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Abstract

Let k be a natural number and let G be a graph with at least k vertices. A.E. Brouwer

conjectured that the sum of the k largest Laplacian eigenvalues of G is at most e(G)+
(

k+1

2

)

,

where e(G) is the number of edges of G. We prove this conjecture for k = 2. We also

show that if G is a tree, then the sum of the k largest Laplacian eigenvalues of G is at most

e(G) + 2k − 1.

AMS Subject Classification: 05C50, 15A42.
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1 Introduction

Let G be a simple graph with the vertex set V (G) = {v1, . . . , vn}. The degree of a vertex

v ∈ V (G), denoted by d(v), is the number of neighbors of v. The Laplacian matrix of G is

the n × n matrix L(G) = [ℓij ] that records the vertex degrees d(v1), . . . , d(vn) on its diagonal

and for any i 6= j, 1 6 i, j 6 n, ℓij = −1 if vi and vj are adjacent and ℓij = 0, otherwise.

It is well-known that L(G) is positive semi-definite and so its eigenvalues are nonnegative real

numbers. The eigenvalues of L(G) are called the Laplacian eigenvalues of G and are denoted by

µ1(G) > µ2(G) > · · · > µn(G). Note that each row sum of L(G) is 0 and therefore, µn(G) = 0.

In this paper, we investigate the sum Sk(G) =
∑k

i=1 µi(G) for 1 6 k 6 n. We denote the

edge set of G by E(G) and we let e(G) = |E(G)|. In [2], A.E. Brouwer has conjectured the

following.

1Corresponding author. E-mail: haemers@uvt.nl.

1



Conjecture 1 Let G be a graph with n vertices. Then Sk(G) 6 e(G) +
(

k+1
2

)

for k = 1, . . . , n.

In [2], Brouwer points out that, by the use of computer, he has checked Conjecture 1 for all

graphs with at most 10 vertices. For k = 1, the conjecture follows from the well-known inequality

µ1(G) 6 |V (G)| (see [6, p. 281]). Here, we prove Conjecture 1 for k = 2. We also show that

Sk(T ) 6 e(T ) + 2k − 1 for any tree T and any 1 6 k 6 n from which the conjecture follows for

trees.

Some results and conjectures related to Sk(G) can be found in the literature. First we state

the Grone-Merris conjecture [7]. Let dT

i = |{v ∈ V (G) | d(v) > i}| for i = 1, . . . , n. The numbers

dT

1 > dT

2 > · · · > dT
n are called the conjugate degrees of G. The Grone-Merris conjecture

asserts that Sk(G) 6
∑k

i=1 dT

i for k = 1, . . . , n. This inequality for k = 1 is immediate from

µ1(G) 6 |V (G)| and the equality obviously occurs for k = n − 1, n. Moreover, the conjecture

has been proved whenever k = 2 [3, Theorem 7.1] or G is a tree [9]. Next, we note that the

upper bound

Sk(G) 6
2mk +

√

mk(n − k − 1)(n2 − n − 2m)

n − 1
,

is obtained in [10], where 1 6 k < n and m = e(G).

2 Notation and Preliminaries

We first present some notation and definitions. For a subset X of V (G), N(X) denotes the set

of vertices which have at least one neighbor in X. An independent set in G is a subset Y of

V (G) such that no two distinct vertices in Y are adjacent. Two distinct edges of G are called

independent if they have no common endpoint. A set of pairwise independent edges in G is

called a matching. The maximum size of a matching in G is known as the matching number

of G, denoted by m(G). For two graphs G1 and G2, the union of G1 and G2, denoted by

G1 ∪G2, is the graph whose vertex set is V (G1)∪ V (G2) and whose edge set is E(G1)∪E(G2).

If V (G1) ∩ V (G2) = ∅, then the union of G1 and G2 is denoted by G1 + G2. We denote the

complete graph, star and path with n vertices by Kn, Sn and Pn, respectively. The complete

bipartite graph with the part sizes m and n is denoted by Km, n.

Brouwer has checked Conjecture 1 for all graphs with at most 10 vertices. For our purpose

we only need the following statement.

Lemma 1 [2] For any graph G with at most 8 vertices, S2(G) 6 e(G) + 3.

We next state some lemmas and theorems which will be used in the subsequent sections.

Lemma 2 Let n be a natural number.

(i) The Laplacian eigenvalues of Kn are n with multiplicity n − 1, and 0.

(ii) The Laplacian eigenvalues of Sn are n, 1 with multiplicity n − 2, and 0.
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The following lemma gives an affirmative answer to Conjecture 1 for k = 1.

Lemma 3 [6, p. 281] If G is a graph with n vertices, then µ1(G) 6 n.

Theorem 1 [6, p. 291] Let G be a graph with n vertices and let G′ be a graph obtained from G

by inserting a new edge into G. Then the Laplacian eigenvalues of G and G′ interlace, that is,

µ1(G
′) > µ1(G) > · · · > µn(G′) = µn(G) = 0.

Theorem 2 [8] Let G be a graph. Then µ1(G) 6 max{d(v) + m(v) | v ∈ V (G)}, where m(v) is

the average of the degrees of the vertices of G adjacent to the vertex v.

Theorem 3 [1] Let G be a graph with n vertices and vertex degrees d1 > · · · > dn. If G is not

Ks + (n − s)K1, then µs(G) > ds − s + 2 for 1 6 s 6 n.

The following theorem from matrix theory plays a key role in our proofs. We denote the

eigenvalues of a symmetric matrix M by λ1(M) > · · · > λn(M).

Theorem 4 [4] (see also [5]) Let A and B be two real symmetric matrices of size n. Then for

any 1 6 k 6 n,
k

∑

i=1

λi(A + B) 6

k
∑

i=1

λi(A) +

k
∑

i=1

λi(B).

An immediate consequence of Theorem 4 is the following corollary which will be used fre-

quently.

Corollary 1 Let G1, . . . , Gr be some edge disjoint graphs. Then Sk(G1∪· · ·∪Gr) 6
∑r

i=1 Sk(Gi)

for any k.

The following Lemma asserts that to prove Conjecture 1 for k = 2, it suffices to consider

connected graphs.

Lemma 4 Let G be a graph. Then either S2(G) = S2(H) for a connected component H of G

or S2(G) 6 e(G) + 2.

Proof. If the first statement does not hold, then G has two connected components H1 and H2

such that µ1(G) = µ1(H1) and µ2(G) = µ1(H2). By Lemma 3, we have µ1(Hi) 6 |V (Hi)| 6

e(Hi) + 1 for i = 1, 2. Therefore, S2(G) 6 (e(H1) + 1) + (e(H2) + 1) 6 e(G) + 2. �

The next lemma is the key to our approach. It gives a sufficient condition for the truth of

Conjecture 1 with k = 2, that holds for almost all graphs.
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Lemma 5 If G is a graph with a subgraph H for which S2(H) 6 e(H), then S2(G) 6 e(G) + 3.

Proof. Assume that G is a counterexample with a minimum possible number of edges. By

Corollary 1, we have e(G) + 3 < S2(G) 6 S2(H) + S2(G − H). This implies that S2(G − H) >

e(G − H) + 3, which contradicts the minimality of e(G). �

Lemma 6 Let G be a graph with n vertices. Suppose that there exist two non-adjacent vertices

u, v ∈ V (G) such that µk(G) > d(u) + d(v) + 2 for some integer k, 1 6 k 6 n. If G′ is the graph

obtained from G by inserting edge e = {u, v} into G, then Sk(G
′) 6 Sk(G) + 1.

Proof. For i = 1, . . . , n, define ǫi = µi(G
′) − µi(G). By Theorem 1, ǫi > 0 for any i. Let

d1 > · · · > dn and d′1 > · · · > d′n be vertex degrees of G and G′, respectively. Recall that for any

graph Γ , considering the trace of the matrix L(Γ )2, we have

|V (Γ )|
∑

i=1

µi(Γ )2 =
∑

v∈V (Γ )

d(v)2 + 2e(Γ ).

Applying this fact, we have

n
∑

i=1

µi(G
′)2 =

n
∑

i=1

d′2i + 2e(G′)

=
n

∑

i=1

d2
i + 2e(G) + 2d(u) + 2d(v) + 4

=
n

∑

i=1

µi(G)2 + 2
(

d(u) + d(v) + 2
)

.

This yields that

2µk(G)
k

∑

i=1

ǫi 6

k
∑

i=1

2ǫiµi(G)

6

n
∑

i=1

µi(G
′)2 −

n
∑

i=1

µi(G)2

= 2
(

d(u) + d(v) + 2
)

.

Since µk(G) > d(u) + d(v) + 2, Sk(G
′) − Sk(G) =

∑k
i=1 ǫi 6 1 and the assertion follows. �

3 Trees and threshold graphs

In the following, we obtain an upper bound for the sum of the k largest Laplacian eigenvalues

of a tree which implies Conjecture 1 for trees.
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Theorem 5 Let T be a tree with n vertices. Then Sk(T ) 6 e(T ) + 2k − 1 for 1 6 k 6 n.

Proof. We prove the assertion by induction on |V (T )|. If T is a star, then by Lemma 2(ii),

Sk(T ) = n+k−1 for 1 6 k < n, and we are done. Thus assume that T is not a star. Then T has

an edge whose removing leaves a forest F consisting of two trees T1 and T2, both having at least

one edge. Suppose that ki of the k largest eigenvalues of F comes from the Laplacian spectrum of

Ti for i = 1, 2, where k1 + k2 = k. If one of ki, say k2, is zero, then by |V (T2)| > 2, Corollary 1,

and the induction hypothesis, we conclude that Sk(T ) = Sk(F ∪ K2) 6 Sk1
(T1) + Sk(K2) 6

(e(T1) + 2k1 − 1) + 2 6 n + 2k − 2 = e(T ) + 2k − 1. Otherwise, using Corollary 1 and the

induction hypothesis, we have Sk(T ) = Sk(T1 ∪ T2 ∪ K2) 6 Sk1
(T1) + Sk2

(T2) + Sk(K2) 6

(e(T1) + 2k1 − 1) + (e(T2) + 2k2 − 1) + 2 = e(T ) + 2k − 1. This completes the proof. �

A threshold graph is a graph obtained from K1 by a sequence of operations of the form (i)

adding an isolated vertex or (ii) taking the complement. It is clear that adding isolated vertices

to a graph only increases the multiplicity of the Laplacian eigenvalue 0. This observation and

the next theorem shows that Conjecture 1 is valid for threshold graphs.

Theorem 6 Let G be a graph with n vertices and 1 6 k 6 n− 2. If Sk(G) 6 e(G)+
(

k+1
2

)

, then

Sn−k−1(G) 6 e(G) +
(

n−k
2

)

, where G is the complement of G.

Proof. From [6, p. 280], we have µi(G) = n − µn−i(G) for i = 1, . . . , n − 1. Therefore,

Sn−k−1(G) = n(n − k − 1) −
(

µk+1(G) + · · · + µn−1(G)
)

= n(n − k − 1) − 2e(G) +
(

µ1(G) + · · · + µk(G)
)

= n(n − k − 1) −

(

n

2

)

+ e(G) +
(

µ1(G) + · · · + µk(G)
)

− e(G)

6 e(G) + n(n − k − 1) −

(

n

2

)

+

(

k + 1

2

)

= e(G) +

(

n − k

2

)

,

as desired. �

4 The case k = 2

In this section, we prove Conjecture 1 for k = 2. First we establish the conjecture for graphs

with matching number at most three and then we conclude the assertion using Lemma 5.

Lemma 7 Let G be a graph with m(G) = 1. Then S2(G) 6 e(G) + 3.

Proof. Let n = |V (G)|. Since m(G) = 1, it is easily checked that either G = Sm + (n −m)K1

for some m, 1 6 m 6 n or G = K3 + (n − 3)K1. By Lemma 2, the assertion holds. �
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We say that a connected graph has the form △ if it has a subgraph H isomorphic to K3

such that every edge is incident with some vertex of H.

Lemma 8 Let G be a graph of the form △. Then S2(G) 6 e(G) + 3.

Proof. Let n = |V (G)| and dT

1 > · · · > dT
n be the conjugate degrees of G. If t is the number

of vertices of degree 1 in G, then it is not hard to see that 2(n − t − 3) 6 e(G) − t − 3. This

implies that dT
2 = n− t 6 e(G)−n + 3. Since dT

1 = n, dT
1 + dT

2 6 e(G) + 3. By [3, Theorem 7.1],

the Grone-Merris conjecture is true for k = 2. Therefore, S2(G) 6 dT
1 + dT

2 6 e(G) + 3. �

Lemma 9 Let n > 3 and let G be a connected spanning subgraph of K2, n−2. Then S2(G) 6

e(G) + 3.

Proof. Assume that {{v,w}, B} is the partition of V (G). For simplicity, we write µi(G) = µi

for 1 6 i 6 n. Let d1 > · · · > dn be the vertex degrees of G and let r and s be the number

of vertices of degree 1 and 2 in B, respectively. By Theorem 5, we can assume that G is not a

tree. Hence s > 2 and the degrees d1, d2 > 2 are the degrees of v and w. It is easily seen that

s rows of 2I −L(G) are identical and therefore the multiplicity of 2 as an eigenvalue of L(G) is

at least s − 1. Similarly, the multiplicity of 1 as eigenvalues of L(G) is at least r − 2. If µ2 6 2,

then Lemma 3 implies that µ1 + µ2 6 n + 2 < e(G) + 3. Hence we may assume that µ2 > 2

and so µ1 > µ2 > µa > µb > µn = 0 are the five remaining eigenvalues. By trace(L(G)) =
∑n

i=1 µi =
∑n

i=1 di, we have µ1 + µ2 + µa + µb 6 d1 + d2 + 4. Finally, by the interlacing theorem

[6, p. 193] for the (n− 2)× (n− 2) submatrix D = diag(1, . . . , 1, 2, . . . , 2) of L(G), we find that

µa > µn−2 > λn−2(D) > 1. Hence µ1 + µ2 6 d1 + d2 + 4 − µa − µb 6 d1 + d2 + 3 = e(G) + 3. �

Lemma 10 Let G be a graph with m(G) = 2. Then S2(G) 6 e(G) + 3.

Proof. By Lemmas 1 and 4, we may assume that G is a connected graph with at least 7

vertices. First suppose that G has a subgraph H = K3 with V (H) = {u, v,w}. If every edge of

G has at least one endpoint in V (H), then by Lemma 8, we are done. Hence assume that there

exists an edge e = {a, b} whose endpoints are in V (G) \ V (H). Let M = V (G) \ {a, b, u, v, w}.

Since m(G) = 2, there are no edges between V (H) and M . Since |M | > 2, it is easily seen that

all vertices in M are adjacent to one of the endpoints of e, say a. Hence there are no edges

between b and V (H). Now by ignoring the edges between a and V (H), we find a subgraph K of

G which is a disjoint union of K3 and a star with the center a. Since the graph L = G − E(K)

is a star, Corollary 1 yields that S2(G) 6 S2(K) + S2(L) 6 (e(K) + 1) + (e(L) + 2) = e(G) + 3,

as required.

Next assume that G has no K3 as a subgraph. Suppose that e1 = {a1, b1} and e2 =

{a2, b2} are two independent edges in G. Since G contains no 3K2 and K3 as subgraphs,

M = V (G) \ {a1, b1, a2, b2} is an independent set and at least one of the two endpoints of ei

has no neighborhood in M for i = 1, 2. Assume those endpoints to be b1 and b2. If b1 and b2
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are adjacent, then |M | > 2 yields that all vertices in M are adjacent to only one of the two

vertices a1 and a2, say a1. This implies that G is a bipartite graph with the vertex set partition

{{a1, b2}, V (G) \ {a1, b2}} and so Lemma 9 yields the assertion. Now assume that b1 and b2

are not adjacent. If a1 and a2 are adjacent, then G is a tree and we are done by Theorem 5.

Otherwise, G is a bipartite graph with the vertex set partition {{a1, a2}, V (G) \ {a1, a2}} and

using Lemma 9, the proof is complete. �

Lemma 11 Let G be a graph with m(G) = 3. Then S2(G) 6 e(G) + 3.

Proof. By Lemmas 1 and 4, we may assume that G is a connected graph with at least 9

vertices. Using Lemma 5, we may suppose that G has no subgraph H with S2(H) 6 e(H).

In particular, Lemma 2 implies that G has no subgraph 3S3. Suppose that G has a subgraph

K = K3 + 2K2. Let x ∈ V (G) \ V (K). Since m(G) = 3, the vertex x is not incident with the

subgraph K3 of K and so G has a subgraph H = K3 + S3 + K2. Now by Lemma 2, we have

S2(H) = e(H) and therefore G has no subgraph K3 + 2K2.

Let e1 = {a1, b1}, e2 = {a2, b2} and e3 = {a3, b3} be three independent edges in G. Since

m(G) = 3, M = V (G)\V ({e1, e2, e3}) is an independent set. Since G has no 4K2 and K3 +2K2

as subgraphs, either N(ai)∩M = ∅ or N(bi)∩M = ∅, for i = 1, 2, 3. With no loss of generality,

we may assume that N(M) ⊆ {a1, a2, a3}. We consider the following three cases.

Case 1. |N(M)| = 3. We have N(M) = {a1, a2, a3}. Since G has no 3S3, the bipartite

subgraph G − {b1, b2, b3} has no perfect matching. By Hall’s Theorem, there exists a subset of

{a1, a2, a3} with 2 elements, say {a2, a3}, such that |N({a2, a3}) ∩ M | = 1. This means that

there exists exactly one vertex y ∈ M which is adjacent to both a2 and a3. If d(b1) > 2,

then we clearly find a subgraph isomorphic to 3S3 in G, a contradiction. Therefore, d(b1) = 1.

Suppose that H is the star with center a1 and V (H) ⊆ {a1, a2, a3, b2, b3, y}. Then G − E(H)

is a disjoint union of a star S with center a1 and a graph K containing P5 with the vertex

set {a2, a3, b2, b3, y}. Using Theorem 2, we have µ1(P5) 6 4 and by Lemma 2, we obtain that

µ1(K) 6 e(K). This yields that S2(G − E(H)) 6 µ1(S) + µ1(K) 6 e(G − E(H)) + 1. Thus

S2(G) 6 S2(H) + S2(G − E(H)) 6 e(G) + 3, as desired.

Case 2. |N(M)| = 2. Without loss of generality, assume that N(M) = {a1, a2}. Since m(G) = 3,

b1 is not adjacent to b2. If b1 is adjacent to a3 or b3, then changing the role of e1, e2, e3 by three

independent edges {a1, z}, e2, e3 for some vertex z ∈ M ∩N(a1), we have Case 1. Therefore, we

may assume that b1, and similarly b2, is adjacent to none of the vertices a3 and b3. Let H be

the induced subgraph on {a1, a2, a3, b3}.

First assume that H has a subgraph L = K3. If {a1, a2} is an edge of L, then clearly any

edge of G is incident with L and by Lemma 8, there is nothing to prove. Now assume that

exactly one of the two vertices a1 and a2, say a1, is a vertex in L. Let K be the disjoint union

of L and the induced subgraph of G on {a2, b2}∪ (N(a2)∩M) which is a star with at least three

vertices. Note that G − E(K) is a star or a disjoint union of two stars. Now, by Lemma 2 and

Corollary 1, S2(G) 6 S2(K) + S2(G − E(K)) = (e(K) + 1) + (e(G −E(K)) + 2) = e(G) + 3, as

required.
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Next suppose that H has no K3 as a subgraph. Let t = d(a3) + d(b3). We have t = 3, 4. It

is not hard to see that G − e3 contains two disjoint stars St with centers a1 and a2. Therefore,

by Theorem 1, µ2(G − e3) > µ2(2St) = t. Using Lemmas 6 and 10, we find that S2(G) 6

S2(G − e3) + 1 6 (e(G − e3) + 3) + 1 = e(G) + 3, as required.

Case 3. |N(M)| = 1. Without loss of generality, assume that N(M) = {a1}. If d(b1) > 2,

then we clearly find three independent edges e′1, e
′
2, e

′
3 in G such that the set M ′ = V (G) \

V ({e′1, e
′
2, e

′
3}) is an independent set and |N(M ′)| > 2 which is dealt with as the previous cases.

Hence we assume that d(b1) = 1. Suppose that H is the star with center a1 and the vertex

set V (H) ⊆ {a1, a2, a3, b2, b3}. Then G − E(H) is a disjoint union of a star S with center

a1 and a graph L containing 2K2 with V (L) = {a2, a3, b2, b3}. First assume that L 6= P4.

Using Lemma 2(i) and Lemma 3, we have µ1(L) 6 e(L). This yields that S2(G − E(H)) 6

µ1(S) + µ1(L) 6 e(G − E(H)) + 1. Thus S2(G) 6 S2(H) + S2(G − E(H)) 6 e(G) + 3, as

desired. Next assume that L = P4. With no loss of generality, suppose that L is the path

a2 b2 b3 a3. If |N(a1) ∩ L| = 1, then G is a tree and the assertion follows from

Theorem 5. If a1 is adjacent to both b2 and b3, then by Lemma 8, there is nothing to prove.

Suppose that a1 is adjacent to none of b2 and b3. If we let K be the disjoint union of the star

G − V (L) and the edges {a2, b2} and {a3, b3}, then the graph G − E(K) is a disjoint union of

a star with the center a1 and the edge {b2, b3}. Now, by Lemma 2 and Corollary 1, we have

S2(G) 6 S2(K) + S2(G − E(K)) 6 (e(K) + 1) + (e(G − E(K)) + 2) = e(G) + 3. If none of the

above cases occurs, then G is one of the following forms:

u
a1

u
b2

u
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u
b3

u

...

u

�
�

@
@
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u
a1

u
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u
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u
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u
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u
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u
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J
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�
�

@
@ u

a2

��
@@

G3

If G = G1, then by Theorem 3, we have µ2(G) > 3. Since d(a3)+d(b3) = 3, applying Lemma 6 for

the graph G−e3 and using Lemma 10, we find that S2(G) 6 S2(G−e3)+1 6 (e(G−e3)+3)+1 =

e(G) + 3, as required. Hence assume that G = G2 or G = G3. First suppose that µ2(G) > 4.

Since d(a3)+d(b3) = 4, applying Lemma 6 for the graph G− e3 and using Lemma 10, the result

follows. Now suppose that µ2(G) < 4. By Theorem 2, we have µ1(G2) 6 |V (G2)|−1 = e(G2)−1

and by Lemma 3, µ1(G3) 6 |V (G3)| = e(G3)− 1. Therefore, S2(G) < (e(G)− 1)+4 = e(G)+3.

This completes the proof. �

We now present the main theorem of the paper.

Theorem 7 Let G be a graph with at least two vertices. Then S2(G) 6 e(G) + 3.

8



Proof. Using Lemmas 7, 10 and 11, we may assume that G has a subgraph H = 4K2, which

satisfies S2(H) = e(H). So the result follows by Lemma 5. �
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