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On semidefinite programming relaxations of the

traveling salesman problem

Etienne de Klerk∗ Dmitrii V. Pasechnik† Renata Sotirov‡

November 12, 2008

Abstract

We consider a new semidefinite programming (SDP) relaxation of the
symmetric traveling salesman problem (TSP), that may be obtained via
an SDP relaxation of the more general quadratic assignment problem
(QAP). We show that the new relaxation dominates the one in the paper:

[D. Cvetković, M. Cangalović and V. Kovačević-Vujčić. Semidefi-
nite Programming Methods for the Symmetric Traveling Salesman Prob-
lem. In Proceedings of the 7th International IPCO Conference on Integer

Programming and Combinatorial Optimization, 1999, 126–136, Springer-
Verlag, London, UK.]

Unlike the bound of Cvetković et al., the new SDP bound is not dom-
inated by the Held-Karp linear programming bound, or vice versa.

Keywords: traveling salesman problem, semidefinite programming, quadratic
assignment problem, association schemes

AMS classification: 90C22, 20Cxx, 70-08

JEL code: C61

1 Introduction

The quadratic assignment problem (QAP) may be stated in the following form:

min
X∈Πn

trace(AXBXT ) (1)

where A and B are given symmetric n× n matrices, and Πn is the set of n× n
permutation matrices.
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It is well-known that the QAP contains the symmetric traveling salesman
problem (TSP) as a special case. To show this, we denote the complete graph
on n vertices with edge lengths (weights) Dij = Dji > 0 (i 6= j), by Kn(D),
where D is called the matrix of edge lengths (weights). The TSP is to find
a Hamiltonian circuit of minimum length in Kn(D). The n vertices are often
called cities, and the Hamiltonian circuit of minimum length the optimal tour.

To see that TSP is a special case of QAP, let C1 denote the adjacency matrix
of Cn (the standard circuit on n vertices):

C1 :=





















0 1 0 · · · 0 1
1 0 1 0 · · · 0

0 1 0 1
. . .

...
...

. . .
. . .

. . .
. . .

0 0 1
1 0 · · · 0 1 0





















.

Now the TSP problem is obtained from the QAP problem (1) by setting A = 1
2D

and B = C1. To see this, note that every Hamiltonian circuit in a complete
graph has adjacency matrix XC1X

T for some X ∈ Πn. Thus we may concisely
state the TSP as

TSPopt := min
X∈Πn

trace

(

1

2
DXC1X

T

)

. (2)

The symmetric TSP is NP-hard in the strong sense [20], and therefore so is
the more general QAP. In the special case where the distance function of the
TSP instance satisfies the triangle inequality (metric TSP), there is a celebrated
3/2-approximation algorithm due to Christofides [9]. It is a long-standing (since
1975) open problem to improve on the 3/2 constant, since the strongest negative
result is that a (1+1/219)-approximation algorithm is not possible, unless P=NP
[21].

In the case when the distances are Euclidean in fixed dimension (the so-called
planar or geometric TSP), the problem allows a polynomial-time approximation
scheme [1]. A recent survey of the TSP is given by Schrijver [24], Chapter 58.

Main results and outline of this paper

In this paper we will consider semidefinite programming (SDP) relaxations of
the TSP. We will introduce a new SDP relaxation of TSP in Section 2, that
is motivated by the theory of association schemes. Subsequently, we will show
in Section 3 that the new SDP relaxation coincides with the SDP relaxation
for QAP introduced in [28] when applied to the QAP reformulation of TSP in
(2). Then we will show in Section 4 that the new SDP relaxation dominates
the relaxation due to Cvetković et al. [5]. The relaxation of Cvetković et al. is
known to be dominated by the Held-Karp linear programming bound [6, 15],
but we show in Section 5 that the new SDP bound is not dominated by the
Held-Karp bound (or vice versa).
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Notation

The space of p×q real matrices is denoted by R
p×q, the space of k×k symmetric

matrices is denoted by Sk, and the space of k×k symmetric positive semidefinite
matrices by S+

k . We will sometimes also use the notation X � 0 instead of
X ∈ S+

k , if the order of the matrix is clear from the context. By diag(X) we
mean the n-vector composed of the diagonal entries of X ∈ Sn.

We use In to denote the identity matrix of order n. Similarly, Jn and en

denote the n×n all-ones matrix and all ones n-vector respectively, and 0n×n is
the zero matrix of order n. We will omit the subscript if the order is clear from
the context.

The Kronecker product A⊗B of matrices A ∈ R
p×q and B ∈ R

r×s is defined
as the pr × qs matrix composed of pq blocks of size r × s, with block ij given
by AijB (i = 1, . . . , p), (j = 1, . . . , q).

The Hadamard (component-wise) product of matrices A and B of the same
size will be denoted by A ◦ B.

2 A new SDP relaxation of TSP

In this section we show that the optimal value of the following semidefinite
program provides a lower bound on the length TSPopt of an optimal tour:

min 1
2 trace

(

DX(1)
)

subject to
X(k) ≥ 0, k = 1, . . . , d
∑d

k=1 X(k) = J − I,

I +
∑d

k=1 cos
(

2πik
n

)

X(k) � 0, i = 1, . . . , d

X(k) ∈ Sn, k = 1, . . . , d,































(3)

where d = ⌊ 1
2n⌋ is the diameter of Cn.

Note that this problem involves nonnegative matrix variables X(1), . . . , X(d)

of order n. The matrix variables X(k) have an interesting interpretation in terms
of association schemes.

Association schemes

We will give a brief overview of this topic; for an introduction to association
schemes, see Chapter 12 in [10], and in the context of SDP, [11].

Definition 2.1 (Asssociation scheme). Assume that a given set of n×n matrices
B0, . . . , Bt has the following properties:

(1) Bi is a 0 − 1 matrix for all i and B0 = I;

(2)
∑

i Bi = J ;

(3) Bi = BT
i∗ for some i∗;
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(4) BiBj = BjBi for all i, j;

(5) BiBj ∈ span{B1, . . . , Bt}.
Then we refer to {B1, . . . , Bt} as an association scheme. If the Bi’s are also
symmetric, then we speak of a symmetric association scheme.

Note that item (4) (commutativity) implies that the matrices B1, . . . , Bt

share a common set of eigenvectors, and therefore can be simultaneously diag-
onalized. Note also that an association scheme is a basis of a matrix-∗ algebra
(viewed as a vector space). Moreover, one clearly has

trace(BiB
T
j ) = 0 if i 6= j.

Since the Bi’s share a system of eigenvectors, there is a natural ordering of their
eigenvalues with respect to any fixed ordering of the eigenvectors. Thus the last
equality may be interpreted as:

∑

k

λk(Bi)λk(Bj) = 0 if i 6= j, (4)

where the λk(Bi)’s are the eigenvalues of Bi with respect to the fixed ordering.
The association scheme of particular interest to us arises as follows. Given a

connected graph G = (V, E) with diameter d, we define |V | × |V | matrices A(k)

(k = 1, . . . , d) as follows:

A
(k)
ij =

{

1 if dist(i, j) = k
0 else,

(i, j ∈ V ),

where dist(i, j) is the length of the shortest path from i to j.
Note that A(1) is simply the adjacency matrix of G. Moreover, one clearly

has

I +
d

∑

k=1

A(k) = J.

It is well-known that, for G = Cn, the matrices A(k) (k = 1, . . . , d ≡ ⌊n/2⌋)
together with A(0) := I form an association scheme, since Cn is a distance
regular graph.

It is shown in the Appendix to this paper, that for G = Cn, the eigenvalues
of the matrix A(k) are:

λm(A(k)) = 2 cos(2πmk/n), m = 0, . . . , n − 1, k = 1, . . . , ⌊(n − 1)/2⌋,
and, if n is even,

λn/2(A
(k)) = cos(kπ) = (−1)k.

In particular, we have

λm(A(k)) = λk(A(m)) k, m = 1, . . . , ⌊(n − 1)/2⌋. (5)

Also note that

λm(A(k)) = λn−m(A(k)), k, m = 1, . . . , ⌊(n − 1)/2⌋, (6)

so that each matrix A(k) (k = 1, . . . , d) has only 1 + ⌊n/2⌋ distinct eigenvalues.
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Verifying the SDP relaxation (3)

We now show that setting X(k) = A(k) (k = 1, . . . , d) gives a feasible solution
of (3). We only need to verify that

I +
d

∑

k=1

cos

(

2πik

n

)

A(k) � 0, i = 1, . . . , d.

We will show this for odd n, the proof for even n being similar.
Since the A(k)’s may be simultaneously diagonalized, the last LMI is the

same as:

2 +

d
∑

k=1

λk(A(i))λj(A
(k)) ≥ 0, i, j = 1, . . . , d,

and by using (5) this becomes:

2 +

d
∑

k=1

λk(A(i))λk(A(j)) ≥ 0, i, j = 1, . . . , d.

Since λ0(A
(i)) = 2 (i = 1, . . . , d), and using (4), one can easily verify that the

last inequality holds. Indeed, one has

2 +
d

∑

k=1

λk(A(i))λk(A(j))

= 2 +
1

2

n−1
∑

k=1

λk(A(i))λk(A(j)) (by (6))

= 2 − 1

2
λ0(A

(i))λ0(A
(j)) +

1

2

n−1
∑

k=0

λk(A(i))λk(A(j))

=

{

2 − 2 + 0 = 0 if (i 6= j), by (4)

2 − 2 + 1
2

∑n−1
k=0

(

λk(A(i))
)2 ≥ 0 if (i = j).

Thus we have established the following result.

Theorem 2.1. The optimal value of the SDP problem (3) provides a lower
bound on the optimal value TSPopt of the associated TSP instance.

3 Relation of (3) to an SDP relaxation of QAP

An SDP relaxation of the QAP problem (1) was introduced in [28], and further
studied for specially structured instances in [7].

When applied to the QAP reformulation of TSP in (2), this SDP relaxation
takes the form:

5



min 1
2 trace(C1 ⊗ D)Y

subject to
trace((I ⊗ (J − I))Y + ((J − I) ⊗ I)Y ) = 0
trace(Y ) − 2eT y = −n
(

1 yT

y Y

)

� 0, Y ≥ 0.































(7)

It is easy to verify that this is indeed a relaxation of problem (2), by noting
that setting Y = vec(X)vec(X)T and y = diag(Y ) gives a feasible solution if
X ∈ Πn.

In this section we will show that the optimal value of the SDP problem (7)
actually equals the optimal value of the new SDP relaxation (3). The proof is
via the technique of symmetry reduction.

Symmetry reduction of the SDP problem (7)

Consider the following form of a general semidefinite programming problem:

p∗ := min
X�0,X≥0

{ trace(A0X) : trace(AkX) = bk, k = 1, . . . , m} , (8)

where the Ai (i = 0, . . . , m) are given symmetric matrices.
If we view (7) as an SDP problem in the form (8), the data matrices of

problem (7) are:

(

0 0T

0 1
2C1 ⊗ D

)

,

(

0 0T

0 I ⊗ (J − I) + (J − I) ⊗ I,

)

,

(

0 −eT

−e 2I

)

,

(

1 0T

0 0

)

.

(9)

Definition 3.1. We define the automorphism group of a matrix Z ∈ R
k×k as

aut(Z) = {P ∈ Πk : PZPT = Z}.

Symmetry reduction of problem (8) is possible under the assumption that
the multiplicative matrix group

G :=

m
⋂

i=0

aut(Ai)

is non-trivial. We call G the symmetry group of the SDP problem (8).
For the matrices (9), the group G is given by the matrices

G :=

{(

1 0T

0 P ⊗ I

)

: P ∈ Dn

}

, (10)

where Dn is the (permutation matrix representation of) the dihedral group of
order n, i.e. the automorphism group of Cn.

The basic idea of symmetry reduction is given by the following result.
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Theorem 3.1 (see e.g. [8]). If X is a feasible (resp. optimal) solution of the
SDP problem (8) with symmetry group G, then

X̄ :=
1

|G|
∑

P∈G
PT XP

is also a feasible (resp. optimal) solution of (8).

Thus there exist optimal solutions in the set

AG :=

{

1

|G|
∑

P∈G
PT XP : X ∈ R

n×n

}

.

This set is called the centralizer ring (or commutant) of G and it is a matrix
∗-algebra. For the group defined in (10), it is straightforward to verify that the
centralizer ring is given by:

AG :=

{(

α xT

y C ⊗ Z

) ∣

∣

∣

∣

α ∈ R, C = CT circulant, Z ∈ R
n×n, x, y ∈ R

n2

}

(11)
where xT = [x1e

T . . . xneT ] and yT = [y1e
T . . . yneT ] for some scalars xi and yi

(i = 1, . . . , n), where e ∈ R
n is the all-ones vector, as before.

Thus we may restrict the feasible set of problem (7) to feasible solutions of
the form (11).

If we divide y and Y in (7) into blocks:

y =

(

(

y(1)
)T

· · ·
(

y(n)
)T

)T

,

and

Y =







Y (11) · · · Y (1n)

...
. . .

...

Y (n1) · · · Y (nn)






,

where y(i) ∈ R
n and Y (ij) = Y (ji)T ∈ R

n×n, then feasible solutions of (7) satisfy











1
(

y(1)
)T · · ·

(

y(n)
)T

y(1) Y (11) · · · Y (1n)

...
...

. . .
...

y(n) Y (n1) · · · Y (nn)











� 0. (12)

Feasible solutions have the following additional structure (see [28] and The-
orem 3.1 in [7]):

• Y (ii) (i = 1, . . . , n) is a diagonal matrix;

• Y (ij) (i 6= j) is a matrix with zero diagonal;
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• trace(JY (ij)) = 1 (i, j = 1, . . . , n);

• ∑n
i=1 Y (ij) = e

(

y(j)
)T

(j = 1, . . . , n);

• diag(Y ) = y.

Since diag(Y ) = y for feasible solutions, we have y(i) = diag(Y (ii)) (i =
1, . . . , n). Moreover, since we may also assume the structure (11), we have that

y(i) = yie (i = 1, . . . , n),

for some scalar values yi. This implies that the diagonal elements of Y (ii) all
equal yi. Since the diagonal elements of Y (ii) sum to 1, we have yi = 1/n and
diag(Y (ii)) = (1/n)e. Thus the condition:

(

1 yT

y Y

)

� 0

reduces to

Y − 1

n2
J � 0

by the Shur complement theorem. This is equivalent to

(I ⊗ Q∗)Y (I ⊗ Q) − 1

n2
(I ⊗ Q∗)J(I ⊗ Q) � 0

where Q is the discrete Fourier transform matrix defined in (25) in the Appendix.
Using the properties of the Kronecker product and of Q we get







Q∗Y (11)Q · · · Q∗Y (1n)Q
...

. . .
...

Q∗Y (n1)Q · · · Q∗Y (nn)Q






− J ⊗







1
n · · · 0
...

. . .
...

0 · · · 0






� 0.

Recall that Y (ii) = 1
nI and that we may assume Y (ij) (i 6= j) to be symmetric

circulant, say

Y (ij) =

d
∑

k=1

x
(ij)
k Ck, (i 6= j),

where Ck (k = 1, . . . , d) forms a basis of the symmetric circulant matrices
with zero diagonals (see the Appendix for the precise definition). Note that

the nonnegativity of Y (ij) is equivalent to x
(ij)
k ≥ 0 (k = 1, . . . , d). Since

trace(JY (ij)) = 1 one has

d
∑

k=1

x
(ij)
k =

1

2n
(i 6= j).

Since
∑n

i=1 Y (ij) = e
(

y(j)
)T

= 1
nJ , one also has

d
∑

k=1

n
∑

i=1

x
(ij)
k Ck =

1

n
J.
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By the definition of the Ck’s, this implies that

n
∑

i=1

x
(ij)
k =

{

1
n if 1 ≤ k ≤ ⌊(n − 1)/2⌋
1
2n if k = n/2 (n even).

(13)

Moreover,

Q∗Y (ij)Q =

d
∑

k=1

x
(ij)
k Dk, (i 6= j),

where Dk is the diagonal matrix with the eigenvalues (26) of Ck on its diagonal.
Thus the LMI becomes









1
nI · · · ∑d

k=1 x
(1n)
k Dk

...
. . .

...
∑d

k=1 x
(1n)
k Dk · · · 1

nI









− J ⊗







1
n · · · 0
...

. . .
...

0 · · · 0






� 0. (14)

The left hand side of this LMI is a block matrix with each block being a diagonal
matrix. Thus this matrix has a chordal sparsity structure (n disjoint cliques of
size n). We may now use the following lemma to obtain the system of LMI’s
(3).

Lemma 3.1 (cf. [14]). Assume a nt × nt matrix has the block structure

M :=







D(11) · · · D(1n)

...
. . .

...

D(n1) · · · D(nn)






,

where D(ij) ∈ St are diagonal (i, j = 1, . . . , n). Then M � 0 if and only if:









D
(11)
ii · · · D

(1n)
ii

...
. . .

...

D
(n1)
ii · · · D

(nn)
ii









� 0 i = 1, . . . , t.

Applying the lemma to the LMI (14), and setting

X
(k)
ij = 2nx

(ij)
k , k = 1, . . . , ⌊n/2⌋, (15)

yields the system of LMI’s in (3).
Thus we have established the following result.

Theorem 3.2. The optimal values of the semidefinite programs (3) and (7) are
equal.
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4 Relation of (3) to an SDP relaxation of Cvetković
et al.

We will now show that the new SDP relaxation (3) dominates an SDP relaxation
(16) due to Cvetković et al. [5]. This latter relaxation is based on the fact that
the spectrum of the Hamiltonian circuit Cn is known. In particular, the smallest
eigenvalue of its Laplacian is zero and corresponds to the all ones eigenvector,
while the second smallest eigenvalue equals 2 − 2 cos

(

2π
n

)

.
The relaxation takes the form:

TSPopt ≥ min
1

2
trace(DX)

subject to

Xe = 2e,
diag(X) = 0,

0 ≤ X ≤ J,
2I − X +

(

2 − 2 cos
(

2π
n

))

(J − I) � 0.















(16)

Note that the matrix variable X corresponds to the adjacency matrix of the
minimal length Hamiltonian circuit.

Theorem 4.1. The SDP relaxation (3) dominates the relaxation (16).

Proof. Assume that given X(k) ∈ Sn (k = 1, . . . , d) satisfy (3). Then, diag(X(1)) =
0, while (13) and (15) imply

X(k)e = 2e (k = 1, . . . , ⌊(n − 1)/2⌋),

and X(n/2)e = e if n is even. In particular, one has X(1)e = 2e. It remains to
show that

2I − X(1) +

(

2 − 2 cos

(

2π

n

))

(J − I) � 0,

which is the same as showing that

2I − X(1) +

(

2 − 2 cos

(

2π

n

)) d
∑

k=1

X(k) � 0, (17)

since
d

∑

k=1

X(k) = J − I.

We will show that the LMI (17) may be obtained as a nonnegative aggregation
of the LMI’s

I +

d
∑

k=1

X(k) � 0

10



and

I +

d
∑

k=1

cos

(

2πik

n

)

X(k) � 0 (i = 1, . . . , d).

The matrix of coefficients of these LMI’s is a (d + 1) × (d + 1) matrix, say A,
with entries:

Aij = cos

(

2πij

n

)

(i, j = 0, . . . , d).

Since we may rewrite (17) as

2I +

(

1 − 2 cos

(

2π

n

))

X(1) +

(

2 − 2 cos

(

2π

n

)) d
∑

k=2

X(k) � 0,

we need to show that the linear system Ax = b has a nonnegative solution,
where

b :=

[

2,

(

1 − 2 cos

(

2π

n

))

,

(

2 − 2 cos

(

2π

n

))

, . . . ,

(

2 − 2 cos

(

2π

n

))]T

.

One may verify that, for n odd, the system Ax = b has a (unique) solution given
by

xi =
4

n

{

d
(

1 − cos
(

2π
n

))

if i = 0
cos

(

2π
n

)

− cos
(

2πi
n

)

for i = 1, . . . , d.

Note that x is nonnegative, as it should be. If n is even, the solution is

xi =
4

n







(n−1)
2

(

1 − cos
(

2π
n

))

if i = 0
cos

(

2π
n

)

− cos
(

2πi
n

)

for i = 1, . . . , d − 1
1
2 cos

(

2π
n

)

− 1
2 cos

(

2πi
n

)

for i = d.

In the section with numerical examples, we will present instances where the
new SDP relaxation (3) is strictly better than (16).

5 Relation to the Held-Karp bound

One of the best-known linear programming (LP) relaxations of TSP is the LP
with sub-tour elimination constraints:

TSPopt ≥ min
1

2
trace(DX)

subject to
Xe = 2,

diag(X) = 0,
0 ≤ X ≤ J,

∑

i∈I, j /∈I Xij ≥ 2 ∀ ∅ 6= I ⊂ {1, . . . , n}.















(18)
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This LP relaxation dates back to 1954 and is due to Dantzig, Fulkerson and
Johnson [6]. Its optimal value coincides with the LP bound of Held and Karp [15]
(see e.g. Theorem 21.34 in [16]), and the optimal value of the LP is commonly
known as the Held-Karp bound.

The last constraints are called sub-tour elimination inequalities and model
the fact that Cn is 2-connected. Although there are exponentially many sub-
tour elimination inequalities, it is well-known that the LP (18) may be solved
in polynomial time using the ellipsoid method; see e.g. Schrijver [24], §58.5.

It was shown by Goemans and Rendl [12] that this LP relaxation dominates
the SDP relaxation (16) by Cvetković et al. [5]. The next theorem shows that
the LP relaxation (18) does not dominate the new SDP relaxation (3), or vice
versa.

Theorem 5.1. The LP sub-tour elimination relaxation (18) does not dominate
the new SDP relaxation (3), or vice versa.

Proof. Define the 8 × 8 symmetric matrix X̄ as the weighted adjacency matrix
of the graph shown in Figure 1.

Figure 1: The weighted graph used in the proof of Theorem 5.1.

The matrix X̄ satisfies the sub-tour elimination inequalities, since the mini-
mum cut in the graph in Figure 1 has weight 2.

On the other hand, there does not exist a feasible solution of (3) that satisfies
X(1) = X̄, as may be shown using SDP duality theory.

Conversely, in Section 7 we will provide examples where the optimal value
of (18) is strictly greater than the optimal value of (3) (see e.g. the instances
gr17, gr24 and bays24 there).

6 An LMI cut via the number of spanning trees

In addition to the sub-tour elimination inequalities, there are several families
of linear inequalities known for the TSP polytope; for a review, see Naddef [18]
and Schrijver [24], Chapter 58.
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Of particular interest to us is a valid nonlinear inequality that models the
fact that Cn has n distinct spanning trees. To introduce the inequality we require
a general form of the matrix tree theorem; see e.g. Theorem VI.29 in [26] for a
proof.

Theorem 6.1 (Matrix tree theorem). Let a simple graph G = (V, E) be given
and associate with each edge e ∈ E a real variable xe. Define the (generalized)
Laplacian of G with respect to x as the |V | × |V | matrix with entries

L(G)(x)ij :=







∑

e : e∩i6=∅ xe if i = j,

−xe if {i, j} = e,
0 else.

Now all principal minors of L(G)(x) of order |V | − 1 equal:

∑

T

∏

e∈T

xe, (19)

where the sum is over all distinct spanning trees T of G.

In particular, if L(G)(x) is the usual Laplacian of a given graph, then xe = 1
for all edges e of the graph, and expression (19) evaluates to the number of
spanning trees in the graph.

Thus if X corresponds to the approximation of the adjacency matrix of a
minimum tour, then one may require that:

det (2I − X)2:n,2:n ≥ n, (20)

where X2:n,2:n denotes the principle submatrix of X obtained by deleting the
first row and column.

The inequality (20) may be added to the above SDP relaxations (16) and
(3) (with X = X(1)), since the set

{Z � 0 : detZ ≥ n}

is LMI representable; see e.g. Nemirovski [19], §3.2.
We know from numerical examples that (20) is not implied by the relaxation

of Cvetković et al. (16), but do not know any examples where it is violated by
a feasible X(1) of the new relaxation (3). Nevertheless, we have been unable to
show that (20) (with X = X(1)) is implied by (3).

7 Numerical examples

In Table 1 we give the lower bounds on some small TSPLIB1 instances for
the two SDP relaxations (3) and (16), as well as the LP relaxation with all
sub-tour elimination constraints (18) (the Held-Karp bound). These instances

1http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
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have integer data, and the optimal values of the relaxations were rounded up to
obtain the bounds in the table.

The SDP problems were solved by the interior point software CSDP [2] using
the Yalmip interface [17] and Matlab 6.5, running on a PC with two 2.1 GHz
dual-core processors and 2GB of memory.

Problem SDP bound (16) SDP bound (3) (time) LP bound (18) TSPopt

gr17 1810 2007 (39s) 2085 2085

gr21 2707 2707 (139s) 2707 2707

gr24 1230 1271 (1046s) 1272 1272

bays29 1948 2000 (2863s) 2014 2020

Table 1: Lower bounds on some small TSPLIB instances from various convex
relaxations.

Note that the relaxation (3) can indeed be strictly better than (16), as is
clear from the gr17, bays24 and bays29 instances. Also, since the LP relaxation
(18) gives better bounds than (3) for all four instances, it is worth recalling that
this will not happen in general, by Theorem 5.1.

The LMI cut from (20) was already satisfied by the optimal solutions of (16)
and (3) for the four instances.

A second set of test problems was generated by considering all facet defining
inequalities for the TSP polytope on 8 nodes; see [3] for a description of these
inequalities, as well as the SMAPO project web site2.

The facet defining inequalities are of the form 1
2 trace(DX) ≥ RHS where

D ∈ Sn has nonnegative integer entries and RHS is an integer. From each in-
equality, we form a symmetric TSP instance with distance matrix D. Thus the
optimal value of the TSP instance is the value RHS. In Table 2 we give the opti-
mal values of the LP relaxation (18) (i.e. the Held-Karp bound), the SDP relax-
ation of Cvetković et al. (16), and the new SDP relaxation (3) for these instances,
as well as the right-hand-side RHS of each inequality 1

2 trace(DX) ≥ RHS. For
n = 8, there are 24 classes of facet-defining inequalities. The members of each
class are equal modulo a permutation of the nodes, and we need therefore only
consider one representative per class. The first three classes of inequalities are
sub-tour elimination inequalities.

The numbering of the instances in Table 2 coincides with the numbering of
the classes of facet defining inequalities on the SMAPO project web site.

The new SDP bound (3) is only stronger than the Held-Karp bound (18)
for the instances 16, 21 and 23 in Table 2, and for the instances 1, 5, 9, 12, 14,
17, 18, 19 and 22 the two bounds coincide. For the remaining 18 instances the
Held-Karp bound is better than the SDP bound (3). However, if the bounds are
rounded up, the SDP bound (3) is still better for the instances 16, 21 and 23,
whereas the two (rounded) bounds are equal for all the other instances. Adding

2http://www.iwr.uni-heidelberg.de/groups/comopt/software/SMAPO/tsp/
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Inequality SDP bound (16) SDP bound (3) Held-Karp bound (18) RHS

1 2 2 2 2
2 1.098 1.628 2 2
3 1.172 1.172 2 2
4 8.507 8.671 9 10
5 9 9 9 10
6 8.566 8.926 9 10
7 8.586 8.586 9 10
8 8.570 8.926 9 10
9 9 9 9 10
10 8.411 8.902 9 10
11 8.422 8.899 9 10
12 0 0 0 0
13 10.586 10.667 11 12
14 12 12 12 13

15 12.408 12.444 12 2

3
14

16 14 14.078 14 16
17 16 16 16 18
18 16 16 16 18
19 16 16 16 18
20 15.185 15.926 16 18
21 18 18.025 18 20
22 20 20 20 22
23 23 23.033 23 26
24 34.586 34.739 35 38

Table 2: Results for instances on n = 8 cities, constructed from the facet defining
inequalities.

the LMI cut from (20) did not change the optimal values of the SDP relaxations
(16) or (3) for any of the instances.

For n = 9, there are 192 classes of facet defining inequalities of the TSP
polytope [4]. Here the SDP bound (3) is better than the Held-Karp bound
for 23 out of the 192 associated TSP instances. Similar to the n = 8 case,
when rounding up, the rounded SDP bound remains better in all 23 cases and
coincides with the rounded Held-Karp bound in all the remaining cases.

8 Concluding remarks

Wolsey [27] showed that the optimal value of the LP relaxation (18) is at least
2/3 the length of an optimal tour for metric TSP (see also [25]). An interesting
question is whether a similar result may be proved for the new SDP relaxation
(3).

Finally, the computational perspectives of the SDP relaxation (3) are some-
what limited due to its size. However, since it provides a new polynomial-time
convex approximation of TSP with a rich mathematical structure, it is our hope
that it may lead to a renewed interest in improving approximation results for
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metric TSP.
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Appendix: Circulant matrices

Our discussion of circulant matrices is condensed from the review paper by Gray
[13].

A circulant matrix has the form

C =





















c0 c1 c2 · · · cn−1

cn−1 c0 c1

cn−1 c0 c1

...
...

. . .
. . .

. . .
. . .

c1

c1 · · · cn−1 c0





















. (21)

Thus the entries satisfy the relation

Cij = c(j−i) mod n. (22)

The matrix C has eigenvalues

λm(C) = c0 +

n−1
∑

k=1

cke−2π
√
−1mk/n, m = 0, . . . , n − 1.

If C is symmetric with n odd, this reduces to

λm(C) = c0 +

(n−1)/2
∑

k=1

2ck cos(2πmk/n), m = 0, . . . , n − 1, (23)

and when n is even we have

λm(C) = c0 +

n/2−1
∑

k=1

2ck cos(2πmk/n) + cn/2 cos(mπ), m = 0, . . . , n− 1. (24)

The circulant matrices form a commutative matrix ∗-algebra, as do the sym-
metric circulant matrices. In particular, all circulant matrices share a set of
eigenvectors, given by the columns of the discrete Fourier transform matrix :

Qij :=
1√
n

e−2π
√−1ij/n, i, j = 0, . . . , n − 1. (25)
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One has Q∗Q = I, and Q∗CQ is a diagonal matrix for any circulant matrix C.
Also note that Q∗e =

√
ne.

We may define a basis C(0), . . . , C⌊n/2⌋ for the symmetric circulant matrices
as follows: to obtain C(i) we set ci = cn−i = 1 in (21) and all other cj ’s to zero.
(We set C0 = 2I and also multiply Cn/2 by 2 if n is even).

By (23) and (24), the eigenvalues of these basis matrices are:

λm(C(k)) = 2 cos(2πmk/n), m = 0, . . . , n − 1, k = 0, . . . , ⌊n/2⌋. (26)

Also note that

λm(C(k)) = λn−m(C(k)), m = 1, . . . , ⌊n/2⌋, k = 0, . . . , ⌊n/2⌋

so that each matrix C(k) has only 1 + ⌊n/2⌋ distinct eigenvalues.
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