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Abstract

We study graphs with spectral radius at most 3
2

√
2 and refine results by Woo and

Neumaier [On graphs whose spectral radius is bounded by 3
2

√
2, Graphs Combinatorics

23 (2007), 713-726]. We study the limit points of the spectral radii of certain families of
graphs, and apply the results to the problem of minimizing the spectral radius among
the graphs with a given number of vertices and diameter. In particular, we consider the
cases when the diameter is about half the number of vertices, and when the diameter is
near the number of vertices. We prove certain instances of a conjecture posed by Van
Dam and Kooij [The minimal spectral radius of graphs with a given diameter, Linear
Algebra Appl. 423 (2007), 408-419] and show that the conjecture is false for the other
instances.
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1 Introduction

In [6], the problem was raised to determine the minimal spectral radius of graphs with a given
number of vertices and diameter. While the case of minimizing the spectral radius (given
the number of vertices and diameter) seems a hard problem, Van Dam [5] and independently
Hansen and Stevanović [7] solved the analogous maximization problem completely. In order
to tackle the minimization problem, we study graphs with spectral radius at most 3

2

√
2.

Properties of such graphs were first studied by Woo and Neumaier [12], and some recent work
is done by Wang et al. [11]. In Section 3, we shall refine the results of Woo and Neumaier.
In particular, we shall show that the graphs under consideration are subgraphs of so-called
m-Laundry graphs and m-Urchin graphs. Related to this we study limit points of the spectral
radii of certain graph sequences, using methods developed already in the seminal papers of
Hoffman and Smith [8, 9]. Some special attention is given to graph sequences whose spectral

radii have limit point
√

2 +
√

5.
In Section 4, we shall apply the obtained refinement to (partly) solve the problem of

minimizing the spectral radius of graphs with given number of vertices and diameter in case
the diameter is about half the number of vertices. In Section 5 we do the same for the case
that the diameter D is near the number of vertices n. We prove a conjecture of Van Dam and
Kooij [6] for the cases e = 4 and 5, where e = n−D, whereas we show that the conjecture is
false for larger e. Instead, we pose some new conjectures. We remark that the case e = 4 was
independently solved by Yuan, Shao, and Liu [13].

2 Preliminaries

All the graphs considered in this paper are undirected and simple. By V (G) and E(G)
we denote the vertex set and edge set, respectively, of a graph G. Let Φ(G) denote the
characteristic polynomial of G, where whenever necessary we use an indeterminate x, so that
Φ(G)(x) = det(xI−A), where A is the adjacency matrix of G. By ρ(G) we denote the spectral
radius of G, i.e., the largest root of Φ(G). By D(G) we denote the diameter of G.

If e = uv is an edge of G, we denote by G \ e the graph obtained from G by deleting e
and by G \ {u, v} the graph obtained from G by deleting the vertices u and v and all the
edges incident to at least one of u and v. In general for a vertex subset W of V (G), we
denote by G \W the graph obtained from G by deleting the vertices in W and all the edges
incident to at least one vertex in W . An edge uv is called a bridge if the deletion of uv causes
an increase of the number of components of G. We say a graph H is a subgraph of G if
V (H) ⊂ V (G) and E(H) ⊂ E(G); it is a proper subgraph if at least one of these inclusions is
proper. The following three lemmas are well-known. The first is a consequence of the theory
of Perron-Frobenius, cf. [1, Thm. 3.1.1.v], while the latter two were proven by Schwenk, cf.
[3, 2.7.9].

Lemma 2.1. If H is a proper subgraph of a connected graph G, then ρ(H) < ρ(G).

Lemma 2.2. Let u be a vertex of degree 1 in a graph G where the only neighbor of u is v.
Then

Φ(G) = xΦ(G \ {u})− Φ(G \ {u, v}).
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Lemma 2.3. If uv is a bridge of a graph G, then

Φ(G) = Φ(G \ uv)− Φ(G \ {u, v}).

A path of length l from a vertex u to a vertex v in G is a sequence of l + 1 distinct vertices
starting with u and ending at v such that consecutive vertices are adjacent. A path P is called
a pendant path of G if one of the end vertices of P is connected to a vertex w in G \ P and
the others are not connected on any vertex in G \ P .

If uv is an edge of a graph G, denote by Gu,v the graph obtained from G by subdividing the
edge uv by one vertex. More precisely, the vertex set of Gu,v is V (G)∪ {w}, where w /∈ V (G)
is a new vertex which will be adjacent to both u and v. Also, all the edges of G will be kept
in Gu,v with the exception of the edge uv.

An internal path of G is a sequence of distinct (except possibly x1 = xk) vertices x1, . . . , xk

such that xixi+1 ∈ E(G) for each 1 ≤ i ≤ k− 1, and where x1 and xk have degrees at least 3,
and each of the other vertices has degree 2.

Let D̃n be the graph obtained from a path 0 ∼ 1 ∼ · · · ∼ n−2 by adding a pendant vertex
at vertex 1 and a pendant vertex at vertex n− 3. Hoffman and Smith [9] proved the following
result about subdiving an edge on an internal path.

Lemma 2.4. Let uv be an edge of a connected graph G. If uv is on an internal path of G,
then ρ(Gu,v) < ρ(G) unless G = D̃n.

We remark that subdividing an edge on an internal path of D̃n does not change its spectral
radius, which equals 2.

Next, we recall some results on graphs with small spectral radius. The first two are classical
results by Smith [10], and the third result is by Brouwer and Neumaier [2]. The results require
the following definitions. We denote by Tk,l,m the graph with k + l + m + 1 vertices consisting
of three paths with k, l, and m edges, respectively, where these paths have one end vertex in
common. These graphs are called T-shape trees. The graph Hi,j,k, i, k ≥ 2, j ≥ 1 is the graph
on i + j + k + 1 vertices, obtained from a path of i + j + k − 1 vertices, by adding pendant
vertices at the i-th and i + j-th vertex. These are examples of H-shape trees.

Theorem 2.5. The only connected graphs on n vertices with spectral radius smaller than 2
are the path Pn, the graph Dn = T1,1,n−3, and the graphs E6 = T1,2,2 (n = 6), E7 = T1,2,3

(n = 7), and E8 = T1,2,4 (n = 8).

Theorem 2.6. The only connected graphs on n nodes with spectral radius equal to 2 are the
n-gon Cn, the graph D̃n−1 = H2,n−5,2, and the graphs Ẽ6 = T2,2,2 (n = 7), Ẽ7 = T1,3,3 (n = 8),
and Ẽ8 = T1,2,5 (n = 9).

Theorem 2.7. Let G be a connected graph. Then 2 < ρ(G) ≤
√

2 +
√

5 (≈ 2.0582) if and
only if G is one of the graphs T1,2,m,m ≥ 6; T1,3,m,m ≥ 4; T1,l,m,m ≥ l ≥ 4; T2,2,m, m ≥ 3;
T2,3,3; Hi,j,k, j ≥ i+k ≥ 5; H3,j,k, j ≥ k +2; H2,j,k, j ≥ k− 1 ≥ 2; H2,1,3; H3,4,3; H3,5,4; H4,7,4;
H4,8,5.

After Woo and Neumaier [12], we call a tree with maximum degree 3 such that all vertices
of degree 3 lie on a path an open quipu; a closed quipu is a connected graph with maximum
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degree 3 such that all vertices of degree 3 lie on a circuit, and no other circuit exists; and a
dagger T0(n) is obtained from a path with n + 1 vertices by adding three pendant vertices at
one of its end vertices. Woo and Neumaier [12] introduced this terminology for the following
result.

Theorem 2.8. A graph G whose spectral radius ρ(G) satisfies 2 < ρ(G) ≤ 3
2

√
2 (≈ 2.1213)

is either an open quipu, a closed quipu, or a dagger.

Like in [6], we let Pm1,m2,··· ,mt
n1,n2,··· ,nt,p denote the graph with diameter p− 1 obtained from a path P

: 0 ∼ 1 ∼ · · · ∼ p − 1 on p vertices with pendant paths of ni vertices added at vertex mi of
the path P . This implies that n1 ≤ m1 and nt ≤ p−mt − 1. We will call the pendant paths
of ni vertices added at vertex mi of the path P inner pendant paths for 2 ≤ i ≤ t − 1. The
other two pendant paths of n1 and nt vertices added at vertex m1 and mt, respectively, and
another two pendant paths: 0 ∼ 1 ∼ · · · ∼ m1, and mt ∼ mt + 1 ∼ · · · ∼ p − 1 on m1 + 1
and p −mt vertices, respectively will be called outer pendant paths. Note that these graphs
are open quipus.

Similarly, let Cm1,m2,··· ,mt
n1,n2,··· ,nt,p denote the graph obtained from a cycle C : 0 ∼ 1 ∼ · · · ∼

p− 1 ∼ 0 on p vertices with pendant paths of ni vertices added at vertex mi of the cycle C.
These graphs are closed quipus. In particular, we let Ĉn denote the graph C0

1,n.

For the purpose of this paper, we are going to call the graph P 2,3,4,··· ,n−4,n−3
2,1,1,··· ,1,2,n the Laundry

graph on 2n− 2 vertices, denoted by L2n−2 and to call the graph C0,1,2,··· ,n−1
1,1,1,··· ,1,n the Urchin graph

on 2n vertices, denoted by U2n. More generally, we will define the m-Laundry graph and the
m-Urchin graph for integers m ≥ 1. The m-Laundry graph is obtained from the Laundry
graph by replacing all inner pendant paths (of length one) by pendant paths of length m and
the four outer pendant paths (of length two) by pendant paths of length m + 1. In other
words, the m-Laundry graph is Pm+1,m+2,··· ,n−m−3,n−m−2

m+1,m,··· ,m,m+1,n . Note that the 1-Laundry graph is
the usual Laundry graph. Similarly, the m-Urchin graph is obtained from the Urchin graph by
replacing all pendant paths of length one by pendant paths of length m, i.e., it is C0,1,2,··· ,n−1

m,m,m,··· ,m,n.

Figure 1: 2-Laundry graph and 1-Urchin graph
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3 Refinement of Woo and Neumaier’s theorem

In this section we are going to refine Theorem 2.8 using the m-Laundry graphs and the m-
Urchin graphs. We define

ρm := lim
n→∞

ρ(Tm,n,n) and θk,m := lim
n→∞

ρ(Tk,m,n).

Note that these limits exist because the sequences are increasing (by Lemma 2.1) and bounded
(by the largest degree (3) for example; note however that the next lemma implies that the
spectral radius of every T-shape tree is at most 3

2

√
2). For notational purpose we define

λ := λ(x) = x+
√

x2−4
2

. The following lemma will be used to show our main results. Recall that

T0(n) is a dagger graph, and Ĉn denotes the graph C0
1,n.

Lemma 3.1. The following statements hold:

(a) lim
n→∞

ρ(T0(n)) = 3
2

√
2,

(b) ρ1 =

√
2 +

√
5,

(c) ρ(Tm,n+1,n+1) = ρ(Tm+1,m+1,n) for all positive integers m and n,

(d) ρm = θm+1,m+1,

(e) lim
m→∞

ρ(Tm,m,m) = 3
2

√
2,

(f) lim
m→∞

ρ(C0,2m+1
m,m,4m+2) = 3

2

√
2,

(g) lim
n→∞

ρ(Ĉn) =
√

2 +
√

5.

(h) lim
n→∞

ρ(P n,n+2
1,1,2n+3) = 3

2

√
2.

Proof. (a): By [8, Lemma 3.4], limn→∞ ρ(T0(n)) is the largest root of the polynomial λ(x2 −
3)− x, and this is 3

2

√
2. Alternatively, see [12, Lemma 3].

(b): See [8, Proposition 3.6].
(c): From Lemma 2.3, we obtain that

Φ(Tm,n+1,n+1) = Φ(Pm+n+2)Φ(Pn+1)− Φ(Pm)Φ(Pn+1)Φ(Pn), and

Φ(Tm+1,m+1,n) = Φ(Pm+n+2)Φ(Pm+1)− Φ(Pm)Φ(Pm+1)Φ(Pn)

by taking u to be the vertex of degree three and v a neighbor of u on a path of length n + 1
(for the first equation) or m + 1 (for the second equation). It follows that the spectral radius
of both graphs is the largest root of Φ(Pm+n+2)− Φ(Pm)Φ(Pn).
(d): Immediate from (c).
(e): See [12, Lemma 3].
(f): The graph C0,2m+1

m,m,4m+2 has two internal paths. We obtain as a subgraph Tm,m,m ∪ Tm,m,m,
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by removing the edges joining the middle vertices on these internal paths. Similar as in the
proof of [9, Lemma 3.3], we have

ρ(Tm,m,m) = ρ(2Tm,m,m) ≤ ρ(C0,2m+1
m,m,4m+2) ≤ ρ(2Tm,m,m) +

2

m
= ρ(Tm,m,m) +

2

m
.

Now it follows immediately from (e).
(g): Similar as (f), using (b).
(h): Similar as [12, Lemma 3].

Proposition 3.2. For positive integers k ≤ m,

θk,m < θk,m+1 < θk+1,k+1 <
3

2

√
2.

Proof. Because Tk,m,n is a subgraph of Tk,m+1,n, it follows that θk,m ≤ θk,m+1. Moreover, θk,m

is the largest root of the polynomial λΦ(Pk+m+1)−Φ(Pk)Φ(Pm) by [8, Lemma 3.4]. Similarly,
θk,m+1 is the largest root of the polynomial λΦ(Pk+m+2) − Φ(Pk)Φ(Pm+1). Now we claim
that the two polynomials have no common root, which implies θk,m < θk,m+1 (which is to be
proven). To prove the claim, assume that there exists a common root x, so that

0 =x λΦ(Pk+m+1)− Φ(Pk)Φ(Pm) and (1)

0 =x λΦ(Pk+m+2)− Φ(Pk)Φ(Pm+1), (2)

where =x indicates that the polynomials are the same when evaluated at x. By combining
these two equations we obtain that

Φ(Pk+m+2)Φ(Pm) =x Φ(Pk+m+1)Φ(Pm+1).

Since Φ(Pm+1) = xΦ(Pm) − Φ(Pm−1) and Φ(Pk+m+2) = xΦ(Pk+m+1) − Φ(Pk+m), it follows
that

Φ(Pk+m+1)Φ(Pm−1) =x Φ(Pk+m)Φ(Pm).

Repeating this procedure, we obtain

Φ(Pk+3)Φ(P1) =x Φ(Pk+2)Φ(P2).

This implies (xΦ(Pk+2) − Φ(Pk+1))x =x Φ(Pk+2)(x
2 − 1) which means that Φ(Pk+2) =x

xΦ(Pk+1). Because Φ(Pk+2) = xΦ(Pk+1)−Φ(Pk), it follows that x is a root of Φ(Pk). But then
it follows from Equations 1 and 2 that x is a root of both Φ(Pk+m+1) and Φ(Pk+m+2), which is
impossible (because it follows easily by induction and the equation Φ(Pl+2) = xΦ(Pl+1)−Φ(Pl)
that paths of consecutive lengths have no common eigenvalue). Thus the claim, and the in-
equality θk,m < θk,m+1 is proven.

The inequality θk,m+1 < θk+1,k+1 easily follows from the inequalities θk,m < θk,m+1 and the
fact that θk+1,k+1 = ρk = limn→∞ ρ(Tk,n,n).

From Lemma 3.1(e) it follows that ρk is at most 3
2

√
2. The above inequalities imply that

ρk is strictly increasing, so that θk+1,k+1 < 3
2

√
2.
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Lemma 3.3. For m ≥ 1, we have ρm = λ + λ−1, where λ is the largest root of the equation
λ2m+4 − 2λ2m+2 + 1 = 0.

Proof. As before, ρm = θm+1,m+1, which is the largest root of the polynomial λΦ(P2m+3) −
Φ(Pm+1)Φ(Pm+1) by [8, Lemma 3.4]. From the characteristic polynomial of the path in [3,
p. 73], we deduce that Φ(Pm) = λm+1−λ−m−1

λ−λ−1 . From this, and the fact that x = λ + λ−1, the
required result can be obtained.

For m = 1, the equation λ2m+4 − 2λ2m+2 + 1 = 0 has largest root
√

1+
√

5
2

, giving ρ1 = θ2,2 =√
2 +

√
5 ≈ 2.0582. We further remark that θ2,3 ≈ 2.0763, ρ2 = θ3,3 ≈ 2.0936, θ3,4 ≈ 2.1013,

and 3
2

√
2 ≈ 2.1213.

Theorem 3.4. For a positive integer m, let µ be a real number such that µ < θm+1,m+2. Then
any graph G on n vertices with spectral radius at most µ is a subgraph of an m-Laundry graph
or a subgraph of an m-Urchin graph, for n large enough.

Proof. By Theorems 2.5 and 2.6, any graph with spectral radius at most 2 is a subgraph of
Cn or a subgraph of D̃n if n ≥ 9. So we may assume that the spectral radius of G is greater
than 2. Since µ < θm+1,m+2, there exists a positive integer N1 such that µ < ρ(Tm+1,m+2,n)
for all n ≥ N1. And by Lemma 3.1(a), there exists a positive integer N2 such that the spec-
tral radius of a dagger graph with n vertices is strictly greater than µ for all n ≥ N2. Let
N := max{N1, N2}. Since ρ(G) < 3

2

√
2, the graph G is either an open quipu or a closed quipu,

or a dagger, by Theorem 2.8. However, if we take n ≥ N , then G cannot be a dagger graph.
Hence we have two cases, namely either G is an open quipu or a closed quipu.

Case 1. The graph G is an open quipu.
Let p − 1 denote the diameter of G. If n ≥ (2N + m + 2)2, then G can be expressed as
G = Pm1,m2,··· ,mt

n1,n2,··· ,nt,p with p ≥ 2N + m + 2. We have that n1 ≤ m1 and n1 ≤ m + 1; if n1 > m + 1
then Tm+1,m+2,N is a subgraph of G, and this means ρ(G) ≥ ρ(Tm+1,m+2,N), a contradiction.
If n1 = m + 1, then m1 = m + 1; otherwise G contains Tm+1,m+2,N as a subgraph. By the
same argument, it holds nt ≤ p−mt− 1 and nt ≤ m+1. If nt = m+1, then mt = p−m− 2.

Now we are going to consider inner pendant paths of G. Suppose that the inner pendant
path at vertex mi has length at least m + 1 for some 2 ≤ i ≤ t − 1. Since p ≥ 2N + m + 2,
and G cannot have Tm+1,m+2,N as a subgraph, without loss of generality it satisfies i = 2,
m1 = n1 = m, m2 = m + 1 and n2 ≥ m + 1. However, subdividing the edge m1m2 gives a
graph with smaller spectral radius containing as a subgraph Tm+1,m+2,N which gives a contra-
diction. Therefore it follows that the graph G is a subgraph of an m-Laundry graph.

Case 2. The graph G is a closed quipu.
Since G is a closed quipu, it can be written as Cm1,m2,··· ,mt

n1,n2,··· ,nt,p . If necessary we subdivide edges

on internal paths of G to get a similar graph G′ = C
m′

1,m′
2,··· ,m′

t

n1,n2,··· ,nt,p′ with p′ ≥ N + m + 3. Then
the length of any pendant path should have length at most m, i.e. ni ≤ m for all 1 ≤ i ≤ t,
since, if there exists a pendant path with length at least m + 1, then G′ contains Tm+1,m+2,N

as a subgraph, so that ρ(G) ≥ ρ(G′) ≥ ρ(Tm+1,m+2,N), a contradiction. Therefore the graph
G is a subgraph of an m-Urchin graph.
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Let {Gi}i≥1 be a sequence of quipus. Let ti := ti(Gi) be the number of vertices of degree three
in Gi and `i := `i(Gi) be the minimal length of all maximal internal paths in Gi.

Proposition 3.5. Let {Gi}i≥1 be a sequence of graphs such that Gi is a subgraph of a Laundry
graph and ti ≥ 2, or Gi is a subgraph of an Urchin graph and ti ≥ 1. Then lim

i→∞
ρ(Gi) =

√
2 +

√
5 implies that `i →∞ (i →∞).

Proof. First observe that
√

2 +
√

5 cannot be an eigenvalue of a graph, so the number of
vertices of Gi must tend to infinity. Suppose that there is a constant h such that `i ≤ h for all
i. The idea of the proof is to show that there is a graph H that is a subgraph of Gi whenever

i is large enough, and that has spectral radius larger than
√

2 +
√

5. This would settle the
proof. In fact, we will not exactly show the above, as we may assume without loss of generality
that `i = h for all i, because we can always subdivide edges on internal paths. The graph H
will also depend on whether Gi is open or closed, as follows. If Gi is a subgraph of a Laundry
graph, then there is a k such that Gi contains P 1,h+1

1,1,2+h+k as a subgraph for large enough i,

where k is much larger than h. If Gi is a subgraph of an Urchin graph, then it contains Ĉh as a

subgraph. The spectral radii ρ(P 1,h+1
1,1,2+h+k) and ρ(Ĉh) are indeed strictly larger than

√
2 +

√
5

by Theorem 2.7.

We think that in general the converse of Proposition 3.5 does not hold. It is also not so easy
to extend Proposition 3.5 to m-Laundry graphs and m-Urchin graphs. However, we get the
following results by adding a stronger condition.

Lemma 3.6. Let Qm(t, l) be the open quipu with t vertices of degree three, for which its four
outer pendant paths have length m + 1, all of its inner pendant paths have length m, and all
of its internal paths have length 2l + 1. Let {ti}i≥1 and {li}i≥1 be integer sequences such that

ti ≥ 2 for all i. Then lim
i→∞

ti
li

= 0 implies that lim
i→∞

Qm(ti, li) = ρm.

Proof. Let Q̃m(ti, li) be the graph obtained from Qm(ti, li) by deleting the edges joining the

middle vertices of each internal path. Then it is obvious that ρ(Q̃m(ti, li)) ≤ ρ(Qm(ti, li)).

Moreover, each component of Q̃m(ti, li) is of the form Tm,li,li or Tm+1,m+1,li . Because limi→∞ ti
li

=

0 implies that li →∞ (i →∞), it therefore follows by Lemma 3.1(d) that lim
i→∞

ρ(Q̃m(ti, li)) =

ρm. By the method of the proof of [9, Lemma 3.3] (notice a small typo therein), we have

ρ(Qm(ti, li)) ≤ ρ(Q̃m(ti, li)) +
2(ti − 1)

li
.

Since ti/li → 0 (i →∞), we obtain that

lim
i→∞

ρ(Qm(ti, li)) = lim
i→∞

ρ(Q̃m(ti, li)) = ρm.
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Lemma 3.7. Let Cm(t, l) be the closed quipu with t vertices of degree three, for which all of
its pendant paths have length m, and all of its internal paths have length 2l + 1. Let {ti}i≥1

and {li}i≥1 be integer sequences such that ti ≥ 1 for all i. Then lim
i→∞

ti
li

= 0 implies that

lim
i→∞

Cm(ti, li) = ρm.

Proof. Similar as that of Lemma 3.6.

For a closed quipu G with at least one vertex of degree 3, we define the depth, denoted by
r(G), as the minimal value r such that it is a subgraph of an r-Urchin graph. For open quipus,
the definition of depth is more complicated because of the special role of the outer pendant
paths.

For an open quipu G with at least two vertices of degree 3, we define the inner depth of
G, denoted by ir(G), as the maximal length of its inner pendant paths; if there are no inner
pendant paths, we define it as −∞. To define the outer depth, we notice that the four outer
pendant paths come in two pairs (each pair consists of two paths attached to the same vertex
of degree three). If (k1,m1) and (k2,m2) denote the lengths of the paths in the two pairs,
with k1 ≤ m1 and k2 ≤ m2, then the lexicographically largest of these pairs is called the outer
depth or(G). We say G has depth r, denoted by r(G), if its outer depth is (r+1, r+1) and its
inner depth is at most r, or its inner depth equals r and its outer depth is (k, m) with k ≤ r.

Theorem 3.8. Let {Gi}i≥1 be a sequence of quipus of depth r(Gi) = m, such that ti ≥ 2 if

Gi is open and ti ≥ 1 if Gi is closed. Then lim
i→∞

ti
`i

= 0 implies that lim
i→∞

ρ(Gi) = ρm.

Proof. First, let us consider the case that all the graphs Gi are open. Consider the graph Hi

obtained from Gi by replacing all internal paths of Gi by paths of length `i (so Gi can be
obtained by subdividing edges on internal paths of Hi). Then ρ(Gi) ≤ ρ(Hi). Without loss
of generality we may assume that `i is odd. Then Hi is a subgraph of Qm(ti,

`i−1
2

). Hence by
Lemma 3.6 we have lim sup

i→∞
ρ(Gi) ≤ ρm.

Consider the graph G̃i obtained from Gi by deleting, on each internal path, the edge
joining the middle vertices. Then ρ(G̃i) ≤ ρ(Gi) as G̃i is a subgraph of Gi. By considering the

components of G̃i, we find that lim
i→∞

ρ(G̃i) = ρm because r(Gi) = m. Hence lim
i→∞

ρ(Gi) = ρm.

For the case that the graphs Gi are subgraphs of m-Urchin graphs, we similarly obtain the
result by deleting the edge connecting the middle vertices on each internal path.

Theorem 3.9. Let {Gi}i≥1 be a sequence of open quipus with ti ≥ 2, of outer depth od(Gi) =

(k,m), with k ≤ m, and inner depth id(Gi) < k. Then lim
i→∞

ti
`i

= 0 implies that lim
i→∞

ρ(Gi) =

θk,m.

Proof. Similar as that of Theorem 3.8.

For m = 1 we have the following two corollaries:

Corollary 3.10. Let {Gi}i≥1 be a sequence of graphs such that Gi is a subgraph of a Laundry
graph.
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(a) If ti = 1 for all i, then limi→∞ ρ(Gi) =
√

2 +
√

5 if and only if for all n there exists an
integer I such that for all i ≥ I, Gi is either T1,ni,ki

or T2,2,ni
for some ni ≥ n and ki ≥ n.

(b) If ti = 2 for all i, then limi→∞ ρ(Gi) =
√

2 +
√

5 if and only if for all n there exists an
integer I such that for all i ≥ I, Gi is either P 2,`i+2

2,2,`i+5, P 2,`i+2
2,1,`i+βi+3, or Pαi,αi+`i

1,1,`i+αi+βi+1 for
some `i ≥ n, αi ≥ n, and βi ≥ 1.

(c) If ti ≥ 2 for all i and lim
i→∞

ti/`i = 0, then limi→∞ ρ(Gi) =
√

2 +
√

5.

Proof. (a): A subgraph of a Laundry graph with one vertex of degree three is of the form
T2,2,n or T1,k,n. The result now follows from the facts that lim

n→∞
ρ(T2,2,n) = lim

n,k→∞
ρ(T1,k,n) =

√
2 +

√
5, and lim

n→∞
ρ(T1,k,n) <

√
2 +

√
5 for fixed k.

(b): Since Gi is a subgraph of a Laundry graph and ti = 2, the graph Gi has only one internal
path, with length `i, so that it is Pαi,`i+αi

n1,n2,`i+αi+βi+1 for some positive integers αi, βi, n1, and n2

such that αi ≥ n1, βi ≥ n2 and (n1, n2) ∈ {(1, 1), (2, 1), (2, 2)}. Moreover, if n1 = 2 (n2 = 2)
then αi = 2 (βi = 2). Therefore Gi is of the form P 2,`i+2

2,2,`i+5, P 2,`i+2
2,1,`i+βi+3, or Pαi,αi+`i

1,1,`i+αi+βi+1, where
αi ≥ 1 and βi ≥ 1. Without loss of generality me may also assume that αi ≥ βi.

Suppose that limi→∞ ρ(Gi) =
√

2 +
√

5. By Proposition 3.5, `i → ∞ (i → ∞). On

the other hand, if `i → ∞, then ρ(P 2,`i+2
2,2,`i+5) →

√
2 +

√
5 and ρ(P 2,`i+2

2,1,`i+βi+3) →
√

2 +
√

5 by

Theorem 3.8, whereas by Theorem 3.9, ρ(Pαi,αi+`i

1,1,`i+αi+βi+1) converges to a value smaller than√
2 +

√
5 if αi and βi are bounded. If also αi → ∞, then ρ(Pαi,αi+`i

1,1,`i+αi+βi+1) →
√

2 +
√

5
because Gi contains a subgraph T1,αi,`i

.
(c): This follows immediately from Theorem 3.8.

Corollary 3.11. Let {Gi}i≥1 be a sequence of graphs such that Gi is a subgraph of an Urchin

graph. If ti ≥ 1 for all i and lim
i→∞

ti/`i = 0, then lim
i→∞

ρ(Gi) =
√

2 +
√

5.

Proof. See Theorem 3.8.

4 Application to diameter D near n
2

From now on we will consider graphs which have minimal spectral radius among the graphs
with n vertices and diameter D. Such a graph is called a minimizer graph. For n > D ≥ 1,
we define ρD(n) := min{ρ(G)| G has n vertices and diameter D}.

Van Dam and Kooij [6] determined ρD(n) for D ∈ {1, 2, bn
2
c, n − 3, n − 2, n − 1}. They

observed that for n ≥ 7, the unique minimizer graph with n vertices and diameter D = bn
2
c

is the n-gon Cn.
Now we will apply Theorem 3.8 to determine ρD(n) for D = n−e

2
with fixed e ≥ 2 and

show that a minimizer graph is a member of one of four families of graphs as described below.
Let C(t)

s be the family of graphs obtained from the cycle Cs by adding pendant vertices at t
distinct vertices. Clearly, each member of C(t)

s has n = s + t vertices, is a subgraph of the
Urchin graph U2s, and has diameter between b s

2
c+ 1 and b s

2
c+ 2 (if t ≥ 1).

10



Theorem 4.1. For given integer e ≥ 2, ρD(2D + e) →
√

2 +
√

5 as D → ∞. Moreover,
a minimizer graph with diameter D and n = 2D + e vertices is in one of the four families
C(t)

n−t, e + 1 ≤ t ≤ e + 4, for n large enough.

Proof. Let e ≥ 2 be fixed. For n ≥ 6(e + 2) such that n − e is even, take the graph Hn =

C
0,l,2l,··· ,(e+1)l
1,1,··· ,1,n−(e+2) in C(e+2)

n−e−2 , where l = bn−e−2
4(e+2)

c. The graph Hn has diameter n−e
2

. By Corollary

3.11, limn→∞ ρ(Hn) =
√

2 +
√

5 as t(Hn)/`(Hn) = (e + 2)/bn−e−2
4(e+2)

c → 0 (n →∞). Let Gn be

a minimizer graph with n vertices and diameter D = n−e
2

. Since ρ(Gn) ≤ ρ(Hn) we can take
ε > 0 such that ρ(Gn) ≤ ρ1 +ε < θ2,3 for n large enough. By Theorem 3.4, Gn is a subgraph of
a Laundry graph or an Urchin graph, for n large enough. However, Gn cannot be a subgraph
of a Laundry graph because D(Gn) = n−e

2
. Hence for n large enough, Gn is in C(t)

n−t, for some
t. Therefore, the diameter of Gn is between bn−t

2
c + 1 and bn−t

2
c + 2, hence it follows that

e+1 ≤ t ≤ e+4. To finish the proof, we observe that ρ(Gn) >
√

2 +
√

5 by Theorem 2.7.

Next, we consider the cases where n
2
≤ D ≤ 2n

3
. In these cases, the graph C(n,D) :=

C0,n−D
D−bn

2
c,D−dn

2
e,2(n−D) with n vertices and diameter D is a good candidate for a minimizer

graph. We observe that for every ε > 0 there exists a positive integer N such that for all
n ≥ N and n

2
≤ D ≤ 2n

3
, we have ρ(C(n,D)) < 3

2

√
2 + ε. This observation, which provides a

natural upper bound on ρD(n), can be shown in a similar way as in the proof of Lemma 3.1
(f).

For fixed e = 2D− n we can get better upper bounds because ρ(C(2D− e,D)) → ρd e
2
e as

D →∞ by Theorem 3.8. We even conjecture that this is optimal.

Conjecture 4.2. Let e ≥ 1. For n large enough and such that n + e is even, the unique

minimizer graph Gn with n vertices and diameter n+e
2

is C(n, n+e
2

) = C
0, n−e

2

b e
2
c,d e

2
e,n−e.

We shall prove this conjecture for e ≤ 4. Some more evidence for the conjecture is given by
the following lemma.

Lemma 4.3. Let e ≥ 1, n ≥ e + 4 and such that n + e is even. If a minimizer graph with
n vertices and diameter n+e

2
is a subgraph of an d e

2
e-Urchin graph but not of an d e

2
e-Laundry

graph, then it is C
0, n−e

2

b e
2
c,d e

2
e,n−e.

Proof. Suppose the minimizer graph Gn is a subgraph of an d e
2
e-Urchin graph and contains

a cycle of length s. Then on one hand n+e
2

= D(Gn) ≤ b s
2
c + n − s and on the other hand

n+e
2

= D(Gn) ≤ b s
2
c + 2d e

2
e. By combining these inequalities, it follows that s = n − e for

e even, and that in this case C
0, n−e

2

b e
2
c,d e

2
e,n−e is the only graph possible. For odd e, it follows

that n− e− 2 ≤ s ≤ n− e, and that there are three types of candidate graphs: C
0, n−e

2

b e
2
c,d e

2
e,n−e,

C
0,bn−e−1

2
c

d e
2
e,d e

2
e,n−e−1, and C

0,h, n−e−2
2

d e
2
e,1,d e

2
e,n−e−2 for some h. By applying Lemmas 2.1 and 2.4, it follows

that of these candidates, C
0, n−e

2

b e
2
c,d e

2
e,n−e has the smallest spectral radius.

To prove the cases e ≤ 4 we use the following lemma.
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Lemma 4.4. Let e ≥ 1, m = d e
2
e, and n be such that n + e is even. Let G be a subgraph of

an m-Laundry graph, with n vertices and diameter D = n+e
2

. Then, possibly after subdividing

edges on internal paths, G contains P s,s+m
1,1,2s+m+1 as a subgraph, for some s = s(n), with s →∞

as n →∞.

Proof. Let t be the number of vertices of degree 3 in G. Then by counting vertices one obtains
that n ≤ D+1+tm+2, from which it follows that t ≥ n−6

2m
−1. Consider the vertices of degree

3 in their natural order on the path, and let τ be the number of consecutive pairs of such
vertices at distance at most m. Then it follows that n

2
+ m ≥ D ≥ 2 + τ + (t− 1− τ)(m + 1),

from which we derive that τ ≥ τ0(n) for some τ0(n) for which τ0(n) → ∞ as n → ∞. The
statement now follows by taking s(n) = b1

2
τ0(n)c.

Theorem 4.5. For n large enough and odd, the unique minimizer graph Gn with n vertices and
diameter D = n+1

2
is Ĉn−1 = C(n, n+1

2
). For n large enough and even, the unique minimizer

graph Gn with n vertices and diameter D = n+2
2

is C
0, n−2

2
1,1,n−2. Moreover, ρD(2D−1) →

√
2 +

√
5

and ρD(2D − 2) →
√

2 +
√

5 as D →∞.

Proof. We shall only prove the first case (e = 1). The other case (e = 2) is similar. As

mentioned before, limn→∞ ρ(Ĉn−1) =
√

2 +
√

5 according to Theorem 3.8. Since ρ(Gn) ≤
ρ(Ĉn−1) → ρ1 (n → ∞), we have that ρ(Gn) < θ2,3 for n large enough. Then by Theorem
3.4, Gn is a subgraph of a Laundry graph or an Urchin graph, for n large enough. If Gn is
a subgraph of a Laundry graph, and has diameter n+1

2
, then for n large enough, Gn contains

P s,s+1
1,1,2s+2 as a subgraph by Lemma 4.4, where s = s(n) → ∞ as n → ∞. But then ρ(Gn) ≥

ρ(P s,s+1
1,1,2s+2) ≥ ρ(P s,s+2

1,1,2s+3) → 3
2

√
2 (n → ∞) according to Lemma 3.1 (h), which gives a

contradiction. Thus Gn cannot be a subgraph of a Laundry graph, for n large enough. The
result now follows from Lemma 4.3.

For n = 11, 13, 15, 17, 19, it was checked by computer that the unique minimizer graph with n
vertices and diameter n+1

2
is Ĉn−1, see [6, Table 2]. For n = 9 and D = 5, a minimizer graph

is either Ĉ8 or P 1,3
1,2,6.

It was also checked that for n = 16, 18, 20, the unique minimizer graph with n vertices

and diameter n+2
2

is indeed C
0, n−2

2
1,1,n−2, see [6, Table 2]. For n = 14 and diameter 8, a minimizer

graph is either C0,6
1,1,12 or C0

2,12.
We finish this section with the cases e = 3 and 4 of Conjecture 4.2.

Theorem 4.6. For n large enough and odd, a minimizer graph Gn with n vertices and diam-

eter n+3
2

is C
0, n−3

2
1,2,n−3, while for n large enough and even, a minimizer graph Gn with n vertices

and diameter n+4
2

is C
0, n−4

2
2,2,n−4. Moreover, ρD(2D − 3) → ρ2 and ρD(2D − 4) → ρ2 as D →∞.

Proof. Similar as that of Theorem 4.5.

5 Application to diameter D near n

For 2n
3
≤ D ≤ n − 1, the graph T (n,D) := TbD

2
c,dD

2
e,n−D−1 has n vertices, diameter D and

spectral radius ρ(T (n,D)) < 3
2

√
2 (because any T-shape tree has spectral radius smaller than

12



3
2

√
2), which gives a natural upper bound on ρD(n) for these cases. Like in the previous

section, we will be able to improve on this under certain assumptions.
In [6], the following conjecture was made regarding the graphs of diameter D minimizing

the spectral radius for D = n− e, where e is fixed and n is large enough.

Conjecture 5.1. For fixed e, the graph P
b e−1

2
c,n−e−d e−1

2
e

b e−1
2
c,d e−1

2
e,n−e+1

is a minimizer graph with n vertices

and diameter D = n− e, for n large enough.

As mentioned earlier, the cases e = 1, 2, 3 were settled in [6]. After making some observations
for general e, we shall give a short proof of the case e = 4, which was solved independently by
Yuan, Shao and Liu [13]. More precisely, we will prove that for n ≥ 11, the unique minimizer
graph with n vertices and diameter n− 4 is P 1,n−6

1,2,n−3. Finally, we prove the case e = 5.
It follows from Theorem 3.8 that for the conjectured minimizer graphs we have that

limn→∞ ρ(P
b e−1

2
c,n−e−d e−1

2
e

b e−1
2
c,d e−1

2
e,n−e+1

) = ρd e−1
2
e. Here we shall show that Conjecture 5.1 is false for

e ≥ 6, by showing that ρD(D + e) →
√

2 +
√

5 as D →∞, and that a minimizer graph must
be in one of the families we will describe now.

For e ≥ 5, let Pn,e be the family of graphs of the form P
m1,...,me−3

n1,...,ne−3,n−e+1, with n1 = ne−3 = 2,
ni = 1 for 1 < i < e− 3, m1 = 2, me−3 = n− e− 2. Also, for e ≥ 4, P ′n,e consists of graphs of
the form P

m1,...,me−2

n1,...,ne−2,n−e+1, with n1 = 2, ni = 1 for 1 < i, m1 = 2, me−2 = n − e − 1, and P ′′n,e

of graphs of the form P
m1,...,me−1

n1,...,ne−1,n−e+1, with ni = 1 for all i, m1 = 1, me−1 = n − e − 1. All
graphs in these three families have n vertices and diameter D = n− e.

Theorem 5.2. For given integer e ≥ 4, ρD(D + e) →
√

2 +
√

5 as D → ∞. Moreover, a
minimizer graph with diameter D and n = D + e vertices is in one of the three families Pn,e,
P ′n,e, and P ′′n,e, for n large enough.

Proof. Let e ≥ 4 be fixed. For n ≥ 2e, take the graph Hn = P
m1,...,me−1

n1,...,ne−1,n−e+1, with ni = 1 for

all i, mi = 1+(i−1)l for i < e−1, me−1 = n− e−1 in P ′′n,e, where l = bn−e−2
e−2

c. By Corollary

3.10(c), limn→∞ ρ(Hn) =
√

2 +
√

5 as `(Hn) = bn−e−2
e−2

c → ∞ (n → ∞) and t(Hn) = e − 1.
Let Gn be a minimizer graph with n vertices and diameter D = n− e. Since ρ(Gn) ≤ ρ(Hn)
we can take ε > 0 such that ρ(Gn) ≤ ρ1 + ε < θ2,3 for n large enough. By Theorem 3.4, Gn is
a subgraph of a Laundry graph or an Urchin graph, for n large enough. It then follows that
Gn must be a subgraph of a Laundry graph because D(Gn) = n− e. Hence Gn is of the form
P

m1,...,me−3

n1,...,ne−3,n−e+1, with n1 = ne−3 = 2, ni = 1 for 1 < i < e − 3, m1 ≥ 2, me−3 ≤ n − e − 2,
or of the form P

m1,...,me−2

n1,...,ne−2,n−e+1, with n1 = 2, ni = 1 for 1 < i, m1 ≥ 2, me−2 ≤ n − e − 1, or
of the form P

m1,...,me−1

n1,...,ne−1,n−e+1, with ni = 1 for all i, m1 ≥ 1, me−1 ≤ n − e − 1. It then follows
from Lemmas 2.1 and 2.4 that the inequalities for the mi should be equalities, i.e., Gn is in
one of the families Pn,e, P ′n,e, and P ′′n,e, for n large enough. To finish the proof, we observe

that ρ(Gn) >
√

2 +
√

5 by Theorem 2.7.

Instead of Conjecture 5.1 we pose the following.

Conjecture 5.3. For fixed e ≥ 5, a minimizer graph with n vertices and diameter D = n− e
is in the family Pn,e, for n large enough.
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Computational results comparing the three families of graphs Pn,e, P ′n,e, and P ′′n,e for e =
5, ..., 9 support Conjecture 5.3. For e = 6 and e = 7 we can be more specific as follows.

Conjecture 5.4. The graph P
2,d(D−1)/2e,D−2
2,1,2,n−5 is the unique minimizer graph with n vertices

and diameter D = n− 6, for n large enough.

Conjecture 5.5. The graph P
2,b(D−2)/3c,D−b(D−2)/3c,D−2
2,1,1,2,n−6 is the unique minimizer graph with n

vertices and diameter D = n− 7, for n large enough.

Next, we shall prove Conjecture 5.1 for the case e = 4. For this, we use the following lemma.

Lemma 5.6. ρ(P k,k+m
k,1,k+m+2) = ρ(P 1,m+2,2m+3

1,k−1,1,2m+5) for k ≥ 2 and m ≥ 1.

Proof. We rewrite the characteristic polynomials of the two graphs as follows. Using Lemma
2.3 with u being the vertex of degree 3 incident to two paths of length k, we obtain that

Φ(P k,k+m
k,1,k+m+2) = Φ(Pk) [Φ(T1,1,m+k)− Φ(Pk−1)Φ(T1,1,m−1)] .

Since Pk is a proper subgraph of P k,k+m
k,1,k+m+2, it follows that ρ(P k,k+m

k,1,k+m+2) is the largest root of
Φ(T1,1,m+k)− Φ(Pk−1)Φ(T1,1,m−1).

Similarly, using Lemma 2.3 with u being the middle vertex of degree 3, we obtain that

Φ(P 1,m+2,2m+3
1,k−1,1,2m+5) = Φ(T1,1,m) [Φ(T1,1,m+k)− Φ(Pk−1)Φ(T1,1,m−1)] .

Since T1,1,m is a proper subgraph of P 1,m+2,2m+3
1,k−1,1,2m+5, it follows that ρ(P 1,m+2,2m+3

1,k−1,1,2m+5) is also the
largest root of Φ(T1,1,m+k)− Φ(Pk−1)Φ(T1,1,m−1). This finishes the proof.

Theorem 5.7. For n ≥ 11, the graph P 1,n−6
1,2,n−3 is the unique minimizer graph with n vertices

and diameter n− 4.

Proof. Let Gn denote a minimizer graph with n vertices and diameter n − 4, for n ≥ 11.
Lemma 2.4 implies that the spectral radius of P 1,n−6

1,2,n−3 is decreasing with n, so that

ρ(Gn) ≤ ρ(P 1,n−6
1,2,n−3) ≤ ρ(P 1,5

1,2,8) ≈ 2.0684.

Thus, by Theorem 2.8, Gn is a dagger, a closed quipu, or an open quipu. However, if Gn is a
dagger, then ρ(Gn) = ρ(T0(n− 4)) ≥ ρ(T0(7)) ≈ 2.1203, which is a contradiction. Also, if Gn

is a closed quipu, then it contains as a subgraph Ĉs, where s ≤ 8 because the diameter of Gn

is n − 4. Thus, in that case ρ(Gn) ≥ ρ(Ĉs) ≥ ρ(Ĉ8) ≈ 2.0840, which is a contradiction too.
So Gn must be an open quipu. If Gn is a T-shape tree, then it contains T3,3,3 as a subgraph,
hence ρ(Gn) ≥ ρ(T3,3,3) ≈ 2.0743, which is again a contradiction.

Thus, it follows that Gn is either of the form Pm1,m2

1,2,n−3, with m1 ≥ 1 and m2 ≤ n − 6,
or of the form Pm1,m2,m3

1,1,1,n−3 , with m1 ≥ 1 and m3 ≤ n − 5. Lemmas 2.1 and 2.4 then imply

that equality should hold in the inequalities for the mi. Thus, Gn is P 1,n−6
1,2,n−3 or of the form

P 1,m2,n−5
1,1,1,n−3 for some m2. However, by Lemmas 2.4 and 5.6 (for k = 2,m = n − 7; note that

P 1,n−6
1,2,n−3 = P 2,n−5

2,1,n−3), we have that ρ(P 1,m2,n−5
1,1,1,n−3 ) > ρ(P 1,n−5,2n−11

1,1,1,2n−9 ) = ρ(P 1,n−6
1,2,n−3), which finishes

the proof.
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For the case e = 5, the computations in [6] show that P 2,n−7
2,2,n−4 is the unique minimizer graph

with n vertices and diameter D = n− 5, for 14 ≤ n ≤ 20. For the proof of the conjecture for
this case, we use the following lemmas to eliminate two families of candidates.

Lemma 5.8. Let k ≥ 3. Then ρ(P 2,2k−2,3k−2
2,1,1,3k ) = ρ(P 2,2k−2

2,2,2k+1) = ρ(P 1,k−1,2k−3
1,1,1,2k−1 ).

Proof. Define G = P 2,2k−2,3k−2
2,1,1,3k and H = P 2,2k−2

2,2,2k+1. By applying Lemma 2.3 (with bridge
2k − 2 ∼ 2k − 1), we obtain that

Φ(H) = Φ(P2)[Φ(T2,2,2k−2)− xΦ(T2,2,2k−5)]

= Φ(P2)[Φ(P3)Φ(T2,2,2k−5)− Φ(P2)Φ(T2,2,2k−6)− xΦ(T2,2,2k−5)]

= Φ(P2)[(x
3 − 3x)Φ(T2,2,2k−5)− (x2 − 1)Φ(T2,2,2k−6)].

By a different application of Lemma 2.3 (with bridge k − 1 ∼ k), we derive that

Φ(H) = Φ(T2,2,k−3)[Φ(T2,2,k−2)− Φ(T2,2,k−4)]

= Φ(T2,2,k−3)Φ(P2)[Φ(Pk+1)− xΦ(Pk−2)− Φ(Pk−1) + xΦ(Pk−4)]

= Φ(T2,2,k−3)Φ(P2)[
1

x
Φ(T1,1,k−1)− Φ(T1,1,k−4)].

Now it follows that

Φ(H) · Φ(T1,1,k+1)Φ(T2,2,k−3) + xΦ(T2,2,2k−6)

Φ(P2)Φ(T2,2,k−3)

= [(x3 − 3x)Φ(T2,2,2k−5)− (x2 − 1)Φ(T2,2,2k−6)]Φ(T1,1,k+1)

+ [
1

x
Φ(T1,1,k−1)− Φ(T1,1,k−4)]xΦ(T2,2,2k−6)

= (x3 − 3x)[Φ(T2,2,2k−5)Φ(T1,1,k+1)− xΦ(T2,2,2k−6)Φ(T1,1,k−1)]

= (x3 − 3x)Φ(G).

The last equality follows from applying Lemma 2.3 (with bridge 2k − 3 ∼ 2k − 2), whereas
the one-but-last follows from the recursive relations of Φ(T1,1,i) that follow from Lemma 2.2.

Because the largest root of H is larger than the largest root of Φ(P2)(x
3 − 3x)Φ(T2,2,k−3),

it follows that ρ(G) = ρ(H).
From Φ(P 1,k−1,2k−3

1,1,1,2k−1 ) = Φ(T1,1,k−3)[Φ(T1,1,k−1)−xΦ(T1,1,k−4)], it finally follows that ρ(H) =

ρ(P 1,k−1,2k−3
1,1,1,2k−1 ).

Lemma 5.9. Let 2 ≤ m2 ≤ 2k − 4. Then ρ(P 1,m2,2k−3
1,1,1,2k−1 ) ≥ ρ(P 1,k−1,2k−3

1,1,1,2k−1 ) with equality if and
only if m2 = k − 1.

Proof. Let r = m2 − 2 and s = 2k − 4−m2. Without loss of generality we may assume that
m2 ≤ k − 1, so that r ≤ s. Then

Φ(P 1,m2,2k−3
1,1,1,2k−1 ) = xΦ(P 1,2k−3

1,1,2k−1)− Φ(T1,1,r)Φ(T1,1,s)

= xΦ(P 1,2k−3
1,1,2k−1)− x2[Φ(Pr+2)− Φ(Pr)][Φ(Ps+2)− Φ(Ps)].
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Assume that m2 < k − 1, so that r ≤ s− 2. It follows that

Φ(P 1,m2+1,2k−3
1,1,1,2k−1 )− Φ(P 1,m2,2k−3

1,1,1,2k−1 ) = x[Φ(Pr+2)− Φ(Pr)][(x
2 − 2)Φ(Ps+1)− 2Φ(Ps−1)]

− x[(x2 − 2)Φ(Pr+2)− 2Φ(Pr)][Φ(Ps+1)− Φ(Ps−1)]

= x(x2 − 4)[Φ(Pr+2)Φ(Ps−1)− Φ(Pr)Φ(Ps+1)].

Because Φ(Pm) = λm+1−λ−m−1

λ−λ−1 , one can obtain easily that Φ(Pr+2)Φ(Ps−1) ≥ Φ(Pr)Φ(Ps+1) for
any x ≥ 2 with equality if and only if r + 1 = s. This implies the desired results.

Lemma 5.10. Let n ≥ 15 and 3 ≤ m2 ≤ n− 7. Then ρ(P 2,n−7
2,2,n−4) < ρ(P 2,m2,n−6

2,1,1,n−4 ).

Proof. Let G′ = P 2,m2,n−6
2,1,1,n−4 for some 3 ≤ m2 ≤ n− 7.

First, let n = 2k + 5 be odd. In this case, P 2,n−7
2,2,n−4 = P 2,2k−2

2,2,2k+1 =: H and G′ = P 2,m2,2k−1
2,1,1,2k+1 .

Recall from the previous lemma that ρ(H) is the largest root of Φ(T2,2,k−2)− Φ(T2,2,k−4).

If m2 ≤ k − 1, then ρ(G′) > ρ(P 2,m2

2,1,m2+2) ≥ ρ(P 2,k−1
2,1,k+1) = ρ(x[Φ(T2,2,k−2) − Φ(T2,2,k−4)]) =

ρ(H). If k ≤ m2 ≤ n− 7 = 2k − 2, then subdividing an appropriate number of edges on the
internal paths of G′ gives the graph P 2,2k−2,3k−2

2,1,1,3k . Thus, ρ(G′) > ρ(P 2,2k−2,3k−2
2,1,1,3k ). From the

previous lemma we have that ρ(P 2,2k−2,3k−2
2,1,1,3k ) = ρ(H) which implies ρ(G′) > ρ(H) in this case

as well. This proves the assertion for n odd.
Next, let n = 2k + 6 be even. If m2 = n − 7, then G′ is obtained from P 2,n−7

2,2,n−4 by

replacing one edge and it follows easily (cf. [4, Thm. 6.4.7]) that ρ(P 2,n−7
2,2,n−4) < ρ(G′). Assume

finally that m2 ≤ n − 8 = 2k − 2, and let H = P 2,2k−2
2,2,2k+1. Because n > 2k + 5, it follows

that ρ(H) > ρ(P 2,n−7
2,2,n−4). Similar as in the case where n is odd, one can now show that

ρ(G′) > ρ(H), which finishes the proof.

Lemma 5.11. Let n ≥ 15 and 2 ≤ m2 < m3 ≤ n− 7. Then ρ(P 2,n−7
2,2,n−4) < ρ(P 1,m2,m3,n−6

1,1,1,1,n−4 ).

Proof. If m2 = 2, then P 1,m2,m3,n−6
1,1,1,1,n−4 is obtained from P 2,m3,n−6

2,1,1,n−4 by replacing one edge, and as

before, it follows that ρ(P 1,m2,m3,n−6
1,1,1,1,n−4 ) > ρ(P 2,m3,n−6

2,1,1,n−4 ). The required result now follows from
the previous lemma. Similarly, the result follows if m3 = n− 7.

Assume now that n = 2k + 5 is odd. Since we may assume that m3 ≤ n− 8 = 2k − 3, we
obtain that

ρ(P 1,m2,m3,n−6
1,1,1,1,n−4 ) > ρ(P 1,m2,m3

1,1,1,m3+2) ≥ ρ(P 1,m2,2k−3
1,1,1,2k−1 ) ≥ ρ(P 1,k−1,2k−3

1,1,1,2k−1 ) = ρ(P 2,n−7
2,2,n−4),

among others by using Lemmas 5.9 and 5.8.
Assume next that n = 2k + 6 even. If m3 ≤ n− 9, then similar as above, we obtain that

ρ(P 1,m2,m3,n−6
1,1,1,1,n−4 ) > ρ(P 1,m2,m3

1,1,1,m3+2) ≥ ρ(P 1,m2,2k−3
1,1,1,2k−1 ) ≥ ρ(P 1,k−1,2k−3

1,1,1,2k−1 ) = ρ(P 2,n−8
2,2,n−5) > ρ(P 2,n−7

2,2,n−4).

By symmetry, the result follows if m2 ≥ 4.
The only case left is when m2 = 3 and m3 = n − 8. For this case, we claim that

ρ(P 1,3,n−8,n−6
1,1,1,1,n−4 ) > ρ(P 2,n−8,n−6

2,1,1,n−4 ), which together with the previous lemma settles the proof.
To prove the claim, we note that by Lemma 2.3, we have that

Φ(P 1,3,n−8,n−6
1,1,1,1,n−4 ) = Φ(T1,1,3)Φ(P 1,3

1,1,n−8)− xΦ(T1,1,1)Φ(P 1,3
1,1,n−9),

Φ(P 2,n−8,n−6
2,1,1,n−4 ) = Φ(T2,2,1)Φ(P 1,3

1,1,n−8)− Φ(P5)Φ(P 1,3
1,1,n−9).

16



After working out the technical details, we obtain that

Φ(P 2,n−8,n−6
2,1,1,n−4 )− Φ(P 1,3,n−8,n−6

1,1,1,1,n−4 ) = −Φ(P 1,3
1,1,n−8) + (x3 − 3x)Φ(P 1,3

1,1,n−9).

For x ≥ ρ(P 2,n−8,n−6
2,1,1,n−4 ) > 2, it follows that

Φ(P 2,n−8,n−6
2,1,1,n−4 )− Φ(P 1,3,n−8,n−6

1,1,1,1,n−4 ) > −Φ(P 1,3
1,1,n−8) + xΦ(P 1,3

1,1,n−9) = Φ(P 1,3
1,1,n−10) > 0,

and the claim follows.

Theorem 5.12. For n ≥ 18, the graph P 2,n−7
2,2,n−4 is the unique minimizer graph with n vertices

and diameter n− 5.

Proof. Let Gn denote a minimizer graph with n vertices and diameter n − 5, for n ≥ 18.
Similar as before, we have that

ρ(Gn) ≤ ρ(P 2,n−7
2,2,n−4) ≤ ρ(P 2,11

2,2,14) ≈ 2.0710.

Thus, by Theorem 2.8, Gn is a dagger, a closed quipu, or an open quipu. By the same
arguments as in Theorem 5.7, Gn cannot be a dagger or a T-shape tree. If Gn is a closed
quipu, then it contains as a subgraph Ĉs, where s ≤ 10 because the diameter of Gn is n− 5.
Thus, in that case ρ(Gn) ≥ ρ(Ĉs) ≥ ρ(Ĉ10) ≈ 2.0743, which is a contradiction. So Gn must
be an open quipu, but not a T-shape tree.

Similar as before, it follows that Gn is P 2,n−7
2,2,n−4 or of the form P 1,m2,n−6

1,2,1,n−4 for some m2, or of

the form P 2,m2,n−6
2,1,1,n−4 for some m2, or of the form P 1,m2,m3,n−6

1,1,1,1,n−4 for some m2 and m3.

However, by Lemmas 2.4, 5.6 (for k = 3,m = n− 8), and 2.1, we have that ρ(P 1,m2,n−6
1,2,1,n−4 ) >

ρ(P 1,n−6,2n−13
1,2,1,2n−11 ) = ρ(P 3,n−5

3,1,n−3) > ρ(T3,3,3) ≈ 2.0743, so Gn cannot be of the form P 1,m2,n−6
1,2,1,n−4 .

By Lemma 5.10, Gn cannot be of the form P 2,m2,n−6
2,1,1,n−4 , and by Lemma 5.11, it cannot be of

the form P 1,m2,m3,n−6
1,1,1,1,n−4 . Thus, Gn must be P 2,n−7

2,2,n−4.
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