribution P (ϕ1, ϕ2) is estimated from a large sample
of such pairs. An example of an angle pair is shown in Figure A.8. The reader should note that
edge-hinge features are closely related to the edge orientation histograms that are used as shape
features by Jain and Vailaya [1996].
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Figure A.8 Angle pair (ϕ1, ϕ2).

A.3.2 Edge angle-distance features

Edge angle-distance features attempt to represent edge information on a circular surface in a
manner that is invariant to changes in scale and rotation of the surface. This makes edge angle-
distance features well suitable for the representation of, e.g., stamps on coins or pills. Below, we
introduce edge angle-distance histograms as a combination of edge distance histograms and edge
angle histograms.
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(a) Edge distance histogram. (b) Edge angle histogram. (c) Edge angle-distance histogram.

Figure A.9 Edge-based statistical histograms.

Edge distance histograms estimate the distribution of the distances of edge pixels to the center
of the surface [van der Maaten and Postma, 2006]. The histograms are computed by dividing the
surface into a fixed number of circular concentric parts, as is illustrated in Figure A.9(a). The
number of edge pixels in each part is accumulated, and the resulting histograms are normalized.
Edge distance histograms are rotation invariant by definition.

Although edge distance histograms were shown to be good features for, e.g., coin classifi-
cation [van der Maaten and Postma, 2006], they do not incorporate relative angular information
in the edge images. The relative angular distribution of edge pixels can be described using edge
angle histograms. Edge angle histograms are computed by dividing the circular surface in pie-
shaped parts [van der Maaten and Boon, 2006], as is illustrated in Figure A.9(b). The number
of edge pixels in the parts is accumulated, and the resulting histogram is normalized. In contrast
to edge distance histograms, edge angle histograms are not rotation invariant by definition. Ro-
tation invariance of the edge angle feature can be obtained by computing the magnitude of the
Fourier transform of the obtained histogram [Szoplik and Arsenault, 1985]. This step makes the
histogram invariant under circular shifts (which correspond to rotations of the surface). Using
the magnitude of the Fourier transform requires a large number of bins in the histogram, since a
rotation of the surface should imply a circular shift of the histogram instead of a change in the
values of the histogram bins.

In order to give a good characterization of the distribution of edge pixels over the edge image,
angular and distance information can be combined by the estimation of a joint angle-distance dis-
tribution. We refer to the estimations of the joint distributions as edge angle-distance histograms.
Edge angle-distance histograms incorporate both distance and relative angular information of
the edge pixels in the edge image. The histograms are computed by dividing the edge image
into parts as illustrated in Figure A.9(c). The number of edge pixels is binned for each part, and
subsequently the resulting histogram is normalized. The feature is made rotation invariant by
computing the magnitudes of the Fourier transforms of all distance bands in the distribution. The
reader should note that edge angle-distance features have a large resemblance to shape context
descriptors.





B Derivation of the t-SNE
gradient

In effect, t-SNE minimizes the Kullback-Leibler divergence between the joint probabilities pij

in the high-dimensional space and the joint probabilities qij in the low-dimensional space. The
values of pij are defined to be the symmetrized conditional probabilities, whereas the values of
qij are obtained by means of a Student-t distribution with one degree of freedom

pij =
pj|i + pi|j

2n
, (B.1)

qij =

(
1 + ‖yi − yj‖2

)−1∑
k 6=l (1 + ‖yk − yl‖2)

−1 , (B.2)

where pj|i and pi|j are either obtained from Equation 3.1 or from the random walk procedure de-
scribed in Section 3.4. The values of pii and qii are set to zero. The Kullback-Leibler divergence
between the two joint probability distributions P and Q is given by

C = KL(P ||Q) =
∑

i

∑
j

pij log
pij

qij
(B.3)

=
∑

i

∑
j

pij log pij − pij log qij . (B.4)

In order to make the derivation less cluttered, we define two auxiliary variables dij and Z as
follows

dij = ‖yi − yj‖, (B.5)

Z =
∑
k 6=l

(1 + d2
kl)

−1. (B.6)

Note that if yi changes, the only pairwise distances that change are dij and dji for ∀j. Hence, the
gradient of the cost function C with respect to yi is given by

δC

δyi

=
∑

j

(
δC

δdij
+

δC

δdji

)
(yi − yj) (B.7)

= 2
∑

j

δC

δdij
(yi − yj). (B.8)
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The gradient δC
δdij

is computed from the definition of the Kullback-Leibler divergence in Equa-
tion B.4 (note that the first part of this equation is a constant).

δC

δdij
= −

∑
k 6=l

pkl
δ(log qkl)
δdij

(B.9)

= −
∑
k 6=l

pkl
δ(log qklZ − logZ)

δdij
(B.10)

= −
∑
k 6=l

pkl

(
1

qklZ

δ((1 + d2
kl)

−1)
δdij

− 1
Z

δZ

δdij

)
(B.11)

The gradient δ((1+d2
kl)

−1)
δdij

is only nonzero when k = i and l = j. Hence, the gradient δC
δdij

is
given by

δC

δdij
= 2

pij

qijZ
(1 + d2

ij)
−2 − 2

∑
k 6=l

pkl

(1 + d2
ij)

−2

Z
. (B.12)

Noting that
∑

k 6=l pkl = 1, we see that the gradient simplifies to

δC

δdij
= 2pij(1 + d2

ij)
−1 − 2qij(1 + d2

ij)
−1 (B.13)

= 2(pij − qij)(1 + d2
ij)

−1. (B.14)

Substituting this term into Equation B.8, we obtain the gradient

δC

δyi

= 4
∑

j

(pij − qij)(1 + d2
ij)

−1(yi − yj). (B.15)



C Analytical solution to
random walk probabilities

In this appendix, we briefly describe the analytical solution to the random walk probabilities that
are employed in the random walk version of t-SNE (see Section 3.4). The solution is described
in more detail by Grady [2006].

It can be shown that computing the probability that a random walk initiated from a non-
landmark point (on a graph that is specified by adjacency matrix W) first reaches a specific
landmark point is equal to computing the solution to the combinatorial Dirichlet problem in
which (1) the boundary conditions are at the locations of the landmark points, (2) the considered
landmark point is fixed to unity, and (3) the other landmarks points are set to zero [Kakutani,
1945; Doyle and Snell, 1984]. In practice, the solution can thus be obtained by minimizing the
combinatorial formulation of the Dirichlet integral

D[x] =
1
2

xT Lx, (C.1)

where L represents the graph Laplacian. Mathematically, the graph Laplacian is given by L =
D − W, where D = diag

(∑
j w1j ,

∑
j w2j , ...,

∑
j wnj

)
. Without loss of generality, we may

reorder the landmark points in such a way that the landmark points come first. As a result, the
combinatorial Dirichlet integral decomposes into

D[xN ] =
1
2
[
xT

L xT
N

] [LL B
BT LN

] [
xL

xN

]
(C.2)

=
1
2
(
xT

LLLxL + 2xT
N BT xM + xT

N LN xN

)
, (C.3)

where we use the subscript ·L to indicate the landmark points, and the subscript ·N to indicate
the non-landmark points. Differentiating D[xN ] with respect to xN and finding its critical points
amounts to solving the linear systems

LN xN = −BT . (C.4)

Please note that in the equation, BT is a matrix containing the columns from the graph Lapla-
cian L that correspond to the landmark points (excluding the rows that correspond to landmark
points). After normalization of the solutions to the systems XN , the column vectors of XN con-
tain the probability that a random walk initiated from a non-landmark point terminates in a land-
mark point. One should note that the linear systems specified in Equation C.4 are only nonsingu-
lar if the graph is completely connected, or if each connected component in the graph contains at
least one landmark point [Biggs, 1974].

Because we are interested in the probability of a random walk initiated from a landmark
point terminating at another landmark point, we duplicate all landmark points in the neighbor-
hood graph, and initiate the random walks from the duplicate landmarks. Because of memory
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constraints, it is not possible to store the entire matrix XN into memory (note that we are only
interested in a small number of rows from this matrix, viz. in the rows corresponding to the du-
plicate landmark points). Hence, we solve the linear systems defined by the columns of −BT

one-by-one, and store only the parts of the solutions that correspond to the duplicate landmark
points. For computational reasons, we first perform a Cholesky factorization of LN , such that
LN = CCT , where C is an upper-triangular matrix. Subsequently, the solution to the linear sys-
tem in Equation C.4 is obtained by solving the linear systems Cy = −BT and CxN = y using a
fast backsubstitution method.



D Restricted Boltzmann
Machines

A Restricted Boltzmann Machine (RBM) [Ackley et al., 1985; Hinton, 2002] is an undirected
probabilistic graphical model, i.e., a special kind of Markov Random Field. Its structure is a fully
connected bipartite graph, in which one group of nodes (the visual nodes v) models the data, and
one group of nodes (the hidden nodes h) models the latent structure of the data. The nodes in the
RBM may follow any exponential family distribution [Welling et al., 2004], but often, they are
assumed to be binary stochastic, i.e., to follow a Bernoulli distribution. The structure of an RBM
is illustrated in Figure D.1.

visual node v

hidden nodes h

weights W

bias b

bias c

Figure D.1 Schematic layout of a Restricted Boltzmann Machine.

Since an RBM is a special case of a Markov Random Field, the joint distribution over all
nodes is given by a Boltzmann distribution that is specified by the energy function E(v,h).
Mathematically, the joint distribution over all nodes is thus given by

P (v,h) = exp(−E(v,h)). (D.1)

The most common choice for the energy function is a linear function

E(v,h) = −
∑
i,j

Wi,jvihj −
∑

i

bivi −
∑

j

cjhj , (D.2)

in which Wi,j represents the weight of the connection between node vi and hj , bi represents
the bias on node vi, and cj represents the bias on node hj . Noting that the states of the visual
nodes are conditionally independent given the states of the hidden nodes, and the hidden nodes
are conditionally independent given the visual nodes, it can easily be shown1 that this energy
function gives rise to conditional distributions P (vi = 1|h) and P (hj = 1|v) that are given by
the sigmoid function of the input into a node

P (vi = 1|h) =
1

1 + exp(−
∑

j Wi,jhj − bi)
= σ

∑
j

Wi,jhj + bi

 , (D.3)

1Note that p(v|h) =
p(v,h)P
v′ p(v′,h) , that p(v, h) ∝ exp(hT Wv) if we omit the biases, and that v may have the value 0

or 1. As a result, p(v = 0|h) =
exp(0)

exp(0)+exp(htW)
= 1

1+exp(hT W)
and p(v = 1|h) = 1

1+exp(−hT W)
.
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P (hj = 1|v) =
1

1 + exp(−
∑

iWi,jvi − cj)
= σ

(∑
i

Wi,jvi − cj

)
. (D.4)

Now that we fully defined the RBM, we turn to the problem of learning the weights W and biases
b and c such that the marginal distribution over the visual nodes under the model, Pmodel(v), is
identical to the observed data distribution Pdata(v). The RBM is trained as to minimize the
natural distance between the data distribution Pdata(v) and the model distribution Pmodel(v).
Mathematically, it is trained to minimize2 the Kullback-Leibler divergence KL(Pdata||Pmodel).
The gradient of the Kullback-Leibler divergence with respect to the weights Wi,j is given by

δKL(Pdata||Pmodel)
δWi,j

= 〈vihj〉Pdata
− 〈vihj〉Pmodel

, (D.5)

where 〈·〉Pmodel
represents an expected value under the model distribution, and 〈·〉Pdata

represents
an expected value under the data distribution.

Although the form of the gradient is fairly simple, it is impossible to actually compute the
gradient, in particular, because the term 〈vihj〉Pmodel

cannot be computed analytically. Sampling
from the model distribution, for instance, using Gibbs sampling (note that the required condition-
als are given by Equation D.3 and D.4.), is also infeasible because it would require the Markov
chain to be run infinitely long. In order to alleviate this problem, an alternative gradient has
been proposed that minimizes a slightly different objective function that is called the contrastive
divergence [Hinton, 2002]. The contrastive divergence measures the tendency of the model dis-
tribution to walk away from the data distribution by KL(Pdata||Pmodel) − KL(P1||Pmodel),
where P1(v) represents the distribution over the visual nodes as the RBM is allowed to perform
one complete Gibbs sweep away from the data distribution. The contrastive divergence can be
minimized efficiently using standard gradient descent techniques, using an approximate gradient
that is given by

δKL(Pdata||Pmodel)−KL(P1||Pmodel)
δWi,j

≈ 〈vihj〉Pdata
− 〈vihj〉P1

. (D.6)

The term 〈vihj〉P1
is now estimated from samples that are obtained by clamping a data vector

onto the visual nodes, and performing one complete Gibbs sweep (CD-1). Alternatively, more
than one Gibbs sweep may be employed (CD-n), or we may use a single Markov chain as shown
by Tieleman [2008].

2In this case, minimizing the Kullback-Leibler divergence is identical to maximizing the log-likelihood of the data.



E Derivation of the multiple
maps t-SNE gradient

Multiple maps t-SNE minimizes the sum of Kullback-Leibler divergences between the pairwise
similarities pj|i and the conditional probabilities qj|i in the low-dimensional space. The values
of pj|i are given and assumed to obey

∑
j pj|i = 1, whereas the values of qj|i are obtained by

combining Student-t distributions with one degree of freedom over all maps

qj|i =

∑
m π

(m)
i π

(m)
j

(
1 + ‖y(m)

i − y(m)
j ‖2

)−1

∑
m′
∑

k 6=i π
(m′)
i π

(m′)
k

(
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i − y(m′)
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)−1 , (E.1)

where we defined the mixing proportions π(m)
i by means of mixing weights w(m)

i through

π
(m)
i =

exp
(
−w(m)

i

)
∑

m′ exp
(
−w(m′)

i

) . (E.2)

The values of pi|i and qi|i are set to zero. The sum of Kullback-Leibler divergences between the
probability distributions Pi and Qi is given by

C =
∑

i

KL(Pi||Qi) =
∑

i

∑
j

pj|i log
pj|i

qj|i
(E.3)

=
∑

i

∑
j

pj|i log pj|i − pj|i log qj|i. (E.4)

In order to make the derivation less cluttered, we define two auxiliary variables d(m)
ij and Zi as

follows
d
(m)
ij = ‖y(m)

i − y(m)
j ‖2, (E.5)

Zi =
∑
m

∑
k 6=i

π
(m)
i π

(m)
j

(
1 + d

(m)
kl

)−1

. (E.6)

Note that if y(m)
i changes, the only pairwise distances that change are d(m)

ij and d(m)
ji for ∀j.

Hence, the gradient of the cost function C with respect to y(m)
i is given by

δC

δy(m)
i

= 2
∑

j

(
δC

δd
(m)
ij

+
δC

δd
(m)
ji

)(
y(m)

i − y(m)
j

)
. (E.7)
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The gradient of the cost function C with respect to the pairwise distance d(m)
ij is given by
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The gradient of the cost function C with respect to the mixing weights w(m)
i is given by
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= π
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175

The gradient of the cost function C with respect to the mixing proportions π(m)
i is given by
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F Applications of edge-based
statistical features

In Appendix F, we present two applications of edge-based statistical features on challenging
computer vision task. The first application identifies the writer of a piece of text based on his
handwriting, and is presented in Section F.1. The second application classifies a coin based on a
digital photograph of the coin, and is presented in Section F.2.

F.1 Writer identification

Writer identification is a subfield of forensic handwriting analysis that aims at identifying the
writer of a piece of handwritten text. Figure F.1 shows an example of handwritten text written
by two different writers. Currently, writer identification is performed by forensic handwriting
experts, however, there exists evidence that the judgments of these experts lack reliability [Kam
et al., 1997]. The important, sometimes even decisive, role that these judgments play in criminal
courts, prompts for a more objective way of handwriting analysis.

Figure F.1 Handwritten text by two different writers.

We performed experiments with edge-hinge features on the Firemaker dataset. The dataset
contains the handwritings of 250 writers, who all wrote two pages of text. We measured the
generalization performance of 1-nearest neighbor classifiers that are trained on the set of first
pages. The generalization performances are measured on the set of second pages, and are reported
in Table F.1. The table presents the results for edge-hinge features that were extracted using
various fragment lengths (i.e., window sizes), and in addition, using combinations of fragment
lengths (leading to multi-scale edge-hinge features).

In order to increase the performance on the identification task, we combined the multiscale
edge-hinge features with grapheme features. Graphemes are small strokes of handwriting, and
are obtained by segmenting the handwriting. They can be viewed upon as the building blocks of
handwriting (i.e., graphemes are to handwriting what textons are to texture). Grapheme features
characterize handwriting by means of a grapheme codebook, which is constructed by performing
vector quantization (e.g., using k-means clustering, Kohonen maps [Kohonen, 1989], or affinity
propagation [Frey and Dueck, 2007]) on a set of graphemes. An example of a grapheme code-
book is shown in Figure F.2. In our experiments, combining the multiscale edge-hinge features
with (multiscale) grapheme features [Schomaker et al., 2007] increases the generalization perfor-
mance to 97%. This performance comes up to that of current state-of-the-art writer identification
systems [Bulacu and Schomaker, 2007].
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Fragment lengths Generalization perf. Fragment lengths Generalization perf.
{3} 68% {5, 7} 74%
{5} 70% {5, 9} 77%
{7} 70% {7, 9} 72%
{9} 69% {3, 5, 7} 80%
{3, 5} 77% {3, 7, 9} 78%
{3, 7} 77% {5, 7, 9} 76%
{3, 9} 79% {3, 5, 7, 9} 81%

Table F.1 Generalization performances of multiscale edge-hinge features.

Figure F.2 Grapheme codebook.

F.2 Coin classification

During the introduction of the Euro, various charity organizations collected large numbers of pre-
Euro coins in order to raise extra funds for their work. Traditional coin sorting machines [Passer-
aub et al., 1997] are not capable of sorting these coins, due to the large number of coin types and
currencies that is present in the obtained coin collection. Image-based coin classification systems
make digital photographs of the coins next to traditional thickness and weight measurements
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and, thereby, they may alleviate the weaknesses of traditional coin sorting systems. In addition,
image-based coin classification systems may be of interest to institutions that are interested in
the preservation of the numismatic heritage.

The left part of Figure F.3 shows two examples of photographs made by an image-based coin
classification system. Below, we present a system that performs fast and reliable classification
of heterogeneous coin collections based on such photographs. The system is described in more
detail in [van der Maaten and Postma, 2007]. The workflow of our system consists of three main
stages: (1) segmentation, (2) feature extraction, and (3) classification. Segmentation of coins
may be performed by means of applying an edge detection with an adaptive threshold and some
additional morphological operations or by means of an Hough circle detector. However, it falls
outside the scope of this thesis. In the feature extraction stage, we extract edge angle-distance
distributions from the segmented coin images. In addition, we extract polar gradient orientation
images from the coin images. In the classification stage, we first preselect a number of possible
coin classes based on the edge angle-distance distributions. Subsequently, the classification is
performed by means of nearest neighbor classifier that was trained on the gradient orientation
images. The gradient orientation images are aligned during the nearest-neighbor search, i.e., we
apply a standard template matching approach on the gradient orientation images. Since a coin
has two coin sides, the classification has to be performed twice. In order to ensure reliability of
the system, a coin is solely classified if the classifications of the two coin sides correspond.

Figure F.3 Two coin photographs and two coin prototypes.

We performed experiments on a large dataset of modern coins that were collected during the
introduction of the Euro, called the MUSCLE CIS dataset. The dataset is divided into a fixed
training set of 20, 000 coins, and a fixed test set of 5, 000 coins. The training set contains 2, 268
different coin faces, corresponding to 692 coin classes. In addition, the training set contains
a prototype for each coin face. The prototypes were obtained by registering all coin images
belonging to the same coin face, and averaging over the registered coin images. A few examples
of coin images and prototypes are shown in Figure F.3. In our experiments with the modern coin
dataset, we only use the coin prototypes as training data. In the testset, approximately 400 of the
coin classes appear. In addition, the test set contains 3 to 4% coins that are not in the training set,
and that should be classified as unknown. In order to evaluate the performance of our system,
we performed experiments in which we trained the system on the 2, 268 coin prototypes in the
trainingset. We evaluated the performance of our approach by measuring the number of correct
and incorrect classifications on the testset of 5, 000 modern coins.

The results of this experiment are presented in Table F.2. In Table F.2, we present the per-
centage of correct classifications, the percentage of classifications as unknown, the percentage
of incorrect classifications, and the computation time that was consumed for the classification of
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Settings Results
Preselection Templ. match. Correct Unknown Incorrect Comp. time
MEADH None 53.78% 44.46% 1.76% 1,769 sec.
None Orientation 92.92% 5.98% 1.10% 17,780 sec.
MEADH Orientation 88.56% 10.58% 0.86% 10,180 sec.

Table F.2 Performance of our system on the modern coin dataset.

5, 000 coins (= 10, 000 coin images) on a standard laptop computer. We report the performance
of our system both with and without the preselection. In addition, we present the results when the
classification is performed based on the edge angle-distance histograms. The results in Table F.2
reveal that our approach is capable of correctly classifying a large percentage of the coins, while
only making a low percentage of misclassifications (taking into account that 3 to 4% of the coins
in the testset was not in the trainingset). Furthermore, we observe that the preselection based
on multiscale edge distance-angle distributions allows for a significant reduction in the compu-
tation time, without severely decreasing the generalization performance of the system. In fact,
the preselection based on multiscale edge distance-angle distributions even seems to reduce the
number of incorrect classifications. Classification based on solely the edge angle-distance his-
tograms already allows for correct classification of over 50% of the coins (note that probability
level is ∼ 0.05%). The computation time that is needed to process a single coin image is only
1 second on a standard laptop computer (this includes reading, segmentation, feature extraction,
and classification of the coin image).
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Summary

The extraction of informative features from visual data is one of the most important problems in
the development of computer vision systems. Feature extraction is necessary in order to address
the two main problems of image-space representations: (1) the dimensionality problem, i.e.,
the high dimensionality of image-space representations and (2) the variance problem, i.e., the
susceptibility of image-space representations to variations in natural images. The dimensionality
problem is due to the large number of pixels that constitute an image. The variance problem is
due to the drastic changes individual pixel values may undergo under the presence of variations
such as rotations, changes in viewpoint, and scale changes. Feature extraction aims to resolve
the two weaknesses of image-space representations by extracting invariant informative features
from the visual data. Over the last few decades, a large number of studies have resulted in the
development of a variety of features, some of which we aim to improve in this thesis. The
problem statement of the thesis reads:

How can we mitigate the dimensionality and variance problems in computer vision systems?

The thesis investigates two types of features that address the two weaknesses of image-space
representations: (1) dimensionality reduction features and (2) texture features. Dimensionality
reduction features mitigate the dimensionality of image-space representations by building a
representation that exploits the (non)linear relations between the values of individual pixels.
Texture features are an important example of image features that aim to construct invariant
representations for the texture of surfaces. The problem statement of the thesis is translated into
the following two research questions.

• Research question 1: How can we improve existing dimensionality reduction features?

• Research question 2: How can existing texture features be adapted to be invariant to vari-
ations that occur in uncontrolled environments, such as rotations, rescalings, and lighting
changes?

We start our research in Chapter 2, in which we focus on the first research question: How can we
improve existing dimensionality reduction features? The chapter presents an extensive compar-
ative review of state-of-the-art dimensionality reduction features with experiments on a variety
of datasets, and identifies the most important weaknesses and limitations of the underlying tech-
niques. In particular, we conclude that existing dimensionality reduction techniques that focus on
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retaining the local structure of a data manifold are hampered by flaws in their objective functions
that are the result of the convex nature of these functions.

Chapter 3 presents and investigates a new dimensionality reduction technique, called t-
Distributed Stochastic Neighbor Embedding (t-SNE), that addresses some of the weaknesses
that were identified in Chapter 2. The experiments in Chapter 3 reveal the strong performance of
t-SNE in a number of visualization experiments.

In Chapter 4, we present two extensions of t-SNE that aim to extend the technique to two
new learning settings in which: (1) a parametric mapping from the high-dimensional to the low-
dimensional space is required, and (2) the extracted features need to be non-metric. The chapter
presents illustrative experiments for both extensions of t-SNE. We argue that the second exten-
sion gives rise to a computational model for semantic representation.

In Chapter 5, we shift our focus to the second research question: How can existing texture
features be adapted to be invariant to variations that occur in uncontrolled environments, such as
rotations, rescalings, and lighting changes? The chapter presents a literature overview of state-
of-the-art texture features, which can be subdivided into four main types. The chapter concludes
that one of these types, the so-called texton-based texture features, is an interesting type of fea-
tures that have not yet been investigated in sufficient detail. In particular, two important issues
need to be addressed: (1) the performance of image-based textons compared to filter-based tex-
tons in terms of performance in classification experiments is unclear and (2) current texton-based
texture features are hampered by the second weakness of image-space representations, which is
their susceptibility to variations in natural images.

Chapter 6 attempts to resolve the two issues that were raised in Chapter 5. The first issue
is addressed by performing a range of experiments in which we compare image-based textons
with a variety of filter-based textons. From results of these experiments, we conclude image-
based textons may slightly outperform filter-based textons, and offer important computational
advantages. The second issue is addressed by the development of three new texton-based texture
features, two of which are invariant under rotations, and one of which is invariant under local
affine transformations. The chapter presents experiments with the new invariant texture features
that reveal the merits of the new texture features.

In Chapter 7, we investigate the new features developed in the previous chapters in two real-
world computer vision tasks. First, we investigate the application of a combination of t-SNE and
texton-based texture features in the assessment of paintings by Van Gogh and his contemporaries.
The results of our experiments reveal that our approach is capable of identifying forged Van
Gogh-paintings and paintings by his contemporaries in a collection of Van Gogh and non-Van
Gogh paintings. Second, we investigate the application of a combination of t-SNE and texton-
based texture features in the recognition of seeds based on photographic reproductions. The
results of this study reveal that our approach is promising, in particular, when it is combined with
relevant domain knowledge.

Chapter 8 concludes the thesis by answering the two research questions and the problem
statement. We conclude the dimensionality problem can successfully be addressed using novel
dimensionality reduction techniques such as t-SNE, and that the variance problem may be ad-
dressed by identifying affine-covariant image regions and using the Fourier coefficients of polar
image representations. In addition to the conclusions, Chapter 8 presents guidelines for future
work.



Samenvatting

De extractie van informatieve kenmerken uit visuele data is één van de belangrijkste proble-
men in de ontwikkeling van automatische beeldverwerkingssystemen. Het extraheren van zulke
kenmerken is noodzakelijk om de twee belangrijkste problemen van beeldruimte-representaties
aan te pakken: (1) het dimensionaliteitsprobleem: de hoge dimensionaliteit van beeldruimte-
representaties en (2) het variantieprobleem: de gevoeligheid van beeldruimte-representaties voor
variaties in natuurlijke beelden. De hoge dimensionaliteit van beeldruimte-representaties wordt
veroorzaakt door het grote aantal pixels waaruit een afbeelding is opgebouwd. De gevoeligheid
voor variaties wordt veroorzaakt door de drastische veranderingen die individuele pixel-waarden
kunnen ondergaan als gevolg van variaties in het beeld zoals rotaties, veranderen van gezicht-
spunt en schaalveranderingen. De laatste tientallen jaren is er veel onderzoek gedaan naar de
extractie van kenmerken uit visuele data. Dit onderzoek heeft geleid tot de ontwikkeling van een
groot aantal technieken die zulke kenmerken extraheren. Het doel van deze thesis is om sommige
van de ontwikkelde technieken voor kenmerk-extractie te verbeteren. De probleemstelling van
het proefschrift luidt als volgt:

Hoe kunnen we het dimensionaliteits- en het variantieprobleem
van beeldverwerkingssystemen verminderen?

Het proefschrift beschrijft onderzoek naar twee typen kenmerken die de twee nadelen
van beeldruimte-representaties aanpakken: (1) dimensiereductie-kenmerken en (2) textuur-
kenmerken. Dimensiereductie-kenmerken verlagen de dimensionaliteit van beeldruimte repre-
sentaties door een representie te construeren die de (niet-)lineaire relaties tussen de waarden
van individuele pixels exploiteert. Textuur-kenmerken zijn een belangrijk voorbeeld van beeld-
kenmerken die invariant zijn onder bepaalde transformaties van de beelden. De probleemstelling
van dit proefschrift wordt vertaald in de volgende twee onderzoeksvragen:

• Onderzoeksvraag 1: Hoe kunnen we bestaande dimensiereductie-kenmerken verbeteren?

• Onderzoeksvraag 2: Hoe kunnen bestaande textuur-kenmerken aangepast worden zodat
ze invariant zijn onder variaties die voorkomen in ongecontroleerde omgevingen, zoals
rotaties, schalingen, en veranderingen in belichting?

Ons onderzoek begint in hoofdstuk 2, waarin we ons richten op de eerste onderzoeksvraag: Hoe
kunnen we bestaande dimensiereductie-kenmerken verbeteren? Het hoofdstuk presenteert een
uitgebreide vergelijkende review van moderne dimensiereductie-kenmerken met behulp van ex-
perimenten op een groot aantal datasets, en identificeert de belangrijkste nadelen en limitaties
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van de onderliggende technieken. De belangrijkste conclusie van het hoofdstuk is dat bestaande
dimensiereductie-technieken, die zich richten op het behoud van de lokale structuur van data,
tegenvallend presteren door fouten in hun kostenfuncties. Deze fouten hangen vaak samen met
de convexiteit van de kostenfuncties.

Hoofdstuk 3 presenteert en onderzoekt een nieuwe dimensiereductie-techniek genaamd t-
Distributed Stochastic Neighbor Embedding (t-SNE). De nieuwe techniek tracht sommige van
de in hoofdstuk 2 geı̈dentificeerde nadelen van bestaande dimensiereductie-technieken op te
lossen. Hoofdstuk 3 toont de uitzonderlijk goede prestaties van t-SNE in een aantal visualisatie-
experimenten.

In hoofdstuk 4 presenteren we twee nieuwe varianten van t-SNE die de techniek uitbrei-
den naar twee nieuwe leeromgevingen, waarin: (1) een parametrische functie van de hoog-
dimensionale naar de laag-dimensionale ruimte geleerd dient te worden en (2) de geëxtraheerde
kenmerken bij voorkeur niet voldoen aan de metrische axioma’s. Het hoofdstuk presenteert illus-
tratieve experimenten voor beide nieuwe varianten van t-SNE. We beargumenteren dat de tweede
uitbreiding (het niet-metrische model) leidt tot een geschikt computationeel cognitief model voor
semantische representatie.

In hoofdstuk 5 richten we ons op de tweede onderzoeksvraag: Hoe kunnen bestaande textuur-
kenmerken aangepast worden zodat ze invariant zijn tegen variaties die voorkomen in ongecon-
troleerde omgevingen, zoals rotaties, schalingen, en veranderingen in belichting? Het hoofd-
stuk presenteert een literatuuroverzicht van moderne textuur-kenmerken, die kunnen worden on-
derverdeeld in vier belangrijke typen. Het hoofdstuk concludeert dat één van deze typen, de zoge-
naamde texton-gebaseerde textuur-kenmerken, een interessant type kenmerken is dat nog in on-
voldoende mate onderzocht is. Twee specifieke problemen met betrekking tot texton-gebaseerde
textuur-kenmerken dienen aangepakt te worden: (1) het is onduidelijk hoe beeld-gebaseerde tex-
tons presteren in vergelijking met filter-gebaseerde textons in classificatie-experimenten en (2)
huidige texton-gebaseerde textuur-kenmerken worden gehinderd door het variantieprobleem van
beeldruimte-representaties.

In hoofdstuk 6 trachten we de twee problemen die beschreven zijn in hoofdstuk 5 aan te
pakken. Het eerste probleem wordt aangepakt door een groot aantal experimenten uit te vo-
eren, waarin beeld-gebaseerde textons vergeleken worden met verschillende filter-gebaseerde
textons. Uit het resultaat van deze experimenten concluderen we dat beeld-gebaseerde textons
licht beter presteren dan filter-gebaseerde textons, en bovendien belangrijke computationele vo-
ordelen bieden. Het tweede probleem wordt aangepakt door de ontwikkeling van drie nieuwe
texton-representaties, waarvan er twee invariant zijn onder rotaties, en één invariant is onder lo-
cale affiene transformaties. Het hoofdstuk presenteert experimenten met de nieuwe invariante
kenmerken die de voordelen van onze textuur-representaties aantonen.

In hoofdstuk 7 onderzoeken we de prestaties van de kenmerken die we in de vorige hoofd-
stukken ontwikkeld hebben in twee ‘echte’ beeldverwerkingstaken. Als eerste onderzoeken we
de toepassing van een combinatie van t-SNE en texton-gebaseerde textuur-kenmerken in de
evaluatie van schilderijen van Van Gogh en zijn tijdgenoten. De resultaten van dit onderzoek
laten zien dat onze aanpak in staat is vervalste Van Gogh-schilderijen en schilderijen van zijn
tijdgenoten te onderscheiden van echte Van Gogh-schilderijen. Als tweede onderzoeken we de
toepassing van een combinatie van t-SNE en texton-gebaseerde textuur-kenmerken in de auto-
matische herkenning van zaden, gebaseerd op foto’s van deze zaden. De resultaten van dit onder-
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zoek laten zien dat onze aanpak veelbelovend is, vooral wanneer deze gecombineerd wordt met
relevante domeinkennis.

Hoofdstuk 8 besluit de thesis met de antwoorden op de twee onderzoeksvragen, en presen-
teert onze ideeën over toekomstig onderzoek.
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