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Selection of Alzheimer Symptom Items with Manifest
Monotonicity and Manifest Invariant Item Ordering

Rudy Ligtvoet, L. Andries van der Ark, and Klaas Sijtsma
Department of Methodology and Statistics, Tilburg University, P.O. Box 90153,
5000 LE Tilburg, The Netherlands.

Abstract
A procedure is proposed for selecting items from a test for which the assump-

tions of both manifest monotonicity and manifest invariant item ordering hold.
The use of the procedure is illustrated by means of an application to data from an
Alzheimer disease assessment.

1. Introduction
Nonparametrie item response theory (IRT) is based on a minimal set of as-

sumptions necessary to obtain useful measurement properties. A regularly used
assumption is local independenee (LI) of the item scores given the latent variables
underlying these item scores. Often, IRT models assume only one latent variabIe,
an assumption that agrees with the practical requirement that the test measures
only one trait or ability. This assumption is known as unidimensionality (UD).
Other assumptions concern the relationships between the items and this latent
variabIe. One assumption is latent monotonicity (M; Junker, 1993) and another is
latent invariant item ordering (IlO; Sijtsma & Junker, 1996). Latent M means that
the higher the score on the latent variabIe, the higher the expected item score. IRT
models that assume LI, UD, and latent M allow ordinal measurement of persons
(Sijtsma & Molenaar, 2002). A latent IlO means that the ordering of the items
in a test according to their attractiveness is the same for all levels of the latent
variabIe. Sijtsma & Junker (1996) discuss several practical testing situations in
whichlatent IlO is important, such as intelligence testing and person-fit analysis.

This study provides the outline of a bottom-up procedure which assists the
researcher in selecting from a larger set of items a subset of items for which both
latent Mand latent IlO hold. The proposed procedure is illustrated by an applica-
tion to data from Alzheimer disease assessment at the Southern Illinois University
Schoolof Medicine* .

2. Theory
We assume that LI and UD hold for the test under consideration. For I items

indexed i (i = 1, ... , I; indices j and k are also used), let Xi denote the item
score, and let Xi have realizations Xi E {O, ... , md. For dichotomous scoring,
mi = 1, and for polytomous scoring mi :::::2. Let e denote the latent variabIe. The
conditional expected value E(Xile) is known as the item response function (IRF).

Latent and manifest monotonicity. The assumption of latent M means that the
IRFs are nondecreasing in e (i.e., no strict increasingness is required); that is,

Fordichotomously scored items for which the assumptions of LI, UD, and latent M
hold,IRFs may be estimated from the test data as follows. Let Y be a conveniently



chosen ordinal estimator of latent variabIe e, and let us consider the IRF of item
i. We define the total score on 1- 1 items in the test excluding item i for which
we seek to estimate the IRF, as Y = R(il = LHi Xj. It has been shown (Junker,
1993) that LI, UD, and latent M together imply that

This observable property, known as manifest M, can be estimated from the test
data for each item. Manifest M does not imply latent M; this means that manifest
M is a necessary condition for latent M. Thus, if manifest M holds in the data,
this provides support for latent M but no proof, whereas deviations from manifest
M are in conflict with latent M. Because the proof of manifest M does not use the
number of items I, manifest M also holds for a two-item test containing items i
and k, for which Y = R(il = Xk; that is, E(XiIXk = 0) ::; E(XiIXk = 1). A
violation of manifest M occurs when we find that E(XiIXk = 0) > E(XiIXk = 1).

Unfortunately, for polytomously scored items for which LI, UD, and latent M
hold it has been shown that latent M does not imply manifest M (B. T. Hemker,
in Junker & Sijtsma, 2000). This means that a sequence of expected values
E(XiIR(il = r), that is nondecreasing in r, need not support latent M, and a
sequence that is not monotone need not be in conflict with latent M (this con-
clusion also holds when R(il = Xk). In practical data analysis, however, it seems
reasonable to assume that little harm is done when researchers use such sequences
heuristically for assessing latent M (Sijtsma & Meijer, 2007).

In this study, for polytomous items we use this heuristic strategy for expected
item score Xi conditioned on only one item Xb and define manifest M as

A violation of manifest M occurs each time we find for two item scores, 0 ::; Xk,a <
Xk,b ::; mb that

Examples of violations are found in Figure 1b (solid curve; one violation) and
Figure 1d (solid curve; two violations). Figure la shows two monotone curves .
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Fig. 1 Graphs of E(XiIXk)/mi values with (a) no violations, (b) violation of manifest M, (c)
violation of manifest no, and (d) violations of both manifest Mand no.

Latent and manifest invariant item ordering. Latent no has been defined for
polytomously scored items (Sijtsma & Hemker, 1998) with m+ 1 answer categories,
and dichotomous scoring as a special case. This definition can be generalized to
items from the same test having different numbers of answer categories, by con-
sidering the conditional expectation of item i adjusted for the number of answer
categories, E(Xile)jmi. Let the attractiveness of item i be defined as the uncon-
ditional expectation, E(Xi)jmi, and let the items be numbered such that i < j



means that item i is less attractive than item j, E(Xi)jmi < E(Xj)jmj. A set of
I items has latent IlO if

Equation 3 allows possible ties. Van der Ark and Bergsma (2006) showed that for
conditioning variabie Y, item score Xi, and item score Xj, all three independent
ofone another conditional on e, latent IlO implies manifest IlO; that is

again allowing possible ties (proof in Appendix A). Manifest IlO does not imply
latent IlO; thus, manifest IlO is a necessary condition for latent IlO. Analogous
to manifest M, one may replace Y by a single item score, such that Y = Xk and,
as aresuit, Equation 4 is defined for a triplet of items; that is,

In this triplet, each of the three items may play the role of conditioning variabie
Y. Thus, for a triplet of items manifest IlO in Equation 5 needs to be evaluated
three times, conditioned once on each of the three items i, j, and k. A violation
ofmanifest IlO occurs each time we find for at least one value Xk, that

Examples are found in Figure 1c (one violation at Xk = 0) and Figure 1d (one
violation at Xk = 2).

Combination of monotonicity and invariant item ordering. For dichotomously
scored items, latent Mand latent IlO can be combined into one set of inequalities
(Proposition 2.1 in Sijtsma & Junker, 1996). First, define the total score on I - 2
items excluding the items i and j for which we seek to establish non-intersection
of the IRFs, such that Y = R(i,j) = ~k#i,j Xk. By assuming that LI, UD, and
latent M hold, and assuming that also latent IlO holds for items i and j, for two
arbitrarily chosen values ea and eb, we have that if

Equation 7 may be called latent M&I10, and Equation 8 may be called manifest
M&I10. For finite test length I, manifest M&I10 does not imply latent M&I10.
Manifest M&I10 is a necessary condition for latent M&I10 and, logically, if man-
ifest M&I10 holds for the data this supports but does not prove latent M&I10,
whereas failure of manifest M&I10 disproves latent M&I10. The proof that Equa-
tion 7 implies Equation 8 does not depend on the number of items I; thus, it also
holds for I = 3 and Y = R(i,j) = Xk.

Because for polytomous scoring latent M does not imply manifest M, the im-
plication in Equation 7 and Equation 8 does not straightforwardly generalize to
polytomous items. Here we propose to use as a heuristic for investigating latent
M&I10 (Equation 7) in real data the following manifest Mf3IIO property. Let the
items i, j, and k be polytomously scored and let the number of ordered scores be



variabIe across the items. Then, for two arbitrarily chosen item scores for which
0:::; Xk,a < Xk,b :::;mk, we propose to use the heuristic

A violation of manifest M&nO occurs each time we find for at least one pair
Xk,a < Xk,b, that

Figure 1b shows a violation of manifest M, which does not lead to a revers al of
expectations as in Equation 10, Figure 1c shows a violation of manifest na, which
again is not picked up, and Figure 1d shows a violation of both manifest Mand
manifest na, which is refiected by a reversal of expected values as in Equation 10.
Thus, Equation 9 may not be a powerful tooI for investigating violations of manifest
Mand manifest no.

Estimation of expected values. The E(XiIXk)/mi values for assessing the in-
equalities in the Equations 1, 5, and 9 can be estimated from the data as fol!ows.
Let NXk denote the number of respondents out of a sample of size N who have a
score equal to Xk on item k, and let NXiXk denote the number of respondents who
have a score Xi on item i and a score Xk on item k; then

3. A Bottom-Up Item Selection Procedure
The goal of this study is to suggest a procedure for finding subsets of items in

a larger set, for which manifest Mand manifest na are satisfied. The first step of
the procedure is finding al! triplets consisting of three different items that satisfy
manifest Mand manifest no. The second step of the procedure entails combining
the triplets found in the first step into quartets for which manifest Mand manifest
na hold. The third step entails combining the quartets found in the second step
into 5-tuples for which manifest Mand manifest na hold. The procedure ends
when the largest n-tuple is found for which manifest Mand manifest na holds.

The first step of the procedure can be executed using two different methods for
investigating manifest Mand manifest no. The first method (Method 1) investi-
gates both manifest M (Equation 1) and manifest na (Equation 5). The second
method (Method II) investigates manifest M&nO (Equation 9). Method land
Method nare discussed next.

3.1. Technical details of first step
Method I. For the triplet of items, i, j, and k, the procedure is as fol!ows.

Arbitrarily, let item k be the conditioning variabIe in Equation 1 and Equation 5.
Al! violations of manifest M (Equation 2) for item i and item jare tested using a
one-sided independent t-test: The nul! hypothesis E(XiIXk = Xk,a) :::;E(XiIXk =
Xk,b) is tested against the alternative that E(XiIXk = Xk,a) > E(XiIXk = Xk,b)
(Equation 2). Rejection of the nul! hypothesis means that a violation of manifest
Mis found.

Al! violations of manifest na (Equation 6) are tested using a one-sided depen-
dent t-test. For E(Xi)/mi < E(Xj)/mj, the nul! hypothesis E(XiIXk = xk)/mi :s;
E(XjIXk = xk)/mj is tested against the alternative that E(XiIXk = xk)/mi >
E(XjIXk = xk)/mj (Equation 6). Rejection of the nul! hypothesis means that



a violation of manifest IlO is found. It may be noted that testing may be prob-
lematic when Xi en Xj have not been measured on the same scale, but given the
heuristic nature of this research this is ignored here.

Hypothesis testing is done with item i, j, and k consecutively playing the role
of conditioning variabIe while the expected values of the other two items are eval-
uated. If no violations are found, this result supports latent Mand latent IlO for
the item triplet. If at least one violation is found, it is concluded that latent Mand
latent IlO are not valid for the triplet. Because each triplet of items is investigated
three times, and because the number of triplets is large for realistic test length I,
it is reasonable to expect large numbers of sample violations of manifest Mand
manifest IlO. Method I picks up all violations and allows the researcher to adjust
the level of significance so that the violations considered to be important can be
assessed for item select ion with an eye to optimal decision-making.

Molenaar & Sijtsma (2000) noted that practical data analysis often yields large
numbers of violations of manifest Mand manifest IlO but argue that many of the
relatively small violations are not damaging for the measurement of persons on an
ordinal scale. They suggested ignoring violations smaller than a value minvi for
statistical significance testing. The computer program MSP (Molenaar & Sijtsma,
2000) uses default option min vi = .03. If a large power of the statistical test is
considered to be undesirable, the user could choose largel' values of minvi. For the
violations that remain after selection by min vi, the nominal Type 1 error rate of
the statistical test may be adapted. The requirement not to reject items too easily
is accomplished using large minvi and small Type 1 error rate.

Another possibility arises in applications in which having the best item subset
possible has priority over reliable person ordering using large numbers of items.
For example, when the importance of individual decision-making is paramount, as
in medical diagnosis, items are selected that show no more than minor violations
of manifest Mand manifest IlO. This is accomplished using small minvi and large
Type I error rate. In the research to be reported shortly both minvi and the
nominal Type 1 error rate are manipulated.

Method IJ. Method Il tests Equation 9, which is true when both manifest M
and manifest IlO hold, using a dependent t-test. Again, minvi = .03 may be used
for ignoring small sample violations, and statistical testing may be used for the
remaining violations. However, the method may well overlook serious violations
of manifest Mand manifest IlO in the data and, as aresuit, it is expected to have
less power than Method 1.

3.2. Technical details of the next steps
The next steps combine item triplets into larger items sets without further

statistical testing. In the second step, item quartets are identified of which allm = 4 constituent item triplets were found in the first step by means of either
Method I or Method Il. In the third step, item 5-tuples are identified of which
al! G) = 5 constituent item quartets were found in the second step; and so Oil,

until no larger sets can be identified. The end result of this procedure may consist
of several item subsets that overlap, and that may contain different numbers of
items. It is up to the researcher to interpret this result with respect to his/her
research question.

4. Simulation Study
A study was done to investigate the effects of different values of min vi and the

significance level ct on the number of item triplets identified using either Method
lor Method Il, and on the end result of item selection.



4.1. Method
Data. The data were sampled from a real-data set consisting of the scores of

200 persons on the eleven items from the Mini-Mental State exam (MMS; Fol-
stein, Folstein, & McHugh, 1975). The number of score categories varied across
items (see Appendix B). These data were collected during an Alzheimer disease
assessment at the Southern Il1inois University School of Medicine between 1994
and 2000 (Hughes, Perkins, Wright, & Westrick, 2003). The items assess several
cognitive functions such as orientation, registration, and attention (see Appendix
B for item labels). The assumptions UD and Li were checked on the dichotomized
item scores using the DETECT index (Zhang & Stout, 1999) and the scalability
coefficient H (Mokken, 1971). The resulting values of DETECT and H suggested
that the assumptions of UD and LI held for these data.

Independent variables. Four independent variables were used in this study:

1. Method for investigating manifest Mand manifest IlO: Method land Method
Il were used.

2. Minimum violation to be considered for statistical testing: Two values were
investigated, minvi = 0, which implies that all observed violations are tested
for significance; and minvi = .03, which is the MSP default value.

3. Nominal Type I error rate: a = .05 is the MSP default, and a = .10, which
leads to a more frequent rejection of the null hypothesis.

4. Sample size: A relatively small (N = 200) sample and a relatively large
(N = 500) sample were drawn with replacement from the real data.

Dependent variables. Two dependent variables were used in this study:

1. The proportion of item triplets for which manifest Mand manifest IlO could
not be rejected. This proportion was computed as the number of item triplets
for which manifest Mand manifest IlO could not be rejected divided by
C31) = 165, the maximum number of item triplets in this study.

2. The magnitude of the largest item set that resulted from the item select ion
procedure. The maximum value that can be obtained is 11.

Design characteristics. The design had size 2 x 2 x 2 x 2 = 16. In each cell,
10 data sets were generated. Given a particular sample size, a given data matrix
was used across all 8 combinations of method, min vi, and Type I error rate. As
a result, sample size is a between-factor, and the other independent variables are
within-factors.

4.2. Results
Table 1 shows the proportions and the standm'd deviations of the number of

item triplets in each cell of the design, based on the theoretical maximum of 165
item triplets. Furthermore, Table 1 shows the modal number of items in the largest
item set that resulted from the selection procedure. Most item triplets were found
using Method Il; between 93% and 96% of the theoretical maximum. Here, the
smaller standard deviation is due to the proportions being close to 1. This higher
number of item triplets leads to larger modal n-tuples; 8-tuples for a = .10 and
9-tuples for a = .05. The mean number of item triplets was close to the theoretical
maximum; thus, few triplets violated M&IlO. For Method I, nominal Type I error
rate and sample size had a relatively small effect. The modal number of items in
the largest item set was equal to 6. Nominal Type I error a = .05 yielded higher
means than nominal Type I error a = .10, and N = 200 yielded higher proportions
than N = 500. These effects were smaller for Method Il. No effect of factor minvi
was found.



Table 1 Proportion of Item Triplets (Standard Deviation Between Parentheses) and Modal
Number of Items in the Largest Set (bold).

Sample Size
Method minvi Alpha 200 500

I .00 .05 .654 (.080) 6 .623 (.076) 6
.10 .549 (.073) 6 .530 (.072) 6

.03 .05 .654 (.080) 6 .624 (.076) 6
.10 .552 (.075) 6 .532 (.071) 6

II .00 .05 .957 (.Oll) 9 .948 (.018) 9
.10 .939 (.017) 8 .929 (.023) 8

.03 .05 .957 (.Oll) 9 .948 (.018) 9
.10 .939 (.017) 8 .929 (.023) 8

4.3. Discussion
Method n identified few violations of latent Mand latent no, and may have

had too little power to be useful here. Lower bound minvi did not have any effect.
This may be due to small sample size yielding no significance for small violations
when minvi = O. For minvi = .03, the same small violations were not tested or
they were not significant, yielding the same result as found for minvi = O. For
larger sample sizes minvi is probably more effective for reducing power.

5. Real-Data Analysis
5.1. Results

Because the tIMS is used to identify symptoms of Alzheimer disease, we consid-
ered reliably identifying the largest subset of items that is characterized by latent
Mand latent no to be of greatest importance here. Based on the results found in
the previous section, we thus used Method I with minvi = 0 and a = .10. These
choices produced a conservative item selection, thus avoiding unnecessary risk of
selecting items for which latent Mand latent no did not hold.

The 11 items from the MMS were numbered from least attractive to most
attractive (see Appendix B for item numbers). Method I was used to test all 165
item triplets three times for violations of manifest Mand manifest no, using minvi
= 0 and a = .10. This resulted in 107 item triplets. ext, triplets were combined
to produce larger item sets fulfilling both manifest Mand manifest no. The result
was one 7-tuple containing the items 1, 2, 5, 6, 8, 9, and 11.

5.2. Discussion
The items 1, 2, 5, 6, 8, 9, and 11 can be interpreted as follows with respect to

latent Mand latent no. Given the severity of the symptoms associated with the
items, we conclude that the first problems of Alzheimer disease occur with recalling
recently learned series (item 11), naming the date (item 9), naming alocation
(item 8), following a sequence of instructions (item 6), copying a drawing (item 5),
registration of words read aloud (item 2), and writing a sentence read aloud (item
1). This ordering seems to agree with the onset of symptoms (memory impairment,
disorientation, impaired judgement, and language disturbance) reported by Kang,
Jeong, Lee, Baek, Kwon, Chin and Na (2004). Much research with respect to the
progression of Alzheimer disease remains to be done (and is beyond our expertise).



6. General discussion
A bottom-up item selection procedure was proposed which assists the researcher

in selecting items from a larger set in which items satisfy the requirements of latent
Mand latent no. Two methads were used to assess these properties. Methad I,
which assesses bath manifest M (Equation 1) and manifest no (Equation 5) is
more demanding than Methad n, which assesses a weaker version of manifest M
and manifest no, here denoted manifest M8lIO (Equation 9). Any subset of
items that is selected using Methad I is als0 selected using Methad n but not the
other way round. Methad n probably will gain power if it is used to assess expected
values conditional on, for example, Y = R(i,j), as in Equation 8. Restscore Y =
R(i,j) is certainly a more fine-grained ordinal estimator of latent trait e than the
coarse estimator provided by single item score Y = Xk (Equation 9). Thus,
restscore Y = R(i,j) will reveal violations of manifest M8lIO more easily than
item score Y = Xk. Use of the rest score requires the number of item scores to be
the same across the items; else, scores from different items are incomparable.

For the analysis of the MMS we chose minvi = 0 and Ct = .10. This way, we
reduced the risk of selecting items for which manifest Mand/or manifest no do
not hold. The resulting item subset has these properties with much certainty; thus,
we infer latent Mand latent no to hold for these items. In other applications, in
which a large number of items is needed to accurately order respondents for whom
the items have the same ordering, a larger value of minvi and a smaller value of
Ct allow more items into the scale but the selection is less stringent and accepts
more violations of latent Mand latent no. Future research should clarify which
values of minvi and Ct are acceptable for producing scales that allow for accurate
person and item ordering, while rejecting as few items as possible.

This study did not provide a benchmark indicating whether Methad I or Methad
n is more appropriate for identifying violations of latent Mand latent no. Such
a study would require knowledge about the pres ence of latent Mand latent no
in the population, but this information is unavailable in real-data analysis. A
well controlled simulation study to investigate the extent to which the procedure
yields correct conclusions concerning latent Mand latent no, is a topic for future
research.

Furthermore, it has been suggested to use scalability coefficient H to evaluate
manifest M (Molenaar, 1991; Mokken, 1971, pp. 148-153) and coefficient HT to
evaluate manifest no (Ligtvoet, Van der Ark, & Sijtsma, 2007; Sijtsma & Meijer,
1992). For the item subset 1, 2, 5, 6, 8, 9, and 11, we found that H = .598,
which indicates a "st rong" scale (Mokken, 1971, p. 185). This result supports
manifest M. We also found that HT = .747, which indicates a strong agreement
of individual item-score patterns with the ordering of items in the group. This
result supports manifest no. These results lend credibility to the results obtained
by means of our proposed item select ion procedure.

Appendix
Appendix A: Proof that latent IlO implies manifest IlO

The proof that latent no (Equation 3) implies manifest no (Equation 4) is
based on a pro of by Van der Ark and Bergsma (2006). Let G(e) be the distribution
function of e.



1 ~ -l~
mi LJ XiP(Xi = xilY) = [mi' P(Y)] LJ XiP(Xi = Xi, Y)

Xi Xi

[mi' p(y)]-l rL XiP(Xi = Xi, Y, B)dG(B)Jo Xi

[mi' p(y)r1 10 ~ XiP(Xi = Xi, YIB)G(B)dG(B). (11)

[mi' p(y)]-l 1P(YIB)G(B) LXiP(Xi = xiIB)dG(B)
e Xi:i10 E(XiIB)G(BIY)dG(B). (13)

Second, it is shown that a latent IlO implies a manifest IlO. Consider Equa-
tion 3. Multiplying both sides of Equation 3 by G(BIY) and taking the integral
over G(B) leaves the inequality unchanged. Hence, Equation 3 implies

:i10 E(XiIB)G(BIY)dG(B) :::;:j10 E(XjIB)G(BIY)dG(B). (14)

It follows from Equation 13 that the left-hand side of Equation 14 equals E(XiIY)/mi,
and the right-hand side of Equation 14 equals E(XjlY)/mj. Hence, Equation 3
implies Equation 4. This completes the praof.

Appendix B: The 11 Alzheimer assessment items.
For the 11 Alzheimer assessment items fram the Mini-Mental State exam, Ap-

pendix B shows the item numbers, their content, and their number of ordered
answer categories between parentheses.

1. Writing (2)

2. Registration (2)

3. Repetition (2)

4. Reading (2)

5. Copying (2)

6. 3-Stage Command (3)

7. Attention (4)

8. Location (4)

9. Date (5)

10. Naming (2)

11. Recall (4)
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