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The Open-Loop Discounted Linear Quadratic Differential

Game for Regular Higher Order Index Descriptor Systems
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Abstract: In this paper we consider the discounted linear quadratic differential game for descriptor
systems that have an index larger than one. We derive both necessary and sufficient conditions for
existence of an open-loop Nash (OLN) equilibrium. In a small macro-economic stabilization game
we illustrate that the corresponding optimal response is generically cyclic.
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1 Introduction

Dynamic game theory brings together three features that are key to many situations in economy,
ecology, and elsewhere: optimizing behavior, presence of multiple agents, and enduring consequences
of decisions. For that reason this framework is often used to analyze various policy problems in these
areas (see e.g. [2], [9] and [19]).
In applications one often encounters however systems described by a set of ordinary differential
equations subject to some algebraic constraints. These systems are known as descriptor systems.
Differential games for descriptor systems were, e.g., already studied by [20] and [21]. More recently
[5] and [6] studied for index one systems the linear quadratic differential game. In [5] the open-loop
information case is studied, whereas in [6] the case that players use linear state feedback controls is
dealt with.
In this paper we take a first step to solve differential games for descriptor systems which have
an index that is higher than one. We consider the problem of two players who like to optimize
their performance given by a usual quadratic cost function depending both on the state and control
variables in which both variables are discounted. The underlying system is described by a set of
differential and algebraic equations and we assume that the system is regular, that is, consistent
initial states yield a unique state trajectory. The index of the system is k > 1. It is well-known that
in that case the state trajectory includes (k − 1)th order derivatives of the applied input. For that
reason we consider the (k − 1)th order derivative of the applied input as our control instrument.
We assume that the information structure of the game is of the open-loop type. That is, both

∗corresponding author; address: Tilburg University; Dept. of Econometrics and O.R.; P.O. Box 90153; 5000 LE
Tilburg; The Netherlands. Tel. +31134662174. Fax +31134663280; e-mail: engwerda@uvt.nl.
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players only know the initial state and structure of the system, and the set of admissible inputs, U ,
are functions of time which are k − 1 times differentiable.
Linear quadratic control problems play an important role in applications. Particularly in economics
usually the cost of the players is discounted to stress the short-term cost. Since the derivatives of
the input function naturally appear in the state trajectory of descriptor systems it seems natural
to include these terms in the cost function of the players too. This motivates the problem setting
that will be formulated in the next section in detail. The linear quadratic control problem subject
to descriptor systems has been considered in the literature by various authors. The approach taken
here, to introduce additional states and to consider the (k − 1)th derivative of the input function as
the control instrument, was considered e.g. in [18]. More references on the regulator problem for
descriptor systems can be found, e.g., in [16], [12], [22] or [6] . Like many approaches for solving
the linear quadratic control problem for descriptor systems, in this paper we solve the corresponding
game problem using the Weierstrass canonical form of the pencil λE − A (see (1)). Using the
corresponding state transformation, it is possible to reduce the problem to a reduced order standard
game problem. Using the theory for affine linear quadratic differential games as documented in [3]
and [4] it is possible then to solve the game for both a finite and infinite planning horizon.
The outline of the paper is as follows. The next section formalizes the problem statement and
summarizes some basic properties about descriptor systems. In section three we present the main
results for the finite planning horizon, whereas section four contains those about the infinite planning
horizon. In section five we illustrate some of the theory by a simple example from macro-economics.
The example demonstrates in particular that cyclic behaviour may arise within this framework.
Finally section six concludes.

2 Preliminaries

Consider the differential algebraic equation

Ēẋ(t) = Āx(t) + f(t), x(0) = x0, (DAE)

and the associated matrix pencil
λĒ − Ā. (1)

From, e.g., [1] we recall the following results. System (DAE) and (1) are said to be regular if
the characteristic polynomial det(λĒ − Ā) is not identically zero. If the pencil (1) is not regular,
then the system (DAE) is under-determined in the sense that consistent initial conditions do not
uniquely determine solutions (see [7]). If the pencil (1) is regular, then the roots of the characteristic
polynomial are the finite eigenvalues of the pencil. If Ē is singular, the pencil is said to have infinite
eigenvalues which may be identified as the zero eigenvalues of the inverse pencil Ē − λĀ. From [7]
we recall the so-called Weierstrass canonical form.

Theorem 2.1 If (1) is regular, then there exist nonsingular matrices X and Y such that

Y T ĒX =

[
In 0
0 N

]
and Y T ĀX =

[
J 0
0 Ir

]
, (2)

where J ∈ Rn×n is a matrix in Jordan form whose elements are the finite eigenvalues, Ik ∈ Rk×k is
the identity matrix and N ∈ Rk×k is a nilpotent matrix also in Jordan form. J and N are unique up
to permutation of Jordan blocks. �
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If (1) is regular the solutions of (DAE) take the form

x(t) = X1x1(t) + X2x2(t) (3)

where with X = [X1 X2], Y = [Y T
1 Y T

2 ], X1, Y T
1 ∈ R(n+r)×n, X2, Y T

2 ∈ R(n+r)×r and

x1(t) = eJtx1(0) +

∫ t

0

eJ(t−s)Y1f(s)ds; (4)

x1(0) = [In 0]X−1x0

x2(t) = −
k−1∑

i=0

N iY2
di

dti
f(t), (5)

under the consistency condition that x2(0) = 0 (see e.g. [10]). Here k is the degree of nilpotency of
N . That is the integer k for which Nk = 0 and Nk−1 6= 0. The index of the pencil (1) and of the
descriptor system (DAE) is the degree k of nilpotency of N . If E is nonsingular, we define the index
to be zero.
From the above formulae it is obvious that the solution x(t) will not contain derivatives of the
function f if and only if k ≤ 1. In that case the solution x(t) is called impulse free. In general, the
solution x(t) involves derivatives of order k − 1 of the forcing function f if (DAE) has index k. To
verify whether (DAE) has an index of at most one see, e.g., [11].

In this paper we assume that the dynamics of the game is described by

Ēẋ(t) = Āx(t) + B̄1u1(t) + B̄2u2(t), x(0) = x0, t > 0. (6)

where Ē, Ā ∈ R(n+r)×(n+r), rank(Ē) = n, B̄i ∈ R(n+r)×mi , ui ∈ Rmi is the input by which player i

can manipulate the system and x0 is assumed to be a consistent initial state (so x0 = x(0+)). That
is, x0 is such that the system Ēẋ(t) = Āx(t), x(0) = x0, has a unique solution for t > 0. Assuming

that system (6) has index k > 1 let u
(i)
j :=

diuj(t)

dti
, i = 1, · · · , k − 2, vj(t) :=

d(k−1)uj(t)

dt(k−1) and

xeT

(t) := [xT (t) uT
1 (t) · · ·u

(k−2)T

1 uT
2 (t) · · · u

(k−2)T

2 vT
1 vT

2 ]. (7)

We consider then the next quadratic cost functional Ji for player i:

∫ T

0

e−θt{[xeT

(t)M̄ix
e(t)}dt + e−θT xeT

(T )Q̄iT xe(T ). (8)

Here all matrices are constant in time, both M̄i and Q̄iT are symmetric and θ > 0 is the discount
factor.

The problem addressed in this paper is to find the OLN equilibria for the game (6,8) as defined
below.

Definition 2.2 Assume (6) is regular and has index k > 1. Let x0 be a consistent initial state and
ui(0), i = 1, · · · , k − 2 be given. Furthermore, let U denote the set of functions which are k − 1
times differentiable with u(k−1) piecewise continuous. Then (u∗

1, u
∗

2) ∈ U is an open-loop Nash (OLN)
equilibrium if for every (u1, u

∗

2) and (u∗

1, u2) ∈ U , J1(u
∗

1, u
∗

2) ≤ J1(u1, u
∗

2) and J2(u
∗

1, u
∗

2) ≤ J1(u
∗

1, u2).
�
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With [
x1(t)
x2(t)

]
:= X−1x, with x1 ∈ Rn and x2 ∈ Rr (9)

we have that for any consistent initial state the system dynamics (6) can be rewritten as (see (3-5)):

ẋ1(t) = Jx1(t) + Y1B̄1u1(t) + Y1B̄2u2(t), x1(0) = [I 0]X−1x0 (10)

x2(t) = −

k−1∑

i=0

N iY2(B̄1u
(i)
1 (t) + B̄2u

(i)
2 (t)) (11)

= −

k−2∑

i=0

N iY2(B̄1u
(i)
1 (t) + B̄2u

(i)
2 (t)) − Nk−1Y2B̄1v1(t) − Nk−1Y2B̄2v2(t). (12)

Next introduce the discounted state and control vector

xT
z := e−

1
2
θt[xT

1 (t) uT
1 (t) · · ·u

(k−2)T

1 (t) uT
2 (t) · · · u

(k−2)T

2 (t)] and wi(t) := e−
1
2
θtvT

i (t) (13)

together with zT (t) := [xT
z (t) wT

1 (t) wT
2 (t)]. (14)

Then, with m := m1 + m2,

Pi := [Y2B̄i NY2B̄i · · · Nk−2Y2B̄i], i = 1, 2, and (15)

Z1 := [In 0n×km]; Z2 := −[0r×n P1 P2 Nk−1Y2B̄1 Nk−1Y2B̄2] (16)

we have that

e−
1
2
θtx(t) = X

[
e−

1
2
θtx1(t)

e−
1
2
θtx2(t)

]
= X

[
Z1

Z2

]
z(t) =: L1z(t). (17)

Furthermore, with E2 := [0km×n Ikm], we have that

e−
1
2
θtxe(t) =

[
L1

E2

]
z(t) =: Lz(t). (18)

Next, let Ai := [Y1B̄i 0n×(k−2)mi
], i = 1, 2; and with I ∈ Rmi×mi

Di :=




−1
2
θI I 0 · · · 0

0
...

...
. . .

. . . 0
I

0 · · · 0 −1
2
θI



∈ R(k−1)mi×(k−1)mi and Bzi

:=




0

...
0
I



∈ R(k−1)mi×mi .

Using this, it is obvious then that the game (6,8) has a set of OLN equilibrium actions (u1(.), u2(.))
if and only if (v1(.), v2(.)) are OLN equilibrium actions for the game defined by

ẋz(t) =




J − 1
2
θI A1 A2

0 D1 0
0 0 D2


xz(t) +




0
Bz1

0


w1(t) +




0
0

Bz2


w2(t)

=: Axz(t) + B1w1(t) + B2w2(t), (19)
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with xT
z (0) := xz0 = [([I 0]X−1x0)

T uT
1 (0) · · ·u

(k−2)T

1 (0) uT
2 (0) · · · u

(k−2)T

2 (0)] is such that (10,11)
holds and

Ji =

∫ T

0

{[zT (t)LT M̄iLz(t)}dt + zT (T )LT Q̄iT Lz(T ). (20)

To avoid the inclusion of controls in the scrap value, we make the standard assumption (see also [16])
that

LT Q̄iT L =

[
QiT 0
0 0

]
, i = 1, 2, where QiT ∈ Rn+(k−1)m×n+(k−1)m.

Moreover, let

LT M̄iL =: Mi =:




Qi Vi Wi

V T
i R1i Ni

W T
i NT

i R2i


 , where Qi ∈ Rn+(k−1)m×n+(k−1)m, Rji ∈ Rmj×mj . (21)

Then, (20) can be rewritten as

Ji =

∫ T

0

{[zT (t)Miz(t)}dt + xT
z (T )QiT xz(T ). (22)

3 The finite planning horizon

In this section we consider the game (6,8) under the assumption that T is finite. As shown in
the previous section the open-loop Nash equilibria are found by determining the open-loop Nash
equilibria of the game defined by (19) and (22). Assuming that Rii > 0, i = 1, 2 and matrix G (see
the Appendix for the introduced notation, in particular for matrix M̃ (35)) is invertible the solution
for the last-mentioned game is well-known. From e.g. [3] we recall the next result.

Theorem 3.1 Assume that the two Riccati differential equations

K̇1(t) = −AT K1(t) − K1(t)A + (K1(t)B1 + V1)R
−1
11 (BT

1 K1(t) + V T
1 ) − Q1, K1(T ) = Q1T , (23)

K̇2(t) = −AT K2(t) − K2(t)A + (K2(t)B2 + W2)R
−1
22 (BT

2 K2(t) + W T
2 ) − Q2, K2(T ) = Q2T ,(24)

have a symmetric solution Ki(.) on [0, T ], i = 1, 2.

1. Then (19,22) has an OLN for every initial state if and only if matrix

H̃(T ) = [I 0 0]e−M̃T




I

Q1T

Q2T




is invertible.

5



2. Assume that the nonsymmetric Riccati differential equation

Ṗ (t) = −ÃT
2 P (t) − P (t)Ã + P (t)BG−1B̃T P (t) − Q̃; P T (T ) = [QT

1T , QT
2T ] (25)

has a solution P on [0, T ].
Then (19,22) has a unique OLN for every initial state. Moreover, the equilibrium actions are

[
w∗

1(t)
w∗

2(t)

]
= −G−1(H + B̃T P (t))Φ̃(t, 0)xz0,

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (A − BG−1(H + B̃T P (t)))Φ̃(t, 0); Φ̃(0, 0) = I.

�

Assumptions (23,25) imply that for both players the optimal control problem that arises if the action
of his opponent is known is solvable. In case item 1 in the above theorem holds, but item 2 does not
apply, then the corresponding equilibrium actions can be determined by solving a linear two-point
boundary value problem. The reader should then proceed similarly as in e.g. [5, Theorem 5].

Corollary 3.2 Assume that the two Riccati differential equations (23) have a symmetric solution
Ki(t) on [0, T ] and the nonsymmetric Riccati differential equation (25) has a solution P (t) on [0, T ].
Then (6,8) has a unique OLN for every initial consistent state x0 and u(i)(0), i = 1, · · · , k − 2.
Moreover, the equilibrium actions are

[
u∗

1(t)
u∗

2(t)

]
= e

1
2
θt

[
0m1×n Im1 0m1×(k−2)m+m2

0m2×n+(k−2)m1 Im2 0m2×(k−2)m2

]
xz(t),

where xz(t) solves

ẋz(t) = (A − BG−1(H + B̃T P (t))xz(t), xz(0) = xz0.

Moreover, the corresponding equilibrium state trajectory equals (see (17))

x∗(t) = L1[e
1
2
θtxT

z (t) vT
1 (t) vT

2 (t)]T .

�

4 The infinite planning horizon

In this section we assume that the cost functional player i = 1, 2, likes to minimize is:

lim
T→∞

Ji(x0, u1(0), · · · , u
(k−2)
1 (0), u2(0), · · · , u

(k−2)
2 (0), u1, u2, T ), (26)

where

Ji(x0, u1(0), · · · , u
(k−2)
1 (0), u2(0), · · · , u

(k−2)
2 (0), u1, u2, T ) =

∫ T

0

e−θt{xeT

(t)M̄ix
e(t)}dt.

6



subject to (6).
We assume that the matrix pairs (Ē, Ā, B̄i), i = 1, 2, are finite dynamics stabilizable. That is 1

rank([λĒ − Ā, B̄i]) = n + r, ∀λ ∈ C+
0 .

Following the analysis of section 2 it can be easily shown that the game (6,26) has an OLN if and
only if the game defined by

lim
T→∞

∫ T

0

{zT (t)Miz(t)}dt (27)

subject to (19) has an OLN. Furthermore, (Ē, Ā, B̄i) is finite dynamics stabilizable if and only if
(A, Bi) is stabilizable. So under this assumption, in principle, each player is capable to stabilize the
system (6) on his own. This property is a prerequisite to derive the main results below.
We assume that the players choose control functions belonging to the set of functions of time which
are k−1 times differentiable and which are such that the state of the closed-loop system converges to
zero, Us. Notice that the assumption that the players use simultaneously stabilizing controls implies
that stabilization of the system is a common objective of both players (see e.g. [3] for a discussion).
In the rest of the paper the symmetric algebraic Riccati equations

0 = −AT K1 − K1A + (K1B1 + V1)R
−1
11 (BT

1 K1 + V T
1 ) − Q1,

0 = −AT K2 − K2A + (K2B2 + W2)R
−1
22 (BT

2 K2 + W T
2 ) − Q2. (28)

and the asymmetric algebraic Riccati equation

0 = ÃT
2 P + PÃ − PBG−1B̃T P + Q̃ (29)

or, equivalently,

0 = AT
2 P + PJ − (PB +

[
H1

H2

]
)G−1(B̃T P + H) + Q

play a crucial role. Let σ(X) denote the spectrum of a matrix X.

Definition 4.1 A solution P ∈ R2n×n of the algebraic Riccati equation (29) is called

a. stabilizing, if σ(Ã − BG−1B̃T P ) ⊂ C−;

b. left-right stabilizing2(LRS) if

i. it is a stabilizing solution, and

ii. σ(−ÃT
2 + PBG−1B̃T ) ⊂ C+

0 ; �

The next lemma summarizes the relationship between the LRS solution of (29) and the stable graph
subspace (or disconjugate subspace, see [8]) of matrix M̃ introduced in (35). A proof of it can
be found in [4] and [14]. One way to calculate the (left-right) stabilizing solutions of (29) is by
determining the invariant subspaces of matrix M . Details on this issue can be found, e.g., in [3].

1C− = {λ ∈ C | Re(λ) < 0}; C+

0 = {λ ∈ C | Re(λ) ≥ 0}.
2In [3] such a solution is called strongly stabilizing.
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Lemma 4.2

1. The algebraic Riccati equation (29) has a LRS solution P if and only if matrix M̃ has an n-
dimensional stable graph subspace and M̃ has 2n eigenvalues (counting algebraic multiplicities)
in C+

0 .

2. If the algebraic Riccati equation (29) has a LRS solution, then it is unique. �

From [4] we recall the following two main results.

Theorem 4.3 Assume that

1. the set of coupled algebraic Riccati equations (29) has a set of stabilizing solutions Pi, i = 1, 2;
and

2. the two algebraic Riccati equations (28) have a stabilizing solution Ki(.), i = 1, 2.

Then the linear quadratic differential game (19,27) has an OLN for every initial state.
Moreover, with F := −G−1(H + B̃T P ), one set of equilibrium actions is given by:

[
w∗

1(t)
w∗

2(t)

]
= F Φ̃(t, 0)xz(0), (30)

where Φ̃(t, 0) is the solution of the transition equation

˙̃Φ(t, 0) = (A + BF )Φ̃(t, 0); Φ̃(0, 0) = I.

The costs by using the actions (30) for the players are xT
z (0)C̄ixz(0), i = 1, 2, where, with Acl :=

A + BF , C̄i is the unique solution of the Lyapunov equation

[I, F T ]Mi[I, F T ]T + AT
clC̄i + C̄iAcl = 0. (31)

�

Notice that in case the set of algebraic Riccati equations (29) has more than one set of stabilizing
solutions, there exists more than one open-loop Nash equilibrium. Matrix M has then a stable
subspace of dimension larger than n. In that case, generically, for every initial state there will exist
an infinite number of open-loop Nash equilibria.

The next Theorem 4.4 gives conditions under which there exists a unique OLN. Moreover, it
shows that in case there is a unique equilibrium the corresponding actions are obtained by those
described in Theorem 4.3.

Theorem 4.4 Consider the differential game (19,27).
This game has a unique open-loop Nash equilibrium for every initial state if and only if

1. The set of coupled algebraic Riccati equations (29) has a LRS solution, and

2. the two algebraic Riccati equations (28) have a stabilizing solution.

8



Moreover, in case this game has a unique equilibrium, the unique equilibrium actions are given by
(30). �

Similarly like we did for the finite-planning horizon case one can reformulate the above results
also in terms of the original system. Corollary 4.5 below states such a result if there is a unique
equilibrium. In that case the corresponding equilibrium strategies can also be synthesized as a
feedback strategy.

Corollary 4.5 Assume that the two Riccati equations (28) have a symmetric stabilizing solution Ki

and the nonsymmetric Riccati equation (29) has a LRS solution P .
Then (6,8) has a unique OLN for every initial consistent state x0 and u(i)(0), i = 1, · · · , k − 2.
Moreover, the equilibrium actions are

[
u∗

1(t)
u∗

2(t)

]
= e

1
2
θt

[
0m1×n Im1 0m1×(k−2)m+m2

0m2×n+(k−2)m1 Im2 0m2×(k−2)m2

]
xz(t),

where xz(t) solves

ẋz(t) = (A − BG−1(H + B̃T P ))xz(t), xz(0) = xz0.

Moreover, the corresponding equilibrium state trajectory equals (see (17))

x∗(t) = L1[e
1
2
θtxT

z (t) vT
1 (t) vT

2 (t)]T .

The corresponding costs are as in Theorem 4.3. �

Remark 4.6 Notice that the open-loop strategies are independent of the cost player i attaches to
the actual control instruments used by player j (i.e. they are independent of Rij, i 6= j. So in this
case player i will ignore the effects of the (k − 1)th order derivative of the control uj, used by player
j.

5 An Example

In this section we consider a simple macro-economic stabilization problem. Assume that a monetary
and fiscal authority like to stabilize some key macro-economic variables, i.e. the real interest rate,
r, inflation, ṗ, and the output gap, y, after a shock has occurred. The system is described by the
following equations:

r(t) = i(t) − ṗ(t) (32)

ẏ(t) = −α(i(t) − ṗ(t)) + βf(t) (33)

m(t) − p(t) = γy(t) − δi(t) (34)

Here p(t) is the price level, i(t) denotes the nominal interest rate, m(t) is the money supply and
f(t) the fiscal policy. The first two instruments, the nominal interest rate and money supply, are
determined by the monetary authority of the country, whereas the level of the third instrument, the
fiscal policy, is set by the government. Here, equation (32) models the real interest rate, (33) is a

9



simple growth equation of the output gap and (34) models asset market equilibrium (see e.g. [17]).
Assume that an initial shock in the real interest rate, price level and output gap has occurred, all
equal to one.
Introducing as the state variable x(t) := [r(t) p(t) y(t)]T , u1(t) := [i(t) m(t)]T and u2(t) := f(t) the
model can be rewritten as (6), where

Ē =




0 1 0
0 −α 1
0 0 0


 , Ā =




−1 0 0
0 0 0
0 −1 −γ


 , B̄1 =




1 0
−α 0
δ 1


 , B̄2 =




0
β

0


 , and x(0) =




1
1
1


 .

It is easily verified that this system is regular if and only if µ := 1 + αγ 6= 0. With

Y T :=




0 1 0
µ γ −1
0 0 −1


 ; X :=

1

µ




0 −1 1
−γ 0 1
1 0 α


 ,

k = 2; n = 1 and r = 2, we have

Y T ĒX =




1 0 0
0 0 1
0 0 0



 and Y T ĀX :=




0 0 0
0 1 0
0 0 1



 .

So this model has index two.
Elementary calculations show that our model (32-34) can be rewritten into the form (19) with

xz(t) := e−
1
2
θt[y(t) i(t) m(t) f(t)]T ; w1(t) := e−

1
2
θt[i̇(t) ṁ(t)]T ; w2(t) := e−

1
2
θtḟ(t); J = 0;

A1 = [−α 0]; A2 = β; D1 =

[
−1
2

θ 0
0 −1

2
θ

]
; D2 =

−1

2
θ; Bz1 = I2 and Bz2 = 1.

Assuming that the cost functional matrices are of the form M̄i = [diag(ρij)], i = 1, 2, where ρ17, ρ18

and ρ29 are positive, we get from (21) that with

L =

[
L1

E2

]
, where L1 =

1

µ




0 1 0 βγ −δ −1 0
−γ δ 1 0 0 0 0
1 αδ α 0 0 0 0



 and E2 = [01×6 I6],

Mi = 1
µ2∗




γ2ρi2 + ρi3 δνi νi 0 0 0 0
δνi ρi1 + δ2τi + µ2ρi4 δτi γβρi1 −δρi1 −ρi1 0
νi δτi τi + µ2ρi5 0 0 0 0
0 γβρi1 0 γ2β2ρi1 + µ2ρi6 −γβδρi1 −γβρi1 0
0 −δρi1 0 −γβδρi1 δ2ρi1 + µ2ρi7 δρi1 0
0 −ρi1 0 −γβρi1 δρi1 ρi1 + µ2ρi8 0
0 0 0 0 0 0 µ2ρi9




.

Here τi := ρi2 + α2ρi3 and νi := −γρi2 + αρi3.
In the Appendix we calculated the resulting matrix M̃ . Choosing next α = δ = 1

2
; γ = 1; β = 3

4
;
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(b) Control trajectories.

Figure 1: Example with γ = 1, β = 3
4
, α = δ = 1

2
, θ = 0.15 and x(0) = [1 1 1]T .

θ = 0.15 (see e.g. [17]); M1 = diag(2; 2; 1; 2; 2; 1; 3; 3; 2) and M2 = diag(1; 1; 2; 1; 1; 2; 2; 2; 3) we obtain
for the infinite planning horizon problem that there is a unique Nash equilibrium. The LRS solution
P =: [P1; P2], corresponding with these parameters, of the algebraic Riccati equation (29) is

P1 =




2.2983 −1.1452 −0.5815 1.1654
−1.1767 3.8712 0.9343 −0.2142
−0.5435 0.9236 3.0723 0.1003
1.5569 −0.2957 0.0148 2.6569


 and P2 =




2.5603 −0.8946 0.0753 1.4173
−1.2775 2.2990 0.3377 −0.8147
0.4338 0.3008 1.7192 0.4675
1.3597 −0.3636 0.2017 3.3466


 .

This yields the next feedback gain, F , and closed-loop matrix, A + BF (see Theorem 4.3):




0.3515 −1.0793 −0.1839 0.1522
0.0996 0.1144 −0.7690 0.1282
−0.4532 0.1212 −0.0672 −1.1155


 and




−0.075 −0.5 0 0.75
0.3515 −1.1543 −0.1839 0.1522
0.0996 0.1144 −0.8440 0.1282
−0.4532 0.1212 −0.0672 −1.1905


 ,

respectively.
The initial state of the transformed system (9), corresponding with the initial state x(0) = [1; 1; 1],
is [x1(0) x2(0)] = [0.5 0.5 2]. To determine a consistent initial state for system (19) we assume that
the control used at time t = 0 is Fxz0 and that (since our problem setting concerns a perturbation
problem) the initial control [u1(0) u2(0)] is chosen such that its norm3 is as small as possible. Some
elementary calculations show that the initial control [u1(0) u2(0)] (satisfying (12)) which is consistent
with x(0) = [1; 1; 1] and whose norm is as small as possible is [0.1639 1.9181 − 0.4530]. In Figures 1
and 2 we plotted the corresponding equilibrium state and control trajectories, respectively.
It is easily verified that the closed-loop system has complex eigenvalues. That implies that the
closed-loop response shows oscillations. Figure 1 shows the optimal control policy for fiscal policy
and nominal interest rate.
From (36) it is clear that if the weight attached by the government for changing his fiscal policy is not

3For simplicity reasons we choose all weights in the norm here the same, an assumption which of cause can be
simply adapted.
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too small the eigenvalues of matrix M̃ are close to 1
2
θ (4×) and those of matrix C =

[
C1 −C2

−C4 −CT
1

]
.

Since C is a Hamiltonian matrix its eigenvalues are symmetrically distributed w.r.t. the imaginary
axis. Furthermore it can be shown that C has no eigenvalues on the imaginary axis ((C1, C2) is
stabilizable, (C4, C1) is detectable and C4 > 0 (see e.g. [3, Proposition 5.15])). So matrix M̃ has
exactly 4 stable eigenvalues in this case. Consequently, the game has generically a unique equilibrium.
Moreover it can be shown (by a detailed analysis of its characteristic polynomial) that C has a
complex eigenvalue if the discount factor is not too large (if this discount factor becomes large the
eigenvalues are approximately ±1

2
θ (4×)). This shows that the cyclic behaviour of the closed-loop

system we found with the chosen set of parameters in this example is not a coincidence, but holds
in general (for a reasonable choice of parameters).

6 Concluding Remarks

In this paper we considered the linear-quadratic differential game for descriptor systems which have
an index k, larger than one. Since the state trajectory in that case is a function of up to the (k−1)th

order derivatives of the applied control, we considered here cost functions which take this dependency
into account. By actually penalizing the (k−1)th derivatives of the input function, in fact this (k−1)th

order derivative can be viewed as the control instrument and one obtains a regular linear-quadratic
differential game. Using the standard results on the regular linear-quadratic differential games we
derived then both necessary and sufficient conditions for OLN equilibria in this game.
We considered both a finite and infinite planning horizon. For the infinite horizon the standard
literature on linear-quadratic differential games requires that the system should be stabilizable by
all players individually. For that reason we considered in the general set-up a cost function where
future cost are discounted. For the finite planning horizon this assumption can be dropped.
The above results can be generalized straightforwardly to the N -player case. Furthermore, since Qi

are assumed to be indefinite, the obtained results can be directly used to (re)derive properties for the
zero-sum game. Notice, moreover, that if the discount factor θ is ”large enough” the infinite horizon
game has generically a unique OLN equilibrium.
We illustrated the theory by a simple macro-economic stabilization problem. The example shows
that the optimal response by the players gives rise to oscillatory behaviour of the closed-loop system
under fairly generally accepted choices for the set of model parameters. A phenomenon one often
observes in economics. This raises the question whether this kind of response is typical for this type
of control problems. A more detailed analysis of this phenomenon is planned for the future.
Obviously there are still many open problems to be solved. In particular, we did not worry about
numerical aspects. In applications it is well-known that for higher-order index systems this is a
serious issue. From that perspective it might be worthwhile to consider index reduction algorithms
that have been developed in the literature (see e.g. [15], [13]) to reduce the system to an index
one system first and next use the results from [5] to calculate the OLN equilibria. Maybe such
an approach would also facilitate to analyse the undiscounted case for an infinite planning horizon.
Furthermore, all of these problems can be analyzed also under different information structures.
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Appendix Notation

The next shorthand notation will be used.
Si := BiR

−1
ii BT

i ;

G :=

[
[0 I 0]M1

[0 0 I]M2

]


0 0
I 0
0 I


 =

[
R11 N1

NT
2 R22

]

A2 := diag{A, A}; B := [B1, B2]; B̃T := diag{BT
1 , BT

2 }; B̃T
1 :=

[
BT

1

0

]
; B̃T

2 :=

[
0

BT
2

]
;

Hi := [I 0 0]Mi




0 0
I 0
0 I



 = [Vi, Wi], i = 1, 2; H :=

[
[0 I 0] M1

[0 0 I] M2

]


I

0
0



 =

[
V T

1

W T
2

]
;

Ã := A − BG−1H ; S̃i := BG−1B̃T
i ; Q̃i := Qi − HiG

−1H ; ÃT
2 := AT

2 −

[
H1

H2

]
G−1B̃T and

M̃ :=

[
Ã −S̃

−Q̃ −ÃT
2

]
, where S̃ := [S̃1, S̃2], Q̃ :=

[
Q̃1

Q̃2

]
. (35)

Matrix M̃ for the example

Following the notation of the Appendix above one can construct matrix M̃ for the example. After
some lengthy elementary calculations we get that with θ1 := 1

2
θ and det := δ2ρ11ρ18+ρ11ρ17+µ2ρ17ρ18

M̃ =




C1 −C2 −C3

−C4 −CT
1 04×4

−C5 −C6 C7


 , (36)
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where

C1 = −θ1I4 +




0 −α 0 β

0 c11 0 γβc11

0 c12 0 γβc12

0 0 0 0


 , with c11 =

δρ11ρ18

det
, c12 =

ρ11ρ17

det
;

C2 =
1

det




0 0 0 0
0 ρ11 + µ2ρ18 −δρ11 0
0 −δρ11 δ2ρ11 + µ2ρ17 0
0 0 0 0


 ≥ 0; C3 =




0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

ρ29


 ;

C4 =
1

µ2




γ2ρ12 + ρ13 δν1 ν1 0
δν1 c41 δτ1 c42

ν1 δτ1 τ1 + µ2ρ15 0
0 c42 0 c43


 > 0, with

c41 = µ2ρ14 + δ2τ1 + µ2ρ18c12, c42 = µ2γβρ18c12, c43 = µ2(ρ16 + γ2β2ρ18c12);

C5 =
1

µ2




γ2ρ22 + ρ23 δν2 ν2 0
δν2 c51 δτ2

ρ21

ρ11
c42

ν2 δτ2 τ2 + µ2ρ25 0
0 ρ21

ρ11
c42 0 c53


 > 0, with

c51 = µ2ρ24 + δ2τ2 + µ2ρ18
ρ21

ρ11

c12, c53 = µ2(ρ26 + γ2β2ρ18
ρ21

ρ11

c12);

C6 =
1

det




0 0 0 0
0 δρ21ρ18 ρ21ρ17 0
0 0 0 0
0 βγδρ21ρ18 βγρ21ρ17 0


 ; C7 = θ1I4 +




0 0 0 0
α 0 0 0
0 0 0 0
−β 0 0 0


 .
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