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Samenvatting

De focus van dit proefschrift is de identificatie van het verband tussen bepaalde
input-output gegevens door middel van symbolische regressie. De uitdagende
taak van symbolische regressie is een echt of gesimuleerd systeem of een proces
te identificeren en te vertalen in een expliciete functie, gebaseerd op een beperkt
aantal observaties van het gedrag van dit systeem.

Het bestudeerde systeem wordt gekenmerkt door een aantal belangrijke
controleparameters, die voor een waarnemer beschikbaar moeten zijn, maar die
meestal moeilijk, of via een tijdrovend experiment of slechts met hoge kosten te
meten zijn. Een andere mogelijkheid is dat deze parameters slechts na lange tijd
of met hoge computerkosten kunnen worden gesimuleerd of waargenomen.

Door middel van empirisch modelleren wordt geprobeerd om deze kritieke
controlevariabelen via andere beheersbare variabelen uit te drukken die of
gemakkelijker zijn te meten, nauwkeuriger kunnen worden gemeten, goedkoper
zijn om te simuleren, enz.

Symbolische regressie maakt het mogelijk dergelijke uitdrukkingen van essen-
tiële proceskenmerken of bepaalde reactievariabelen te verkrijgen in symbolische
vorm. Deze uitdrukkingen worden empirische input-output modellen genoemd
en hebben als inputs de meer eenvoudig te meten controleparameters.

Voorbeelden hiervan zijn (1) structuur-activiteit verhoudingen in genees-
middelen, waar de activiteit van een medicijn wordt bepaald door de fysieke
structuur van moleculaire componenten, (2) structuur-eigenschap verhoudingen
in materiaalkunde, waar de kwaliteiten van een product, zoals glans, opaciteit,
geur, of stijfheid van een product wordt gerelateerd aan de samenstelling en
verwerkingsvoorwaarden, of (3) economische modellen, b.v. rendement van een
investering als functie van aandeelkoersen en economische parameters.

De industrile modelleringsproblemen die geschikt zijn voor symbolische
regressie hebben twee belangrijke kenmerken: (1) geen of weinig informatie is
bekend over het onderliggende systeem dat de gegevens produceert, en daarom
kunnen geen veronderstellingen over de mogelijke modellen worden gemaakt; (2)
de beschikbare gegevens zijn hoog-dimensionaal, niet gebalanceerd, en met of een
overvloedig of een ontoereikend aantal steekproeven.

Om aannemelijke modellen met realistische tijd- en computerinspanningen
te ontdekken, exploiteert symbolische regressie een stochastische zoekmethode,
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die op kunstmatige evolutie van modeluitdrukkingen wordt gebaseerd. Deze
methode, die genetische programmering wordt genoemd, zoekt geschikte uitdruk-
kingen voor de output-variabele in de ruimte van alle geldige formules die
een minimaal aantal inputvariabelen, operatoren en constanten bevatten. De
mogelijke operatoren worden vooraf vastgelegd.

Bij elke iteratie van het genetische programmeersysteem wordt een voldoende
grote hoeveelheid verschillende formules gevalueerd, wordt vervolgens de deel-
verzameling van formules geselecteerd die het beste voldoet aan een aantal door
de gebruiker bepaalde prestatiecriteria, en worden vervolgens de beste formules
uit deze deelverzameling gerecombineerd om een gevarieerde reeks potentile
oplossingen voor de volgende stap tot stand te brengen. Deze benadering
wordt genspireerd door principes van natuurlijke selectie, waar de nakomelingen
die goede eigenschappen van beide ouders erven hun kansen voor overleving,
aanpassing, en verdere propagatie verhogen. De uitdaging voor evolutionaire
algoritmes is het vinden van een goed evenwicht tussen de exploitatie of het
verfijnen van de reeds gevonden oplossingen en de exploratie van nieuwe gebieden
van de onderzoeksruimte waar nog betere oplossingen kunnen worden gevonden.

Het feit dat symbolische regressie via Pareto GP geen veronderstellingen aan
de structuur van de input-output modellen oplegt, betekent dat de modelstructuur
voor een groot deel door gegevens en door selectiedoelstellingen van het
evolutionaire proces bepaald wordt. Enerzijds is het een voordeel en een uniek
vermogen vergeleken met andere globale benaderingstechnieken, aangezien het
een potentieel heeft om eenvoudigere modellen te ontwikkelen dan bijvoorbeeld
door interpolatie met veeltermen. Anderzijds is het ontbreken van beperkingen
op modelstructuur de grootste uitdaging voor symbolische regressie, aangezien
het de onderzoeksruimte van mogelijke oplossingen, die reeds inherent groot is,
enorm verhoogt.

In dit proefschrift wordt een speciale versie gebruikt van genetisch program-
meren, Pareto genetische programmering. In deze versie worden meerdere
doelstellingen voor optimaliteit gecombineerd. Het gebruik van Pareto genetische
programmering voor symbolische regressie heeft sterke voordelen in het creren
van diverse reeksen regressiemodellen (met slechts enkele significante variabelen).
Op die manier worden namelijk modellen verkregen die zowel nauwkeurig
voorspellen als die voldoen aan bepaalde eisen voor structuureenvoud.

Dit proefschrift breidt de Pareto genetische programmeringsmethodologie
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uit door extra generieke modelselectie en generatiestrategien die (1) modellen
drijven in de richting van verminderde niet-lineariteit en verhoogde generalisatie
mogelijkheden, en (2) de doeltreffendheid van het zoeken naar robuuste modellen
verbeteren door zachtere doelstellingen, adaptieve fitnesssevaluaties, en verbeterde
leerstrategien.

Naast de nieuwe strategien voor modelontwikkeling en modelselectie, stelt dit
proefschrift een nieuwe benadering voor voor de analyse, het rangschikken, en
compressie van bepaalde multidimensionele input-output gegevens, met als doel
de informatie-inhoud van deze gegevensreeksen meer in evenwicht te brengen.

Om bijdragen van dit onderzoek in de context van real-life probleem
oplossingen te plaatsen, exploiteert dit proefschrift een generiek kader van
adaptief model-gebaseerd probleem oplossen zoals gebruikt in vele industrile
modelleringstoepassingen. Dit kader bestaat uit herhaalde terugkoppeling van:
(Deel I) generatie, analyse en aanpassing van de data, (Deel II) modelontwikkeling,
en (Deel III) probleemanalyse en -reductie.

Deel I van het proefschrift bestaat uit Hoofdstuk 2 en behandelt gegevens-
analyse. Het bestudeert manieren om multi-dimensionele input-output gegevens
in evenwicht te brengen voor succesvolle verdere modellering. Het hoofdstuk
stelt verscheidene nieuwe methodes voor voor interpretatie en manipulatie van
bepaalde hoog-dimensionale input-output gegevens, zoals het relatief wegen van
gegevens, het rangschikken van gegevens in volgorde van stijgend belang, en
het bepalen van de samendrukbaarheid en de informatie-inhoud van een multi-
dimensionele gegevensreeks. Alle methodes exploiteren de geometrische structuur
van de gegevens en de relatieve afstanden met dichtbij gelegen datarecords, en
behandelen de output-waarden verschillend, rekening houdend met het feit dat
de gegevens tot een bepaald multi-dimensionaal oppervlak behoren.

Deel II van het proefschrift bestaat uit Hoofdstukken 3-7 en behandelt de
modelinductiemethode - Pareto genetische programmering (Pareto GP). Omdat
tijd tot het bereiken van een oplossing, of nauwkeuriger, tijd-tot-overtuigende
oplossing een belangrijke praktische uitdaging is van evolutionaire zoekalgoritmen
en dus ook voor Pareto GP, behandelen de hoofdstukken van Deel II diverse
algoritmische verbeteringen van Pareto GP. Deze leiden tot de snellere ontdekking
van betere oplossingen, d.w.z. oplossingen van voldoende kwaliteit bij een
kleinere cpu-inspanning, of van aanzienlijk betere kwaliteit bij dezelfde cpu-
inspanning.
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In Hoofdstuk 3 wordt een algemene beschrijving van de Pareto GP methodo-
logie voorgesteld in een kader van evolutionair zoeken met een herhaalde iteratie
over de stadia van modelgeneratie, modelevaluatie, en modelselectie.

In Hoofdstuk 4 wordt een nieuwe strategie voor modelselectie door expliciete
niet-lineariteits controle voorgesteld. Een nieuwe complexiteitsregel gebaseerd op
de mate van niet lineair zijn van symbolische modellen wordt gentroduceerd in
Pareto GP en met succes gebruikt als onafhankelijk optimaliseringscriterium.
Er wordt aangetoond dat dit criterium ook met een criterium gebaseerd op
expressielengte kan worden afgewisseld, met als gevolg de ontwikkeling van
modellen met betere extrapolatie mogelijkheden.

In Hoofdstuk 5 wordt een nieuwe manier voor het evalueren van de fitness
van modellen gentroduceerd. Hierin worden de methodes gebruikt om gegevens
in evenwicht te brengen zoals beschreven in Hoofdstuk 2. In deze modificatie
wordt een gewijzigde definitie van modelvoorspellingsfout voor niet gebalanceerde
gegevens gexploiteerd. Twee verschillende methodes om gegevens in evenwicht
te brengen worden voorgesteld. De eerste methode gebruikt de gewichten die
de relatieve informatie-inhoud van de input-output gegevens weergeven direct
bij het uitvoeren van de regressie met de gewogen voorspellingsfout. De tweede
methode reduceert de reeks van input-output gegevens tot een kleinere groep van
gelijkwaardige informatie-inhoud en voert dan standaard regressie op de kleinere
groep uit met verbeterde exploratie.

In Hoofdstuk 6 wordt een alternatieve strategie voor modelevaluatie in Pareto
GP gentroduceerd, gebaseerd op ’goal softening’ en ordinale optimalisatie. Deze
strategie is ontworpen om het evenwicht tussen exploratie en exploitatie in het
evolutionair zoeken te verbeteren.

In Hoofdstuk 7 wordt een nieuwe methode voor incrementele evoluties op
essentile data records voorgesteld, die ideen van gebalanceerde gegevens (van
Hoofdstuk 2) en ’goal softening’ (van Hoofdstuk 6) in n nieuw kader combineert.
In dit kader worden de data records, die in dalend belang worden gesorteerd,
incrementeel toegevoegd aan het modelleringssysteem dat met een zeer kleine
subgroep en een zeer grote modelpopulatie begint. De modelpopulatie vermindert
in de loop van de evolutie zodanig dat het rekenbudget per iteratie constant blijft.

De prestatie verbeteringen van de voorgestelde methodes ten opzichte van
standaard Pareto GP worden vergeleken voor een aantal test problemen en getest
op hun statistische significantie.
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Deel III van het proefschrift is gewijd aan Probleem Analyse en Reductie.
Het veronderstelt dat de modellen die in Deel II worden ontwikkeld, in detail
worden onderzocht en zorgvuldig worden genterpreteerd om enkele inleidende
gevolgtrekkingen over de moeilijkheid van het modelleringsprobleem te maken.
Deel III bestaat uit Hoofdstuk 8 en behandelt de praktische aspecten van
het gebruiken van symbolische regressieresultaten voor het schatten van de
moeilijkheidsgraad van het probleem, in het bijzonder voor relevante input
variabele selectie, convergentie - identificatie, betrouwbaarheidsevaluatie, en
adaptieve data collectie.





Summary

The main focus of this dissertation is identification of relationships from given
input-output data by means of symbolic regression. The challenging task of
symbolic regression is to identify and express a real or simulated system or a
process, based on a limited number of observations of the system’s behavior.

The system under study is being characterized by some important control
parameters which need to be available for an observer, but usually are difficult
to monitor, e.g. they need to be measured in a lab, simulated or observed
in real time only, or at high time and computational expenses. Empirical
modeling attempts to express these critical control variables via other controllable
variables that are easier to monitor, can be measured more accurately or timely,
are cheaper to simulate, etc. Symbolic regression provides such expressions
of crucial process characteristics, or, response variables, defined (symbolically)
as mathematical functions of some of the easy-to-measure input variables, and
calls these expressions empirical input-response models. Examples of these are
(i) structure-activity relationships in pharmaceutical research, which define the
activity of a drug through the physical structure of molecules of drug components,
(ii) structure-property relationships in material science, which define product
qualities, such as shininess, opacity, smell, or stiffness through physical properties
of composites and processing conditions, or (iii) economic models, e.g. expressing
return on investment through daily closes of S&P 500 quotes and inflation rates.

Industrial modeling problems that are tractable for symbolic regression have
two main characteristics: (1) No or little information is known about the
underlying system producing the data, and therefore no assumptions on model
structure can be made; (2) The available data is high-dimensional, and often
imbalanced, with either abundant or insufficient number of samples.

To discover plausible models with realistic time and computational efforts,
symbolic regression exploits a stochastic iterative search technique, based
on artificial evolution of model expressions. This method, called genetic
programming looks for appropriate expressions of the response variable in the
space of all valid formulae containing a minimal set of input variables and a
proposed set of basic operators and constants.

At each step, the genetic programming system considers a sufficiently large
quantity of various formulae, selects the subset of the ”best” formulae according
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to certain user-defined criteria of goodness, and (re)combines the best formulae
to create a rich set of potential solutions for the next step. This approach
is inspired by principles of natural selection, where the offspring that inherits
good features from both parents increases the chances to be successful in
survival, adaptation, and further propagation. The challenge and the rationale of
performing evolutionary search is to balance the exploitation of the good solutions
discovered so far, with exploration of the new areas of the search space, where
even better solutions may be found.

The fact that symbolic regression via genetic programming (GP) does not
impose any assumptions on the structure of the input-output models means that
the model structure is to a large extent determined by data and also by selection
objectives used in the evolutionary search. On one hand, it is an advantage
and the unique capability compared with other global approximation techniques,
since it potentially allows to develop inherently simpler models than, for example,
by interpolation with polynomials or spatial correlation analysis. On the other
hand, the absence of constraints on model structure is the greatest challenge for
symbolic regression since it vastly increases the search space of possible solutions
which is already inherently large.

A special multi-objective flavor of a genetic programming search is considered,
called Pareto GP. Pareto GP used for symbolic regression has strong advantages
in creating diverse sets of regression models, satisfying competing criteria of
model structural simplicity and model prediction accuracy.

This thesis extends the Pareto genetic programming methodology by additional
generic model selection and generation strategies that (1) drive the modeling
engine to creation of models of reduced non-linearity and increased generalization
capabilities, and (2) improve the effectiveness of the search for robust models by
goal softening, adaptive fitness evaluations, and enhanced training strategies.

In addition to the new strategies for model development and model selection,
this dissertation presents a new approach for analysis, ranking, and compression
of given multi-dimensional input-output data for the purpose of balancing the
information content in undesigned data sets.

To present contributions of this research in the context of real-life problem
solving, the dissertation exploits a generic framework of adaptive model-based
problem solving used in many industrial modeling applications. This framework
consists of an iterative feed-back loop over: (Part I) data generation, analysis
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and adaptation, (Part II) model development, and (Part III) problem analysis
and reduction.

Part I of the thesis consists of Chapter 2 and is devoted to data analysis.
It studies the ways to balance multi-dimensional input-output data for making
further modeling more successful. Chapter 2 proposes several novel methods
for interpretation and manipulation of given high-dimensional input-output data
such as relative weighting the data, ranking the data records in the order of
increasing importance, and accessing the compressibility and information content
of a multi-dimensional data set. All methods exploit the geometrical structure
of the data and relative distances to nearest-in-the-input space neighbors. All
methods treat response values differently, assuming that the data belongs to a
response surface, which needs to be identified.

Part II of the thesis consist of Chapters 3-7 and addresses the model
induction method - Pareto genetic programming. Since time to solution, or,
more accurately, time-to-convincing-solution is a major practical challenge of
evolutionary search algorithms, and Pareto GP in particular, Part II focuses on
algorithmic enhancements of Pareto GP that lead it to the discovery of better
solutions faster (i.e. solutions of sufficient quality at a smaller computational
effort, or of considerably better quality at the same computational effort).

In Chapter 3 a general description of the Pareto GP methodology is presented
in a framework of evolutionary search, as an iterative loop over the stages of model
generation, model evaluation, and model selection.

In Chapter 5 a novel strategy for model selection through explicit non-linearity
control is presented. A new complexity measure called the order of non-linearity
of symbolic models is introduced and used successfully either as an independent
optimization criterion or alternated with expressional complexity, which is
both cases leads to the development of models with improved extrapolative
capabilities.

In Chapter 5 a new way of fitness evaluation of models is introduced
that exploits the data balancing methods of Chapter 2 with a modified
definition of prediction accuracy for imbalanced data. Two different methods
of data balancing for GP are presented. One uses the weights reflecting the
relative information content of input-output data records directly for performing
regression with the weighted prediction error. The second method compresses
the input-output data set to a smaller subset of similar information content and
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performs standard regression on a subset of data with enhanced exploration.
In Chapter 6 an alternative strategy for model evaluation in Pareto GP

is introduced. It is based on the principles of goal softening and ordinal
optimization, and is designed to improve the balance of exploitation and
exploration in the evolutionary search.

In Chapter 7 a new method for incremental evolutions on essential data
records is presented. It combines ideas of data balancing (from Chapter 2) and
goal softening (from Chapter 6) into one new framework. In this framework, the
data records ordered according to decreasing importance are added incrementally
to the modeling system, starting from a very small subset with very large
population size. The population size decreases in the course of evolution as
the training subset size increases, to keep the computational budget constant per
iteration.

Statistically significant performance improvements of these methods as
compared with the standard Pareto GP are observed on a number of various
regression case studies.

Part III of the thesis is devoted to Problem Analysis and Reduction.
It assumes that the models developed in Part II are carefully scrutinized,
interpreted, and validated for drawing preliminary conclusions on the difficulty of
the modeling problem. Part III consists of Chapter 8 and presents some practical
aspects of using symbolic regression results for estimating problem difficulty,
in particular for variable selection, convergence identification, trustworthiness
evaluation, and adaptive data collection.
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1
Introduction into Model-Based Problem

Solving

1.1 Motivation for data-driven modeling

Models lie at the core of any technology in any industry, be it finance,
manufacturing, services, mining, or information technologies. The competitiveness
of modern economy and the growing urge for sustainability call for a change in
the industry and therewith in the underlying models. Rapid creation of new and
‘better’ models is a convenient aid to guarantee the long-term value, maximize
efficiency, and minimize the costs.

Industrial processes are driven by fundamental models that describe (or aim to
describe1) the true laws of nature. Comprehension and development of accurate
fundamental models is one of the primary goals of scientific research. Control
over these models or at least awareness on what are their driving variables is one
of the primary goals of business, since it allows selecting optimal strategies for
maximizing impact and profit.

Fundamental models that accurately describe complex systems and processes
without severe simplifying assumptions are generally unknown. Those models
that exist (and are often called fundamental models) either are of limited
applicability in cases where their (fundamental) assumptions are violated, or are

1For non-deterministic processes, e.g. stock markets, they have to describe both laws of
nature and artifacts.
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of limited trustworthiness due to the lack of empirical validation. Both limitations
put unavoidable expectations on the development and exploitation of empirical
modeling techniques, that use observations (data) to model the processes.

Polymer manufacturing, for example, aims to describe and control kinetic and
structural properties of polymers based on first principles of physical and chemical
processes. This is a challenging task since polymers essentially change their
behavior and even physical structure under different environmental conditions,
and also because laws of mechanics do not describe all aspects of such changes.
The constitutive equations describing the behavior of polymers are generally
unknown and frequently involve unknown functions even when simplified kinetic
models are used. The form of these fundamental models may be so complex and
different from classical forms, that the relevant mathematical apparatus is not
yet available to solve, or even describe them fully. In these cases, the available
data can be used for empirical inference of the fundamental relationships between
the process variables and for accelerating the research.

Quantitative asset management is another example of a discipline that
actively exploits new empirical modeling technologies for validation and correction
of existing theoretical models. Quantitative asset management aims at modeling
efficient stock markets for a purpose of deriving optimal strategies for stocks and
making profit either by selling over-priced stocks, or buying under-priced stocks.
The traditional theoretical models of asset pricing, like the Capital Asset Pricing
Model by Sharpe (1964) or arbitrage pricing theory by Ross (1976) are linear
and have limitations in describing complex non-linear information-rich markets
(see (Becker et al., 2006, 2007)). In this case advanced empirical modeling
methods (and genetic programming in particular) are used to derive non-linear
relationships between a multitude of potential factors and increase reliability of
forecasting by quantitative models (see (Caplan and Becker, 2004; Neely and
Weller, 2003; Neely et al., 1997)).

Another example of using (non-linear) empirical models is forecasting recessions
in macroeconomics. Several studies report that recessions can be predicted
through simple financial variables like interest rates, stock price indexes,
monetary aggregates, see e.g. (Dueker, 1997; Estrella and Mishkin, 1996)
reporting that the slope of the yield curve (the spread between the interest rates
on the Treasury notes) is a good predictor of recessions of the U.S. economy over
one quarter periods. These studies use so-called probit models to estimate the
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probability of recession as a binary variable through a selected set of financial
indicators (see also (Bernard and Gerlach, 1998) and (McPhee and Miller, 1995)
for recessions in Canada). Probit models are linear in their parameters and use
the assumption that each input variable plays the same role in all recessions over
a selected period. Recent studies increase the accuracy of recession forecasting
through the use of non-linear empirical modeling methods such as multivariate
adaptive regression splines (see (Sephton, 2001)).

This thesis focuses on the development of non-linear empirical models
describing the relationships in given data. We use the terms empirical and data-
driven as if they were the same. Data-driven models are built using observed
and captured properties of the system, exhibited under different conditions or
over time, and expressed in the form of data. In this study numeric real-valued
data are used for model development, and no assumptions on data distribution
are made.

The task of empirical modeling, or data modeling lies in using a limited
number of observations of systems variables (data) for inferring relationships
among these variables.

The system under study is characterized by a number of control parameters,
which are usually difficult to monitor, e.g. they can be measured only in a
lab, or can be simulated only at high time- and computational costs. Empirical
modeling attempts to express these critical control variables via other controllable
variables that are easier to monitor, can be measured more accurately or timely,
are cheaper to simulate, etc. Control variables are referred to as outputs, or
responses, or response parameters, or key performance indicators, etc. Variables,
or properties, that are used for expressing the response are called inputs, or input
variables, design parameters, or predictors.

An example of a data matrix is given in Figure 1.1. A combination of values
of all input variables and the associated values of the output variables is called
a data record, data point, design point, fitness case, or scenario. Data coming
from the measurements may have missing values at any place in the data matrix,
or be wrong due to noise or measurement errors. The simulated data may have
gaps in the response values, corresponding to the infeasible realizations of certain
combinations of input variables. The task of the modeling is to detect the driving
input variables that cause the change in the observed response variables, and
formulate the exact relationship in a form of an accurate model. The quality of
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Figure 1.1: Data is the input of a data-driven modeling process. The table below is
a schematic view of the data matrix, where each line corresponds to a data point, also known
as sample, data record, fitness case, data level.

Input variables Responses
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Figure 1.2: The goal and the output of a data-driven modeling process is a model or
a collection of models that approximate the behavior of the observed system. Based
on the fixed values of the observed input variables, the model should generate an accurate
prediction f̂ of the output, such that it is close to the observed output y with respect to a
selected fitness measure.
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this model is assessed by the resemblance of the predicted output to the observed
output based on a number of data points.

Figure 1.2 presents a schematic view of using modeling for prediction.
System is the system under study (it can be a real process, or a black-box
simulation), (x1, . . . ,xd) is a set of input variables, (y1, . . . ,yr) is a set of response
variables, and model is a collection of modelled relationships predicting observed
responses (y1, . . . ,yr): {ŷj = f̂(x1, . . . ,xd), j = 1 : r}.

For many industrial applications the resulting relationships between the input
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variables and the output variables of a physical system can be found implicitly,
e.g. in a form of a simulation tool (see, for example, (Kleijnen, 2005; Kleijnen
et al., 2005)). Such an implicit2 relationship is called a black box. Since black-box
simulations are usually developed to simulate processes of extreme complexity,
they themselves are complex and computationally intensive. Computing the
predicted value of the response based on the given values of inputs may take a
long time and severely limits the possible number of calls to the simulation tool.
Furthermore, black box models are difficult to invert. Lacking insight into the
true input-output relationship makes it impossible to answer simple questions
about the response, e.g. what are the ranges of input variables that cause the
response to take certain values, not necessarily optimal? To gain insight into an
implicit black-box model and to ease its interpretation and manipulation, we can
create explicit models that mimic its behavior and relate black-box inputs and
outputs. This process is called meta-modeling. In this thesis no assumptions
are made about the source of data or its noise distribution. In fact, all case
studies in this thesis are based on modeling given (historic) data, with data either
sampled from explicit equations. simulations, or taken from measurements of real
processes.

1.2 Requirements for empirical models

The requirements for empirical models in an industrial setting are defined as
follows (see (Kotanchek et al., 2003; Smits and Kotanchek, 2004; Vladislavleva
et al., 2008)):

1. Capability for (a) on-line reliable prediction of process outputs within
the given range of operating conditions and outside this range, and (b)
trustability metric for these predictions.

2. Interpretability and possibility to integrate information from fundamental
models.

3. Low development and maintenance cost with little or minimal
operator intervention.

2By ‘implicit’ we mean anything that differs from an equation containing the output variable
and a subset of input variables, expressed analytically
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4. Robustness with respect to the variability in process inputs.

5. Adaptability to novelties in data and tunability toward changes in the
process.

Since both measured and simulated data are very often corrupted by noise,
and in case of real measurements can be driven by a combination of both
measured and unmeasured input variables, empirical models should not only
accurately predict the observed response, but also have some extra generalization
capabilities. The same requirement holds for models developed on simulated
data. Examples of such capabilities are insensitivity to a certain amount of noise
in the inputs or a capability to extrapolate the response outside the observed
input region (in fact, in a multi-dimensional data space, any deviation from
the training points has to be performed with caution and will often be referred
to as extrapolation3). We also would like models to exhibit not only required
properties, but also additional convenient properties like compactness, small
number of constants, etc. It is important, that generated models are interpretable
and transparent, in order to provide additional understanding of the underlying
system or process.

1.3 Data-driven modeling methods

There is a multitude of empirical modeling techniques that are used for
constructing input-output regression models, but we wish there were one
technique, producing models that fulfill all the requirements listed above.

3In general, interpolation is defined as prediction of an unknown function within the input
range of a finite set of samples, and extrapolation is defined as prediction outside the input
range of data samples or with higher uncertainty. In this thesis we consider modeling high-
dimensional undesigned data, which may be imbalanced, i.e. may not have a uniform density in
the input space. For imbalanced, high-dimensional data sets, however, the standard definitions
of interpolation and extrapolation are not always appropriate. If the input points of a one-
dimensional modeling problem are located on the intervals [0, 1] and [10, 11], we consider
prediction at point 5 to be an extrapolation, despite the fact that 5 belongs to the convex
hull of the input samples. In general, if the data is not uniform in the input space, it may
consist of several connected components (clusters), which number depends on the choice of the
user. The decision on whether we extrapolate or interpolate will depend on the location of
the prediction point relative to the clusters, while the uncertainty of prediction will depend
on the data density in the neighborhood of the prediction point, and on how well the point
is surrounded by its neighbors in the input space. Since the data density decreases when
the number of dimensions increases at the fixed number of data samples, the uncertainty of
prediction grows in higher dimensions, which substantiates the usage of the term extrapolation.
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We mention several most common methods to produce empirical models:
linear regression (Box and Draper, 1986), nonlinear regression (Johnson and
Wichern, 1988) including multi-variate rational interpolations on points (Cuyt
and Verdonk, 1985) and on vertical segments (Salazar Celis et al., 2007) and
multi-point approximations of response surfaces for optimization (Toropov,
1989), moving least-squares (Choi et al., 2001; Levin, 1998), kriging (Kleijnen,
2008a; Sacks et al., 1989), multi-variate adaptive regression splines (Friedman,
1991), radial-basis functions (Powell, 1987), neural networks (Haykin, 1994),
support vector regression (Cherkassky and Mulier, 1998; Vapnik, 1997), genetic
programming (Koza, 1992), and particularly Pareto Genetic Programming (Smits
and Kotanchek, 2004).

Modeling practitioners widely accept that there is no universal approach to
empirical modeling, and that the future lies in combining working principles from
various approaches and blending them into hybrid methodologies. This section
makes a modest attempt to discuss the main differences between some of the
mentioned methods, to look for complementary principles that should be used
together in modeling complex industrial processes and to locate the capabilities
of the Pareto GP method (which is the main focus of this thesis) on a general
map of possibilities of regression techniques.

Several studies (Jin et al., 2003, 2000; Shyy et al., 1999; Simpson, 1998)
attempting to compare the different approaches to data-driven modeling agree
that no definite conclusions can be drawn on the general advantage of any
particular technique over others. The difficulty is explained by multiple
competing criteria for comparison, which tend to vary wildly over different
techniques.

We categorize the approaches into parametric and non-parametric in the
following way4. A parametric approach to regression consists of fixing a model
structure a priori and finding optimal values for the coefficients (parameters, or
weights), that minimize a certain criterion, usually the sum of squared errors.
Polynomial regression is a classical parametric modeling method. E.g., for a
second-order model on d input variables, the approximating function is selected
to be the following:

4This division is different from the one used in statistics, where parametric methods assume
certain distribution of samples
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f̂(x1, . . . ,xd) = β0 +
∑

1≤i≤d

βixi +
∑

1≤i≤j≤d

βi,jxixj , (1.1)

where β0,βi, and βi,j are the unknown coefficients.

Polynomial regression is a linear parametric method, since it involves solution
of a linear system of ”normal” equations in the unknown parameters.

Rational interpolation is a non-linear parametric method, since the model
structure is fixed to represent a ratio of two polynomials, and quadratic
programming is used to estimate optimal values for unknown coefficients. We
address two kinds of rational interpolation - the standard multivariate rational
point interpolation, and rational interpolation on intervals (Salazar Celis et al.,
2007). The latter is a new method to construct rational interpolations through
intervals of a certain length associated with each data point. The length of the
interval determines the maximal tolerable interpolation error (insensitivity zone).
The technique seems to be an elegant extension of rational point interpolations,
which removes the dependence of model complexity (measured in the number of
terms) from the data size, and allows a more flexible modeling of data sets with
a large number of records.

Feed-forward neural networks (NNs) presented as multi-layered perceptrons
build the multi-variate prediction model as a superposition of weighted combina-
tions of unary basic functions (called inner nodes) and input variables. Neural
networks defined as (ordinary) radial basis function networks (RBFNs) build
prediction models as a weighted combination of radial basis functions with centers
in the input points. The generalized RBF networks use a much smaller number
of basis functions (inner nodes) at the expense of having to estimate the optimal
location of their centers in addition to unknown weights. We categorize neural
networks as a non-linear parametric method.

Support vector machines (SVMs) are non-linear parametric models originating
from statistical learning theory (Cherkassky and Mulier, 1998; Vapnik, 1982).
A support vector machine is mapping the data space into a multi-dimensional
feature space, where the prediction function f̂Feat is linear in the unknown
parameters w and b: f̂Feat(x,w, b) = wx + b. The type of transformation
φ : x 7→ φ(x) into the feature space is chosen a priori and is usually polynomial,
RBF, or a combination of these two (Jordaan, 2002).

SVMs are said to be characterized by their kernel function, denoted as
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K(x,x0) = φ(x) · φ(x0). The optimal weights for the prediction function are
computed through minimization of an ε-insensitive error function:

‖w‖+ C
∑

i≤N

max{0, |yi − f̂(xi)| − ε}, (1.2)

where ε is a tolerable error, C is a regularisation coefficient, and w are the weights
of the f̂ . Since weights are computed for the feature space, all x are transformed
into the φ(x) during the optimization of w and b.

The difference between SVMs and NNs is that a NN method defines the model
structure first and evaluates optimal coefficients for it such that the prediction
error is minimized. A SVM method first determines the tolerable generalization
error (and also a type of kernel and the regularization term), and then searches
for the optimal structure for the model, i.e. weights for ’optimal’ data records,
called support vectors. The theoretical advantage of the SVM method over NNs
is that the error function has no local optima, and the generalization error does
not depend on the dimensionality of the data space by design (Jin et al., 2003).
The main difference between support vector regression and other approximation
techniques is the fact that the SVM model is a not a direct function of the input
variables, but a function of data points (support vectors), and has the following
form: f̂(x) =

∑
k∈SV ωK(xk,x) + b, where SV is a smallest subset of points

with positive optimal weights called support vectors, and ω and b are the unique
estimated parameters. This is the main hurdle for the interpretation of SVM
models, since such notions like variable interactions are absent by design. A
strong point of the SVM method besides a strong theoretical foundation, is its
ability to detect outliers in the data; see (Jordaan, 2002).

All methods discussed in this section are global, in the sense that they produce
a prediction of the observed response globally on the entire training range. We
will, however, divide parametric methods into global and local ones, depending on
the global or local nature of their parameters. For example, polynomial regression
is a global parametric method whose coefficients do not depend on the point at
which the predicted response is evaluated.

Moving least-squares (MLS), is a local parametric method, since it requires
re-calculation of coefficients when the evaluation point changes. The difference
between the polynomial moving least-squares model and a standard polynomial
regression model obtained via least-squares is that the coefficients of the MLS
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model are computed locally for a point x through the least-square minimization
of the weighted error function:

N∑

i=1

(f̂(xi)− yi)2θ(‖x− xi‖), (1.3)

where θ is a non-negative weight function, ‖ · ‖ is a selected norm in the input
space Rd, usually Euclidean, and (xi, yi) is the i-th record of the data set. Weight
θ is analogous to both the neighborhood size and insensitivity zone - the MLS
approximation can be made local, if θ(p) quickly converges to 0, when p → ∞,
and interpolation with MLS can be achieved when θ(0) = ∞.

Kriging is another local parametric method for building global multi-variate
approximations, in fact, interpolations. A kriging model is determined as a sum of
a global predictor, often called a signal function S(x), and a localized ‘deviation’
ζ(x):

f̂(x) = S(x) + ζ(x), (1.4)

where ζ(x) is normal random function with zero mean and non-zero covariance:
Cov[xi,xj ] = R(xi,xj), where R is a correlation function selected from a family
of parametric correlation functions, often as Rq,θ(xi,xj) = exp[−∑d

k=1 θk|xi
k −

xj
k|qk ] (xj

k if the k-th component of a sample point xj). Prediction of the
final kriging model in point x̂ is determined by a weighted sum of observed
responses f̂(x̂) =

∑N
i=1 c(x̂)yi, where the optimal values minimize the mean

squared prediction error. Coefficients θk and qk are usually obtained via the
maximum likelihood estimation method. Computation of coefficients involves
inversion of the matrix of size d × d (d is the dimensionality), and hence, puts
limitations on using kriging for very large data sets.

Multivariate Adaptive Regression Splines (MARS) is a flexible regression
technique with a self-explanatory name: the final model is obtained as a weighted
linear combination of separate splines (or basis functions) fitted to distinct
intervals of the input variables. The splines are obtained using a non-parametric
method, but since they are combined in an optimally weighted sum, it is fair to
call this method semi-parametric. The MARS algorithm exhaustively searches
over all possible locations of the endpoints of spline interpolation, as well as all
possible variables and variable interactions. The knots, variables and interactions
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are optimized simultaneously to minimize the error function, which changes
adaptively to improve the model at each step of adding a new spline. Once MARS
determines the optimal number of basis functions (splines) and knot locations,
a final least-squares regression provides optimal coefficients for their weighted
linear combination.

Genetic programming (GP) is a stochastic iterative search technique, that
navigates in the space of all possible symbolic models defined as valid mathematical
expressions on the given set of input variables, basic functions, and constants,
and searches for a set of models optimizing a fitness objective or a trade-off
of competing objectives (such as prediction accuracy of the training set and
model expressional complexity in Pareto GP); for genetic programming of which
a number of variants exist see the books by Banzhaf et al. (1998); Koza (1992,
1994); Langdon and Poli (2002); O’Neill and Ryan (2003); Poli et al. (2008), for
a multi-objective variant studied in this thesis see (Smits and Kotanchek, 2004),
the next section, and Chapter 3 for more details. Unlike the MARS method,
which exhaustively searches for appropriate knots, variables, and interactions
using the data matrix, genetic programming exploits evolutionary search to find
appropriate model structures in a huge (in general infinite) space of possibilities.
Despite the vastness of the search space, GP has been shown to discover regression
models that are both compact and sufficiently accurate in a number of industrial
applications for problems with a large number of nuisance variables, noise, and
correlated inputs. One of the best capabilities of GP is automatic identification
of significant inputs, which implies automated pruning of nuisance inputs and
increased applicability of final models built upon significant variables only. More
benefits and potential pitfalls of GP (with a focus on Pareto GP) are given in
the next section.

The majority of these techniques for empirical modeling have evolved into
separate disciplines, with solid bibliographies, software packages, and extensive
research within each discipline. Table 1.1 provides a short and simplistic
comparison of the capabilities of the methods with respect to the set of (self-
explaining) questions of interest. The main purpose of this table is to obtain a
snapshot of differences among the methods and to identify the points of potential
synergetic co-application.

The question on scalability of a method is not raised in Table 1.1. The problem
is that the notions of scalability and data quality are used very loosely among
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disciplines and depend on the application area. For example, in some industrial
modeling projects carried out during the PhD research, the data with 20 input
variables, and 25 measurements per variable (in modeling for new products), or
with 10 input variables and 30 measurements per variable (in developing new
measurement techniques) were given as very rich data sets.

The evolutionary search was developed for handling tremendously difficult
problems, which are intractable for classical approximation techniques. When we
talk about scalability of Pareto GP or other evolutionary techniques to large data
sets, we talk about handling hundreds to thousands of variables, and hundreds
to millions of records.

For rational interpolation, for example, data sets with dimensionality 8-10
are already high-dimensional. It does not make the method any weaker, it only
suggests that one should probably not use rational interpolation if the training
data contains 50 variables and 8000 records. It is possible, however, (and is often
the case for real-life problems) that only a handful of those 50 variables or low-
order transformations on some variable combinations are significant, but we do
not know which, and the correlation analysis or the principal component analysis
do not provide such information. In this case it is beneficial to perform several GP
runs on the training data to identify driving variables, or combinations, extract
them, and make the problem tractable for rational interpolation, since the latter
can successfully impose some a priori constraints on the behaviour of the final
model.

In general, it will be interesting to express the scalability of the methods as
a function of the number of available data records N , and as a function of the
number of input variables d5.

A discussion on Table 1.1 with a focus on Pareto GP continues in the next
section.

5This and many other valuable suggestions on improvement of Table 1.1 were made by
Trent McConaghy. Trent also suggested to add Random Forests and Boosting Regression Trees
methods to the Table, as well as distinguish between piece-wise linear and piece-wise non-
linear methods instead of using one MARS column, and separately consider a good second-
order polynomial models and high-order polynomial models within linear regression. These
adjustments will appear in the on-line version of the thesis.
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1.4 Symbolic regression via GP: benefits and

challenges

1.4.1 The task of symbolic regression

One of the best descriptions of symbolic regression via genetic programming
(SR via GP) is given by Schmidt and Lipson (2006), who wrote that “ unlike
polynomial regression or machine learning methods which minimize the error, SR
is a system identification method.” The challenging task of symbolic regression
is to identify a convincing model f̂ (or a set of models), that gives a prediction
for the response variable and is expressed analytically using the minimal set of
input variables and the given set of basic operations and constants.

Industrial challenges we are attempting to solve have two main characteristics:
(1) No or little a priori information is known about the underlying system, and,
therefore, no assumptions about models can be made; (2) the available data is
high-dimensional with either an abundant or an insufficient number of samples.

No information about model structure, unknown distribution of data samples,
and ‘bad’ data sets dramatically reduce the number of alternative techniques to
start empirical modeling. If the task is structure identification, then parametric
methods should be excluded from the number of options to perform this
identification. Considering the alternatives presented in Table 1.1, this leaves
multivariate adaptive regression splines and GP as the only non- and semi-
parametric methods. If we want models that produce reliable predictions
outside the training region (see requirement (1) of Section 1.2, we certainly want
extrapolation to be influenced by the behaviour of the entire (true) response
surface, and not only by the neighboring splines in case of MARS. The need
to produce a reliable extrapolation of the response, predicted by an identified
non-parametric model, suggests to put aside MARS and settle on genetic
programming. We are going to do this for the rest of the thesis, and focus
on Pareto GP, a genetic programming with archiving and multi-objective fitness
function. An overview of other variants of GP can be found in a recent monograph
by Poli et al. (2008).
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1.4.2 Challenges in view of requirements to models

Genetic programming, and evolutionary search in general, is a very flexible
methodology, allowing vigorous application and co-application of all kinds of
strategies and meta-strategies, as long as a cycle between model generation &
variation, model evaluation, and model selection is maintained. Having settled
for a particular method for constructing input-output regression models and
presuming that it is very flexible, we will come back to the requirements to
good models formulated in Section 1.2 and create a list of necessary features that
our GP-based system should possess in order to produce models satisfying those
requirements.

(1) Capability for on-line reliable prediction of process outputs within the given
range of operating conditions and outside this range: The need for reliable
predictions within the training range imposes the use of prediction error
as one of the optimization criteria for model development. The need
for reliable predictions outside the training range, i.e. in the unobserved
areas of the data space imposes the need to produce models with smooth
response surfaces and minimized potential for pathological behaviour under
extrapolation.

(2) Interpretability and possibility to integrate information from fundamental
models: Interpretability is a tricky notion. It is subjective, and can be
said to solely depend on the creativity of the observer. However, in reality,
it is very easy to say whether the model is interpretable or not. It is
at least always easy to tell whether the model is uninterpretable. By
a potential for interpretability or for insight I will mean the potential
to connect observations of a model (not only model’s prediction error)
to hypotheses about the underlying problem. For example, if model

f̂(x1, x2, x3, x4, x5) =
(
x2 + x3

x4

)
e
1−

(
x3
x4

)2

has a sufficiently high prediction
accuracy, it suggests that variable x5 is insignificant, and transformation
x3
x4

can be an important predictor of the response.

The possibility to integrate information from fundamental models is an
open area of research. Pareto GP and GP in general are open for inclusion
of various meta-variables or important basic operators (e.g. taken from
fundamental models) into the search process, but property preservation,
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like e.g. creation of monotone models, or only square-integrable functions,
is non-trivial and has to involve either a modification of the fitness function,
or introduction of new property-preserving modification operators. This
thesis does not contain a study on imposing a priori constraints to GP
solutions during the modeling process. It is however worth mentioning
that Pareto GP is designed to generate rich sets of diverse final solutions,
which gives the user the opportunity to explore these sets of solutions a
posteriori in order to select models with desired properties, or the ones
that agree with intuition.

(3) Low development and maintenance cost with minimal operator intervention:
Low development cost implies that models should be developed with
minimal time and computational effort. The ultimate goal is a one-hit-of-
a-button software integrating data preprocessing, analysis and adaptation,
model development and problem analysis phases. Low maintenance cost
refers to deployment costs associated with implementation and maintenance
of the model or a model ensemble in a real system, e.g. for predicting a hard-
to-measure property of a production process. Low maintenance implies that
model prediction will not require monitoring, and has a capability for self-
assessment expressed in a trust metric. This is useful when, for example,
processing conditions change unexpectedly. In general, for multi-variate
measurements it is hard to say when a point is appropriate or is an outlier.
In case of changed processing conditions, a trustworthy model or model
ensemble will alarm about entering an unobserved zone, and allow focused
process control.

(4) Robustness with respect to the variability in process inputs. The requirement
for robustness is inspired by modeling data coming from real measurements,
where not only the response, but also the inputs can be corrupted by
considerable noise. The need for robustness under small variation of the
inputs imposes a constraint on the non-linearity of the response surfaces
associated with models. The smoother, the more robust (most of the time).

(5) Adaptability to novelties in data and tunability toward changes in the process:
The need for adaptability requires the system to be capable of identifying
the novelties in data, assessing whether they correspond to regime changes
or to measurement outliers, or require re-modeling. As mentioned in Table
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1.1, GP does not possess a capability for local adaptation, i.e. if a new
sample point is added to the data set, in principle, a total re-modeling of
the data is required. It is, however, possible to supply an initial set of
alternative solutions with results from the previous efforts and (possibly)
make the revised model discovery more efficient.

Capabilities mentioned above can be considered as generic research goals
for the development of a practical modelling tool. Before we zoom in on the
research goals of this thesis, we provide a short description of the Pareto genetic
programming method, and evaluate its benefits and challenges with respect to
the above-mentioned research goals.

1.4.3 Genetic programming versus Pareto GP

Pareto genetic programming is a branch of the genetic programming methodology
(GP). GP for symbolic regression is an iterative search technique that looks for
appropriate expressions of the response variable in a space of all valid formulae
containing some of the given input variables and some predefined functional
operators, like summation, multiplication, division, exponentiation, inversion,
sine, etc.

At each iteration step the genetic programming system considers a sufficiently
large quantity of various formulae, selects a subset of the ’best’ formulae according
to certain criteria of goodness, and (re)combines these best formulae to create
a rich set of new formulae for the next step. This approach is inspired by
principles of natural selection, where offspring should inherit good features from
both parents or undergo a beneficial mutation to be successful in survival,
adaptation and further propagation. For more general information about genetic
programming we refer to the monographs by Banzhaf et al. (1998); Koza (1992,
1994); Langdon and Poli (2002).

The rationale of doing the ‘evolutionary’ search in a huge space of alternatives
is to balance the exploitation of the good solutions that are found so far, with
exploration of the new areas of the search space, where even better solutions may
be hiding.

Exploitation usually happens by recombining the features of models that are
relatively good, e.g. they both predict the observed response with a reasonably
low errors. The fundamental expectation here is that the recombination of good
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features encourages the overall improvement of newly created models, despite the
fact that such improvement is not at all guaranteed.

Exploration of new areas of the solution space happens by introducing changes
in the individual models. Such changes can be minor, e.g. if we decide to
substitute the multiplication operator by a division in the formula expression,
or replace an input variable by another variable; or major, e.g. when we decide
to randomly re-initialize the model. Part II of this thesis describes the processes
of model generation, selection and evaluation for symbolic regression via Pareto
GP in greater detail. It is important to note, that recombination of sub-parts of
two individuals can often be an explorative operator when, e.g., used to cross-
over high-quality individuals with randomly generated individuals. In such cases
recombination is acting as a macro-mutation, aimed at speeding-up the pace of
exploration.

There is a small and yet crucial difference between Pareto GP and a classical
GP. Pareto GP is an archive-based search method, that actively exploits and
maintains the new entity during the evolution - the archive of the ‘best’ discovered
so far individuals. The second difference is that the concept of what is ‘best’ is
multi-objective in Pareto GP. This means that there are at least two or possibly
more criteria used for selecting ’good’ individuals for further propagation. Often
these criteria are prediction error and model expressional complexity. Since these
optimization objectives are competing (there are always ways to achieve the same
prediction error at the expense of greater structural complexity), the performance
of individuals is compared with respect to the Pareto-dominance relation in the
objective space of model complexity and model error (see Chapter 2). In Pareto
GP, model development happens in parallel with automatic identification and
exploitation of driving inputs that influence the observed output (Smits et al.,
2005).

Pareto GP with a presence of the archive and the two-objective optimization
of prediction error and model complexity has been shown to significantly
outperform the classical GP approach, which uses a single objective minimization
of prediction error for model selection on a variety of test problems see
(Kotanchek et al., 2006; Smits and Kotanchek, 2004). The major impact of
Pareto GP is in the fact that (1) it allows interpretability of it solutions (since the
drive for minimization of structural complexity of models is explicitly introduced
into the search), and (2) it produces diverse solutions by design (because the
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Pareto front models, consisting of optimal trade-offs in complexity versus error
space are always present in the archive of solutions). Explicit complexity control
also facilitates generation of simplified expressions, and hence contributes to
improved generalization capabilities of solutions (for the same accuracy, models
with minimal complexity are preferred, and the other way around). In Chapter
3 we talk more about the fact that simplicity does not always imply generality,
however, it is important to note, that expressional complexity control implicitly
mitigates the risk of numerical inaccuracies, since e.g. expression x1 + x2 will be
selected over x1 + Exp[Ln[Exp[Ln[x2]]]].

The fact that symbolic regression via GP does not impose any assumptions
on the structure of the input-output models means that the model structure is
to a large extent determined by data6.

On one hand, this is an advantage and a unique capability of symbolic
regression via GP over the other global approximation techniques (see, e.g.,
Table 1.1 for parametric and non-parametric methods). Since the search space
is not limited to expressions of a certain structure, there is a potential to
develop inherently simpler models, than, for example by linear regression on
polynomials or spatial correlation analysis, where the number of terms in the
model depends on the size of the data set. It is for instance very handy to have
a sine function among the basic operators to model the response generated by,
e.g., a sinc function, compared with a challenge of figuring out the structure and
the coefficients for its series expansion, which approximates sinc(x) accurately
enough7.

On the other hand, the absence of constraints on model structure is the
greatest challenge for symbolic regression, since it vastly increases the search
space of possibilities, which is already inherently large. Obviously, larger data
sets with more input variables and more records, make symbolic regression
even harder, since a larger space of possible models has to be explored, and
larger computational effort has to be applied to evaluate predictions of potential
solutions on more records.

6A note for GP researchers: Recent studies by Keijzer and Foster (2007); Poli et al. (2007)
show that the standard random uniform crossover can and does impose a bias on the structure of
tree-based models, which means that other forms of crossover should be used for recombination
to justify the statement above.

7There is a general caution, however, for using trigonometric functions among the basic
operators- they should be used only if their presence in final models is plausible from the point
of view of a priori knowledge.
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1.4.4 Research questions of this Thesis

As stated in Table 1.1, time-to-solution, or, more accurately, time-to-convincing-
solutions is a major practical challenge of Pareto GP (and GP in general). And
yet, an amazing observation that have been being made continuously over this
PhD project, is that despite the horrendous complexity of the search space, the
simple evolutionary principles do bring ParetoGP to solutions (for all practical
modeling problems that the author happened to be involved into). These are
inspiring news — if we give the system enough time and computational budget -
the system will generate the solutions. What we want is to modify the system in
such a way that the computational time and effort are minimized and still lead
to solutions of sufficient quality.

Besides the time-to-solution, which not only refers to the efficiency of the
method, but also to its effectiveness (looking for a shorter path to solutions
in the search space is not the same as optimizing efficiency), there are several
additional challenges in Pareto GP. Below we formulate all challenges as research
questions:

1. How to minimize the computational effort needed to discover regression
models of sufficient quality?

2. What are the alternatives for a more intelligent navigation through a
vast search space of potential solutions, which would combine abundant
exploration of new alternative solutions with sufficient exploitation of
already discovered, potentially beneficial, sub-structures?

3. The search process is stochastic and requires multiple replications for
confident interpretation of the obtained solutions. How to enhance model
selection strategies in such a way, that it leads to robust reproducibility of
results?

4. Despite explicit complexity control, solutions of the Pareto GP process
obtained through simultaneous minimization of model complexity and
prediction accuracy may still exhibit pathological behavior even in minor
extrapolations. If structural simplicity does not always imply generality,
how to control over-fitting by additional measures or strategies?
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5. When modeling large data sets (with thousands of records), the Pareto
GP system (as well as other GP systems) spend the majority of the
computational effort on error evaluations of predictions of alternative
solutions against the training set. How to enhance the model evaluation
strategy in such a way that the required number of fitness evaluations
is reduced to the bare minimum, while not deteriorating evolutionary
progress?

6. Data sets coming from measurements can be very imbalanced. The quality
of given data is intuitively deeply interconnected with the potential to
develop convincing regression models, describing these data. What are
the possibilities of assessing the level of imbalancedness of these data, and
the ways to balance these data for the purpose of improving the results of
Pareto GP?

There is one more challenge related to inclusion of domain knowledge into
the modeling process. Inclusion of a priori information on desired model
properties (like certain asymptotic behaviour, monotonicity intervals, constraints
of differentials, etc.) is not yet handled in Pareto GP, but is not studied in this
thesis.

Another feature of GP and Pareto GP that is important to understand is
that unlike rational interpolation, kriging, or SVMs that guarantee a solution
with a predefined error on the training set, the error of final solutions of Pareto
GP cannot be estimated upfront. Since nothing is known about the problem
and about the features of final solutions before the modeling, it is in principle
unclear when to stop the modeling process. Definition of the stopping criteria
and prevention of evolutionary stagnation are other open research questions. We
touch these questions for Pareto GP in Chapter 8, but already indicate here that
the presence of the archive in Pareto GP has strong advantages in postponing
evolutionary stagnation and progress monitoring when compared with standard
GP.

1.4.5 Benefits of symbolic regression via Pareto GP

Below we summarize the benefits of symbolic regression via Pareto GP over
other global parametric non-linear approximation techniques and over symbolic
regression via standard GP for solving hard and messy data-driven problems:
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1. No prior assumptions are imposed on model structure, which gives a
potential for unpredictable and counter-intuitive expressions and variable
combinations to be discovered.

2. The final predicting model or model ensemble are chosen from a rich set of
global non-linear empirical models that are generated automatically.

3. Sensitivity analysis of the inputs and variable selection is implicitly
performed with no extra cost, so the dimensionality of the problem can
be reduced.

4. No assumptions are made on the independence or significance of input
variables.

5. Produced models are intrinsically more trustworthy than solutions of
standard GP due to explicit complexity and non-linearity minimization
(studied in this thesis) and automatic variable selection.

6. Symbolic representation of models may provide additional insight into the
problem, e.g. in a form of important variable transformations.

1.5 Guide to the Thesis

1.5.1 Structure of the Thesis

During this PhD project the author spent at least half of her research time at the
R&D department of a large manufacturing company. Exposure to real problems
and challenges focused the research. As can be seen from the previous section,
the emphasis of this thesis is put on research topics driven by the requirements
to good empirical models, on those goals that potentially lead to a rapid creation
of ‘sellable’ input-output models and to a quick understanding of the problem
difficulty.

Findings of this study are presented in a practical framework of iterative
model-based problem solving. We view this generic framework as an iterative
feed-back loop between three stages of problem solving (just as it usually happens
in real-life applications):

1. Data Generation, Analysis and Adaptation,
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2. Model Development, and

3. Problem Analysis and Reduction.

An interesting observation is made in the “Towards 2020 Science report”
edited by Emmott et al. (2006):

”What is surprising is that science largely looks at data and models
separately, and as a result, we miss the principal challenge - the
articulation of modelling and experimentation. Put simply, models
both consume experimental data, in the form of the context or
parameters with which they are supplied, and yield data in the form
of the interpretations that are the product of analysis or execution.
Models themselves embed assumptions about phenomena that are
subject of experimentation. The effectiveness of modeling as a future
scientific tool and the value of data as a scientific resource are tied
into precisely how modelling and experimentation will be brought
together.”

This is exactly the challenge of model-based problem solving, and researchers
pursuing empirical modeling have always been aware of it8.

Also in this thesis we attempt to bring together data, models, and problem
analysis into one generic framework. Ultimately, we want to automate this
iterative feed-back loop over data analysis and generation, model development,
and problem reduction as much as possible, not in order to eliminate the expert,
but in order to free as much ‘thinking time’ for the expert as possible. For
successful model-based problem solving we emphasize the critical need for an
expert, who will test the theory, facts (data) and their interpretations (models)
against each other to iteratively develop a convincing story where all elements
fit and agree.

The outline of the proposed framework, which also forms the structure of the
thesis is presented in Figure 1.3–1.6 with the main phases explained. The rest of
this subsection provides a brief description of the thesis structure, and is followed
by the main contributions presented in the next subsection.

8at the very least it concerns the methods described in Section 1.3 of this Chapter,
irrespectively of the fact that some of the methods are abused in applications they were not
designed for
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ProblemSolvingas aDirectedFeed-backLoop
DataGeneration,Analysis andAdaptationPart I,   Chapter 7 of Part IIIProblemAnalysis andReductionPart III

ModelDevelopment Part II
Figure 1.3: Findings of the Thesis are structured according to the generic scheme
of model-based problem solving.
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Part I,   Chapter 7 of Part III

Figure 1.4: Layout of the phase of Data Generation, Analysis, and Adaptation
presented in the thesis. Blocks corresponding to novel contributions are
emphasized in bold.

Data Generation, Analysis, and Adaptation

Very often, especially in big companies, modelers do not have access to data
creation and experiment planning. This gap is an example of a situation, where
multi-variate data is given and there is no possibility to gather more or better
sampled data. Modeling given data (also known as historical or legacy data) is the
most common application of symbolic regression, and is related to observations
of the real system.

A second situation can be distinguished, when there is a possibility to
plan experiments, and to gather new observations of the response for desired
combinations of input variables, but the assumption is that these experiments
are very expensive, i.e. require long computation, simulation, or experimentation
time. Such a situation is most common in meta-modeling for design and analysis
of simulation experiments.

As Figure 1.4 suggests both situations are considered in our generic framework,
however the main emphasis of the study is put on the analysis and adaptation
of given data (see Chapter 2). The most recent study on Pareto GP considers
exploitation of model ensembles for adaptive data collection and trustworthy
symbolic regression (Kotanchek et al., 2008). The potential impact of Pareto GP
on meta-modeling and adaptive design of experiments is intriguing. We touch on
it in Chapter 8 and speculate on its application domain in Conclusions.
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Model Development

In model development we focus on automatic creation of collections of diverse
data-driven models that infer hidden dependencies on given data and provide
insight into the problem, process, or system in question. Since we consider
symbolic regression via genetic programming as an induction engine for input-
output regression models, we present the stage of Model Development as an
iterative loop over Model Generation, Model Evaluation, and Model
Selection. The sub-components of these three stages become specific to genetic
programming. However, many principles presented there are generic and can be
used within other techniques for data-driven modeling, especially for the phases
of Model Evaluation and Model Selection.

In Chapter 3 we summarize the basics of evolutionary search performed via
genetic programming and Pareto genetic programming, and explain the stages of
model generation, evaluation and selection for Pareto GP.

For effective model selection we enhance Pareto GP with an additional
criterion of model simplicity and present the new strategy for model selection
in Chapter 4. Also in Chapter 4 we suggest a heuristic that pursues a soft
selection of models that are not only accurate, but are expressed by compact
equations with smooth response surfaces.

For a more effective model evaluation on imbalanced data we study the
possibilities of introducing weights to the fitness function. Variations of such
‘balanced’ regression are presented in Chapter 5.

For efficient model evaluation and faster learning we suggest to perform
symbolic regression via Pareto GP under principles of goal softening and present
two strategies to do this in Chapters 6 and 7.

Problem Analysis and Reduction

The stage of Problem Analysis and Reduction supposes that developed models
are carefully scrutinized and validated, and preliminary conclusions of problem
difficulty are inferred from the interpretations of the developed models. In
Chapter 8, we summarize the unique advantages of using symbolic regression
via genetic programming as a modeling tool for problem analysis and reduction.
Many of them, such as variable selection or meta-variable detection and
convergence identification, can in fact be performed on the fly during the model
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ModelDevelopmentModelGenerationModel RepresentationUsefulfunctions:Shift and ScaleModel PropertiesModification Operators:Mutation and Crossover
Chapter 2 ModelEvaluationChanging the Fitness functionWeightedRegressionExploratoryWeightedRegressionUsing the OrdinalApproachPartial evaluationon random subsets- Ordinal Pareto GPPartial evaluationson nested subsets:the ESSENCEalgorithm

Chapters 4-6 ModelSelectionPareto TournamentselectionArchive-basedPareto GP forExplicitComplexityControlExpressionComplexity forcompact modelsOrder ofNon-linearityfor smoothermodelsAlternation ofmultipleobjectives forhigher efficiency

Chapters 2-3Part II

Figure 1.5: Layout of the phase of Model Development presented in the thesis.
Blocks corresponding to novel contributions are emphasized in bold.
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Problem Analysisand ReductionInferring Problem DifficultyConvergence Analysis Automatic Variable SelectionAutomatic Dimensionality Reduction Automatic Ensemble SelectionEnsemble SelectionTrustworthiness Computation Potential Automatic BuildingBlock DetectionPotential Automatic Record Selection
Chapter 7

Figure 1.6: Layout of the phase of problem analysis and reduction presented in
this thesis.

development stage. We, however, summarize them in a separate Part of Problem
Analysis and Reduction for presentation purposes.

1.5.2 Contributions

One important feature of Pareto genetic programming, and GP in general that
has to be taken into account when enhancements to the evolutionary search are
sought for, is the fact that all elements of the search are deeply inter-related. The
same holds for the research questions of this thesis - they are in no way mutually
exclusive. Changes, introduced at the phase of model evaluation, inevitably result
in changes in the phase of model selection, since the latter selects promising
models with respect to their evaluated quality features. Modifications of genetic
operators at the model generation phase, or modified model selection strategies
all imply changes in the navigation through the search space of alternative
solutions. Everything comes down to the search for such enhancements of the
Pareto GP that make the path to solutions shorter by improving the balance
between exploration and exploitation.

Contributions to analysis and adaptation of given data: We studied ways
to balance the ‘messy’ high-dimensional data to make the further modeling easy.
Along these lines several novel methods for data interpretation and manipulation
are proposed:
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1. Four simple data weighting procedures are introduced for computing
the importance of a data point relative to its k nearest-in-the-input- space
neighbors. The importance or the relative information content is defined
based on different notions of closeness to k nearest-in-the-input space
neighbors. The proposed weights are developed to be incorporated into
the fitness function for symbolic regression, but are also useful for getting
a first glimpse of insight on the relative imbalancedness of data before the
modeling.

2. For enhanced analysis of large and imbalanced data sets we introduce a
Simple Multi-dimensional Iterative Technique for Sub-sampling.
The smits technique allows a sensible compression of multi-dimensional
data to balanced nested subsets of arbitrary size. The balancedness is
understood in relation to one of the selected weighting schemes. We
use the proposed iterative procedure to rank the records of the
data set in the order of decreasing importance and define the
cumulative information content of the resulting ranked set. The
suggested cumulative information content is used to quantify the amount
of information in the compressed subsets relative to the original data set
(see Chapter 2).

Contributions to reduced over-fitting: In this thesis we study the possibilities
to generate regression models that not only give good predictions of the
observed data but also have smoother response surfaces and better generalization
capabilities with respect to extrapolation outside the observed region. Two new
heuristics are presented for this purpose:

1. A new complexity measure called the order of non-linearity is
introduced for regression models. It evaluates the behavioral complexity
of the model structure, using a simplification of the notion of the degree
of the best fit polynomial approximating a continuous function with
certain precision. We propose two different strategies for using the order
of non-linearity to construct regression models with smoother response
surfaces. One way is to preform symbolic regression with a two-dimensional
optimization of model accuracy and model’s order of non-linearity. This
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implies that the selection of potentially good models happens based on a
trade-off between two competing criteria (see Chapter 4).

2. Explicit non-linearity control is a continuation of the work by Smits
and Kotanchek (2004), who introduced explicit Pareto-aware control
of expressional complexity to tree-based genetic programming. They
observed that minimizing structural complexity together with prediction
accuracy helps to prevent bloat and over-fitting, and focuses modeling
effort on solutions which are both accurate and compact. However,
since expressional simplicity does not always imply behavioral simplicity,
compact models still could produce pathologies for minor extrapolations.
This motivated us to combine more criteria for model selection without
making the objective space unnecessary large. We proposed a heuristic for a
two-objective minimization of model prediction error and model complexity,
where the definition of complexity was alternated between the expressional
complexity and the order of non-linearity at each iteration step. The
strategy of alternating complexity measures allows exploiting the
efficiency of the bi-objective optimization when more that two competing
objectives are of interest. We show that results of experiments with
alternating complexity measures are superior to those of simple bi-objective
optimizations of accuracy and expressional complexity and accuracy with
the order of non-linearity. We find that the new strategy applied to
complexity measures produces solutions which are both compact and have
smoother response surfaces, and hence they contribute better to problem
interpretability and understanding (see Chapter 4).

The main contribution of this study on reduced over-fitting and non-linearity
control is not the explicit definition of the order of non-linearity, which despite
being generic concerns tree-based structures, and not the explicit definition of the
model selection strategy for simultaneous optimization of prediction accuracy and
order of non-linearity. The main contribution of this study to symbolic regression
is the evidence, that structural parsimony may not imply behavioral generality,
and that other kinds of parsimony must be considered for the purpose of avoiding
over-fitting and producing models with good generalization capabilities.

Contributions to enhanced model evaluation strategies for obtaining
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‘better solutions faster’: We studied the ways to improve the results of
symbolic regression by changing the approach to evaluating the fitness of
potential solutions in a course of a genetic programming run. Several promising
directions were discovered:

1. A significant enhancement of the quality of the regression models is
observed when some of the weighting functionals, introduced in item (1), are
incorporated into the fitness function, and weighted regression via genetic
programming is applied to an imbalanced data set. We call this approach
data balancing, since it balances the contribution of each data record with
the weight associated with the record’s relative importance (see Chapter
5).

2. There are situations when large imbalanced data sets are over-sampled.
Sometimes this can be guessed a priori, for example when the process
control data comes from the measurements of the same process performed
at different plant sites. We suggest to validate the guesses by constructing
the cumulative information content of the data set ranked in the order
of importance. This allows compressing the ‘compressable’ data sets to
smaller subsets of a similar information content. The results of symbolic
regression can be significantly enhanced, if the standard regression or
weighted regression is applied to the compressed subsets of data with larger
population sizes. We call this approach exploratory regression via data
balancing (see Chapter 5).

3. The data sets for regression may contain too many variables from which
only a handful are significantly related to the response. In the absence of
the information about the significance of the input variables weighting data
records in the original input-output space can be dangerously wrong, since
the spurious variables will bias the distance-based concepts of the relative
importance. Usually, before the weighting, some screening modeling runs
are applied to the original data to identify driving input variables and
focus the modeling effort on only those. The need to create ‘better
solutions faster’ pushes to look for heuristics to improve the quality and
robustness of regression models for the high-dimensional data sets with
spurious variables. We propose two ways to do that.



33 1.5. Guide to the Thesis

(a) The first approach simply represents a new view at the old trick
of using random subsets of the training data for partial fitness
evaluations. The novelty (for GP) of the approach lies in a simple
observation borrowed from ordinal optimization - if solutions are
evaluated coarsely at a smaller computational cost, more of them
can be evaluated within a fixed budget of function evaluations. We
proposed to evaluate more individuals on small subsets of data drawn
randomly at each generation and linearly increase with the subset size
over the GP run. We called this approach the Soft Ordinal Pareto
genetic programming and showed that it causes a significant
improvement over the standard Pareto genetic programming both in
the quality of solutions (on test and the training data) and in the
reproducibility of the GP runs (see Chapter 6).

(b) To further improve the Soft Ordinal Pareto approach to GP, we
suggested a new strategy of performing the evolutionary search. In
the style of ordinal optimization we evaluate more potential solutions
on smaller subsets of data, starting with ‘the most important’ records.
This time we do not use stochastic sub-sampling of data, but the
one defined by our simple multi-dimensional iterative technique for
sub-sampling (see item (2) of the contributions additional to research
questions), applied to the weights proposed in item (2) of the
contributions additional to research questions. We use the data set
ranked in the order of decreasing importance (w.r.t. a selected weight),
start with a small set of the first m most important points and
incrementally move the counter along the ranked records. By doing
this we force the GP system to apply most effort on modeling small
subsets of records carrying the essential fraction of the information
content of the data set. We called this approach the ESSENCE
algorithm since it performs an Effective Search Space Exploration
via Nested Content-based Evolutions. The speed of adding new data
records into nested training subsets is controlled by the shape of the
cumulative information content of the ranked data. This explicitly
relates the learning effort to the quality and compressibility of the data
set (determined independently from the modelling tool), which has not
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been presented before to the best of our knowledge9 (see Chapter 7).

1.5.3 Overview of related papers

This dissertation includes the material presented in the following list of papers
and book chapters (taken in different proportions):

Vladislavleva, E., Smits, G., and den Hertog, D. 2007. Order of non-linearity
as a complexity measure for models generated by symbolic regression via
Pareto genetic programming. Conditionally accepted for publication by
IEEE Transactions on Evolutionary Computation.

Vladislavleva, E., Smits, G., and den Hertog, D. 2007. On the importance of
data balancing for symbolic regression. In review.

Vladislavleva, E., Smits, G., and den Hertog, D. 2007. Symbolic regression
reduced to its ESSENCE: On Ordinal Approach to Incremental Data
Modeling. In review.

Vladislavleva, E., Smits, G., and Kotanchek, M. 2007. Better solutions faster :
Soft evolution of robust regression models in Pareto genetic programming.
In Genetic Programming Theory and Practice V, R. L. Riolo, T. Soule, and
B. Worzel, Eds. Genetic and Evolutionary Computation. Springer, Ann
Arbor, Chapter 2, 13–32.

Smits, G. and Vladislavleva, E. 2006. Ordinal Pareto genetic programming.
In Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
G. G. Yen, L. Wang, P. Bonissone, and S. M. Lucas, Eds. IEEE Press,
Vancouver, Canada, 3114 – 3120.

Kotanchek, M., Smits, G., and Vladislavleva, E. 2006. Pursuing the Pareto
paradigm tournaments, algorithm variations & ordinal optimization. In
Genetic Programming Theory and Practice IV, R. L. Riolo, T. Soule, and
B. Worzel, Eds. Genetic and Evolutionary Computation, vol. 5. Springer,
Ann Arbor, Chapter 12, 167–186.

9For corrections and constructive suggestions please contact the author at
katya@vanillamodeling.com or katya@evolved-analytics.com
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Smits, G., Kordon, A., Vladislavleva, K., Jordaan, E., and Kotanchek, M. 2005.
Variable selection in industrial datasets using pareto genetic programming.
In Genetic Programming Theory and Practice III, T. Yu, R. L. Riolo, and
B. Worzel, Eds. Kluwer, Ann Arbor, MI, USA, Chapter 6, 79–92.

Kotanchek, M., Smits, G., and Vladislavleva, E. 2007. Trustable symbolic
regression models: Using ensembles, interval arithmetic and Pareto fronts
to develop robust and trust-aware models. In Genetic Programming Theory
and Practice V, R. L. Riolo, T. Soule, and B. Worzel, Eds. Genetic
and Evolutionary Computation, vol. 6. Springer, Ann Arbor, MI, USA,
Chapter 12, 203–222.

Kotanchek, M., Smits, G., and Vladislavleva, E. 2008. Exploiting trustable
models via Pareto GP for targeted data collection. Accepted for Genetic
Programming Theory and Practice VI, R. L. Riolo, T. Soule, and B. Worzel,
Eds. Chapter 5. In Press.
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2
Data Analysis and Adaptation

This chapter considers a situation when input-output data for modeling is given
(legacy data), and it is most certainly un-designed. In practice, this can be a
collection of on-line and off-line physical measurements of a production process
taken over various periods of time (possibly with repetition), over several plants
or production machines, under various environmental conditions. Such data
collections might lack any particular structure and homogeneity even in the input
space. This chapter presents an approach for analysis and eventual balancing
of such imbalanced input-output data sets. Presented data analysis precedes
the modeling stage. It allows the modeler to automatically infer preliminary
knowledge about imbalancedness and compressibility of the data set, and about
relative importance of the data records.

The chapter introduces a method for automatic assignment of weights to
records, that takes into account record’s relative importance. The weights can
be used for identification of potential outliers, concluding about the degree of
imbalancedness of the data, or can be directly incorporated into the fitness
function at the modeling stage. Four weighting schemes are introduced that
define the importance of a point in one of the following ways: (1) proximity to k

nearest neighbors in the input space, (2) surrounding by k nearest in the input
space neighbors, (3) remoteness from k nearest in the input space neighbors, and
(4) deviation from a least-squares hyper-plane passing through k nearest in the
input space neighbors, k ≥ d, d is the dimensionality of the input space.

For enhanced analysis and visualization of large multi dimensional data sets
a new procedure for sorting the data in decreasing importance is introduced.
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This procedure applied to data weighted with one of the four proposed weighting
schemes permits a sensible compression of the original data to nested subsets
of arbitrary size, such that these subsets are balanced with respect to the
selected weight. To guide the decision about the compression rate, a notion
of a cumulative information content can be defined for a data set ranked in order
of decreasing importance.

The weights, ranks and cumulative information contents of imbalanced input-
output data, defined in this chapter, can be incorporated into symbolic regression
to significantly increase the effectiveness of the genetic programming search. The
possibilities of such incorporation are presented in Chapter 3 and Chapter 5 of
this thesis.

2.1 Motivation for data balancing

The need for data balancing for regression originates from applied research.
Industry requires accurate prediction and optimization models, and challenges
applied researchers to develop these models from imperfect data. The customers
do not accept the ”garbage in, garbage out” excuses and often demand robust,
parsimonious, and accurate models built from a set of ”more-or-less reliable
observations taken under difficult conditions with possibly high inaccuracy”.

The aim of any empirical modeling approach is to infer hidden dependencies
from given data. For a regression problem the task is to use the given data
to represent the output variables as analytical functions of some or all of the
input variables. If the modeling approach cannot find a convincing relationship
between the inputs and the outputs, it may be that the data does not contain
the required information for predicting those outputs. Reasoning of this nature
inspires to perform extensive analysis of the data, and data’s information content
before the modeling.

In an ideal scenario, the data for symbolic regression comprises the output
observations for almost all possible combinations of inputs. We say then,
that the data is balanced, which usually means that the data points are
distributed uniformly over the input space, and consequently provide a similar
amount of information about the underlying response. In this situation the
modeling algorithm treats all samples equally during the learning process. In
practice, however, it often turns out that certain regions of the input space
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are over-represented by an abundance of observations while other regions lack
representatives. When there is a difference in the information value among the
data samples, we say that the data is imbalanced. Imbalanced data can come
from various sources. First, it may be simply impossible to collect the data
through a design of experiments, e.g. for physical measurements of a production
process - you have to live with what you get. Second, even if possibilities exist
to collect data in a designed fashion, merging several designs may lead to an
imbalanced data set, or the design may be incomplete if some regions of the
design space are infeasible and a realization of the response cannot be computed
for those regions.

In general, building models on imbalanced data carries a risk of getting
the solutions that perform well only on over-represented areas of the input
space. This obviously impairs such important model features as robustness and
generalization capabilities.

The concern about modeling with imbalanced data was first mentioned by
the machine learning community in Provost (2000), but only for class imbalance
problems. In classification problems, when a certain class is over-represented in
the data set, the obtained solution can be biased to assign all samples to the
dominant class. Of course, this is usually the opposite of what the classification
model is meant to do. Therefore, in classification problems, data balancing
consists in achieving an equal representation of classes with an emphasis on the
boundaries between classes.

Regression can be seen as a generalized classification, where the number of
classes is equal to the number of data records, and the rule describing the classes
is constrained to be an analytical function of the inputs. The difficulty of finding
such a rule, or a response surface, may be party caused by the fact that available
points do not provide a sufficient representation of the design space in question.

It appears to the author that researchers performing the analysis of imbalanced
high dimensional data are concerned primarily about outlier detection; see
(Aggarwal and Yu, 2001; Harmeling et al., 2006). An underlying assumption
of this chapter is that the data available for regression is reliable, but possibly
with some noise. Under this condition, the ’outliers’ existing in the data should be
considered as important samples containing novel information about the output.
The assumption about the reliability of the data motivates us to detect outliers
not for a purpose of deleting them from the data but for collecting them and
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treating with care during the modeling process1.

One of the research goals of this thesis is to assess whether symbolic regression
can be improved if the given data gets balanced. In essence, data balancing
implies such modification of the fitness function that the performance of the
generated solutions improves.

2.2 Empirical risk minimization

In symbolic regression the task is to select a function that imitates the actual
system best. To accomplish this, it adjusts and combines functions from its
function set until it finds a relationship that most successfully approximates the
underlying dependency given a finite set of observations used as training data. To
introduce the necessary notations we say, that we need to relate a set of N points
in a d-dimensional input space Rd with a set of N points in the one-dimensional
output space R 2 by a function f̂ : x 7→ f(x), such that it approximates the
output points with a smallest error.

To quantify the correctness (fitness) of the approximation we define an error-
or loss function L(y, f̂(x)). This function compares the predicted outputs f̂(x)
with the observed outputs y and assigns a large value if the prediction is poor.

Formally, the output y is given with a fixed conditional density p(y|x). For
deterministic systems, this comes down to y = f̂(x) whereas for regression cases
y = f̂(x) + ε with ε being a random noise with zero mean to mimic the noise
in the samples. By consequence, the random term in the output of yet unseen
inputs implies that the output can be represented with a probability distribution.
For more details, see the book by Cherkassky and Mulier (1998).

The risk functional that describes the expected value of the loss function is

1This is not entirely true for real-life data. The presented techniques will order the records
in importance instead of splitting them into two groups outliers - prototypes. It will be up to
the modeler to decide which records have to be removed from the modeling and which should
stay and be treated with care. The relative differences in values of weights computed for the
most important points can guide this decision.

2This thesis assumes that if r-dimensional output is present, it should be modeled r times
per dimension via available inputs and possibly some of the other r − 1 output dimensions.
In practice, it is often beneficial to model one dimension of the output via all inputs and the
remaining r− 1 outputs. This allows to perform sensitivity analysis of the output components,
and helps to focus modeling effort on unrelated output dimensions only.
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given by :

R(f̂) =
∫

L(y, f̂(x)) · p(x, y)dxdy (2.1)

In most real-life problems nothing is known about the underlying distribution
of data. We then approximate the estimated risk (2.1) by the empirical risk,
which is the average risk over the observed data (xi, yi), i = 1, . . . , N :

Remp(f̂) =
1
N

N∑

i=1

L(yi, f(xi)). (2.2)

Often, in regression cases, the squared error (L2) is used as a loss function:
L(y, f̂(x)) = (y − f̂(x))2. The risk functional (2.1) becomes:

R(f̂) =
∫

(y − f̂(x))2 · p(x, y)dxdy, (2.3)

and is estimated by the averaged sum of squared errors on a finite set of training
samples:

Remp(f̂) =
N∑

i=1

1
N

(yi − f̂(xi))2. (2.4)

The definitions of these theoretical and empirical risk functions imply that
the areas of the data space with fewer observations will not have a large influence
on the learning process since they are ”averaged out” in the equation (2.2), or
’weighted out’ by small probabilities in the equation (2.1). By consequence, the
final prediction model will be inclined to perform well only on the most common
data points (further referred to as prototypes).

We aspire to overcome this problem by incorporating the ”information
weight” of a data point into the modeling process and adjust the empirical
functional (2.4) in the following manner:

Remp(f, w) =
N∑

i=1

wi(yi − f(xi))2/
N∑

i=1

wi. (2.5)

With the modified risk functional, models will be discouraged to have
inaccuracies in the points with higher weights. Since more important data
points will have more influence on the learning process, we expect that such data



Chapter 2. Data Analysis and Adaptation 44

balancing will improve the performance of resulting models not only in terms of
the weighted accuracy and inter-and extrapolation capabilities, but also in terms
of the absolute accuracy on the test data3 .

We illustrate in Figure 2.1 that using weights is in fact a more general way of
approximating the theoretical risk functional (2.3). When the joint probability
density function of the data p(x, y) is not known, the weights may work as the
approximations of the sample density while incorporating some other features of
the data samples (see section 2.5).

Knowing, that by adjusting the weights, we can control the influence of each
data point on the computation of the empirical risk functional, and also modify
the risk functional in such a way that it can be minimized with less effort, we
need to find proper ways for weight assignment. Formulae for the theoretical and
empirical risk functionals suggest that the weights in the weighted risk functional
have to be distance based, relative, and preferably reflect the local density of the
data in the neighborhood of a point. The other aspects related to the weight
generation are presented in the following section.

2.3 Essential aspects of data balancing

Appropriate distance metrics

When looking for appropriate and scalable distance-based weighting schemes for
multi-dimensional data we should start with having a scalable distance metric.
The curse of dimensionality hinders a Euclidean distance metric L2(p, q) =(∑d

j=1(pi − qi)2
)1/2, p, q ∈ Rd from giving a meaningful notion of proximity

in a high-dimensional space. We suggest using a fractional distance metric L1/d

in a d-dimensional space, when d is large:

dist1/d(p,q) =

(
d∑

i=1

|pi − qi|1/d

)d

,

3The ambitious goal of the experiments of this chapter is to demonstrate that symbolic
regression with minimizing the weighted error lead to solutions that are superior to the results
of the unweighted error minimization with respect to the unweighted error on the test
data.
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Figure 2.1: General approximation of a theoretical risk functional by using weights.

L1/d : ‖q‖1/d =

(
d∑

i=1

|qi|1/d

)d

.

The compelling evidence of the better scalability of a fractional distance metric
in a space of high dimensionality can be found in (Aggarwal et al., 2001), where
the fractional distance metrics L1/z are introduced for an arbitrary z ∈ Z. In
(François et al., 2007) the relevance of using fractional distances with respect to
the distance concentration phenomenon is discussed in detail.

Appropriate input dimensions

Another pitfall of manipulating the multi-dimensional input-output data is the
initial absence of any information about the significance of the contribution
of inputs into the underlying input-output relationship. The reader should
be warned about the necessity to perform the data balancing in the subspace
of data containing only significant inputs. Some techniques for automatic
variable selection in symbolic regression via genetic programming are described
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in (Kotanchek et al., 2007; Smits et al., 2005) and in Chapter 84.
When the significant inputs are identified, it is useful to scale all the variables

to the same range, to ensure that no unadapted data ranges bias the data weights
and the interpretation of the data5.

Appropriate meaning of the information content

According to intuition, the following three criteria should constitute the relative
importance of a data point in a given input-output data set:

1. Proximity to the neighbors. Isolated points with novel information are
easy to ignore in the global response surface modeling. Emphasizing these
points with higher weights may improve the accuracy of solution in the
under-represented regions.

2. Surrounding by the neighbors. Points that are not uniformly
surrounded by neighbors may be seen as the edge points of the data.
Detecting and emphasizing the edge points may improve the accuracy of
extrapolation into the ’unseen’ areas of the input space.

3. The shape of the underlying response surface in the neighborhood
of the point. Emphasizing the areas of non-linear changes in the response
may improve the accuracy of solutions. Compressing the data to only such
areas will allow spending more computational budget, i.e. more modeling
efforts, on ’interesting’ areas of the response surface, and may increase the
probability of finding better solutions within the same computational time.

2.4 Existing methods and useful concepts

2.4.1 Voronoi diagrams

As we stated in the previous section, one of the aspects of the importance of a
data point may be seen as the proximity to the neighbors of the point, or in other
words, the amount of ’space’ around the point, for which this point is responsible.

4In some applications the meaningful input variables are not equally relevant for the process
in question. In these cases we suggest using relative ’weights’ for the dimensions in the definition
of a distance metric.

5The rule of thumb in “To scale, or not to scale” question is to always scale the input
variables, if they are equally important for the modeler.
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Figure 2.2: Size of a Voronoi polygon as a value for the information content.

Consider an example with six points sampled from a response curve plotted in
Figure 2.2. We may speculate that the ’information content’ of point 3 is higher
than the one of point 4 or of point 5, since point 3 solely carries the responsibility
for the central part of the input space X and the input-output space XY.

Since the amount of ’empty space’ around a data point can be quantified as
a volume of a Voronoi polytope from a Voronoi diagram defined by the data set,
Voronoi diagrams provide a good intuitive basis for determining weights of the
data and a good approximation of the risk functional 2.16.

Figure 2.2 illustrates that an isolated or an edge point generates a larger
Voronoi cell than a point from a dense region in both input space and the input-
output space. If we assume that an isolated point ’represents’ a larger area of the
data space, and hence carries a larger information content relative to the points
in the dense clusters, the volumes of Voronoi polygons become an intuitively
comforting definition for weights of data points.

However, some reservations are restraining from defining the weights as
volumes of corresponding polytopes in a Voronoi diagram generated by the data
set. These reservations are the ambiguity and the computational complexity of
Voronoi diagram calculations.

An unbounded Voronoi has an infinite volume and needs to be constrained
by a bounding box. On one hand, a big bounding box around the data will
make the edge points have big Voronoi cells and may provide a way to detect
the edges of the data. On the other hand, the freedom to choose the location

6A Voronoi diagram can be described as the partitioning of a plane with n points into convex
polyhedrons such that each polyhedron contains exactly one generating point and every point
in a given polyhedron is closer to its generating point than to any other, see Okabe et al. (2000)
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Figure 2.3: Relative differences in volumes of Voronoi polytopes change with a
size of a bounding box.

and the size of a bounding box makes the definition of Voronoi cells, and hence,
the relative weights of points ambiguous; see the examples in Figure 2.3. In
higher dimensions the problem of ambiguity becomes more severe, since the size
of Voronoi cells corresponding to the edge points grows a lot faster than the size
of Voronoi cells, corresponding to the inner points.

Although Voronoi cells are simple polygons in the two-dimensional case, they
become complex polytopes in high-dimensional situations. This is the reason why
calculating the volume of Voronoi-cells becomes computationally hard when more
points and/or dimensions are taken into account. The main reason of hardness
of generating a Voronoi diagram is a problem of finding a convex hull of N points
in a d-dimensional space. The computational complexity of theoretically optimal
algorithms is O(Nb(d+1)/2cN log N) for an incremental algorithm, optimal for
even-dimensional problem, and O(Nbd/2c + N log N) for a divide-and-conquer
method, optimal for an odd-dimensional problem, see Okabe et al. (2000). This
implies that for high dimensional cases, one always needs to rely on numerically
stable approximations and dimension-specific algorithms to compute Voronoi
cells and their respective volumes.

The summary is that the volume of the Voronoi cell corresponding to a data
point is inapplicable for the weight definition in high dimensional problems, while



49 2.4. Existing methods and useful concepts

being intuitively appealing in low dimensions.

2.4.2 Other useful concepts

The concluding hypothesis of the previous subsection is that the weights based on
the volumes of Voronoi cells do not improve the solutions of the low-dimensional
problems due to the lack of relative information about the neighborhood of a
Voronoi cell. A literature search for useful proximity-based concepts resulted in
a discovery of a paper of Harmeling et al. (2006), with an inspiring approach to
data analysis for outlier detection.

Below we introduce notations for data records used throughout this thesis. By
an input-output data set we mean a setM = {M1, . . . , MN} of N points in a (d+
1)-dimensional space Rd+1. Point Mi has coordinates (xi

1, x
i
2, . . . , x

i
d, y

i) ∈ Rd+1,
i = 1, N , with yi corresponding to the response value at the input point Pi =
(xi

1, x
i
2, . . . , x

i
d) ∈ X ⊂ Rd. We say that the input-output point Mi represents

the input point Pi, since the projection of Mi on the input space X ⊂ Rd is
exactly Pi. The set of all input points is denoted as P, the vector of outputs as
Y = (y1, . . . , yN )T .

By {n1(Pi,P), n2(Pi,P), . . . , nk(Pi,P)} ∈ P we denote the k nearest neighbors
of the point Pi ∈ P in metric L2 or L1/d.

For each point Pi ∈ P the following functions will be used as a basis for
weighting (adopted from Harmeling et al. (2006)).

(1) Weight based on the proximity of the k nearest neighbors in
the input space X defined as the average distance to the k nearest neighbors
(proximity-X):

π(i,P, k) =
1
k

k∑

j=1

‖Pi − nj(Pi,P)‖, (2.6)

where nj(Pi,P) is the j-th nearest neighbor of the point Pi from the set P in the
norm ‖ · ‖1/d or ‖ · ‖2.

(2) Weight based on the surrounding by the k nearest neighbors,
defined as the length of the average of the vectors pointing at the k nearest
neighbors (surrounding-X):

σ(i,P, k) =

∣∣∣∣∣∣

∣∣∣∣∣∣
1
k

k∑

j=1

(Pi − nj(Pi,P))

∣∣∣∣∣∣

∣∣∣∣∣∣
, (2.7)
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(a) Proximity, k = 1 (b) Surrounding, k = 20

Figure 2.4: Detecting isolated and edge points with proximity-X (2.6) and
surrounding-X (2.7) indexes. Radii of the circles correspond to the relative values of
proximity-X index in the left plot and the surrounding-X index in the right plot.

where nj(Pi,P) is the j-th nearest neighbor of the point Pi from the set P in
the norm ‖ · ‖1/d or ‖ · ‖2.

The neighborhood size k dictates the scale in the perception of the data -
small neighborhood size suggests local analysis of data, while big neighborhood
size implies a global view on data. Isolated points are detected best via the
proximity index with the neighborhood size of one, and edges of data are detected
at best with a large neighborhood size, e.g. N − 1. We illustrate this in an
example in Figure 2.4. Figure 2.4 presents a set of 200 points is randomly sampled
from a two-dimensional interval [0, 0.5] × [0, 0.5] and weighted according to the
proximity-X index 2.6 with the neighborhood size of one (plot (a)), and the
surrounding-X index 2.7 with the neighborhood size of 20 (plot(b)). Radii of the
circles correspond to the relative values of proximity-X index in the left plot and
the surrounding-X index in the right plot.

2.5 New definitions for weighting functionals

2.5.1 Including the response

In real-life applications the input data does not necessarily come from a designed
experiment, may contain some noise, or may not be uniformly distributed if some
regions of the design space are infeasible due to the physical limitations of the



51 2.5. New definitions for weighting functionals

experiments or computational limitations of the simulation system. These cases
raise a question: - when the ”messy” data is given, in which space do we need to
balance it, in the input space or in the total input-output space?

When we have freedom to design a limited set of samples for modeling a non-
linear response surface at a certain hyper-interval of the input space, we want the
sampled points to form a balanced ’space-filling’ subset of that hyper-interval.
This is a motivation for the design of experiments, where the design points are
chosen to form a maximally ’regular’, space-filling mesh of the design space.

When we model given data, our task is to approximate the underlying
response surface with a maximal precision. For this, we would prefer our points
to form a finer mesh in the areas of high non-linearity of the response surface
and coarse mesh in the areas where the response surface is linear.

2.5.2 Proximity and surrounding weights

Motivated to include the information about the outputs into the data-balancing
procedure we need to adjust the definitions of the proximity-X and surrounding-X
weighting schemes.

Note that the proximity-X and surrounding-X weights of points in the input
space with respect to k closest neighbors can be plausibly determined with the
functionals (2.6) and (2.7), when the neighborhood size k is fixed. In the input-
output space, however, the notion of closeness to the closest neighbors can be
deceiving. If a set of points is located on a d-dimensional manifold defined by the
response surface, then the points closest to each other in the (d + 1)-dimensional
input-output space, are not necessarily the closest on the manifold. Such situation
is illustrated in Figure 2.5.

We suggest to use this simple observation in adapting the proximity and
surrounding weights for response surface modeling.

We define the new weight based on the proximity by k nearest-in-the-
input-space neighbors (proximity weight) as:

π(i,M,P, k) =
1
k

k∑

j=1

‖Mi − n̄j(Mi,M,P)‖, (2.8)

where n̄j(Mi,M,P) is the j-th nearest-in-the-input-space neighbor of point Mi

in the set M. This means that the projection of n̄j(Mi,M,P) onto the input
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Figure 2.5: Proximity to the closest neighbors in the input-output space may be
deceiving. According to this plot, the closest neighbor of point 1 in XY-space is point 4.
However, along the response curve point 1 is the furthest apart from point 4.

space X is nj(Pi,P).

We use the same idea of determining the neighborhood in the input space in
the new definition of the weight based on the surrounding by k nearest-
in-the-input-space neighbors (surrounding weight):

σ(i,M,P, k) =

∣∣∣∣∣∣

∣∣∣∣∣∣
1
k

k∑

j=1

(Mi − n̄j(Mi,M,P)

∣∣∣∣∣∣

∣∣∣∣∣∣
, (2.9)

where n̄j(Mi,M,P) is the j-th nearest-in-the-input-space neighbor of point Mi

in the set M. This means that the projection of n̄j(Mi,M,P) onto the input
space X is nj(Pi,P).

Coming back to Figure 2.5, we observe that according to the new definitions,
the proximity and surrounding weights of point 1 will be equal to the length of the
vector connecting points 1 and 2, since the nearest-in-the-input-space neighbor
of point 1 is point 2.

In formulae (2.8) and (2.9) a Euclidean distance metric can be used if the
dimensionality d of the input space is low. However, if d is high, the fractional
distance metric ‖ · ‖1/(d+1) should be used instead of the Euclidean, since it
produces considerably better results (see, e.g., (Aggarwal et al., 2001)).
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2.5.3 Remoteness weight

The features of the proximity and the surrounding weights introduced by
Harmeling et al. (2006), and adjusted for the input-output data in the previous
section, match our requirements for a good data weighting procedure. We want
to assign higher weights to the points with a higher information content relative
to the neighbors. High weights of these points plugged into the fitness function
will drive the system to produce lower errors in specified locations. Therefore,
we can assign higher weights to the edge points to constrain solutions to exhibit
more accurate extrapolation behavior, and assign higher weights to the points in
the sparse regions - to force solutions to agree with the training data in under-
represented areas that are easy to ignore otherwise.

The goal of this section is to understand whether the definitions of proximity
and surrounding weights (2.6) and (2.7) are sufficient for detecting the edges of
data as well as the regions of sparsity. A high proximity index detects points in
the sparse areas, while a high surrounding index detects the points that are not
surrounded uniformly, i.e. are located on the ’edge’.

Harmeling et al. use indices implied by (2.6) and (2.7) primarily for detecting
outliers. For these purposes the surrounding index is preferable, since it identifies
points that are both isolated and not surrounded uniformly by their neighbors.
Using the index implied by the surrounding weight, the authors successfully
divide the data set into two groups - outliers and prototypes, prune away the
outliers, and exploit a representative set of points sharing ’common’ features.

Our purpose of weighting is opposite to some extent. Having agreed that
the incoming data is reliable (however, possibly with noise), we want a quick
procedure that identifies points with ’untypical’ features from the rest, and
assigns higher weights to these points. We do need ’outliers’. We do want to
leave a representative set of points exhibiting novelties in data and prune away
the redundancies to ease and speed up the regression process. That is why we
want to assign high weights to the points with either a high proximity index or
a high surrounding index.

Taking the average of the proximity and surrounding values does not produce
a satisfying combination, since the very high values of one weight function can
be decreased by the very low values of another weight function.

A multitude of ways was tried to combine the proximity and surrounding
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indexes into one combined weight. The method that is intuitively comforting
and also gives the best results on various problems is ordinal, since it combines
the ranking of data points, not the actual weight values.

Let w : M 7→ w(M,P, k) ∈ R be a weight functional of the set of points M =
{M1,M2, . . . ,MN} in Rd+1. The weight vector

(
w(1,M,P, k), . . . , w(N,M,P, k)

)

induces a certain ranking of values w. Let I[i;w(M,P, k)] ∈ {1, . . . , N} be an
index of the value w(i,M,P, k) in that ranking.

The weight based on the remoteness of the point Mi from k nearest-
in-the-input-space neighbors is defined as the rank of the average of its
proximity and the surrounding ranks:

ρ(i,M, k) = I [i; I [i; π (i,M,P, k)] + I [i; σ (i,M,P, k)]] . (2.10)

This definition means that instead of taking the average of the values of the
proximity (2.8) and the surrounding(2.9) weights for a given point, we compute
the proximity and surrounding -Y weights for all points in the data set, for each
point we find a rank induced by the two weighting schemes, take the sum of the
ranks, rank these sums again, and define the remoteness weight of the point in
question as an index of this point in the final rank. By definition, the value of
the remoteness weight ρ(·) is an integer value from the set {1, 2, . . . , N}. We can
also normalize the remoteness weights to sum up to the number of points N .
In this case the remoteness weights get a minimum value of 2/(N + 1), and the
maximum value of 2N/(N + 1).

The presented way to combine weights is normalization-invariant, and is also
more robust to the possible noise in the data. According to the new definition,
irrespectively of the degree of imbalancedness of the data, only one half of the
data gets weights higher than one. Besides, the highest remoteness weight is
only N times higher than the lowest remoteness weight. Therefore, the isolated
points with very high proximity or surrounding values cannot get excessively
large weights and create an artificial bias for regression.

For completeness, the combined remoteness weight needs to be determined
for the input space. Let us call it the weight based on the remoteness from
k nearest neighbors (remoteness-X), and define it as a combination of ranks
induced by π and σ weights:
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ρ(i,P, k) = I[i; I[i; π(i,P, k)] + I[i; σ(i,P, k)]]. (2.11)

2.5.4 Non-linearity weight

Now we want to analyze and define the capabilities and limitations of the
remoteness index. As stated in the previous section, one of the additional
motivations to weight the data (besides improving making the modeling easy by
using a weighted fitness function) lies in separating the data into important points
and redundant points, to further focus the modeling effort on the important
points only. This is the reason why we like the ordinal rank-based approach - a
’sensible’ ordering of data allows us to make a plausible separation of the data
into two groups, while not being too sensitive to the actual weighting function.

On one hand, the remoteness index ρ(·) in Eq.(2.10) can successfully detect
points of high variation in the response relative to the nearest neighbors.
Emphasizing the points of big changes in the response with the remoteness index
can be a way to capture the areas of steepness of the response surface - a non-
obvious task in high-dimensional spaces.

On the other hand, over-focusing on points of high variation in the output
may withdraw our attention from the areas of lower but still highly non-linear
variation. Steep, but linear areas of the response surface are neither challenging
nor significant from the point of view of non-linear modeling or extrapolation,
while the areas of highly non-linear behavior may be symptoms for generating
pathologies in case of extrapolation. This observation brings us to a new
definition of a weighting function, that focuses not on the actual local variation
of the output, but on the local non-linearity.

The weight based on the local deviation from linearity in the point
Mi ∈ R is defined as the distance from point M0 to the least-square hyper-plane
approximating k nearest-in-the-input-space neighbors, k ≥ d + 1:

ν(i,M,P, k) = distXY (Mi, Πi), (2.12)

where Πi is a (k − 1)-dimensional hyper-plane passing through k nearest-in-the-
input-space neighbors of Mi, and distXY is the selected distance metric of the
input-output space.
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In Figure 2.6 the differences in the proximity, the surrounding, and the non-
linearity weights for a one dimensional problem are plotted. The Ksinc function
is defined by

y =
10∑

i=1

sinc(x− i)(p2
i − 1), (2.13)

where sinc(x) = sin(πx)/(πx), p is a vector of 10 pseudorandom numbers drawn
from a normal distribution with zero mean and the standard deviation one,
generated by MatLab after the random number generator was set to the initial
default state, i.e. ”randn(’state’,0); p=randn(10,1);”. According to Figure 2.6,
the non-linearity weights for the Ksinc data are capturing all the humps of the
underlying response curve the best. We speculate here, that the non-linearity
weights may provide a good basis for compressing the data, since they emphasize
a small number of points with higher weights around the humps, i.e. in the areas
of high local non-linearity, and disregard the points, that can be obtained by a
piece-wise linear interpolations through the points with the high weights. If this
is true, due to generality of the definition of the non-linearity weights, the same
should hold for higher dimensions.

If a data point lies on the plane going through the d nearest-in-the-input-space
neighbors, the point does not bring any novel information about the output,
relative to the information brought by the neighbors. The appeal of the non-
linearity weight is in the fact that it focuses on the areas of the data space where
the local change in the underlying response surface is not trivial (i.e. not linear).
When modeling real-life processes driven by the fundamental laws of nature,
we expect the underlying response surfaces to be relatively smooth functions
exhibiting a reasonable behavior. This means that the expected number of the
areas of highly non-linear behavior is strongly smaller than the total number of
available data points7.

7The non-linearity weight should be used only if d << N , i.e. the dimensionality of the
input space is strongly smaller that the number of records. By definition, as well as due to
the area of application, the non-linearity weights are not applicable to regression on fat arrays,
where d >> N . The latter problems, heavily under-sampled in the data space, require a dual
weighting of the inputs variables, variable sensitivity analysis, and further selection of significant
inputs (also known as variable selection), see Smits et al. (2005).
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Figure 2.6: Comparison of proximity, surrounding, remoteness and non-linearity
weights for a one dimensional Ksinc problem. The plots represent relative weights of
100 points sampled from Ksinc function. Please observe, that the non-linearity weights are
capturing all the humps of the underlying response surface the best. The linear fragments of the
response curve indeed have the low non-linearity weights. We speculate, that the non-linearity
weights may provide a good basis for compressing the data, since they emphasize a (relatively)
small number of points with higher weights around the humps, and disregard the points, that
can be obtained by a piece-wise linear interpolation through the points with the high weights.
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2.5.5 Computational complexity

When a neighborhood size k is fixed, the vectors of proximity and surrounding
indexes can be computed in O(N2d + N2 max(k, log N)) arithmetic operations,
see (Harmeling et al., 2006).

For the non-linearity weight calculation, determining the plane approximating
k nearest-in-the-input-space neighbors, requires solving a system of k linear
equations. The complexity of the non-linearity calculation becomes O(Nk3) 8.

2.5.6 Summary of new weighting methods

In this section we defined four weight functionals emphasizing different aspects
of the relative importance of a data point. All four functionals use the input-
output coordinates of a point and its k nearest-in-the-input-space neighbors. We
suggest to use the neighborhood size of one or d+1 for the proximity, surrounding
and remoteness weights, and at least d + 1 for the non-linearity weights. In the
non-linearity weight definition it is possible that the plane passing through the
k nearest-in-the-input-space neighbors is ill-defined. In those cases we suggest
to increase the neighborhood size and find the hyper-plane approximating the k

neighbors in the least-square sense.
The goal of the presented research is twofold - we want to find out whether

the weighted regression produces results superior to the ones produced by the
standard regression, and also find robust ways to consistently improve regression
results for real-life data. Our hypothesis is that the latter can be achieved if more
modeling effort is applied to a smaller subset of data with a similar information
content. In the next section we introduce a novel technique for data ranking that
allows adaptive selection of data subsets that contain the ’essential information’
about the underlying response surface.

2.6 Using weighting for compression

2.6.1 SMITS procedure

Every weighting scheme, introduced in the previous section, can be used to rank
the data points from the least ’important’ ones to the most important ones. The

8For all weighting schemes only significant variables should be considered as an input space.



59 2.6. Using weighting for compression

     
 

 

 

 

 

 

 

 

Figure 2.7: One pass weighting of a point in a dense cluster. Figure represents
six points, two of which form a dense cluster that is remote from the other four points. If
the neighborhood size of one is used for weight definition, the two close points will get very
low values for the proximity, surrounding, and remoteness weights. In this case, a weight-
based compression used improperly may delete both points due to their low weight values.
However, collectively, the points in the cluster are representing a big central area of the data
space. Intuitively, the presented data set can be compressed to five points only, if the cluster is
substituted by one point. Removing more points will result in a considerable information loss.

trivial way to compress the data set would be to chop off a certain percentage
of points with lowest weights in that rank. However, this would not be a smart
way to compress, due to the relative nature of our weight definitions.

As we stated previously, the high values of the proximity, surrounding,
remoteness, and the non-linearity weights will detect the points located in sparse,
not-surrounded, or remote areas of the data space or in the areas corresponding
to the high non-linearity of the response surface. The opposite statement about
the points with the low weight is not true, i.e. the points with very low weights
may be located close to their nearest neighbors (or be in a linear relationship
with them), but be very remote from (or very non-linearly related to) the data
as a whole. So, a data point gets a low weight, when it is located in a small dense
cluster, which size is a bit bigger than the neighborhood size used in the weight
definition, see an example in Figure 2.7.

Another example of an improper compression based on the rank generated
by a remoteness index for a two-dimensional data set is given in Figure 2.8.
After weighting the 100 points of the selected data set with a remoteness index,
defined in equation (2.11), we select 50 and 30 points with the highest remoteness
weights and plot them in Figures 2.8(a) and 2.8(b). The plots illustrate that the
compression based on the one-pass calculation of the remoteness weight may miss
the dense regions of the data space.
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(b) Compression to 30 points

Figure 2.8: Compressing a data set of 100 imbalanced points in the INPUT space
using remotness-X weights. This imbalanced two-dimensional data set will be further
considered as input set for KotanchekImbalanced test problem (see Chapters 3 and 5). Both
plots illustrate that the compression of these two-dimensional data with the remoteness-X
weight is not a convincing way of selecting ’space-filling’ subsets of the data. The plots represent
the ’top’ 50 points and the ’top’ 30 points with the highest remoteness weights obtained by
the formula (2.11) with the neighborhood size of two. We see that points with high remoteness
values (50 and 30 points with the highest remoteness values are depicted as black circles) are
not remote from their two nearest neighbors but are not necessarily uniformly remote from
each other.

Since the points with low weight values (according to a selected importance
criterion) have a low importance only relative to their k nearest or k nearest-in-
the-input-space neighbors, the rank generated by the selected weighting cannot
be used for compression and should be adapted to reflect the importance of points
in relation to the entire data set. We suggest to do it via the following Simple
Multi-dimensional Iterative Technique for Sub-sampling (smits). The
technique iteratively removes points with the smallest weight from the data set.
At each iteration step, the weights of all points that contain the eliminated point
among k nearest or nearest-in-the-input-space neighbors get re-evaluated. The
order of elimination generates a ranking of data of decreasing importance, such
that the most important points are eliminated last.

Let w : M ∈ Rd+1 7→ R be a weighting functional that assigns weight to a
selected set of points M using the neighborhood size of k. The smits procedure
assigns rank to the data samples in the following way:

1. Weight the entire data set with w;

2. Find the point with the smallest weight;
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3. Remove the selected point from the data set and remember the iteration
step;

4. Update the weights of points that had the eliminated point among k nearest
neighbors;

5. Continue steps(2)-(4) until k points are left in the data set.

6. Rank the points by the order of elimination, and randomly assign ranks
from N − k + 1 to N to the last k points.

The algorithm is based on iterative elimination of points with the smallest
obtained weight from the data set, and ranking these points by the order, in
which they are eliminated. Since all presented weighting procedures exploit the
notion of k nearest or nearest-in-the-input-space neighbors, only the weights of
those neighbors of the eliminated point must be updated during one iteration
step. At the end of the elimination procedure only k remain in the data set, and
those points are randomly ranked by indexes N − k + 1, . . . , N . The elimination
rank corresponds to the global relative importance of a data point. If the data is
compressible then the points with low elimination ranks are the prototypes. As
many of them can be removed (with caution) as the user desires.

2.6.2 Space-filling compression in the input space

The elimination rank obtained by the iterative pruning of the least important
points with distance-based weights (proximity and remoteness) allows a very
efficient building of space filling subsets of data in the input space. The beauty
of the smits procedure lies in the fact that with the elimination rank we can
generate subsets of data which are nested, and, for each subset size, are the
’most’ space-filling with respect to the selected weight functional.

The imbalanced data set from Figure 2.8 can now be convincingly compressed
with the smits procedure to nested space-filling sub-sets of various size, see Figure
2.9.

In Figure 2.10 we introduce two two-dimensional data sets, SUITS data and
BAGEL data, to illustrate the capabilities of the introduced iterative technique
in data compression with the remoteness weight.

Figure 2.11 illustrates the smits-based compression of the SUITS data set
with the remoteness weight. We used three different neighborhood sizes to
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(b) Compression to 30 points

Figure 2.9: Compressing a data set of 100 imbalanced points in the INPUT space
via the SMITS procedure with remoteness-X weights. Both plots illustrate that the
subsets of the first 50 and 30 points obtained from the ranking generated by the smits procedure
applied to the remoteness-X weights are sufficiently space-filling in the given x1x2-space. Points
selected into the subsets, are depicted as filled circles. Note that the ’space-filling’ set of 30
points in plot (b) is the subset of 50 points depicted in plot (a). Iterative elimination of points
with the smallest remoteness-X weights allows a good compression of dense areas. This is the
reason, why problems with the compression based on the simple sorting of the remoteness-X
weights (see Figure 2.8) disappear with the smits-based compression.

demonstrate the flexibility of the iterative elimination principle with respect to
the user goals. We believe that the neighborhood size of one is a robust and
sufficient setting for creating the space-filling subsets with the proximity and
the remoteness weights. When compression is performed for edge detection,
the neighborhood size should be increased. The choice for k will depend on
the original size of the data set and also on the desired compression rate. We
illustrate this property using compression for emphasis and detection with the
neighborhood sized of one and five percent of the original data size.

The introduced iterative procedure does not suffer from the flaw of missing
the dense regions compared with the compression based on the one-pass weight
calculation. If the data has a dense cluster with a size bigger than the considered
neighborhood size, all points in this cluster get small weights (even if the non-
linearity weight is calculated, the densely sampled regions of the response surface
may appear locally linear, and may obtain small weights relative to the points
outside the dense cluster). Compression via the iterative procedure will eliminate
all but one point from the cluster. That last point will be further eliminated only
if all other points outside the cluster are more dispersed from each other than
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(b) Unbalanced Bagel Data Set

Figure 2.10: Examples of data sets in the input space. To illustrate the capabilities of
the smits procedure for creating space filling subsets of data, we generated two test sets with
a non-trivial edge structure, and non-uniform density in the data space.

from the last point in the cluster. We compare the compression via the smits

procedure and the compression based on the one-pass weight calculation on the
BAGEL data with a non-uniform density, see Figure 2.12.

An efficient procedure of selecting ’space-filling’ sub-sets of various sizes for
problems of arbitrary dimensionality can have a significant impact on data
preprocessing in modeling approaches, where the complexity of the resulting
model depends on the number of points used in the modeling process. An
example of such technique is kriging, that is recognized as a robust and effective
interpolation method for relatively small and designed input-output data sets,
but may have problems in convergence to a solution for very large data sets
with non-uniform data density, see (Rennen, 2008) for examples of convergence
problems.

2.6.3 Compression for response surface modeling

In cases, where data ranking or data compression are needed for the purposes of
response surface modeling, the introduced iterative technique for sub-sampling
should be used with weighting functionals adjusted to the input-output data -
proximity, surrounding, remoteness, and non-linearity.

The rule-of-thumb that we are proposing is to use the non-linearity-based
smits compression if the data is sampled reasonably uniformly in the input space,
and the dimensionality of the input space is strictly smaller than the number of
records. In other cases, the smits procedure should be used with surrounding or
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Figure 2.11: Space-filling compression of the SUITS data via the SMITS procedure
with the remoteness-X weight. The plots represent the results of the compression of the
SUITS data to 20% and 50% of the original size. We used three different neighborhood sizes
to demonstrate the flexibility of the iterative elimination principle to the requirements of the
user. The weight functional (remoteness-X) and the distance metric (Euclidean) were the same
for all cases.
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Figure 2.12: Compression of the BAGEL data, see Figure 2.10(b), via the one-
pass remoteness-X weight calculation and via the SMITS procedure based on the
remoteness-X weight.
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(c) Remoteness, 25% Points, k = 2
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(d) Non-linearity, 25% Points, k = 2

Figure 2.13: SMITS-based compression of the KSinc data with the proximity,
surrounding, remoteness and the non-linearity weights and two nearest in the
input space neighbors. The plots represent the results of the compression of the KSinc
data to 25% of the original size.

remoteness weight.

The differences in compression of the Ksinc data set are shown in Figure
2.13. The smits procedure is applied to the KSinc set to rank it in the order
of decreasing importance using proximity, surrounding, remoteness, and non-
linearity weights. The first 25 points of each of the four ranked sets are plotted
in Figure 2.13. We see that the subsets of the 25 ’most important’ records carry
quite different information about the true response curve. The compression,
based on the non-linearity weight, seems to be the most plausible, since the
piece-wise linear interpolation through the produced 25 points describes the true
response curve quite accurately (see Figure 2.13(d)).
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2.7 Cumulative information content

This section presents a way for defining a measure for the cumulative information
content of the input-output data set ranked in the order of decreasing importance
with the smits procedure. Information content defined for a subset of the first
m records of the ranked set can guide the user in selecting the compression
threshold, and also can help to indicate the differences in compression, produced
by four weighting functionals.

If during the smits procedure we archive a weight of each eliminated point,
we can compute the cumulative sum of these weights for each elimination step
in the order opposite to the order of elimination. If the weights are normalized
by the total sum of the weights of the data set they will sum up to the number
of records N . After normalization the resulting cumulative sum of eliminated
weights can be interpreted as a cumulative information content of the data set
ranked with the smits procedure.

In Figure 2.14 we plot the cumulative information content (CIC) of the Ksinc
data ranked with four weighting functionals. A value on a curve at point m can
be interpreted as a fraction of the information about the data contained in the
first m samples of the ranked data set, m = 1 : N . The shape of the CIC curve
can be considered as an indicator of compressibility of the Ksinc data ranked
with the smits procedure.

If the decision is taken to compress the Ksinc data set to 25 points only,
the CIC of the first 25 points of data ranked using the proximity, remoteness,
surrounding and non-linearity weights will be 0.64, 0.70. 0.78, and 0.87
respectively (see Figure 2.14). This means, that among four subsets, the 25
‘most important’ points obtained using the non-linearity weight carry the highest
fraction of information contained in the Ksinc data. Figure 2.13 with the actual
results of the smits-based compression of the KSinc data to 25 points with
proximity, surrounding, remoteness, and non-linearity weights carries the same
message - the top 25 points of the compression based on the non-linearity weight
is the only subset of four, that captures all the seventeen extrema of the KSinc
function.

Figure 2.14 also illustrates, that if we are interested in selecting a smallest
subset of essential points that contains at least 90% of the information of the
KSinc data, we need to take the first 57 points of the set ranked using the
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Figure 2.14: Cumulative Information Content as a characteristic of the
compressibility of the data set ranked by the SMITS procedure. The plot represents
the cumulative elimination weight of the the first m records of the KSinc data set ranked with
the smits procedure for the proximity, surrounding, remoteness, and non-linearity weight on
two nearest in the input space neighbors. We interpret it as the cumulative information content
of the ranked data set. The steeper the shape of the cumulative information content curve, the
more informative is the compression of the data ranked with a corresponding weight functional
to a subset of the first m records.

proximity weight, the first 55 points of the data ranked using the remoteness
weight, the first 39 points of the set ranked using surrounding weight, and only
33 points of the set ranked using the non-linearity weight. These observation
suggests that the non-linearity weight might be a good choice of weight used
for compression of a relatively balanced sets like KSinc data with the smits

procedure.

2.8 Summary

The chapter has introduced four simple procedures for computing the importance
of an input-output data record relative to its k nearest-in-the-input-space
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neighbors and three procedures for computing weights of unlabeled input records.
The importance, or information content, is defined based on the proximity,
surrounding, remoteness or non-linear deviation from k nearest-in-the-input-
space neighbors. The obtained weights can be either used for getting insight
from the data before the modeling process, or for compression, or can be
directly incorporated into the fitness function during modeling. Chapter 5 studies
weighted symbolic regression in greater detail.

We observed that for very imbalanced and clustered data the four presented
weighting functionals may not capture well the clusters of data that share the
importance with respect to proximity or surrounding by k nearest-in-the-input
space neighbors.

Reasoning that a part of a whole is important when its presence or its absence
produces a large impact on the whole, we came up with a simple procedure of
ranking the data by importance through the iterative pruning of points with the
least obtained weight. The simple multi-dimensional iterative technique for sub-
sampling (smits) takes the data set and the weighting functional as arguments
and generates a ranking of the data set that can be used for constructing balanced
nested subsets of an arbitrary size.

The smits procedure applied to one of the four weighting functionals allows
sensible compression of large input-output data sets to smaller subsets of a similar
information content. This feature may considerably enhance the analysis and
modeling of large imbalanced data sets with highly non-linear response surfaces,
if more modeling effort is applied to compressed subsets of data (see Chapters 3
and 5 for validation of this hypothesis).

An additional benefit of smits-based compression can be attained by applying
it to other modeling methods besides evolutionary modeling. The rational point
interpolations (Cuyt, 1993, 2003; Graves-Morris, 1981; Van Barel and Bultheel,
1990) and kriging are the meta-modeling techniques that are successfully used
in practice for producing accurate global models of small- and medium-sized
input-output data sets. The robustness and the complexity of solutions of both
techniques may suffer dramatically if they are applied to very large input-output
data sets (with more than two to three thousands of records). To increase the
feasibility of convergence to a solution, kriging seeks for ways to compress the
given (legacy) data to smaller subsets that are preferably space-filling in the
input space (Rennen, 2008). The proposed smits-based compression applied
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Figure 2.15: Summary of Chapter 1. Methods of balancing given data.

to the proximity or remoteness weights in the input space generates nested
subsets that are sufficiently ’space-filling’ for any subset size. We believe that
for applications where no exact maximization of minimal distances is required
(or possible), the smits compression becomes a competitive heuristic for creating
space-filling subsets in the input space for arbitrarily large problems of arbitrary
dimensionality9.

For data sets of high dimensionality we strongly recommend using fractional
distance metrics for finding nearest or nearest-in-the input space neighbors; see
(Aggarwal et al., 2001; Doherty et al., 2004; François et al., 2007; Jin et al.,
2003)).

Figure 5.10 summarizes the proposed methods to perform data weighting and
compression.

If balancing is desired for response surface modeling, then the data should be
weighted with either non-linearity, or surrounding, or remoteness weights. If for
a set of d inputs it is possible to say that the average distances to d + 1 nearest-
in-the-input-space neighbors are similar (i.e. the data is not too imbalanced),
then it is worthwhile to use the non-linearity weights. Otherwise, surrounding
weights seem to be the second choice. After the data is ranked with the smits

procedure, a ’plausible’ rate of compression can be determined from the shape of

9Under condition that the impact of the curse-of-dimensionality is reduced by the use of an
appropriate distance metric, which does not exhibit the concentration phenomenon
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the cumulative information content.
We advise to compute the proximity, surrounding, and remoteness weights

all together, and visually analyze their sorted profiles. If only a few points get
excessively high proximity or surrounding weights, they are a subject for special
attention. It is up to the user to decide whether to remove these points as
outliers, or to inform the problem owner that the areas of the data space where
these points are located require further sampling or analysis.

If the data set is too large and there is a specific interest in constructing a
balanced subset that is ’space-filling’ in the input space, then we recommend using
the smits procedure with the remoteness-X, or proximity-X weights on one or
d+1 nearest neighbors (d is the dimensionality of the input space). If the property
of ’space-fillingness’ is of interest, the input-output data should be weighted and
ranked only in the space of inputs, as if data learning were unsupervised. We
observed that compression based on the remoteness-X weights with one nearest
neighbor gives satisfying results for various sets of various dimensionality.

We recommend using k = d + 1 nearest-in-the-input-space neighbors as a
default setting for a general-purpose weighting routine. However, reducing the
neighborhood size to one neighbor may be beneficial for dynamic environments,
where the re-balancing should be done while spending minimal computational
resources. In this case, we advise using surrounding or remoteness weight
with one nearest-in-the-input-space neighbor, since the non-linearity weight is
inapplicable.





Part II

Model Development





3
Model Evolution through Genetic

Programming

This chapter presents basic principles of evolutionary search and their application
to symbolic regression. Without claiming to be exhaustive, the Chapter focuses
on symbolic regression via Pareto genetic programming and introduces definitions
for various settings used for empirical experiments in this thesis.

3.1 Basic principles of evolutionary search

This Chapter starts Part II of this thesis devoted to Model Development. As
presented in the Introduction, the results of the thesis are aligned with a
framework of iterative model-based problem solving, where the task of problem
solving is defined as identification of a symbolic regression model describing the
behavior of the system in question. Problem solving is approached through
iteration over the three stages: (1) data generation, analysis and adaptation,
(2) model development, (3) problem analysis and reduction. In this thesis the
stage of model development is in turn performed through iterative (evolutionary)
search in the space of symbolic regression models constructed on given sets of
basic functions, input variables, and constants.

Model development in the evolutionary framework consists of iterating
through the three stages of: (1) model generation and modification, (2) model
evaluation, and (3) model selection (see again Figure 1.5.1). Within each cycle of
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problem solving, several cycles of model development are performed to identify
regression models of sufficient quality, before they can be interpreted at the stage
of problem analysis and reduction.

A set of alternative regression models considered at each step of the model
development phase is called a population. Individuals of this population are
undergoing many iterations of artificial evolution. The iteration steps are also
referred to as generations.

The major expectation of performing the evolutionary search is that the
balance between exploring new individuals and exploiting good (parts of)
discovered individuals will improve in the quality of alternative solutions over
generations. The magic of evolution (in this case of artificial evolution of
formulae) lies in our observation that it does work very well across a wide range
of problems.

The basic tenet of the evolutionary search (one that distinguishes it from
random search) is persistent exploitation of discovered intermediate solutions,
i.e. combination of good features of successful individuals for creation of
(hopefully) even more successful progeny. One of the pitfalls of evolutionary
search is an excessive exploitation of individuals, which results in ’inbreeding’ —
a premature zooming into a certain area of the search space, the loss of diversity
among individuals (premature convergence, see (Langdon and Poli, 2002)), and
stagnation of overall improvement leading to insufficient quality models.

To mitigate the risk of premature stagnation, the persistent exploitation is
balanced by the continuous exploration of new alternative solutions. Without a
doubt, the proper balance between exploitation and exploration is a cornerstone
of successful evolutionary search. The mantra on the ‘balance between exploration
and exploitation’ is attributed to John Holland (Holland, 1975), who developed
genetic algorithms, which also need to exhibit this balance for optimization
problems.

At the start of model development the initial population of regression models
is either randomly initialized or suggested by the modeler (e.g. when the
modeler wishes to re-use the information from the previous iterations of problem
solving, or when a collection of pre-selected non-trivial regression models is
available, as in (Korns, 2006)). The Model generation phase includes modifying
a selected set of ‘successful’ regression models obtained at the previous step
by re-combining or changing pieces of their structure. In the evolutionary
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framework, model generation is often called genetic modification or variation,
and consists of applying three main modification operators: re-combination of
pairs of individuals (crossover), re-initialization of parts of a single individual
(mutation), and copying an unchanged individual into the next generation
(reproduction). Neither crossover nor mutation guarantee the improvement of
quality (e.g. prediction accuracy) of individuals.

The Model evaluation phase includes estimation of quality of individuals
with respect to a set of predefined criteria, like prediction accuracy and model
complexity (more examples and definitions of evaluation criteria are given later in
this chapter). Once the quality of individuals is determined, the model selection
phase begins with applying a selection operator to the evaluated population.

The choice of a selection operator that picks out a subset of solutions that
will be used for creating the new generation of individuals, is crucial in the
evolutionary search, since it directly influences the balance of exploitation and
exploration. Consequently it determines the speed of evolution, i.e. the number
of iterations in which the desired level of solution quality can be reached (see
(Banzhaf et al., 1998)). There are several types of selection strategies:

• Fitness proportionate selection,

• Rank-based selection,

• Tournament selection,

• Elite-based selection,

• Elite-based selection with elite preservation,

• Hybrid selection methods.

In fitness proportionate selection (introduced by Holland (1975) for genetic
algorithms), the probability for an individual to be selected for propagation is
proportional to the actual value of fitness of the individual. The pure fitness
proportionate selection in GP without the pressure for diversity increases the
risk of premature convergence.

The ranked-based selection operates on the orders of individuals ranked
according to the fitness, rather than their actual values. The probability for
individuals to be selected is a function of their rank in the population, and is
scale-independent.
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While the two mentioned selection schemes involve evaluation of a population
and sorting of all individuals with respect to their fitness values, tournament
selection is designed to avoid manipulations with the total number of population
members and to reduce it to small tournaments. For each tournament, a small
subset of individuals is randomly drawn from the population and evaluated, and
a subset of the ’best’ individuals (tournament winners) is selected according to a
preferred meta-selection scheme. Despite the fact that tournament selection has
to be applied multiple times to collect a sufficient amount of winners for creating
the next generation, these computations can easily be parallelized and therefore
are preferred over, for example, ranked-based selection.

In elite-based selection, a special subset of elite individuals is determined and
propagation rights are distributed uniformly over the elite members.

Archive-based selection is closely related to elite-based selection, but involves
a preservation of the elite set of individuals over the entire search process. In this
case the selection operator is applied to both current population members and
old archive members. The selected individuals are modified to create the next
population. If improvement is observed in the new population compared with
the archive, the archive is updated with out-performing individuals.

The archive represents a memory of the search system that contains the
‘best-so-far’ solutions (actual individuals, not only their cashed fitness values)
at all iterations steps. Maintenance of an archive is a powerful way to pursue
exploitation in a controlled fashion. The impact of archiving on the performance
of the evolutionary search can be compared with the impact of finite memory on
the computational power of an automaton (for latter see (Kudryavtsev, 1995)).

The crucial significance of archiving for stochastic iterative search has
been widely recognized in the area of multi-objective evolutionary algorithms
after development of effective elite preservation algorithms for multi-objective
optimization, like SPEA (Zitzler and Thiele, 1999) and NSGA-II (Deb et al.,
2002).

The Pareto genetic programming system studied in this thesis also uses
archiving for enhanced exploitation with the hybrid selection scheme described
in the next section in more detail.

After a selection operator is applied to population members (or population
and archive members in case of archive-based search), the selected individuals
proceed to the model generation stage, where modification operators are applied
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to them to create the population for the next iteration step.
There are several ways to built the new population that differ in the number of

offspring and the style of their insertion into the new population. The differences
are related to the desired intensity of information re-use. E.g., the old population
can be completely discarded and substituted by the new population (in this case
the number of off-spring equals the population size). Due to the fact, that the
improvement through variation is not guaranteed, discarding the old population
is a risky endeavor if some form of archiving is not performed. If the pool of
offspring is larger than the population size, then some selection pressure should
be applied to condense the number of alternative solutions to a new population.

This section has presented a very simple overview of three main stages of
the evolutionary search, that have to be repeated over a required number of
generations or until a perfect solution is found. It is necessary to mention that
evolutionary search is a stochastic iterative search method performed in a huge
(in general infinite) search space, and therefore it requires multiple replications
to be performed to increase the confidence in the results. Nothing has been said
so far about the quality measures used for determining successful individuals at
the model selection stage, and for monitoring the performance of the evolution.
Since the quality measures are directly related to the properties of individuals
and also to the representation of individuals, we discuss them together in the
next section, where we focus on Pareto genetic programming.

3.2 Basic scenario of a genetic programming run

3.2.1 Model representation and phenotype

There is a multitude of ways to represent symbolic expressions of a given set of
input variables. The task of symbolic regression is to identify expressions in the
following form:

f̂ = M(X ,F , C), (3.1)

whereM is a symbolic model representing a valid mathematical expression on the
alphabet of input variables X = {‘x1’, ‘x2’, . . . , ‘xd’}, basic function operators
F , and constants C.

A set of basic operations contains functions that have one or two arguments.
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Typical representatives of the set are the standard arithmetical functions:
addition, subtraction, multiplication and division. They may also include
power, trigonometric, logarithmic, exponential, and logical functions. The set of
constants can either be fixed to a certain set of random numbers from a certain
interval, or it can be infinite, and contain arbitrary random constants drawn from
a certain interval, as in Pareto GP.

In this thesis only real-valued data is used, and by valid mathematical
expression we understand a related mapping f̂ : X̃ ⊂ Rd → R, where X̃ is a
feasible region of input space. Usually X̃ is supplied by the data owner, or is
determined from the maxima and minima of the input variables.

Any formula f̂ = f̂(x), where x = (x1, x2, . . . , xd), determines a response
surface in Rd+1. Symbolic regression studied in this thesis assumes that the
mapping of formulae f̂ = f̂(x) to response surfaces is surjective, i.e. every
response surface can be explicitly expressed as a closed-form formula on the input
variables, which may not be true. In fact, searching for implicit relationships
among input and output variables, e.g. in the form of ˆ̂

f(x, y) = 0, with a
posteriori application of numeric methods to solve produced equations for the
response, may be beneficial for modeling hard problems, where the explicit
relationships may not exist.

Anyway, the mapping of formulae to response surfaces is certainly not
injective, since different formulae may produce identical response surfaces. In
principle, for each response surface there is an infinite number of expressions
defining it. This leads us to the definition of two important abstractions in the
evolutionary search - a genotype and a phenotype of an individual.

A phenotype is the observable entity of the individual, its functional
morphology. In symbolic regression, this entity is the actual relationship, i.e.
the response surface. A genotype, or more correctly genome1 is the information
medium, or a code, characterizing the individual. In symbolic regression, this
code is the actual symbolic expression (3.1).

In the evolutionary framework for symbolic regression, genomes can be
represented in various ways: as linear strings, tree structures, directed graphs,
etc. In symbolic regression via genetic programming individuals are usually
represented by structures of different size (this is a general difference between
genetic programming and genetic algorithms, where the first was designed to

1A genotype characterizes a type of species, while a genome characterizes a single individual.
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operate on trees of various size and shape (Koza, 1992), and the latter was
designed to operate on binary strings of fixed length (Holland, 1975)).

All experiments of this thesis are performed with a tree-based representation
of individuals. Or more exactly, an individual in this thesis is defined as a binary
directed tree, with terminal nodes labeled by symbols from the alphabets of
variables or constants, and inner nodes labeled by symbols from the alphabet of
basic functions. The binarity of the tree implies that only unary or binary basic
functions are used (see Figure 3.1 for an example).

In general, the allowed arity of basic functions (the number of variables
that the functions take) exerts a large influence on the expressiveness of the
representation, and compactness of individuals. High arities potentially allow
very compact expressions for individuals, e.g. if summation of arity four is
allowed, expression Plus[Plus[Plus[a, b], c], d] can be rewritten as Plus[a, b, c, d].
On the other hand, large arity has to be controlled when the trees are randomly
initialized.

There are two most common methods for initializing trees - full and grow
(see Koza (1992)). In Pareto GP the trees are initialized from the root towards
the leafs with the ‘grow’ method (see (Koza, 1992)), up until the maximum
allowed size (e.g. the depth) is reached. In the grow method the labels for the
nodes are assigned randomly from the set of functions and terminals (variables
and constants), according to some pre-defined probabilities. The used version of
Pareto GP contains the probability to assign a function label to the next node,
and the probability to assign a variable label to the next terminal node. The
grow method generates tree structures of diverse size and shape2. The shape of
the trees does not only depend on the probabilities to assign function labels as
the next node, but also depends on the ratio between the number of unary and
binary functions in the basic function set.

Despite the fact that function labels are assigned uniformly at random from
the set of basic functions, the modeler can bias the function distribution, and
hence the shape of the trees, by modifying the function alphabet F . The
default functions in the basic set of Pareto GP palette are {Plus, Minus, T imes,

Divide, Negate, Exp, ExpM, Square, PowerC , ShiftC , ScaleC}, where PowerC ,
ShiftC , ScaleC are unary functions with a dimensionless constant parameter C,

2In the full method, only function labels are assigned to the nodes of the tree up until the
maximum size is attained, and then terminals are assigned randomly from the terminal set.
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corresponding to rasing the argument to the power C, shifting the argument by
C, and scaling the argument by C respectively. Note that the first four functions
are binary, and the other seven are unary.

Such introduction of unary functions with parameters is a powerful way to
enhance exploitation of constants in GP, and to reduce the risk of disrupting
important building blocks.

If is interesting to note, that at the beginning of the research project that led
to this thesis, analysis of the early disappearance of constants from the population
and the archive in Pareto GP was one of the research goals. However, after a
mere introduction of the Shift and Scale operators into the basic function set,
the problem of lacking constants in final solutions miraculously disappeared.

It can be speculated that by introducing unary operators with constant
parameters like PowerC , ShiftC , ScaleC we:

1. tie constants to associated sub-expressions;

2. avoid disruption of constants and sub-expressions by crossover;

3. potentially seed individuals with more constants without running the risk
of increasing the non-linearity of individuals by accidental substitution of
constant nodes by subtrees in case of crossover.

Also note, that besides having a PowerC function (PowerC(x) = xC), the
basic function set always contains a Square function (Square(x) = x2) to drive
the system towards simpler exponentiation.

All functions are unprotected as in (Keijzer, 2003) and (Vladislavleva, 2005).
In all experiments constants of the set C are randomly drawn from a real interval
[−10, 10] as many times as necessary.

Binary tree representation is the most common ‘academic’ fashion to define
individuals in genetic programming, partly because it is the oldest one, and
theoretically most tractable. However, the quest for the best representation is
still in progress, since representation directly influences the speed of evaluation
and generation of individuals.

In general, three requirements for a good representation can be formulated:

1. A good representation should allow very fast evaluation of an individual.
E.g., traversing a tree may be inferior in speed to evaluating a pre-compiled
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linear genome as in machine code representation, for example as in (Banzhaf
et al., 1998; Nordin, 1994).

2. A good representation should allow relaxed modification of individuals.
E.g., in tree representation one point mutation has to be performed very
accurately, so that e.g. a node label corresponding to a unary operator is not
accidentally mutated by a label corresponding to a binary operator. This
checking for legal modification introduces unwanted overhead. An example
of an alternative solution is the Karva-representation by Ferreira (2001).
The latter uses linear genomes of fixed size that are transcribed into trees
of different size and shape. An interesting property of this representation
is the existence of a ‘tail’ of terminals, which allows to randomly initialize
and modify labels in the strings, without the risk of producing trees coding
invalid mathematical expressions.

3. A good representation should also be such that the modification operators
are not too disruptive for low-order transformations conferring high
potential to the host individual. In other words, a good representation
should preserve building blocks3. E.g., with respect to disruptiveness by one
point crossover, a standard tree representation preserves the entire branche
rooted in crossover points, while in Karva representation the branches of
the transcribed trees rooted in crossover points, are in principle re-modeled.

3.2.2 Model generation and genetic operators

As mentioned in the previous section, in Pareto genetic programming as in
other GP variations, an initial population can be either randomly re-initialized,
or seeded with the results of previous runs. In all experiments of this thesis
populations are initialized at random.

To reduce the risk of premature convergence through inbreeding, Pareto GP
system applies a cataclysmic re-initialization to all population individuals once
in a while. The number of generations, over which the population can evolve
before such re-initialization happens is called a cascade. In this thesis a cascade

3Everywhere in this thesis I mean by building blocks low order transformations, causing
a high fitness jump to the hosting individual. Loosely speaking, building blocks of interest
are such transformations that if used as meta-variables may lead to a linear, or a low-order
relationship of the response variable to the input meta-variables.
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is ten generations long (this means that the population is re-initialized randomly
at generations 1, 10, 20, . . . , etc.). Short cascades of only 10 generations seem to
improve modeling performance compared with longer cascades, probably because
exploitation is guaranteed due to maintenance of the archive, and the use of
population individuals has an explorative nature.

The existence of the archive in Pareto GP allows to perform only two genetic
operators for model modification - crossover and mutation (no copying). The size
of the offspring pool is equal to the population size. The number of individuals,
generated by crossover is controlled by the crossover rate parameter. In all
experiments of this thesis 95% of individuals in the new population are generated
by crossovers between members of the archive and the old population (see next
subsection for details on the selection scheme). For recombination ‘balanced’
one-point crossovers are used, where in one individual the crossover point is
selected at random, and in the second individual the crossover point is selected
from the layer similar to the layer corresponding to the crossover point of the
first parent. Then the subtrees with roots in selected nodes are swapped among
parent individuals, and two new individuals are created.

Such ‘balanced’ crossover for symbolic regression problems reduces the speed
of complexity growth, observed when the standard uniform crossover is used,
and also reduces the crossover bias described by Keijzer and Foster (2007) and
Poli et al. (2007). Despite the fact that balanced crossover is a ‘quick fix’ to
the problems associated with the standard uniform crossover on binary trees,
further research is needed to analyze its appropriateness for the class of symbolic
regression problems. Xie et al. (2007) study the strategies for controlling the
depth of crossover points on various GP systems in three problem domains, and
report that controlling the depth of crossover does not guarantee a significant
improvement in general, and its performance also depends on the stage of
evolution.

The crossover rate also determines the fraction of individuals generated by
point mutations. In this thesis 5% of progeny are generated by point mutation
applied to archive members. As described in the previous section, mutations
are protected; i.e., a terminal node can be mutated into a terminal node, a
functional node - only into a function of the same arity. One more internal
parameter controls the rate of mutation on terminals. In this thesis it is equal to
3% of all mutations. In principle, for problems with very large number of input
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variables (hundreds or thousands), the user may want to increase the mutation
rate on terminals to increase the confidence of the variable selection procedure;
see Smits et al. (2005), and Chapter 8.

3.2.3 Model evaluation and quality measures

Fitness as the quality of the phenotype

One of the main and mostly used quality measures of a symbolic expression
is the quality of its phenotype, i.e. prediction error, defined as a measure of
deviation of the response surface from the observed data records. In Chapter
2 of this thesis two common error measures are introduced - the mean squared
error (mean sum of squared errors) and the correlation coefficient of predicted
and observed response.

MSE(y, f̂(x)) =
1
N

N∑

i=1

(yi − f̂(xi))2, (3.2)

R(y, f̂(x)) =
cov(y · f̂(x))

std(y) · std(f̂(x))
, (3.3)

where (xi, yi), i = 1 : N is a training set of N input-output records. To avoid
confusion, subscripts of input variables denote the variable number, i.e. the
column number in the data matrix, superscripts denote the record number, i.e.
the row in the data matrix. The size of the data matrix is N × (d + 1), where d

is the dimensionality of the input space.
Whatever the error measure is, it is important to ease the identification task

to a GP system and let the system focus the search effort on discovering the right
structure rather than the right scaling. It seems that the mean squared error is
a more informative measure for evaluating bad solutions (e.g. at the beginning
of the evolutionary run), than a correlation coefficient is. The last measure is
designed to explain the linear dependency of the predicted and observed response,
and can therefore be meaningless when the actual errors are large. In this case
the mean squared error can still produce a meaningful ranking of individual
predictions. Since the mean squared error is scale dependent (even if normalized
by the standard deviation of the response; see e.g. (Kleijnen and Sargent, 2000)),
it is crucial to scale the predicted and observed responses to the same ranges or
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to the same deviations, before computing the error.

The thesis (Keijzer, 2002) refers to such scaling as to prediction wrapping,
where instead of a generated predicted output f̂ a scaled (wrapped) output f̃ =
af̂ + b is considered. The optimal choice for coefficients a and b is the choice of
the scale and the intercept of the least-square regression line constructed in the
space of predicted versus observed response. Optimally chosen coefficients a and
b imply a reduced (the minimal) mean squared error of the scaled prediction f̃

(by definition of the least-square regression line). The formulae for a and b are
given below:

a(f̂ ,y) =

∑N
i=1

(
yi − y

) (
f̂(xi)− f̂(x)

)

∑N
i=1

(
f̂(xi)− f̂(x)

)2 , (3.4)

b(f̂ ,y) = y − a(f̂ ,y) · f̂(x). (3.5)

The paper (Keijzer, 2003) suggests to use the scaled predicted response
instead of a computed predicted response for calculating fitness of GP individuals,
where the scaling coefficients are obtained by formulae (3.4) and (3.5). When
this is done, and a scaled predicted response a(f̂ ,y) · f̂(x)+b(f̂ ,y) is used instead
of f̂(x) for training error calculation, e.g. according to the formulae (3.2) and
(3.3), we will say that error evaluation is performed with the optimal scaling.

Computation of coefficients a and b according to the formulae (3.4) and (3.5)
can be done in O(N) arithmetic operations per individual, however the actual
operations on vector f̂(x) are quite intensive.

It is not necessary to store the optimal scaling coefficients for all individuals
during the evolution. The main goal of computing them is to scale the predicted
output to the same mean and standard deviation as the observed output, to
focus the effort of the GP system on identifying the structure of the relationship,
rather than on identifying the scaling first and then the structure. One way
to avoid intensive calculations of the deviations of the predicted response for a
GP individual in formula (3.4) and still pursue the same goal, is to consider an
alternative, sub-optimal scaling of the predicted response.

All experiments of this thesis, using the mean squared error as a fitness
function, employ the alternative scaling scheme within the evolution, but
compute the optimal scaling coefficients for final solutions at the end of the
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evolutionary run according to formulae (3.4) and (3.5).

The alternative scaling scheme is the same as in (Smits, 2001) and involves
scaling all predicted responses together with the observed response to the interval
[0, 1], and then computing the error on scaled vectors.

As mentioned in the introduction, and as described in the next subsection in
detail, Pareto GP performs evolutionary search under simultaneous minimization
of two model quality characteristics - prediction error and model complexity.

For the sake of convenience and generality a bi-objective optimization of
model fitness and model complexity is formulated as a minimization problem. For
this, the error functions used for computing the prediction error, are normalized.

When mean squared error is used as a basis for error calculation, the fitness
of individual f̂ on training data (x,y) in this thesis is defined as:

EMSE(y, f̂(x)) = 1−NMSE(y, f̂(x)), (3.6)

NMSE(y, f̂(x)) =
1−MSE(s(y), s(f̂(x)))

1 + MSE(s(y), s(f̂(x)))
, (3.7)

s(y) =
y −miny

maxy −miny
. (3.8)

These equations imply that the normalized mean squared error NMSE is
bounded by [0, 1] with the perfect solution corresponding to NMSE = 1, and
hence with EMSE = 0.

When the correlation coefficient is used as a basis for error evaluation, the
corresponsing fitness measure for GP individual f̂ on the training set (x,y) is
defined as:

ER(y, f̂(x)) = 1−R2(y, f̂(x)). (3.9)

Individuals with infinite or complex-valued training errors are removed from
the populations and do not take part in the evolution. This implies that the
archive individuals have finite real-valued prediction errors at all times.

Since symbolic regression is an identification method, prediction accuracy of
the developed models is an important but not the only measure to optimize.
Especially since the class of potential solutions describing the (true) response
surface is broad, choosing the solutions of optimal complexity is an important
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challenge (see, for example, (Cherkassky, 2002; Cherkassky and Mulier, 1998;
Smits and Kotanchek, 2004)). Below a way to measure the complexity of tree-
based individuals is presented.

Complexity as a quality of the representation

In classical GP applications (Banzhaf et al., 1998; Koza, 1992; Langdon and
Poli, 2002; Poli et al., 2008) survival of the fittest is the most common single
criterion to find the optimal solution. As mentioned in the Introduction,
model interpretability and generalization capability are as important for model
deployment as is its prediction accuracy. In real-life applications data is often
corrupted by noise, and a good generalization of a model to ‘smoothen’ the noisy
response is vital. Besides, for noisy problems with unknown true response THE
optimal solution does not exist.

Often models with high goodness of fit look so obscure that it becomes
infeasible to convince process engineers to implement them for controlling real
on-line processes. In all these cases, simpler credible models with a lower level of
fitness are always preferred over complex ones. Moreover, limiting the complexity
of models may be crucial in avoiding over-fitting of data and also modeling the
process noise. Too complex models are difficult to use, whereas too simple models
may give poor prediction. For classical modeling techniques, model complexity
is controlled by a priori knowledge of the process and the true underlying
relationship; see (Cherkassky and Mulier, 1998). In these cases, parsimony
pressure is introduced in the fitness function, and a resulting composite fitness
function is defined as a linear combination of prediction error and a complexity
term (the latter is called a regularization coefficient).

Irrespectively on how accuracy and complexity are combined in the optimization
process, as a composite fitness function, or as independent objectives (yet,
preferably as independent objectives), the complexity has to be defined, before
it can be optimized.

Until now, almost all complexity measures considered by the GP community
have addressed the structural complexity of an individual, i.e the complexity of
the genome.

There is a variety of intuitive measures for determining the size of structures
operated by a tree-based GP:
1) The number of nodes in a tree;
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2) The number of layers in a tree;
3) Path length, etc 4.

To measure the size of individuals, this thesis uses a so-called expressional
complexity (see Smits and Kotanchek (2004)). This measure is determined by
the sum of the number of nodes in all subtrees of a given tree. It favors the flatter
trees (i.e., trees with fewer layers and, hence, with fewer nested functions) over
deep unbalanced trees (in the case of an equal number of nodes). An example of
such a case is shown in Figure 3.2. The expressional complexity can be interpreted
as the size of the model obtained by substituting all inner functions of the model
by their function bodies. Keijzer and Foster (2007) refer to this complexity
measure as to a visitation length, show that it is a close relative of the path
length, and provide a thorough review of its mathematical properties.

The expressional complexity measure has been used in at least two commercial
GP systems - in the ParetoGP Toolbox for Matlab (Dow proprietary product)
and in the DataModeler add-in for Mathematica. Optimizing the structural
complexity of evolving models together with the goodness of fit has been shown
to produce compact solutions that are interpretable and reliably accurate within
the training range (see, e.g., (Kotanchek et al., 2006; Smits and Kotanchek,

4H. Iba in Iba et al. (1994) uses a minimal description length principle, which is not explicitly
a complexity measure, but is related to a representation, and can be considered as a complexity
measure.
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2004)). The pressure for compactness during evolutions indeed contributes to
generalization properties of solutions, which agrees with (Rosca, 1996; Zhang
and Mühlenbein, 1995). However, after extrapolation, these solutions may still
demonstrate unwanted behavior, caused by over-fitting. The cause is that shorter
solutions are not necessarily the smoother solutions, as noted by (Cavaretta
and Chellapilla, 1999; Domingos, 1999; Gagné et al., 2006; Vladislavleva et al.,
2008). Chapter 4 addresses this issue and introduces an alternative genome-
phenotypic complexity measure, called the order of non-linearity, together with
related selection strategies.

3.2.4 Model selection and complexity control

Penalizing models for high complexity is a natural way to control bloat, i.e.
excessive growth in the size of GP individuals without improvements in fitness;
see (Banzhaf and Langdon, 2002; Blickle and Thiele, 1994; Gustafson et al., 2004;
Koza, 1992; Langdon and Poli, 1998; Langdon et al., 1999; McPhee and Miller,
1995; Nordin and Banzhaf, 1995; Poli et al., 2007; Soule et al., 1996; Streeter,
2003).

Since bloat is a widely recognized problem for successful evolution in GP,
researchers have extensively studied evolutions under parsimony pressure and
their relationship to bloat (see Gagné et al. (2006); Soule and Foster (1998); Soule
and Heckendorn (2002); Zhang and Mühlenbein (1995)). Parsimony pressure,
defined as a linear term added to the fitness function, causes GP to perform well
on some problems, Blickle (1996); Soule et al. (1996); Zhang and Mühlenbein
(1995), and less well on others, Koza (1992); Nordin and Banzhaf (1995). Soule
and Foster (1998) showed that the linear coefficients in a composite fitness
function relating numerical fitness and the structural complexity, can be used
as a good indicator of the performance of a GP population. However, the search
for a good combination of these coefficients requires some intuition and empirical
testing.

We are certain that when no a priori information about the problem is
known, the measure for parsimony pressure has to be optimized individually
and simultaneously with numerical fitness. This fosters an intelligent trade-
off between model simplicity and model accuracy. Optimizing complexity and
accuracy in a truly multi-objective way will exempt us from making risky
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Figure 3.3: Pareto fronts in a bi-objective minimization problem.

assumptions about the exact relationship between complexity and accuracy, and
will therefore not bias the search.

With such bi-objective selection, the GP system is pushed to produce both
accurate and simple individuals, from which the best ones form a Pareto frontier
(or Pareto front) – a set of optimal trade-offs in the two-dimensional performance
space of complexity and accuracy (see Figure 3.3).

The used implementation of symbolic regression via Pareto GP adopts an
archive-based selection strategy to select good models and endow them with
improved propagation rights. The definition of what is good is based upon
the concept of dominance in a space of selected optimization objectives (see
the definition below). Propagation rights are granted to all archive members
irrespective of their relative numerical goodness of fit. Archive members generate
offspring for the next evolutionary step, and these new models are then used
to optimize the archive. When the iteration process is terminated, the set of
final GP solutions is determined by the archive at the last iteration step. An
excellent description of the elite-based strategy with archiving for multi-objective
evolutionary computation is given in (Fonseca and Fleming, 1995; Laumanns
et al., 2002). Figure 3.4 reproduces this scheme with minor modifications,
reflecting the selection in Pareto GP.

The process of updating the archive at each generation employs the concept of
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Figure 3.4: Generic scheme for archive-based evolution. Block generate produces
a new population of individuals Population(t) at generation t (t > 1) by applying
modification operators to individuals of population Population(t − 1) and archive
Archive(t − 1) from the previous generation. The new population Population(t) is
then used by block update to create a new archive Archive(t) containing the elitist
individuals from the union of the Population(t) and Archive(t− 1).

Pareto-optimality in a set of q selected optimization objectives Θ = z1, z2, . . . , zq

(see Fonseca and Fleming (1995); Zitzler et al. (2003)).
Consider a minimization problem, where smaller values of all objectives

z1, . . . , zq are preferred. Let Z be an operator, mapping a space of GP individuals
F into the space of optimization objectives Θ ⊂ Rq, such that

Z : f̂ ∈ F 7→ (z1(f̂), . . . , zq(f̂)) ∈ Θ.

Solution f̂1 is said to (strongly) dominate solution f̂2 in the objective space
Θ if the following condition holds:

{∀j zj(f̂1) ≤ zj(f̂1), and ∃j0 : zj0(f̂1) < zj0(f̂1)}, j, j0 = 1 : q.

The Pareto front is the set of objective vectors of Θ, which are non-dominated
by any other objective vectors. In other words, the Pareto front is a set of all
optimal trade-offs in the objective space Θ, which does not depend on the scaling
of objectives. Figure 3.3 gives two examples of the Pareto fronts for a bi-objective
minimization problem.

In Pareto GP, presented in (Smits and Kotanchek, 2004), the two minimization
objectives are prediction error and expressional complexity. Thus every individual
can be mapped into complexity versus error objective space, such that Z : f̂ 7→(
E(y, f̂(x)), Φ(f̂)

)
, where E(y, f̂(x)) is defined by formula (3.6) or (3.9), and
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Figure 3.5: Pareto front and over-fitting. For the shown set of GP individuals, plotted
in the objective space (model expressional complexity vs. model error (1−NMSE), the non-
dominated set consists of only three individuals. Points with low model error and very high
expressional complexity are the first suspects of over-specialization. The best-of-run models
are almost always at the bottom-right corner of the plot (i.e. are almost always over-fitting).
Points with too low expressional complexity may be too compact to describe the data, and,
hence, have high errors. Note that we want to focus the search on the area around zero (low
error, low complexity).

Φ(f̂) denotes expressional complexity (the sum of nodes in all sub-trees of the
tree, defining f̂). Another example of a Pareto front corresponding to a small
population of GP individuals is given in Figure 3.5.

Plotting individuals in the objective space is a useful way to visually assess
their overall quality, and identify a subset of the the most interesting individuals
located in the region around zero. The task of multi-objective optimization
problems is to push the Pareto front towards zero, where both optimization
objectives are optimized. Population members which correspond to the Pareto
front points in the objective space, are in principle the best candidate solutions for
model selection, since they exhibit the optimal and incomparable combinations
of complexity and accuracy. However, since the number of points on the Pareto
front can be small (see (Vladislavleva, 2005)), and it varies significantly over the
iterations, model selection focused on the strong Pareto dominance can suffer
from a loss of diversity.

The non-dominated sorting algorithm by Deb et al. (2002) is designed to
sort individuals in the order of increasing non-dominance. For this goal, first all
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individuals on the Pareto front are identified, assigned a rank of 1, and removed
from the main set; then individuals on the Pareto front of the remaining subset
are identified, assigned a rank of 2 and removed from the main set. The procedure
is repeated until a desired number of low-ranked individuals is extracted from
the population. This algorithm can be implemented in O(n2) operations, where
n is the number of individuals in the main set (Deb et al., 2002).

This thesis uses the non-dominated sorting algorithm in the complexity versus
error space to create an archive of a constant size. Figure 3.6 presents an example
of initializing an archive by the 50 best individuals from a population of 100
individuals at the first generation of a Pareto GP run.

After the archive is initialized, it is used to generate the new population
according to the scheme in Figure 3.4. The population for the next generation
is created by crossovers between the current population and the archive, and
by mutations of the current archive. For the case of crossover an additional
tournament selection operator is applied to archive individuals and to population
individuals to select parents for the crossover. Experiments presented in this
thesis use standard fitness-based single winner tournaments of size five for
population and size three for the archive. Two-objective tournaments, however,
may be more appropriate for selecting parents for crossover, since by design
they produce multiple winners with guaranteed diversity, and in case of Pareto
tournaments in the complexity-accuracy objective space, focus selection on
the most interesting subspace of solutions that are both simple and accurate.
Tournament selection based on Pareto dominance was first introduced by Horn
and Nafpliotis (1993) for multi-objective optimization with genetic algorithms.
Kotanchek et al. (2006) presented Pareto tournaments for symbolic regression via
genetic programming for both classical GP and Pareto GP. Pareto tournaments
are a simple methodology to make classical fitnes-oriented GP Pareto-aware,
and to also enhance selection in Pareto GP (compared with selection by single
objective tournaments).

It is important to note that all subtrees in a tree representation of an
expression are considered as separate models during the selection process. This
allows us to effectively cover a lot more search space by a population of a
small number of individuals (the number of additional individuals considered
together with the host individual is equal to the number of nodes in the tree-
representation of the host individual). On the other hand, it also requires
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Figure 3.6: Archive at the first generation. The figure illustrates the creation of an
archive from the initial population. Dots represent 100 population individuals, which are plotted
in the objective space of model expressional complexity and model error (1 − NMSE) (all
subtrees act as individual models to increase the effectiveness of the search). Fifty individual
points from the plotted set, which are dominated by the least number of other individuals,
are selected to form an archive (depicted as circles). These archive models will be granted the
propagation rights to form the next generation.

the population to have a small number of individuals, since the computational
complexity of the non-dominated sorting algorithm is O(n)2, where n is the
number of individuals, which is this case becomes bounded by the total number
of nodes in the population individuals (duplicate subexpressions, of which there
can be many, have to be treated specially). To overcome the problem of large
populations, various tricks can be used to reduce the set of sub-expressions
to a reasonable subset before applying a non-dominated sorting algorithm (for
instance, by excluding unquestionably bad (i.e., dominated) expressions from
consideration).



97 3.2. Basic scenario of a genetic programming run

3.2.5 Evolution performance

The goal of Part II of this thesis is to understand and to further enhance the
Pareto genetic programming system described in this chapter. Many conclusions
on model development are empirical in nature. The next chapters of Part II
are structured in such a way that firstly a problem observed in Pareto GP is
presented, secondly a new strategy developed to fix this problem is introduced,
and finally the strategy is tested on several case studies and compared with the
reference Pareto GP5.

All evolutionary strategies are replicated for 50 to 100 times per case study
to obtain statistical significance of results. To compare the performance of the
evolutions two main measures are used:

1. Prediction error of archive solutions on the test (unobserved) samples;

2. Area under Pareto front of archive solutions plotted in the objective space
of expressional complexity and accuracy.

To assess prediction accuracy the root of the mean squared error on the test
data is used. In Chapters 5-7 the independent samples of the best error of the
archive are compared for different evolutionary strategies. Chapter 4 studies the
numerical stability of archive solutions, and for this reason independent samples
of the errors of all archive solutions over independent runs are compared for
different evolutionary strategies.

An archive-based GP system does not produce a single best solution, but an
archive of solutions. That is why comparing the average or the median best errors
on the test set is not sufficient to draw conclusions on the differences in evolution
performance; i.e., overall accuracies and complexities of archive solutions have to
be compared. To include the archive performance into consideration we compute
the average areas under Pareto fronts of archive individuals at the last generation.
As areas under Pareto fronts we consider the normalized areas under the convex
hulls of the objective vectors corresponding to archive solutions. Note that this
is an approximation, convenient for implementation. The Pareto front it not

5In fact, we can say that chapters 4-7 are introducing new genetic programming systems,
but since representation of individuals is the same, model selection is always bi-objective and
is based on non-dominated sorting, and principles are generic, the new approaches are better
seen as different evolutionary strategies for Pareto GP.
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Figure 3.7: Area under the convex hull of a Pareto GP archive.

necessarily convex. Further on, by the area under Pareto front we will mean the
area under the convex hull of the Pareto front.

The area under the Pareto front is an interesting measure, since it distinguishes
between the runs attaining similar best prediction error but different Pareto front
distributions. The smaller the area under Pareto front, the closer the ‘knee’ of the
Pareto front is to zero, and hence, the better opportunities appear to satisfy the
customer with solutions that are both sufficiently simple and sufficiently accurate.

To define the area under Pareto front of a set of archive solutions, the following
procedure is used:

1. The archive at the last generation is plotted in two objective spaces:
expressional complexity versus model error on the training set.

2. The following points are added to the set of objective vectors: (1,maxError)6,
(maxComplexity, maxError), (maxComplexity, minErrorCurrentArchive).
These points are needed to determine the convex hull of the objective
vectors (see Figure 3.7). MaxComplexity is an allowed limit of model
complexity. For expressional complexity this limit is usually set to 400 or
500.

6There is always a solution with minimum complexity equal to one, e.g. a single node
sub-tree labeled with an input variable.
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3. An area C of the convex hull of the resulting set of points is computed,
and the area under the convex hall is normalized by the total area of the
objective space:

maxComplexity ×maxError − C

maxComplexity ×maxError
100%.

3.2.6 Implementation details

All simulations of the reference Pareto GP system are performed in the ParetoGP
MatLab toolbox developed by Smits (2001) with modifications presented in
(Vladislavleva, 2005) and in this chapter. The efficiency of MatLab in handling
matrix computations is heavily exploited in the current implementation of Pareto
GP, especially for model evaluation and selection.

All computations are performed in double precision.





4
Model Selection through Non-linearity

Control

This chapter introduces two new selection strategies for generating symbolic
regression models that not only give reliable predictions of the observed data but
also have smoother response surfaces and additional generalization capabilities
with respect to extrapolation. These models are obtained as solutions of a
genetic programming process, where selection is guided by a tradeoff between
two competing objectives - prediction accuracy and the order of non-linearity.
The latter is a novel complexity measure that adopts the notion of the minimal
degree of the best-fit polynomial, approximating an analytical function with a
certain precision.

Selection with control over the order of non-linearity is compared with the
standard Pareto GP selection with control over the expressional complexity. The
latter is shown to have over-fitting problems expressed by pathological behavior
of solutions under extrapolation. This result confirms the controversy about
‘simplicity that does not always imply generality’. Optimization of the order of
non-linearity strongly outperforms ‘conventional’ optimization of the size-related
expressional complexity with respect to extrapolative capabilities of solutions
on nine test problems. This suggests that simplicity expressed by the order of
non-linearity does imply generality, as opposed to expressional simplicity.

In addition to the exploitation of the new complexity measure, the chapter
also introduces a novel heuristic of alternating several (similar) optimization
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objectives in a two-dimensional optimization framework. Alternating the
objectives at each generation allows us to exploit the effectiveness of two-
dimensional optimization when more than two objectives are of interest (in this
Chapter, these are prediction accuracy, expressional complexity and the order of
non-linearity).

4.1 Motivation

Predictive capability of regression models is mentioned as the #1 requirement
to a good model. If nothing at all is known about the behavior of the response
surface on the boundary and outside the training range, the only way to improve
predictive capability is to produce smoother models with minimized vulnerability
within the training range.

This raises a question: How can we measure and control the behavioral
complexity of models? And how can we quickly assess their dissimilarities in
flexibility to fit the data and in ability to predict the response in a new region?

For the complexity definition, one can think of two directions in determining
the qualitative complexity of the GP model: complexity of the model expression
(compactness or simplicity of the genom) and behavior of the associated response
surface (smoothness of the phenotype). Since the complexity will have to be
determined for all GP individuals on the fly during the GP run, an analytical
study of the behavior of a multi-dimensional response surface associated with
each individual does not seem feasible. Instead, we are settling for the goal
to find a good complexity measure that can be directly computed from a tree
structure of the GP individual and still produce high values if the non-linearity
of the associated response surface is high.

This chapter aims to explore the feasibility of producing smooth and accurate
GP solutions that do not necessarily have ’simple’ structures, but have ’simple’
response surfaces, and, hence, generalize better. If producing smooth and
accurate solutions proves feasible, this will indicate the further possibility of
combining the structural and behavioral complexity measures for creating both
smooth and simple GP models, without the risk of either bloat or over-fitting.

There are several structural properties that may reflect the behavior of the
function defined by a labeled binary tree:

1. The number of variables in the tree representation (the total number of
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variables present at the leaves is an indicator of model complexity; the
number of unique variables reflects the dimensionality of the model);

2. The number of binary and unary functions present at inner nodes;

3. Some component-wise non-linearity of functions present at inner nodes
(e.g., addition is less nonlinear, and, hence, simpler than exponentiation).

Our main objective in measuring the non-linearity of a model is to favor
smooth and extrapolative behavior of the response surface and to discourage
highly nonlinear behavior (which is unstable in case of minor changes in inputs
and is dangerous for extrapolation).

It would, moreover, be desirable to find a non-linearity measure that agrees
with an intuitive impression of the complexity of an elementary function. In
other words, we want exponentiation to be more complex than taking a square,
summation to be simpler than multiplication, and taking a square root and
division to be very complex in the neighborhood of zero.

The first complexity measure aimed to reflect the order of non-linearity of a
model was introduced in (Garshina and Vladislavleva, 2004). It is a quantitative
measure reflecting the nonlinear growth of the response function determined by
a labeled tree. The definition is based on the minimum degree of a polynomial
approximating the function on a certain interval with a certain precision.

The reasoning was very simple: An obvious measure for the complexity of a
multivariate polynomial is its degree. Any tabulated multivariate function can
be associated with its unique best-fit approximating polynomial. The degree of
this polynomial can be considered as a measure for the order of non-linearity of
the response surface of the original function. This order can be seen as a value
of the deviation of the response surface from a linear hyperplane.

To make this idea suitable for an evolutionary optimization framework, and
in particular for Pareto GP, several severe simplifications had to be introduced.

The best-fit polynomials are difficult to find (see e.g. (Press et al., 1992)).
Even though we settle for a polynomial giving a good approximation of the
function, instead of the best-fit polynomial, we still need a procedure that is
computationally efficient. Since our goal is to compare the behavior of response
surfaces of GP models at each step of the evolution, we strove to

1. calculate the order of non-linearity iteratively for a given model, starting
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from the terminals1;

2. consider an efficient Chebyshev2 polynomial approximation of a function
(Rivlin (1974); Tchebycheff (1857)), instead of a labor-intensive search for
an optimal best-fit polynomial for a given precision;

3. determine the order of non-linearity as the degree of the approximating
polynomial only for univariate operators, and use another definition of non-
linearity for bivariate functions and compositions.

The first implementation briefly described in (Garshina and Vladislavleva,
2004) used a least-squares polynomial approximation for complexity determination.
Given a set of points (x1, y1), . . . , (xn, yn) and a maximum order p, (p < n),
least-squares fitting produces a polynomial PLS =

∑p
k=0 akxk of degree p that

minimizes the error ELS =
∑n

i=1 (yi −
∑

k akxk
i )2 with respect to the coefficients

ak. However, certain conditions for points x1, . . . , xp must hold for a least-squares
polynomial to exist and to be unique. For high degrees, the problem of finding
a unique polynomial often becomes ill-defined. For better treatment of steep
response surfaces, we therefore made use of a more stable and reliable framework
– Chebyshev approximations (see also (Vladislavleva, 2005)).

The current implementation for a given accuracy constructs a Chebyshev
polynomial approximation of a function, and takes the degree of the resulting
polynomial as a basis for the measure of non-linearity of a univariate function.
An exact definition of the order of non-linearity appears in the next subsection.

Before giving the definition of the complexity measure, we would first like
to comment on ”approximation of a given accuracy”. It is said that P (x)
approximates a continuous function f(x) on interval [a, b] with accuracy ε, if

max
x∈[a,b]

|f(x)− P (x)| ≤ ε. (4.1)

We change the above definition for error evaluation and consider a finite
number of samples x ∈ S ⊂ [a, b]. The way in which we determine the test set
S indeed affects the true quality of the approximation. If S has too few points,
then condition (4.1) is too weak.

1Since we consider the subexpressions of a symbolic model as independent models, we want
the order of non-linearity to be easily computable for all subtrees as well as for the parent tree.

2Latin spelling of the last name of Pafnuty Lvovich Chebyshev differs in various publications.
It is sometimes spelled as ‘Tschebyshev’.
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If the test set consists of too many points, then error estimation can require
excessive computational resources. The choice of S is dictated by a trade-off
between the efficiency of computation and the desired accuracy. In the current
implementation, the test set S consists of equidistant points whose number
changes dynamically depending on the length of the interval [a, b].

Further on, by a polynomial approximation of a univariate function f on
the interval [a, b] with a certain precision ε, we will denote an approximation
in a class of Chebyshev polynomials; more precisely, we define a polynomial
Pf (x) =

∑n−1
i=0 ciTi(x; a, b) of a minimal order such that

max
x∈S⊂[a,b]

|f(x)− Pf (x)| ≤ ε, (4.2)

where Ti(x; a, b) = Ti(
2x−(b+a)

b−a ), i = 1, . . . , n − 1, and Ti(z) is the i-
th Chebyshev polynomial on [−1, 1]. Details on efficient implementations of
Chebyshev polynomial approximations are given in the Appendix of the thesis.

For a univariate function given analytically the degree of the approximating
polynomial depends on the interval in which the function is being approximated.
This implies the necessity of including scaling into the definition of complexity
and calculating the ranges for every inner node that corresponds to a univariate
operation. In order to be able to treat bivariate functions as univariate (for
polynomial approximations), we also need to estimate the ranges of inner nodes
corresponding to bivariate operations.

We would like to emphasize that the function ranges corresponding to inner
nodes cannot be determined accurately from the ranges of terminals by using
simple interval computations. In general, the range evaluation of a function
defined on a real interval should take into account the monotonicity and extrema
of this function, and may involve unwanted computation time.

There is a price to pay, however, to avoid these computations. Every
subexpression of a symbolic model is explicitly evaluated to obtain the goodness
of fit of the predicted output relative to the original output. Therefore, the ranges
of subexpressions can be estimated by simply taking the minimum and maximum
of the predicted outputs in the fitness evaluation routine. Such evaluation
of ranges of all subfunctions of the given model can actually introduce some
inaccuracy if the extrema of subfunctions are not at the sampling points. Since
this is the best we can do without doing extra calculations, it will be good enough
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for an efficient comparison of the non-linearity of the GP models.
Once the ranges for all nodes in the tree-based symbolic model are found, the

order of non-linearity of this model can be computed according to the following
inductive definition.

4.2 Definition of the order on non-linearity of an

expression

Let a tree structure represent a valid analytical model over a set of variables
V = {x1, x2, . . . , xvar}, and a set of constants C ⊂ R with functions from a set
Φ = Φ1 ∪Φ2, where Φ1 = {sqrt(x), ln(x), exp(x), exp(−x), sin (x), cos (x), xconst,

shift(x), scale(x), constx}, Φ2 = {x + y, x · y, x/y, xy}. Assuming that the
precision ε is given, the complexity of the tree structure is calculated from the
leaves to the root, according to the following definition:

(A) The complexity of a single node referring to a constant const ∈ C is zero:

comp(const) = 0. (4.3)

(B) The complexity of a single node referring to a variable from xi ∈ V is one:

comp(xi) = 1. (4.4)

(C) The complexity of an inner node referring to unary functions shift(x) or
scale(x) is equal to the complexity of the child node.

(D) The complexity of an inner node referring to unary function f ∈ Φ1, is
related to the complexity of the child node referring to a function, variable,
or constant, denoted as g ∈ Φ

⋃V⋃ C and the range of the child node [a, b]
by the following formula:

comp(f ◦ g) = comp(g) · nf , (4.5)

where nf is the minimal degree of Pf , a Chebyshev approximation of the
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function f(x), x ∈ [a, b] with approximation error (4.2) at most ε.

Note that the complexity of an inner node referring to a unary function
f ∈ Φ1, f(x, const) = constx ≡ ex·ln cons is related to the complexity of
the child node referring to a function, or to a variable, denoted as g ∈ Φ

⋃V
and the range of the child node [a, b] by the following formula:

comp(f ◦ g) = comp(eg ln const) = comp(g) · npower, (4.6)

where npower is the minimal degree of a Chebyshev approximation of
function expx ln const, x ∈ [a, b] with the approximation error (4.2) at most
ε.

(E) The complexity of an inner node referring to summation and subtraction
{+,−} ∈ Φ2 is related to the complexities of child nodes referring to g1, g2

∈ Φ
⋃V⋃ C by the formulae:

comp(g1 + g2) = max{comp(g1), comp(g2)}, (4.7)

comp(g1 − g2) = max{comp(g1), comp(g2)}. (4.8)

(F) The complexity of an inner node referring to multiplication {∗} ∈ Φ2 is
related to the complexities of child nodes referring to g1, g2 from Φ

⋃V⋃ C
by the formula:

comp(g1 · g2) = comp(g1) + comp(g2). (4.9)

(G) The complexity of an inner node referring to division {/} ∈ Φ2 is related
to the complexities of child nodes referring to g1, g2 from Φ

⋃V⋃ C with
ranges [a, b] and [c, d] by the formula:

comp(g1/g2) = comp(g1) + comp(g2) · ndiv, (4.10)

where ndiv is a minimal degree of the Chebyshev approximation of a
function 1/x on interval x ∈ [c, d] with the approximation error (4.2) at
most ε.

(H) The complexity of the root node determines the complexity of the tree
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structure.

The inductive definition described above is an algorithm to calculate the order
of non-linearity.

In the current implementation, the maximum admissible degree of the
Chebyshev approximation is limited to 100. If the precision of the approximation
by an 100-order polynomial still exceeds ε, then the complexity value is set to a
predefined limit. This limit value is 10, 000 for the current implementation. The
value for precision ε is fixed to 0.0001. The fixed precision used for estimating
the degree of the Chebyshev approximation will imply higher degrees for wider
domain ranges. This penalizes the GP system for constructing solutions with too
much diversity in the ranges of the inner nodes.

The number of points at which the approximation error is evaluated is
dynamic, and depends on the length of the interval of approximation. Currently,
we take max{20 · db − ae, 500} equidistant points on [a, b]. This number should
vary, depending on the problem difficulty and the descriptiveness of the input
data file. An example of the non-linearity calculation for a simple two-variable
model with ε = 10−6 is given in Figure 4.1.

The definition of the order of non-linearity implies that the complexity of a
parent model is never less than the non-linearity of any of its submodels. This
definition allows us to implicitly take the complexity of the representation into
account, and make the order of non-linearity a characteristic of a genotype.
Often this causes over-estimation of the true order of non-linearity of the
simplified expression. We do this deliberately to push the system towards
creating simplified expressions, and to penalize possible precision errors caused
by unnecessary scaling. For example, let the trees T1, T2, T3 represent the models
x2/x2, x/x, and 1 (see Figure 4.2). Despite the fact that the models have identical
response surfaces, computation of the values of T1 may cause loss of precision.
This is why the non-linearity complexities of T1 through T3 strictly decrease:
comp(T1) = 12, comp(T2) = 6, comp(T3) = 0.

A situation may arise in which, during the calculation of the order of non-
linearity, we encounter a node corresponding to a function with a very small
range (e.g. smaller than 10−15). In this case, we do not evaluate the order of
non-linearity by rules (A)-(F), but assign the complexity of the child node to
the node complexity. Although the function with a range less than 10−15 could
be considered as a constant (partly because the accurate approximation of this
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Figure 4.1: Example of non-linearity calculation for a two-variable model. If x1 ∈
[0, 1] and x2 ∈ [2, 4], then ”x1 Times x2” takes values from the interval [0, 4]. Non-linearities
of the terminal nodes are one. The non-linearity of the Times node is 1 + 1 = 2. Therefore,
the non-linearity of the Sin node is two times the degree of the Chebyshev approximation of
function sin x on the interval [0, 4]. If the chosen approximation accuracy is 10−6, then the
order of non-linearity of the root node is 2 · 9 = 18. The expressional complexity (visitation
length) of the model is 9 (marked as Complexity in the Figure).
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Figure 4.2: Genotypic nature of the order of non-linearity. The order of non-linearity
depends on the representation, since interval arithmetics is taken into account: Trees T1,T2, T3

determine models x2/x2, x/x, 1, for x ∈ [1, 2]. Whereas the response surfaces of the models
are identical, the orders of non-linearity are different.



Chapter 4. Model Selection through Non-linearity Control 110

function and the error evaluation become questionable due to round-off errors),
we do not make the order of non-linearity zero, but include the non-linearity of
the child tree into the definition.

Since the order of non-linearity is determined inductively for every node of
the tree starting from the leaves, an overestimation of the true minimal order of
a polynomial approximating the function with given precision will be produced
for unary functions in most cases. For example, consider the function f(x) =
sin(x) on [0, 4]. The minimal degree of the Chebyshev approximation of accuracy
10−6 is n = 9 and the order of non-linearity of the model is also 9 (see Figures
4.3, 4.4). Now consider function f(x) = sin(exp(x)) on [0, 4]. The Chebyshev
approximation of degree n = 76 has accuracy 10−6, but the order of non-linearity
of the tree, representing sin(exp(x)), is 430 (see Figures 4.3–4.4).

Such overestimation of the true degree of a polynomial approximating a
univariate function with a given precision is deliberate. The order of non-
linearity represents a relative comparative measure, and also builds a modularity
(structural separation) in a space of all possible symbolic models over a given set
of variables.

Before turning to the empirical analysis of features of the defined complexity
measure, we make one more remark. The problem of constructing a polynomial
approximation in Rk quickly becomes numerically intensive with k >> 2. This
explains why, in our inductive definition, we treat symbolic models as univariate
functions. In general, formulae (4.7), (4.9), (4.10) should not be considered as
the rules for finding the true minimal degree of the Chebyshev polynomial.

4.3 Comparisons and case studies

4.3.1 Test problems

Real-life applications operate with complex processes where the true dependency
between system inputs and outputs is usually unknown or very complex, and
cannot be expressed in one equation. To demonstrate the order of non-linearity
control as a mechanism for preventing over-fitting, we selected a suit of synthetic
regression problems, which allowed us to generate reliable noise-free test data for
interpolation and extrapolation. The target equations for chosen problems are
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Figure 4.3: Chebyshev approximation with precision 10−6 of functions sin(x),
exp(x), exp(sin(x)), sin(exp(x)) on interval [0, 4] and their behavior in extrapolation.
The degree n of the approximation is given in plot captions. The orders of non-
linearity computed for x ∈ [0, 4] are shown in Figure 4.4.
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given below:

f1(x1, x2) =
e−(x1−1)2

1.2 + (x2 − 2.5)2
(4.11)

f2(x) = e−xx3 cosx sinx(cos x sin2 x− 1) (4.12)

f3(x1, x2) = f2(x1)(x2 − 5) (4.13)

f4(x1, x2, x3, x4, x5) =
10

5 +
∑5

i=1(xi − 3)2
(4.14)

f5(x1, x2, x3) = 30
(x1 − 1)(x3 − 1)

x2
2(x1 − 10)

(4.15)

f6(x1, x2) = 6 sin x1 cosx2 (4.16)

f7(x1, x2) = (x1 − 3)(x2 − 3) + 2 sin((x1 − 4)(x2 − 4)) (4.17)

f8(x1, x2) =
(x1 − 3)4 + (x2 − 3)3 − (x2 − 3)

(x2 − 2)4 + 10
(4.18)

The choice of several target expressions was inspired by the paper (Keijzer,
2003), which introduced thirteen functions to analyze the performance of scaled
GP. We selected the most difficult problems of that set, and still modified most
of them to make the regression process more challenging for our ParetoGP
system. The first equation defines the Kotanchek function first used in Smits
and Kotanchek (2004). The second function originates from Salustowicz and
Schmidhuber (1997); we call it the Salustowicz function. The third equation
(4.13) is our two-dimensional version of the Salustowicz function, which we call
Salustowicz2D. The function defined in (4.14) is our favorite problem. This
five-dimensional equation, which we call the UBall5D3 function, was inspired
by a simpler two-dimensional problem from Keijzer (2003); Topchy and Punch
(2001). Despite having a simple and harmonious underlying relationship, it
appears to be quite difficult for GP. Target expressions for RatPol3D (4.15),
SineCosine (4.16), and Ripple (4.17) problems are adopted from Topchy and
Punch (2001), with a linear transformation of variables: xi 7→ xi − 3, and a
few other modifications. The RatPol2D problem, defined by equation (4.18),
represents another rational polynomial that is challenging for GP. The contour
plots of these eight target functions (or projections onto 2D intervals for functions

3five-dimensional unwrapped ball



113 4.3. Comparisons and case studies

(4.14) and (4.15)) shown in Figures 4.5 and 4.6 illustrate the non-linearity of
the underlying response surfaces within the training regions and extrapolation
regions.

The data for the ninth test problem come from an industrial problem and
represent a gas chromatography measurement of the composition of a distillation
tower. This Tower problem contains 5000 records and 23 potential input
variables.

4.3.2 Experimental setup

To compare the effects of optimizing different complexity measures in symbolic
regression via GP, we devised experiments for three multi-objective optimization
schemes:

CASE I: Pareto-optimization of the sum of squared errors and expressional
complexity;
CASE II: Pareto-optimization of the sum of squared errors and the order of
non-linearity;
CASE III: Pareto-optimization of the sum of squared errors and expressional
complexity, alternated with the Pareto-optimization of the sum of squared errors
and the order of non-linearity at every generation.

Note that the optimization of the goodness of fit is present in all cases, since
constructing accurate models is our first priority. Comparison of CASE I with
CASE II will show that creating accurate and ’structurally simple’ (i.e. more
compact) equations may still lead to highly nonlinear pathological predictions,
compared with creating accurate equations of a low or reduced order of non-
linearity.

The presence of CASE III experiments is an attempt to blend optimization
of the structural complexity and the non-linearity with accuracy optimization in
a ’multi-objective’ fashion. We do not use a composite objective function, which
uses a linear combination of objectives of interest, because of its sensitivity to the
particular linear coefficients. Instead of limiting the search by using a composite
objective function, one should pursue a true multi-objective search and use a
vector of objective functions, whose components are optimized either individually
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Figure 4.5: Contour plots of the target functions (or their projections) in the test
regions. The dashed lines represent the boundaries of the training regions. Note
that none of the target response surfaces displays pathological behavior in the
test region. We expect the same from the GP solutions with good extrapolation
properties.
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Figure 4.6: Contour plots of the target functions (or their projections) in the test
regions. The dashed lines represent the boundaries of the training regions. As
we see, none of the target response surfaces displays pathological behavior in the
test region. We expect the same from the GP solutions with good extrapolation
properties.
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or simultaneously. However, the multi-objective approach scales badly when the
number of objectives increases. We propose a novel heuristic for overcoming
the curse of dimensionality of the objective space by alternating between two
two-objective optimizations in CASE III.

Since the focus of this Chapter is on non-linearity control, the formalization
and generalization of the approach of CASE III for a general multi-objective
optimization problem would shift the focus and make the structure complicated.
Instead, we illustrate the idea using a particular case in which one accuracy
measure and two complexity measures are defined, where the priority is on the
accuracy.

Three objectives need to be minimized during the model development
cycle: (i) prediction error of the model’s phenotype (Error =1 − NMSE),
(ii) the expressional complexity of the model’s genom (Complexity), and (iii)
the order of non-linearity of the model’s genotype (Non − linearity). The
order of importance of these objectives is as follows: error minimization is
the primary objective, expressional complexity and non-linearity are equally
important secondary objectives. Taking this into account, the original multi-
objective optimization problem can be replaced by a different one:

min
all generations

(Error, Complexity, Non− linearity) (4.19)

by





min
odd generations

(Error, Complexity)

min
even generations

(Error, Non− linearity).
(4.20)

Computational complexity of the non-dominated sorting algorithm with such
substitution drops down from O(n3) to O(n2), where n is the total number of
models in the population and the archive4.

The experiments of CASE III were formulated to combine the best properties
of the solutions of CASE I and CASE II. Accurate models will thus be produced
that are both compact and ’smooth’ (i.e. generalize well), while not producing
pathologies in the new areas of the input space.

4The non-dominated sorting selects a fixed number of models at the Pareto front to update
the archive.
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The results of the experiments will be compared with respect to the number
of pathologies produced on test data with extrapolation, average order of non-
linearity and expressional complexity and the area percentages under the convex
hulls of archives plotted in expressional complexity versus model error and the
order of non-linearity versus model error spaces.

The detailed results of CASES I-III follow immediately after descriptions of
the settings for GP parameters and the choice of training and test data.

4.3.3 Data sampling and GP settings

As mentioned above, we focus on the synthetic data sets to generate a sufficient
amount of reliable, outlier-free test samples in the regions outside the training
regions. The details of sampling procedures used for generation of training and
test data are given in Table 4.1.

The Tower problem contains real-life data for which the true input-output
relationship is unknown. To assess extrapolative capabilities of GP solutions
for the Tower problem, we decided to select significant input variables at a
pre-processing step, and then used only those to divide the data into training
and test sets. The driving variables identified at initial screening using the
fitness inheritance approach (see Smits et al. (2005)) were x1, x4, x6, x12 and
x23. The 5000 data records corresponding to these inputs were scaled into the
five-dimensional cube [0, 1]5. All records belonging to the interval [0.02, 0.98]5

were selected into the training set, and the remaining records formed a test set
for extrapolation.

In all experiments, one optimization measure is always the numerical fitness,
determined as a normalized mean-squared error between observed response vector
y and the predicted response vector f̂(x); see Eq. (3.7).

For each approach and for each test problem, 50 independent GP runs are
conducted. All GP settings except for the optimization complexity (expressional,
order of non-linearity, or ”both, but alternating”) are the same for each test
problem. The number of generations is fixed to 250 for all problems except
SineCosine and UBall5D problems. These two had to be modeled over 500
generations in order to get an appropriate goodness of fit. Other parameter
settings are given in Table 4.2 (see also Chapter 2 for details on selection and
modification operators).
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Table 4.1: Sampling strategy for training and test data for nine regression
problems. The table represents the sampling strategy, and the number of points used for
training and testing GP solutions. Notation x = Rand(a, b) means that the x variable is
sampled randomly from an interval [a, b]. Notation x1 = (a1 : c1 : b1), x2 = (a2 : c2 : b2)
determines a uniform mesh with step length (c1, c2) on an interval [a1, b1]× [a2, b2].

Problem Name Training Data Test Data

Kotanchek 100 points 2026 points
Eq (5.5) x1, x2= Rand(0.3,4) (x1, x2)=(-0.2:0.1:4.2)

Salutowicz 100 points 221 points
Eq (4.12) x=(0.05:0.1:10) x=(-0.5:0.05:10.5)

Salutowicz2D 601 points 2554 points
Eq (4.13) x1=(0.05:0.1:10) x1=(-0.5:0.05:10.5)

x2=(0.05:2:10.05) x2=(-0.5:0.5:10.5)

UBall5D 1024 points 5000 points
Eq (4.14) xi=Rand(0.05,6.05) x1=Rand(-0.25,6.35)

RatPol3D 300 points 2701 points
Eq (4.15) x1, x3=Rand(0.05,2) x1, x3 = (−0.05 : 0.15 : 2.1)

x2=Rand(1,2) x2=(0.95:0.1:2.05)

SineCosine 30 points 961 points
Eq (4.16) x1, x2=Rand(0.1,5.9) x1, x2 = (−0.05 : 0.02 : 6.05)

Ripple 300 points 1000 points
Eq (4.17) x1, x2=Rand(0.05,6.05) x1, x3=Rand(-0.25,6.35)

RatPol2D 50 points 1157 points
Eq (4.18) x1, x2=Rand(0.05,6.05) x1, x2=(-0.25:0.2:6.35)

Tower 3136 points 1864 points
all input values one of the inputs
in [0.02, 0.98] in [0, 0.02)

⋃
(0.98, 1]
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Table 4.2: GP Parameters for nine Test Problems

Number of independent runs 50
Total number of generations 250 and

(500 for SinCos and UBall5D)
Population size 100

Archive size 50
Population tournament size 7

Archive tournament size 5
Crossover rate 0.95
Mutation rate 0.05

Rate of mutation on terminals 0.3
Basic Function Set +, −, ∗, /, square

xreal, x + real, x · real
Kotanchek, SineCosine, Tower Basic Set, ex, e−x

Salustowicz, Salustowicz2D, Ripple Basic Set, ex, e−x, sinx, cos x

4.3.4 Results and discussion

The solutions of each independent GP run are stored in an archive that contains
50 expressions. These 50 individuals lie at the Pareto front in ’optimization
complexity’ versus ’model fitness’ objective space containing all individuals
evaluated during the current GP run. For our purposes, all of these individuals
are equally valuable GP solutions. The ’customer’, or the domain expert, will
have to choose one of these solutions or, better, an ensemble of solutions that
satisfies customer needs; see Kotanchek et al. (2007). We therefore combined all
archive solutions of independent runs in one ensemble at a post-analysis stage and
analyzed the properties of the resulting set of 50runs×50models= 2500 solutions
across different cases and different test problems.

Pareto genetic programming aimed at the generation of a multitude of
solutions in the archive, is yet a rarity rather than a convention in symbolic
regression applications of GP. The most common way to compare performances
of different evolutions is the comparison of their best-of-the-run individuals.
Empirical analysis of the experiments of this chapter includes the features of
the best-of-the-run solutions as well.

The detailed results are given in Part I and Part II of Table 4.3. The columns
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(2) and (3) of this table contain the fraction of equations that showed pathological
behavior on the test data. Column (2) is the percentage of equations producing
infinite or undefined root mean-squared error. The latter is computed from the
vectors of predicted values of the model, f̂(x̃), and the target values on the test
data, ỹ, as:

RMSE(ỹ, f̂(x̃)) =

√√√√ 1
NT

NT∑

i=1

(ỹi − f̂(x̃i)2, (4.21)

where NT is the number of records in the test set. Individual f̂ is optimally
scaled on the training data, before the errors on the test set are computed (see
Chapter 3).

Column (3) of Table 4.3 is the percentage of solutions for which the root
mean-squared error is infinite, undefined, or excessively large. The threshold
for pathologically high error is chosen to be 100. It corresponds to the mean-
squared error equal to 104. Equations producing these large errors on test data
are dangerously erroneous, and a high fraction of them in the set of solutions
indicates the tendency to over-fitting.

Column (4) of Table 4.3 represents the percentage of equations that have
the highest allowed order of non-linearity, equal to 10, 000. This value indicates
highly non-linear behavior of a model and the potential to have a pathology on
new data. We expect best-of-the-run solutions to have these high non-linearity
values, due to their inclination to over-fitting. Since the rest of the solutions
are expected to have lower non-linearity, small percentages in column (4) are
preferred.

Column (5) contains the mean order of non-linearity of those solutions
that have the non-linearity below the threshold of 10, 000. Low values in this
column for solutions of CASE I for Salustowicz, Salustowicz2D, UBall5D,
and SineCosine problems demonstrate the ’all or nothing’ phenomenon for
the orders of non-linearity of models generated by expressional complexity
minimization. For example, for CASE I of the Salustowicz problem, we see that
86% of final solutions have the order of non-linearity 10, 000, and the remaining
14% have average non-linearity equal to only 12.2. We illustrate such a situation
for one GP run in Figure 4.7.

Column (6) contains the average expressional complexity of 2500 solutions
among independent runs. From columns (2) to (6) we observe that CASE I
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Table 4.3: Part I. Results of the three experiments on selected test problems
for ALL solutions. Case I consists of optimization of fitness and expressional complexity,
Case II - optimization of fitness and the order of non-linearity, and Case III - optimization
of the fitness and alternated at each generation expressional complexity and non-linearity.
For each experiment the quality of archive solutions and the best-of-run solutions over 50
independent runs is assessed against training and test data with extrapolation. Case II
consistently outperforms other experiments with respect to the rate of pathologies on test
data over all test problems.

Problem ALL final solutions over all runs (2500)
and Pathologies on Complexity
Experiment Test Data Order of Expressional

RMSE RMSE Non-linearity
= ∞, ≥ 100, = 104, < 104,

% % % mean mean

Column Number (2) (3) (4) (5) (6)

Kotanchek
CASE I 29% 30% 41% 509.1 106.2
CASE II 5% 7% 2% 327.9 243.3
CASE III 10% 10% 6% 383.7 114.9

Salustowicz
CASE I 34% 36% 86% 12.2 111.9
CASE II 11% 28% 31% 38.9 194.6
CASE III 17% 19% 37% 18.7 132.2

Salustowicz2D
CASE I 36% 47% 82% 29.0 96.8
CASE II 8% 20% 5% 134.4 226.1
CASE III 18% 23% 23% 227.7 99.7

UBall5D
CASE I 43% 45% 92% 46.0 141.2
CASE II 16% 18% 4% 33.3 254.5
CASE III 12% 14% 10% 80.6 93.4

RatPol3D
CASE I 15% 15% 22% 58.7 104.6
CASE II 5% 5% 1% 29.4 262.0
CASE III 10% 10% 3% 31.4 122.7

SineCosine
CASE I 12% 26% 78% 77.0 132.9
CASE II 8% 17% 8% 96.0 348.0
CASE III 12% 19% 21% 119.2 155.0

Ripple
CASE I 26% 26% 30% 298.2 99.1
CASE II 6% 7% 2% 114.3 250.4
CASE III 7% 8% 6% 220.5 130.0

RatPol2D
CASE I 52% 55% 42% 108.9 109.3
CASE II 14% 15% 2% 18.3 241.1
CASE III 23% 24% 4% 32.8 117.9

Tower
CASE I 19% 19% 1% 38.2 84.8
CASE II 10% 10% 0% 50.0 257.6
CASE III 15% 15% 0% 67.1 112.5
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Table 4.3: Part II. Results of the three experiments on selected test problems for
BEST-of-the-RUN solutions. Case I consists of optimization of fitness and expressional
complexity, Case II - optimization of fitness and the order of non-linearity, and Case III -
optimization of the fitness and alternated at each generation expressional complexity and non-
linearity. For each experiment the quality of archive solutions and the best-of-run solutions
over 50 independent runs is assessed against training and test data with extrapolation. Case II
consistently outperforms other experiments with respect to the rate of pathologies on test data
over all test problems.

Problem BEST-of-the-RUN solutions over all runs (50)
and Model Error Complexity
Experiment Training Data, Test Data, Order of Express.

RMSE RMSE Non-lin.
= ∞, ≤ 100,

median IQR % median IQR mean mean

Column Number (7) (8) (9) (10) (11) (12) (13)

Kotanchek
CASE I 0.052 0.02 52% 0.075 0.06 7050 291
CASE II 0.055 0.03 18% 0.072 0.06 2476 350
CASE III 0.052 0.02 42% 0.069 0.04 5239 319

Salustowicz
CASE I 0.216 0.07 24% 0.233 0.90 10000 298
CASE II 0.218 0.08 28% 0.212 0.14 9604 351
CASE III 0.212 0.10 34% 0.229 0.50 9804 337

Salustowicz2D
CASE I 0.938 0.20 50% 1.061 0.52 9802 276
CASE II 0.832 0.54 24% 0.739 0.69 5095 320
CASE III 0.932 0.31 50% 0.817 0.47 9040 293

UBall5D
CASE I 0.173 0.03 66% 0.277 0.86 10000 329
CASE II 0.183 0.01 42% 0.637 1.16 4314 377
CASE III 0.178 0.02 32% 1.024 1.60 7109 359

RatPol3D
CASE I 0.221 0.01 24% 1.037 0.05 3885 292
CASE II 0.218 0.02 8% 1.029 0.03 887 357
CASE III 0.218 0.02 22% 1.033 0.04 1838 317

SineCosine
CASE I 1.393 0.33 22% 17.869 28.89 9294 311
CASE II 1.328 0.28 12% 3.469 7.58 5288 472
CASE III 1.270 0.32 22% 7.599 26.16 9203 449

Ripple
CASE I 1.325 0.21 42% 1.457 1.29 5870 278
CASE II 1.311 0.10 10% 1.467 0.52 2037 341
CASE III 1.312 0.15 20% 1.486 0.48 3598 308

RatPol2D
CASE I 0.612 0.34 50% 3.881 8.34 6115 283
CASE II 0.553 0.20 26% 2.063 1.78 1236 367
CASE III 0.663 0.21 38% 3.179 3.34 3263 337

Tower
CASE I 30.3 1.38 42% 40.4 8.4 741 293
CASE II 30.1 1.43 24% 40.7 7.8 462 349
CASE III 30.1 1.37 32% 42.7 7.5 500 294
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Figure 4.7: Solutions of a GP run of CASE I experiment for the Salustowicz2D
problem plotted in different objective spaces. In the upper plot, solutions of a CASE
I (circled dots) run and their sub-equations (black dots) are mapped to the original objective
space – Expressional Complexity versus Model Error. We see a horizontal trend in solutions;
i.e., most of the equations have similar errors, despite growth in expressional complexity. If we
plot the same archive solutions in a different objective space of the order of non-linearity versus
model error (bottom plot), we observe a big imbalance in the distribution of the non-linearity.
All solutions with errors below 0.1 (45 out of 50) reach the non-linearity threshold. Of the
five remaining equations four have the non-linearity equal to one (two very similar errors, and
therefore appear as one circled dot in the plot); that is, they are estimated as linear in the
original inputs.
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produces, on average, more compact expressions than CASE II (see column six),
although, a greater fraction of these have pathologies on test data (see columns
two and three). We performed pair-wise statistical significance tests for solutions
of CASES I-III, and concluded that CASE II outperforms CASE I with respect
to the error on test data for all test problems (see Table 4.4, columns two and
three). For significance tests, the solutions with infinite errors (or errors higher
than 100) were assigned an error value of 100. ANOVA tests and Wilcoxon-
Mann-Whitney rank sum tests were performed to compare the means and the
medians of different sets of error values of the equal number of samples. Table
4.4 represents the p-values for the 95% significance level. The mean and the
median error on test data for the solutions of CASE II were significantly smaller
than those of the solutions of CASE I (the maximum p-value is 0.0004 for the
Wilcoxon test on the RatPol3D problem).

The smoothness of solutions of CASE II comes at the expense of higher
expressional complexity. Solutions, generated in CASE II consist, for the most
part, of ’simple’ operators (such as addition, subtraction, multiplication), but are
bulky and sometimes difficult to interpret. This excessive growth in structure
disappears when the CASE III experiment is used. Comparing the results of
CASE II and CASE III in Table 4.3, we observe that the average expressional
complexity of solutions can be reduced in CASE III (column six), however,
with a side effect of an increased pathology rate (columns two and three). The
significance tests show that CASE II significantly outperforms CASE III in the
error on the test set on eight out of nine test problems: Kotanchek, UBall5D
(only for the mean error), RatPol3D, RatPol2D, Tower, and SineCosine and
Ripple (only for the median error).

In a comparison of CASE III with CASE I, the tests show that the errors on
the test data produced by solutions of CASE III are significantly smaller than
those of CASE I in all test problems (see columns two and three of Table 4.4).
This brings us to the first important conclusion: solutions obtained in CASE III
with alternating expressional complexity and the order of non-linearity, as well as
solutions of CASE II with non-linearity minimization, are significantly smoother
than the ones of CASE I with minimization of expressional complexity. The fact
that CASE III produces solutions competitive with CASE I (with respect to the
error) and CASE II (with respect to the expressional complexity) is counter-
intuitive and quite surprising. The alternation of optimization complexities at
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each generation is a very crude heuristic aimed at producing both compact and
smooth equations. The fact that it works motivates us to explore the scalability
of this approach to cases in which a multitude of objectives needs to be satisfied.

The second part of Table 4.3 shows the results for the 50 best-of-the-run
solutions for each case. The median and the interquartile range of the root mean-
squared error over these 50 best-of-the-run solutions per experiment are given in
columns seven and eight of Table 4.3. The resulting values look similar for CASES
I-III, and no clear trends can be observed with respect to the superiority of any
one approach on the training data.

The differences among solutions of CASES I-III become obvious when the
best-of-the-run equations are evaluated on the test sets. Column (9) of Table 4.3
represents the fraction of best-of-the-run equations that have a pathology on the
test data, defined as an infinite root mean-squared error. The trend is similar
to the one revealed in columns two and three: CASE I has the highest rate of
pathologies at extrapolation. The only exception in this rule is the Salustowicz
problem, with 24%, 28%, and 34% pathological equations from the 50 best-of-
the-run equations.

Columns (10) and (11) of Table 4.3 contain the median error and the
interquartile range of a set of errors that are smaller than 100. For example, for
the solutions of CASE I of the Kotanchek problem we observe that 52% of best-
of-the-run solutions (26 equations out of 50) have a pathology on the test data.
If those and also other equations producing errors higher than 100 are removed
from the sample, then the median of the remaining 24 equations will be 0.075,
and the interquartile range will be 0.06. This is an argument for using archives of
equations and for being very cautious when using best-of-run solutions. If only
best-of-the-run solutions are sought for, then all runs where the best equation
produces a pathology are lost. This corresponds to an incredible waste of 52% of
the spent effort in the example of CASE I solutions of the Kotanchek problem.

The significance tests for the errors of best-of-the-run equations are performed
in a style similar to that used for all solutions. We first assign an error value
of 100 to equations producing undefined and infinite values, as well as those
exceeding 100. We then perform the pair-wise ANOVA and Wilcoxon tests to
determine the significance in the difference of the mean and median errors among
50 solutions of CASES I-III. The p-values of the tests are given in columns three
and four of Table 4.4. We can observe that CASE II significantly outperforms
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Table 4.4: Significance of conclusions about the results of the three experiments.
We performed one-way Anova tests and Wilcoxon-Mann-Whitney tests for analyzing differences
in the means and the medians of accuracy values of solutions of CASES I-III. The p-values
for ANOVA tests are obtained from the F-statistics ant the 95% confidence level (ANOVA).
P-values for Wilcoxon-Mann-Whitney tests are obtained using the Z-statistics and the 95%
confidence level and are doubled for two-sided tests (Wilcoxon). To obtain equal sample sizes,
we truncated all infinite and excessively large values of RMSE (those where RMSE>= 100) on
the Test Data at 100.

Problem Comparing the RMSE, TEST data Comparing the
and all (2500) best-of-run (50) Average Area %
Hypothesis AN., Wilc., AN., Wilc., AN., Wilc.,

p-value p-value p-value p-value p-value p-value
Column Number (2) (3) (4) (5) (6) (7)
Kotanchek
CASE II outperforms CASE I 0 0 0.0003 0.0057 0.2924 0.2715
CASE II outperforms CASE III 9E-07 0.0000 0.008 0.1936 0.0504 0.0137
CASE III outperforms CASE I 0 6E-33 0.31 0.1962 0.3625 0.2539
Salustowicz
CASE II outperforms CASE I 0 0 0.3312 0.9579 0 0
CASE III outperforms CASE II 0 0 0.5606 0.8017 0.2696 0.29
CASE III outperforms CASE I 0 0 0.6971 0.8664 0.0000 0.0000
Salustowicz2D
CASE II outperforms CASE I 0 0 0.0184 0.0006 9E-21 9E-16
CASE II outperforms CASE III 0.0462 0.0055 0.0148 0.0095 0.0361 0.0919
CASE III outperforms CASE I 0 0 0.9295 0.5181 3E-12 4E-11
UBall5D
CASE II outperforms CASE I 0 0 0.0328 0.1379 1E-14 5E-12
CASE II outperforms CASE III 0 0.8655 0.5058 0.9858 - -
CASE III outperforms CASE II - - - - 0.0025 0.0009
CASE III outperforms CASE I 0 0 0.0047 0.0908 1E-12 9E-13
RatPol3D
CASE II outperforms CASE I 0 0.0004 0.0287 0.0579 - -
CASE I outperforms CASE II - - - - 0.0000 0.0000
CASE II outperforms CASE III 0 0 0.0503 0.0824 - -
CASE III outperforms CASE II - - - - 3.E-07 1.E-07
CASE III outperforms CASE I 0 0 0.8117 0.8109 0.7237 0.3647
SineCosine
CASE II outperforms CASE I 0 0 0.0006 0.0000 0.1982 0.1168
CASE II outperforms CASE III 0.1288 0 0.9963 0.2711 0.7107 0.8388
CASE III outperforms CASE I 0 0 0.9847 0.0003 0.0819 0.0682
Ripple
CASE II outperforms CASE I 0 0 0.0006 0.0109 0.8438 0.39
CASE II outperforms CASE III 0.3902 0 0.1318 0.4248 - -
CASE III outperforms CASE I 0 0 0.0501 0.0925 - -
RatPol2D
CASE II outperforms CASE I 0 0 0.0004 0.0000 0.9015 0.5884
CASE II outperforms CASE III 0 0 0.0305 0.0096 0.5995 0.8985
CASE III outperforms CASE I 0 0 0.1707 0.0728 0.6196 0.9149
Tower
CASE II outperforms CASE I 0 0 0.08 0.1769 - -
CASE I outperforms CASE II - - - - 0.0000 0.0000
CASE II outperforms CASE III 0 0 0.2921 0.1348 - -
CASE III outperforms CASE II - - - - 0.0000 0.0000
CASE III outperforms CASE I 0 0 0.5648 0.9661 0.8767 0.7329
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CASE I with respect to best-of-the-run errors on test data on seven out of nine
problems (for UBall5D only for the mean error).

CASE III significantly outperforms CASE I on best-of-the-run errors only for
the mean error on the UBall5D problem. There is no significant difference in
the error samples of CASE III and CASE I for the rest of the problems. The
second important conclusion that we can make for CASE III is that it is nowhere
significantly worse than CASE I – even on best-of-the-run solutions.

The average values of the order of non-linearity and expressional complexity
of the best-of-the-run equations are given in columns (12) and (13) of Table 4.3.
The conclusions about the complexity of best-of-the-run solutions are the same:

1. CASE I produces more compact expressions at the expense of high orders
of non-linearity;

2. CASE II produces solutions with lower non-linearity, but higher expressional
complexity;

3. CASE III produces lower orders of non-linearity than CASE I does, and
lower expressional complexity than CASE II.

4.3.5 Analysis of the evolved GP models

Note that the differences in the expressional complexity of best-of-the-run
equations for CASES I-III are not big. As an example, we give the five best-
of-the-run solutions for each CASE on the Salustowicz problem in Table 4.5.
All equations in Table 4.5 are simplified in Mathematica, so the solutions of CASE
II appear to be short (since the linear operations on constants and input variables
are already executed). The purpose of Table 4.5 is to provide the reader with
a visual impression of the differences primarily between CASE I and CASE II
solutions and to support our claim that shorter equations may be less convincing
for an engineer than longer but less non-linear equations. Formulae of solutions
of CASE I in Table 4.5 illustrate that opting for shorter equations generates many
nested functions that may make no physical sense.

4.3.6 Further discussion: areas under Pareto fronts

To conclude the performance analysis of CASES I-III, we compared the average
areas under the convex hulls of the archive at the last generation. Since CASES
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Table 4.5: Examples of best-of-the-run simplified solutions for the Salustowicz2d
problem from five independent runs.
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I-III exploit different complexity measures, we use the concept of the area under
the Pareto front in the following definition of the performance characteristic of a
GP run:

1. The archive at the last generation is plotted in two objective spaces:
expressional complexity versus model error, and order of non-linearity
versus model error.

2. In both objective spaces the following points are added to the set of
solutions: (1,maxError), (maxComplexity, maxError), (maxComplexity,

minErrorCurrentArchive). These points are needed to determine the convex
hull of the solutions in each objective space (see Figure 3.7).

3. An area C of the convex hull of the resulting set of points is computed
together with the following percentage:

maxComplexity ×maxError − C

maxComplexity ×maxError
100%.

4. The final area percentage for the GP run is defined as an average of the
two area percentages under the convex hull of the archive, computed in
the expressional complexity versus error and in the order of non-linearity
versus error objective spaces.

We computed the average area percentages of two objective spaces for
independent runs of each experiment, and performed the multiple comparison
tests for significance in the differences of the mean values for CASES I-III
(ANOVA tests at the 95% confidence level). The results of these comparisons
are plotted in Figure 4.8.

Columns (6) and (7) of Table 4.4 reported the p-values for the pair-wise
comparisons of the average area percentage with the ANOVA tests and the
Wilcoxon tests. The conclusion from these statistical tests: CASE III is
statistically better than CASE I on three of the nine problems (Salustowicz,
Salustowicz2D, UBall5D) and is not statistically different from CASE I on
the rest of the problems. CASE III is better than CASE II on three problems
(UBall5D, RatPol3D,Tower), and is statistically the same for the rest of
the problems. These results make CASE III the winner in the comparison for
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Figure 4.8: Multiple comparison tests for average percentage of areas under the
convex hulls of archive solutions for nine test problems. Plots represent the 95%
confidence intervals of the two-sided tests for multiple comparison of the means of average
area percentages over 50 independent runs. Smaller values of the average area percentage are
preferred. Labels of the vertical axis of the plots correspond to CASE I, CASE II, and CASE III
(read from the top down). Groups are significantly different if the confidence intervals do not
overlap. The surprising observation is that CASE I (with expressional complexity minimization)
does not outperform CASE III (with alternating complexities) on any test problem.
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producing the least average percentage area under the convex hull of the archive
in two objective spaces.

4.4 Summary

This chapter has introduced a novel complexity measure for creating smoother
individuals in symbolic regression via genetic programming. The suggested
measure is computed iteratively for genotypes of symbolic models according to
the set of rules (A)-(G). The notion of the new measure is based on a degree of
Chebyshev polynomial approximation of a certain accuracy.

The positive effects of controlling the order of non-linearity are demonstrated
for two strategies in nine non-linear test problems.

One of the weaknesses of the order of non-linearity is an over-estimation of
the true minimal degree of Chebyshev approximation of accuracy ε for unary
functions and the approximate nature of the definition for functions of multiple
arguments. Even for functions of two arguments, constructing a Chebyshev
approximation is performed in terms of tensor products, and represents a non-
trivial computational procedure. For functions of more variables it is difficult
to construct the Chebyshev polynomial approximation of a given accuracy, thus
making it difficult to compare the order of non-linearity with the degree of such
an approximation.

The presented order of non-linearity applied as a second optimization
objective in combination with numerical accuracy to symbolic regression via
Pareto GP favors models with smoother response surfaces. On all nine test
problems, these models show significantly better extrapolative capabilities over
models generated with controlled expressional complexity.

Models generated with minimization of the order of non-linearity (CASE
II experiments) are less compact than those generated via optimization of
expressional complexity (CASE I experiments). To combine the benefits
of creating compact expressions with smoother response surfaces, we have
proposed a new hybrid approach to symbolic regression: Pareto-optimization
of the goodness of fit and expressional complexity, alternated with the Pareto-
optimization of the goodness of fit and the order of non-linearity at every
generation (CASE III experiments).

The vast majority of models obtained with the order of non-linearity
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control (CASE II and CASE III) do not get discontinuities when extrapolated
over reasonable distances. This agrees with out conjecture that smoother
approximations mimic the original output longer when extrapolated outside the
training range.

The fundamental question regarding the way in which to obtain a reliable
prediction of the output for an extrapolated domain remains a subject for further
research.

One definite conclusion of this study is that explicit control of over-fitting is
crucial in developing regression models. Even if individuals producing indefinite
prediction errors in the training set are removed from populations, the creative
power of evolution may lead to a generation of individuals with intrinsic
potential for pathologies ‘in-between’ the training points, even if their structural
complexity is explicitly controlled. It is essential to mitigate the risk of such
pathologies in the unobserved regions; otherwise the models will be inapplicable
for deployment. Interval arithmetic is one of the ways of risk reduction. If
data is abundant, than the potentially pathological behavior of GP solutions
can be reduced, but not avoided, by evaluating their fitness on validation data
sets (see e.g. (Gagné et al., 2006)). The potential benefit of explicit non-
linearity control presented in this chapter (performed independently from interval
arithmetic calculations), lies in the fact that it explicitly maintains the diversity
of solutions with respect to non-linearity in addition to mitigating the risk of
pathologies among best-of-the-run solutions.



5
Model Evaluation through Data

Balancing

Symbolic regression of input-output data conventionally treats data records
equally with few exceptions. Chapter 2 of this thesis has introduced a framework
for automatic assignment of weights to data samples that takes into account the
data’s relative importance. This chapter studies the possibilities of improving
symbolic regression on imbalanced data by incorporation of weights into the
fitness function.

For cases where given input-output data contains some redundancy, the
chapter suggests an approach to considerably improve the effectiveness of
regression by applying more modelling effort to a smaller subset of given data,
which has a similar information content. Such an improvement can be achieved
due to better exploration of the search space of potential solutions with the same
number of function evaluations.

Different approaches to weighted regression are compared through five test
problems with a fixed budget allocation (with budget measured in the number
of function evaluations). The results of the case studies demonstrate that a
significant improvement in the quality of regression models can be obtained either
with weighted regression (when computed weights are directly incorporated into
the fitness function), or exploratory regression (when training data is compressed
to a smaller subset having a similar information content), or with exploratory
weighted regression (when a compressed training subset is weighted with one of
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the proposed weighing schemes, and new weights are incorporated into the fitness
function).

5.1 Motivation

The goal of this chapter is to assess whether the results of symbolic regression
via genetic programming can be improved if the given input-output data set is
made balanced. One of the directions for data balancing is modification of the
fitness function, which may lead to improvement in the performance of generated
solutions. The modification studied in this chapter consists in multiplying the
model fitness (or prediction error) in each point by a weight, representing the
relative importance of the point among data samples.

As illustrated in section 2 of Chapter 2, data records located in sparse areas of
the data space may exert little influence on the learning process. Consequently,
trained regression models are conditioned to perform well only on the most typical
data records located in well represented areas of the data space. This situation
may have a large negative impact on prediction accuracy. In the practice of
modeling real ‘physical’ systems such imbalanced data sets are more a rule then
an exception. This fact inspired us to study the possibilities of balancing data
by incorporating the “information weight” of a data record into the modeling
routine.

The challenge is to substitute the empirical risk functional (2.2),

Remp

(
f̂(x)

)
=

1
N

N∑
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(
yi, f̂(xi)

)
,

by a weighted empirical risk functional (2.5),
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f̂(x),w

)
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(
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)
/

N∑

i=1

wi,

in such a way that the performance of individuals obtained by minimization of
the modified risk functional improves not only in terms of weighted accuracy, but
also in terms of absolute accuracy (unweighed fitness) on new test data.

The problem of improving the effectiveness of regression with adaptive fitness
functions (incorporating weights) have been studied extensively by researchers
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in the field of supervised learning and evolutionary computation. “Boosting”
adaptively assigns weights to data samples based on their difficulty for the
modeling, see (Freund, 1995; Freund and Schapire, 1995; Schapire, 1990) for
boosting in machine learning and (Drucker, 1997; Iba, 1999; Paris et al., 2001)
for boosting in GP. Stepwise adaptation of weights for GP (Eggermont and van
Hemert, 2000, 2001) adaptively assigns weights based on the difficulty to meet
the constraints imposed on GP solutions. Subset selection methods (Gathercole
and Ross, 1994), assign (usually binary) weights to records using various rules,
either stochastically or based on performance of GP solutions on data samples.
Strange as it may seem, we found no references that assign weights based on the
structure of the data, irrespectively of the quality of produced solutions and used
modelling technique.

Ideally the weights wi should not depend on the loss functional L(yi, f(xi))
used in (2.2) and (2.5), and on the modelling method, but depend only on the
training data (xi, yi), i = 1 : N .

The modeling system trained with the modified empirical risk functional will
be discouraged to have inaccuracies in the points with higher weights wi. If thewi

reflect the importance of the corresponding data records and correctly estimate
the amount of ’shared responsibility’ of records relative to the sparseness of the
data space, incorporation of the wi into the risk functional will force the modeling
system to accurately predict under-represented areas of the data space.

Since the weights in the weighted empirical risk functional act as approximations
of the data density, their definition has to be related to the mutual distances
between data records. Chapter 1 has defined four distance-based weighing
procedures, which estimated the relative importance of a data record based on
the following attributes:

1. proximity to k nearest-in-the-input-space neighbors (see Eq. (2.8));

2. surrounding by k nearest-in-the-input-space neighbors (see Eq. (2.9));

3. remoteness from k nearest-in-the-input-space neighbors (see Eq. (2.10));

4. local non-linearity relative to k (k >= d + 1) nearest-in-the-input-space
neighbors (see Eq. (2.12)).

The goal of this chapter is to evaluate the impact of using the proposed
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weighing schemes for the purpose of data balancing in the framework of weighted
regression.

5.2 Types of weighted regression and GP settings

This section defines different types of weighted regression that should, according
to hypotheses of the previous section, outperform standard regression on
imbalanced input-output data sets.

Three ways to combine tactics for data weighing and data compression
presented in Chapter 2, are suggested:

1. Weighted regression via GP. In this general approach, weights based
on proximity, surrounding, remoteness, or non-linearity are incorporated
into the fitness function directly. Obtaining the weighted fitness functions
from the empirical risk functional (2.5) is straightforward. Weighted mean-
squared error of a GP individual f̂ , computed with weights wi on a set of
training points (xi, yi), i = 1 : N , is defined as:

MSEw(f̂(xi), yi) =
N∑

i=1

(
wi

(
yi − f̂(xi)

)2
)

/

n∑

i=1

wi. (5.1)

Weighted correlation between the output f̂(x), predicted by a GP individual
f̂ , and the observed output y is defines as:

Rw(f̂(x, y) =
Ew

(
y · f̂(x)

)
− Ew(y) · Ew

(
f̂(x)

)

√
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, (5.2)

where Ew(y) is the weighted average of vector y:

Ew(y) =
n∑

i=1

wiyi/

n∑

i=1

wi. (5.3)

2. Exploratory regression via GP. In this approach the training data
is first compressed to a balanced subset via the smits procedure using
proximity, surrounding, remoteness, or non-linearity weights. The selected
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Table 5.1: GP Parameters for regression experiments

Number of independent runs 50
Budget per generation 100N function evaluations

(N is the number of records)
Total number of generations 250

unless stated differently
Population size of REFERENCE runs 100

Archive size 50
Complexity measure Expressional

Complexity Limit 400
500 for Salustowicz2DBio problem

Population tournament size 7
Archive tournament size 5

Crossover rate 0.95
Mutation rate 0.05

Rate of mutation on terminals 0.3
Range for random real constants [-10, 10]

Basic Function Set +, −, ∗, /, square
xconst, x + const, x · const, ex, e−x

Function Set Salustowicz2D Basic Set, sin x, cos x

subset is then modelled by standard (unweighed) symbolic regression via
Pareto GP with bigger population sizes. Larger populations enhance
exploration of the search space and may therefore improve the effectiveness
of evolution, provided that the subset of data captures the information
about the underlying response surface.

3. Weighted exploratory regression via GP. The third approach is
similar to the previous approach in compressing the data to a balanced
subset via the smits procedure (using proximity, surrounding, remoteness
or non-linearity weights). The difference with exploratory regression is in
applying weighted regression to the selected subset with bigger population
sizes.

Performance of the indicated types of weighted regression is compared with
the performance of the standard symbolic regression on five case studies. The
quality of solutions of all experiments is determined by the root mean-squared
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error on the test set. For the weighted regression runs no weights are used for
computing the root mean squared error on the test set. The results of the GP
runs are compared with respect to the best root mean squared error on the test
data of an archive of GP solutions at the last 250th generation.

For each experiment 50 independent GP runs are performed with the same
computational budget, where computational budget is defined as a fixed number
of function evaluations. The significance of the improvement in the best error
is examined via two-sided Wilcoxon-Mann-Whitney tests for comparing the
medians of the error samples.

Standard regression is performed by an archive-based Pareto genetic program-
ming system, described in the previous chapter. Experiments related to standard
regression are referred to as REFERENCE runs. Settings of the Pareto GP
parameters are presented in Table 5.1.

All experiments of this chapter use the same computational budget, measured
in the number of function evaluations. The budget is fixed to 100N evaluations
per generation, where N is the number of records in the data set. For exploratory
runs if the data is compressed to a balanced subset of p% of the original size, the
size of the population is set to 100N

p · 100 individuals.

Comparison experiments are performed on five test regression problems with
three diverse response surfaces defined by the following functions:

1. Salustowicz1d function (Keijzer, 2003; Salustowicz and Schmidhuber,
1997):

f1(x) = x3 exp−x cos x sin x(sin2 x cos x− 1); (5.4)

2. Kotanchek function (Vladislavleva et al., 2008):

f2(x1, x2) =
e−(x1−1)2

1.2 + (x2 − 2.5)2
; (5.5)

3. Salustowicz2d function (Vladislavleva et al., 2008):

f3(x1, x2) = (x2 − 5)f̂1(x1). (5.6)



139 5.3. Case studies

5.3 Case studies

5.3.1 Salustowicz1d problem

Salustowicz1d function is used for creating one test problem with big gaps in
the input space. The input data of the Salustowicz1d problem is obtained
as a subset of 72 points selected from 100 points sampled uniformly from the
interval [0, 10] (see Figures 5.1 and 5.2). For test data we use 1001 values of the
Salustowicz1d function points sampled uniformly from an interval [−0.5, 10.5].

Salustowicz1d problem with missing data is a good example of the situation
where missing an ’outlier’ in under-represented region may lead to notoriously
erroneous regression models. We illustrate the differences in weighing the data
with different weighing functionals in Figure 5.1 and the results of the smits-
based compression of the Salustowicz1d data to 20 points in Figure 5.2. Plot
(e) of Figure 5.2 represents the results of compressing the data to a space-filling
subset in the input space, obtained by the smits procedure with the proximity-
X (see Eq.(2.6)) weight with two nearest neighbors. Despite the fact that the
outlier point appears in the result of the space-filling compression with proximity-
X weight, it may provide insufficient information about areas of the local non-
linearity of the Salustowicz1d curve, especially when compared with the results
of surrounding- or non-linearity-based compression.

Ten experiments were set up to assess the effects of weighted and exploratory
regression on the quality of final solutions when modeling the Salustowicz1d
problem. The results with respect to the best root mean-squared error of the
solutions over 50 independent runs are presented in Figure 5.3.

The REFERENCE runs use the entire data set of 72 points with all
weights equal to one. The ProxWEIGHT, SurrWEIGHT, RemotWEIGHT
and NonLinWEIGHT stand for the weighted regression via GP performed on
the complete data set with the weights obtained via a corresponding weighing
procedures. The relative differences of the weights can be observed in Figures
5.1(a) for proximity, 5.1(b) for surrounding,5.1(c) for remoteness, and 5.1(d) for
non-linearity weights.

The UniformExplore, ProxExplore, SurrExplore, RemotExplore, and NonLin-
Explore in Figure 5.3(b) stand for exploratory regression runs applied to
compressed subsets of the Salustowicz1d data. These subsets are the results
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(a) Proximity weights, k = 2
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(b) Surrounding weights, k = 6
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(c) Remoteness weights, k = 2
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(d) Non-linearity weights, k = 2

Figure 5.1: Results of Weighing of the Salustowicz1d Data. The figure represents four
different weighing schemes applied to a data set of 72 points sampled from the Salustowicz1d
function defined by Eq.(5.4). The given data set is an example of a situation, where assigning
high weights to the isolated point is necessary for forcing solutions to go through that point and,
therefore, to agree with the true underlying response curve in the under-represented areas. Data
points are depicted by circles whose radii are proportional to the computed weights. Observe
that the proximity, surrounding, and non-linearity weights of the isolated point is considerably
higher than weights of other points. Remoteness weights are not suffering from the dominance
of that point as much as the proximity and surrounding weights do.
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(b) Surrounding Compression, k = 6
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(c) Remoteness Compression, k = 2
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(d) Non-linearity Compression, k = 2
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(e) Proximity-X Compression, k = 2

Figure 5.2: Results of smits-based Compression of the Salustowicz1d data. Figure
represents the results of compression of the 72 points of the Salustowicz1d problem to balanced
subsets of 20 points with the smits procedure applied to proximity, surrounding, remoteness,
non-linearity, and remoteness-X weights. Proximity-X weights used in the last plot lead to
a subset of 20 points, which is more or less space-filling in the input space. Note, that
the compression to a subset that ’uniformly’ covers the input space, may provide insufficient
information about the underlying non-linear response surface.
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(a) Standard vs. Weighted Regression
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Figure 5.3: Fitness of the solutions on the TEST set at the last generation
for the Salustowicz1d problem. Plot 5.3(a) represents a comparison of the reference
GP runs with the runs minimizing a weighted fitness (WNMSE) for four weighing schemes:
proximity, surrounding, remoteness and non-linearity. Plot 5.3(b) represents the comparison
of the reference runs with the exploratory runs based on the smits compression of the data
via the four above-mentioned weighing schemes. For all exploratory runs the original data
set of 72 points was compressed to 20 points (the training data are plotted in Figure 5.2(a),
5.2(b), 5.2(c), 5.2(d), 5.2(e) for ProxExplore, SurrExplore, RemoteExplore, NonLinExplore,
and UniformExplore runs respectively). The population size of the reference runs is 100
equations, the population size of the exploratory runs is 360 equations, the total budget per
generation is 7200 function evaluations for all runs. The boxplots are built based on the results
of 50 independent runs performed for each experiment.
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of the smits-based compression to 20 points with one of the five weighing
functionals. We plot them in Figure 5.2(a) for proximity, 5.2(b) for surrounding,
5.2(c) for remoteness, 5.2(d) for non-linearity weights, and 5.2(e) for proximity-X
weights. Only those subsets are used as the training data for the exploratory runs.
The UniformExplore denotes the exploratory regression applied to the subset of
20 points obtained via the smits procedure using the proximity-X weight and
two nearest neighbors, that cover the input interval [0, 10] sufficiently uniformly.

Since the size of the training set in Exploratory runs is 3.6 times smaller
than the size of the original data used for training the REFERENCE runs, the
population size of the exploratory runs is increased to 360 individuals from the
reference size of 100 individuals.

The pair-wise Wilcoxon-Mann-Whitney rank-sum tests show that the runs
for weighted regression corresponding to ProxWEIGHT, SurrWEIGHT and
NonLinWEIGHT produce median root mean squared error on the test data,
which is significantly smaller than the one of the REFERENCE runs. The
p-values for rejecting the null-hypothesis of equal medians (for the pair-wise
comparison with the reference) are 0.0006, 0.0009, and 0.0002 for the proximity,
surrounding, and non-linearity weights respectively. The non-linearity based
weighted regression also significantly outperforms regression based on proximity,
surrounding and remoteness weights (p-values for pair-wise Wilcoxon rank-sum
tests are 0.0433, 0.0398, and 0.0012 respectively).

The exploratory regression UniformExplore on the subset, uniformly covering
the input space (plotted in Figure 5.2(e)) is significantly inferior to standard
regression of the REFERENCE runs with respect to the best error on the test
set (p-value for the null hypothesis is 0.0042). All other exploratory runs,
ProxExplore, SurrExplore, RemExplore and NonLinExplore, show significant
superiority over the REFERENCE runs with p-values 0.0003, 0.0051, 0.0125,
0.0000 respectively. All exploratory runs are statistically inferior to NonLinExplore
runs with zero p-values.

The results demonstrate that the maximum improvement of the weighted
regression over the standard regression on Salustowicz1d problem is obtained
with the non-linearity weights. Exploratory regression via GP significantly
improves the standard regression for all weights, but the improvement of non-
linearity- based exploratory regression is maximal. The latter also statistically
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outperforms the weighted regression on non-linearity weights with a small p-
value, namely 0.0412.

5.3.2 Kotanchek100 problem

This and the two following case studies are created using the Kotanchek function
with various input sets. Kotanchek100 problem contains a set of 100 points
with inputs sampled randomly and uniformly from the interval [0.2, 3.8]×[0.2, 3.8]
and outputs computed with the Kotanchek function, see Figure 5.4(a).

The test set for Kotanchek100 problem consists of 4225 points and forms a
uniform mesh on the input interval [0, 4]× [0, 4].

The purpose of experiments on the Kotanchek100 problem is to test whether
weighted regression and exploratory regression based on the non-linearity weights
still outperform the standard regression in the case of a standard random uniform
sampling of a two dimensional input space.

Figure 5.4(c) demonstrates the best root mean squared error of the final GP
solutions over 50 independent runs. ProxWEIGHT and SurrWEIGHT stand for
weighted regression with proximity and surrounding weights for three nearest-
in-the-input-space neighbors. NonLinWEIGHT stands for weighted regression
with non-linearity weights for the same neighborhood size, see Figure 5.4(b).
NonLinExplore stand for exploratory regression applied to a subset of 30 points
obtained with the smits-based compression of 100 Kotanchek100 points. The
population size of the exploratory runs is 332 individuals. The computational
budget is equal to 10000 function evaluations per generation for all experiments.

The Wilcoxon rank sum tests did not reveal statistical differences between
the REFERENCE runs and the runs for weighted regression on proximity and
surrounding weights. The solutions of NonLinWEIGHT and NonLinExplore
runs are statistically better on the test set than the reference solutions with
p-values equal to 0.0176 and 0.0010. There is no evidence that the solutions of
NonLinWEIGHT and NonLinExplore are statistically different.

5.3.3 KotanchekImbalanced problem

Training data for the KotanchekImbalanced problem consist of 100 points
with inputs sampled non-uniformly from the interval [0.2, 3.8]× [0.2, 3.8] in such
a way, that only one half of the records captures the non-linearity of the response
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Figure 5.4: Weighted and Exploratory regression on the Kotanchek100 problem.
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surface of the Kotanchek function. The test set for KotanchekImbalanced
problem is the same as for the Kotanchek100 problem and consists of 4225
points and forms a uniform mesh on the input interval [0, 4]× [0, 4].

The empirical results obtained for two previous case studies have indicated
that weighing and smits-based compression obtained with the non-linearity
weight can significantly improve the quality of GP solutions for small and
reasonably sampled data sets, where points are uniformly surrounded by
k nearest-in-the-input space neighbors. The KotanchekImbalanced is an
example of a very imbalanced data set, such that the distances to the three
nearest-in-the-input-space neighbors vary significantly over the data samples.
Due to this fact, weighing based on the non-linearity may not be beneficial for
regression.

We test this hypothesis in Figure 5.5(c). The box-plot confirms that the
weighted regression based on the non-linearity weights does not produce a
statistically significant improvement of the solutions on the test set compared
with standard regression on the KotanchekImbalanced problem. On the contrary,
the REFERENCE runs are statistically better that the NonLinWEIGHT runs
with p-value of 0.0091.

The ProxWEIGHT and SurrWEIGHT runs stand for the weighted regression
with proximity and surrounding weights with three nearest-in-the input space
neighbors. Despite the imbalancedness of the data set, the ProxWEIGHT and
SurrWEIGHT runs do show the significant improvement over the REFERENCE
runs with p-values equal to 0.0051 and 0.0000 respectively.

The exploratory regression runs are performed on a subset of 50 points,
obtained with the smits-based compression of KotanchekImbalanced data
using proximity weights for ProxExplore, and non-linearity weights for NonLin-
Explore. The population size of exploratory runs is 200, the computational
budget is 10000 function evaluations per generation. Both exploratory regression
experiments based on proximity and non-linearity weights show significant
improvement over the reference runs with zero p-values.

5.3.4 KotanchekBio problem

The training set for KotanchekBio problem consist of 3931 records with inputs
corresponding to an industrial set of real measurements scaled to the interval
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Figure 5.5: Weighted and Exploratory regression on the KotanchekImbalanced
Problem.
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[0, 4.8] × [0, 4.8]. The input set comes from the study on the Biox water
purification plant and the relation of plants’ feeding systems to the amount of
the floating sludge. Two Biox-related input variables and the corresponding
undesigned set of physical measurements were selected as an example of real-life
imbalanced input data. The responses for given 3931 records is computed using
the Kotanchek function (Eq. 5.5).

KotanchekBio problem is heavily over-sampled, see Figure 5.6(a). The
expectation for such over-sampled data is that exploratory regression should
produce significantly better solutions if the compressed training subset captures
the information content of the data.

The weighted, exploratory, and weighted exploratory symbolic regression of
the KotanchekBio data is performed using the non-linearity weights computed
with five nearest-in-the-input-space neighbors (in some areas of the data space,
data sampling is so dense or contains duplicate points that the least-square planes
approximating a smaller number of nearest-in-the-input-space neighbors (4 and
3) are ill defined). For the training data of exploratory runs NonLinExplore
and NonLinExploreWEIGHT we compressed the KotanchekBio set to a subset
of 250 points with the smits procedure using non-linearity weights, see Figure
5.6(c). The cumulative information content of the obtained subset is 0.75
(see Figure 5.6(b)). The population size used for modeling the compressed
subset is 1572 individuals (for both NonLinExplore and NonLinExploreWEIGHT
experiments). NonLinExploreWEIGHT experiments use the selected subset of
250 points weighted with non-linearity weights for three nearest-in-the-input-
space neighbors. The weights of the compressed subset are illustrated in Figure
5.5(b).

Analysis of empirical results on the KotanchekBio problem leads to
surprising conclusions. Not only the exploratory runs, NonLinExplore and
NonLinExplore- WEIGHT significantly outperform the REFERENCE runs
with zero p-values, but also do all weighted regression runs ProxWEIGHT,
SurrWEIGHT, NonLinWEIGHT, with p-values of 0.0001, 0.0002, and 0.0000
respectively. The mean and the median of the best root mean-squared errors
of the NonLinExploreWEIGHT runs are smaller than those of NonLinExplore
runs, but two sided ANOVA tests and Wilcoxon-Mann-Whitney tests do not
reveal statistically significant differences between these two experiments. Both
exploratory runs outperform the weighted regression runs with zero p-values.
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Figure 5.6: Weighted, Exploratory and Exploratory Weighted regression on the
KotanchekBio Data using the non-linearity weights. The quality of GP solutions
can be significantly improved at the same computational budget if non-linearity weights
are incorporated into the fitness function (NonLinWEIGHT). Such weighted regression can
be further improved by compressing the KotanchekBio data with the smits procedure to
15.72% of the original size and applying to it exploratory regression with bigger populations
(NonLinExplore). We hypothesize, that further weighing of the compressed subset may
again cause the improvement in the quality of final solutions (NonLinExploreWEIGHT).
However, for this data set no statistical difference is observed between NonLinExplore and
NonLinExploreWEIGHT runs. We explain this by the fact that the errors obtained by the
NonLinExplore runs are already very low, and the GP system has difficulties in outperforming
such good solutions with statistical significance.
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(b) Cumulative Information Content

Figure 5.7: Salustowicz2dBio problem with 3931 records and the Cumulative
Information Content of rankings obtained with the smits procedure and different
weight functionals and five nearest-in-the-input-space-neighbors.

5.3.5 Salustowicz2dBio Data

For the set of training inputs of the Salustowicz2dBio problem the same real-
life Biox set was used as for the KotanchekBio problem, but now scaled to the
interval [0, 15]×[−2, 13]. The training response is computed by the Salustowicz2d
function given by Eq.(5.6). Input data and the contour plot of the Salustowicz2d
function are presented in Figure 5.7(a).

The test data for the Salustowicz2dBio problem contains 5000 records, and
forms a uniform mesh on the interval [0, 15]× [−2, 13].

Salustowicz2dBio data is a very difficult regression problem, since most of
the 3931 data points are sampled from a relatively ‘flat’ region of the response
surface, see Figure 5.7(a). To prevent convergence to a trivial solution we model
this problem with a correlation as fitness function and add sine and cosine to the
set of basic functions; see Table 5.1. Short runs of 160 generations are performed,
with a fixed budget equal to 3931× 100 function evaluations per generation.

For exploratory runs NonLinExplore the Salustowicz2dBio data were
ranked with the smits procedure using non-linearity weights with five nearest-
in-the-input-space neighbors. From the ranked set a subset of the top 655 points
was selected with a cumulative information content of 0.9, see Figures 5.8(a)
and 5.7(b). This compressed subset was used as the training set for exploratory
experiments runs with populations of b3931/655 · 100c = 600 individuals.

For weighted exploratory regression (NonLinExploreWEIGHT runs) we use
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Figure 5.8: Weighted, Exploratory and Exploratory weighted regression on the
Salustowicz2dBio data. Figures (a) and (b) present the results of the smits-based
compression of the Salustowicz2dBio data to subset of 655 and and corresponding non-linearity
weights of the compressed set. Figure (c) presents the box-whisker plots of the GP results. The
subset of 655 points is used as the training set for NonLinExplore experiments with populations
of 600 individuals. The NonLinExploreWEIGHT experiments are trained on the same subset
of 655 points but with the non-linearity weights depicted in plot (b).
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Figure 5.9: Compression of the Salustowicz2dBio data to 250 points with the
smits procedure using non-linearity weights and five nearest-in-the-input-space
neighbors.

the compressed set of 655 points together with computed non-linearity weights
with three nearest-in-the-input-space neighbors; see Figure 5.8(b). The weighted
exploratory regression is performed with populations of 600 individuals.

The results of the smits-based compression of Salustowicz2dBio data with
non-linearity weights to 250 points are presented in Figure 5.9. The resulting
subset can be compared with the compression of KotanchekBio data to 250
points with non-linearity weights and the same number of nearest-in-the-input-
space neighbors, plotted in Figure 5.6(c). Comparing the compressed subsets, we
can visually confirm that the smits-based compression using the non-linearity
weights does better sample the areas of the response surface that have local non-
linearities. Comparing Figures 5.9 and 5.6(c) we can observe the big difference in
the compressed subsets of 250 records, corresponding to two data sets, which are
originally identical in the input space (after scaling), but have response surfaces
of different non-linearity.

The performance of regression experiments is summarized in Figure 5.8(c).
The results indicate that the weighted regression on the full Salustowicz2dBio
data does not cause improvements of final solutions. The exploratory regression
experiments NonLinExplore and NonLinExploreWEIGHT are superior to the
REFERENCE and NonLinWEIGHT runs significantly with virtually zero p-
values. Weighted exploratory regression (NonLinExploreWEIGHT) is statistically
superior to exploratory regression experiments (NonLinExplore) this time,
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although with a relatively high p-value of 0.0302.

5.4 Summary and guidelines

This chapter has presented the possibilities of improving symbolic regression
via genetic programming by changing the model evaluation routine through
incorporation of the information about the relative importance of the input-
output data records into the definition of the error function.

Three methods of changing the fitness function are presented. All of them
exploit the procedures for data weighing and data balancing introduced in
Chapter 2.

Based on the results of applying the proposed methods to five regression
problems, the following preliminary conclusions can be drawn:

1) Weighted regression consisting of direct incorporation of weights into the
fitness function, can significantly outperform standard regression. The best
improvements are observed when using the non-linearity weights for the case
of relatively balanced data sets, and when using surrounding weights for the case
of very imbalanced data sets.

2) The iterative smits procedure (ranking the input-output data set in the
order of decreasing importance) can be successfully used for compressing the
input-output data to smaller subsets with a similar information content. This
feature may considerably enhance the analysis and modeling of large imbalanced
data sets with highly non-linear response surfaces, when more modeling effort
is applied to smaller subsets of data. This statement is validated by statistical
superiority of exploratory regression experiments over the standard regression
experiments on all case studies.

3) If input-output data is heavily over-sampled, it can be beneficial to
compress it with the smits procedure using non-linearity, or surrounding weight
to a smaller balanced subset of a similar information content and then apply
weighted regression to the compressed subset, using non-linearity or surrounding
weights.

4) For data with d-dimensional input space, k = d + 1 appears to be
an appropriate default setting for the number of nearest-in-the-input-space
neighbors for the general-purpose weighing routine, especially with the non-
linearity weight. If surrounding or remoteness weights are used, reducing the
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neighborhood size to one neighbor may be beneficial for improving efficiency
of weight calculations. The weights need to be computed only once, in a pre-
processing stage before the modeling stage. However, in dynamic environments
re-balancing will be required when the data set changes. In such situations,
reducing the neighborhood size to one neighbor (and using surrounding weights)
will be crucial for efficiency.

Figure 5.10 summarizes the guidelines for data balancing at the current state
of research (presented in this chapter and in Chapter 1). When the data set is
given, it is usually easy to say whether it is clearly under-sampled or not. If it is
under-sampled and nothing else is known about the underlying function or areas
of the design space that are of any special importance - no balancing should be
performed before applying standard regression (all weights in the fitness functions
are equal to one).

If the data is not heavily under-sampled, and compression is not required,
weighted regression can produce results significantly better than those of standard
regression. Some intuition and more research are required to decide on the
weighing scheme, but if the data is not too imbalanced, then it is worthwhile to
use the non-linearity weights. Otherwise, surrounding, remoteness, or proximity
weights can be used.

If computational resources allow, it is better to compute proximity, surrounding,
remoteness, and non-linearity weights all together. Their sorted profiles provide
insight into the structure of the data.

For over-sampled data sets we recommend using the smits procedure on one
of the four weighing schemes for compressing the data to a smaller balanced
subset. This subset can be either used in the standard regression, or it
can be weighted again. Since the compressed balanced subset will not be
imbalanced by definition, we advise using non-linearity weights for balancing
the subset points. In high-dimensional data, however, especially coming from
measurements, the surrounding weight seems to be a better choice than the
non-linearity weight, whose meaning deteriorates if nearest-in-the-input-space
neighbors are not surrounding the points, where the weights is computed
uniformly.

As summarized in Chapter 2, for data sets of high dimensionality the use of
fractional distance metrics (Aggarwal et al., 2001; Doherty et al., 2004; François



155 5.4. Summary and guidelines

Rank the 
data via 
 SMITS 

Rank the 
data via 

SMITS  in 
the INPUT 

space

DATA SET

Proximity Weight 

Surrounding Weight

Non-linearity Weight

Proximity Rank

Remoteness Rank

Surrounding Rank

Non-linearity Rank

IS UNDER-
SAMPLED?

Assign 
equal 

weights

Yes

M
O

D
E

L
 t

h
e 

D
at

a 
w

it
h

 a
 W

E
IG

H
T

E
D

 f
it

n
es

s 
fu

n
ct

io
n

Want to 
COMPRESS?

No

WEIGH 
the DATA 

set

No

Remoteness Weight 

Want a 
space-filling 
subset in the 

INPUT 
space?

Select a 
balanced 
SUBSET  Assign 

Equal 
Weights

Proximity-X Rank

Remoteness-X Rank

Select a balanced space-
filling SUBSET in the 

INPUT space

Yes

No

Yes

Figure 5.10: Guidelines for data balancing relative to the user request.



Chapter 5. Model Evaluation through Data Balancing 156

et al., 2007; Jin et al., 2003) is strongly advised for finding nearest or nearest-in-
the input space neighbors. We also recommend to perform data balancing in the
subspace of significant variables1, and indicate that further research is needed to
study the effects of including spurious variables into the weighing procedures.

In general the case studies demonstrated that data balancing can improve
the results of symbolic regression in one or another way. This is a motivating
incentive to continue research on data balancing and to keep looking for new
opportunities to further enhance the capabilities of symbolic regression via
genetic programming.

1When high-dimensional data needs to be weighted, short screening GP runs may be needed
for initial variable sensitivity analysis and dimensionality reduction. In general, we suggest to
incorporate automatic re-balancing routines into the automatic on-line sensitivity analysis.



6
Model Evaluation through Goal Softening

This chapter presents a new enhancement of the old idea of evaluating regression
models on subsets of training data to speed-up evolution, to improve robustness,
and to escape from local optima of the fitness landscape. The new view on partial
fitness evaluations consists in the use of the principles of ordinal optimization.
The latter, when applied to iterative search in vast search spaces, suggests to
start evaluating large quantities of potential solutions coarsely, and gradually
increase the fidelity of evaluations, once potentially suitable areas of the search
space are identified.

The chapter illustrates that focusing on ranking in combination with goal
softening is a very powerful way to improve the efficiency and effectiveness of
archive-based evolutionary search. The presented strategy consists of partial
fitness evaluations of individuals on random subsets of the original data set,
with a gradual increase in the subset size in consecutive iterations. A series of
experiments performed on three test problems indicates that those evolutions
that started from the smallest subset sizes of only 10% of the original data size
consistently provide results that are superior in terms of the goodness of fit,
consistency between independent runs, and computational effort. The results
also suggest that solutions obtained using the new approach are less complex
than the solutions of the standard regression.
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6.1 Motivation

Identification of a mathematical expression describing the behavior of an
unknown system is a challenging task. The search space of a real-life symbolic
regression problem is tremendously huge. The lack of any significant structure
makes the navigation through this search space intrinsically hard. Noise, multi-
dimensionality of data, complexity of underlying relationships also contribute to
making the search inherently difficult.

In the evolutionary framework, three (over-lapping) ways can be distinguished
to reduce the time needed to find an appropriate solution or a solution ensemble
in a large search space.

The first approach is to transform the search space to a smaller one or a
smoother one. Examples of such transformations are changing the representation
of individuals, parsimony pressure, introducing multi-objective optimization,
elite-based selection, automatical selection of driving variables, and adaptive
fitness function.

The second approach is to improve the navigation through the search space to
increase the probability of discovering promising areas of solutions with sufficient
quality. Examples of this approach are the optimization of genetic operators,
again changing the representation, alternating complexity measures in the multi-
objective optimization framework, etc.

The third approach is to speed-up the routines for fitness evaluation. It has
been studied extensively by researchers practicing evolutionary computation since
the early 90s. Here three main directions to reduce the computational effort can
be distinguished1:

1. evaluating all individuals on subsets of training data of a certain size;

2. racing individuals on subsets of training data to focus computational effort
on guaranteed winners of selection;

3. backward chaining an evolutionary algorithm for evaluating only those
individuals that are sampled for the tournaments.

Zhang and Veenker (1991) presented an inspiring idea on efficient training of
neural networks on reduced training sets. Gathercole and Ross (1994) enhanced

1Besides these enhancements the question of an actual speed-up of fitness evaluation by
using registers or graphic processing units has been studied extensively in the last years; see
Brameier et al. (1999) and Harding and Banzhaf (2007).
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classification via genetic programming with three subset selection schemes for
training data - dynamic, historical, and random subset selection. This approach
to boosting classification was further developed by Curry and Heywood (2004),
who presented hierarchical dynamic subset selection for classifying large data
sets (see also (Song et al., 2005)), and by Curry et al. (2007), who enhanced the
methodology by hierarchical balanced-block dynamic subset selection, again for
classification.

Teller and Andre (1997) came up with a rational allocation of trials - a general
framework for automatic subset selection, which for the first time applied racing
to regression models generated through evolutionary computation and allowed
big savings in the computation time.

Zhang and Cho (1998) accelerated genetic programming with active subset
selection for evolution of multi-agent strategies. The active subset selection
consisted in incremental data inheritance, where data subsets are nested and
are evolved through data cross-over in parallel with the evolution of individuals,
see also (Zhang and Joung, 1999). Zhang (1999) introduced Bayesian genetic
programming as a framework for evolving ”compact programs fast without loss
of their generalization accuracy” that embraced the incremental data inheritance.

Since 1997 co-evolutionary techniques for enhanced problem solving have
received much attention (e.g., (Ahluwalia and Bull, 2001; Bucci et al., 2004;
Ficici and Pollack, 2001; Rosin and Belew, 1997)). Papers by (Bongard and
Lipson, 2005; Lemczyk and Heywood, 2007; Schmidt and Lipson, 2006) report
large reduction in computation time by using a co-evolutionary framework, where
combinations of training records of a fixed (small) size are co-evolving together
with regression models.

Lasarczyk et al. (2004) introduced dynamic subset selection based on a fitness
case topology; this is the first approach to selecting points that provide the most
diverse information about the problem structure based on the performance of
population individuals.

Poli (2005) suggested backward chaining for evolutionary algorithms with
tournament selection to save computation effort of individuals that are never
selected for tournaments, see also (Poli and Langdon, 2005) for empirical study of
backward chaining in genetic programming. The biggest savings of computation
time can be achieved when very low selection pressure is used with big population
sizes in short runs.
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Some of the proposed schemes are very generic and can be used simultaneously
without considerable change in evolutionary strategy to achieve a meta-speed
up in function evaluations. For example, rational allocation of trials of Teller
and Andre (1997), topology based selection of Lasarczyk et al. (2004), and
backward chaining GP of Poli and Langdon (2005) are smart approaches for
avoiding unnecessary calculations. Using one or another technique does not
forbid application of sub-sampling schemes, aimed at evaluating individuals on a
(common) subset of the training set over several generations in a row.

We propose an approach based on the ideas of the theory of Ordinal
Optimization (for the best description see (Ho, 2000)). The ideas of ordinal
optimization, and more specifically of goal softening and ranking, not only fully
concur with common sense and intuition about evolutionary search, but may
couch them in the strong language of mathematics.

A first simple application of ordinal optimization to genetic programming is
presented in Smits and Vladislavleva (2006). This chapter further extends and
analyzes the concept of ordinal Pareto GP presented in (Smits and Vladislavleva,
2006). It also applies additional goal softening to archive-based Pareto genetic
programming and illustrates that further reduction of the computational budget
is possible while effectively keeping the same quality of the results. We present a
preliminary examination of the impact of allocating more computational budget
to the exploration stage of a GP run without changing the total budget for the
run.

6.2 Goal Softening and Ranking

The concept of Ordinal Optimization is extensively described in (Ho, 2000). This
section presents a simplictic summary of the main ideas; see also (Ho, 2000; Ho
et al., 2000; Lau and Ho, 1997). The theory rests on two basic tenets:

• It is easier to find a good enough solution with high confidence than the
best solution for sure. Such goal softening helps to smooth and direct the
search.

• It is easier to determine Order than Value, or, in other words, it is easier
to determine whether A > B than to determine A and B exactly.
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When solving hard problems by computationally expensive (e.g. evolutionary)
search-based methods, we argue that quickly narrowing down the search for an
optimum to a ’good enough’ subset of the search space is more important than
accurate estimation of performance of potential solutions during the search.

Goal Softening

In real-life problems the true optimum is often unattainable, and the compromise
is ’good enough’ solutions. This substitution of the best solution by a good
enough subset of solutions, or of being sure by being confident with high
probability is an example of softening the optimization goals.

Order vs. Value

Imagine we have to quickly select the fastest runner of two. Instead of monitoring
them separately for weeks and measuring the speed on various distances, we
will let them compete with each other, and will choose the one who arrives at
the finish first. In general, it is much easier to determine whether A > B,
i.e. to determine the order, than to exactly estimate the difference between A
and B under multiple conditions, i.e. to examine their cardinal values. Thus,
although there is less certainty associated with the decision based on the ordinal
approach, it is obtained at a much lower cost compared with the approach based
on exhaustive evaluations.

6.3 Goal softening and ranking in GP

6.3.1 Ordinal ParetoGP: better solutions with more effort

Motivation

Considering the vastness of the search space, we can improve the effectiveness of
our evolutionary search procedure in either of two ways. One way is to try to get
solutions of a similar quality at a lower computational cost. A second way is to
try to get solutions of a better quality at the same or similar computational cost.
We question whether we need exhaustive fitness evaluations to evolve solutions
of a similar quality. If fitness evaluation can be ’softened’, to what extent can
we then decrease the size of the subsets of the data to perform this evaluation?
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We also wonder, what can be gained in terms of system performance and the
computational budget, by evaluating more potential solutions at a lower cost
and by gradually improving the fidelity of the fitness evaluations in the course of
an evolution.

In symbolic regression via GP the bulk of the computational effort is spent
on fitness evaluation of the individuals2. In many cases all available records of a
given data set are used to determine the fitness of every individual. These fitness
values are then used to rank all models, and then decide who gets the right
to propagate and who does not. As emphasized in (Smits and Vladislavleva,
2006), it is not really critical what sort of selection system is being used - the
essence is that all that is required is an ordering of the equations in terms of
their performance (actually what we really need is not an ordering in terms of
their current performance but an ordering in terms of their potential to generate
better offspring).

Initial empirical studies of (Smits and Vladislavleva, 2006) confirmed the
general trend of awareness that the effectiveness and the reproducibility of
the search can be improved considerably by introducing incomplete fitness
evaluations. The winning strategy used partial fitness evaluations on random
subsets of the original data set, while gradually increasing the subset size
and decreasing the population size in consecutive generations. Partial fitness
evaluations with stochastic sampling started with the subset size of 10% of the
original size, and increased it to 100% during the first 200 of the total of 250
generations. At the same time the population size was decreased linearly from
1000 to 100 over the first 200 generations. The archive size was kept constant
at 100 models at all times. These ordinal ParetoGP runs of 250 generations
outperformed standard ParetoGP runs of a 1000 generations, both in terms of
the final fitness and the consistency of 30 independent replicates.

The next section presents an explanation of the improved performance
observed in (Smits and Vladislavleva, 2006) by examining the influence of partial
fitness evaluations on the ranking of individuals and observing the resulting
change in the balance of exploration versus exploitation.

2This holds for data sets of medium and large size, which are our main interest.
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Better solutions because of better exploration

Instead of evaluating every model exhaustively using the full data set, the focus is
moved to the use of a subset of the available data to rank the models. A random
subset used to estimate the fitness of an individual introduces a certain level of
noise in this estimate. By repeatedly selecting different subsets of a given size to
determine the fitness of a given individual and examining resulting distributions,
we can get an idea of the level of uncertainty. These distributions obviously
depend on the size of the subset (smaller subsets will cause distributions with
bigger variance), but also depend on the individual itself (fitter individuals will
have smaller distributions), see Figure 6.1.

In Figure 6.2 we present the normal approximations of the histograms of the
distributions, presented in Figure 6.1. The means are equal to the true fitness
of the individuals, and the standard deviations are inversely proportional to the
subset size and to the quality of the model3.

When the true fitness distributions of two individuals overlap (see Figure 6.2),
and we have to rank individuals based on fitness evaluations on one subset, we can
obviously make an error in taking the decision which is the best of the two. These
’mistakes’ in the ranking are the first reason for enhanced exploration. A given
individual can outrank another individual in the population but in addition that
individual could also outperform and replace other individuals that are already
in the archive. Since individuals that would be of lower fitness can now end up
in the archive and contribute to creating offspring in the next generation, this
increases the level of exploration in the search.

Another reason for better exploration is the fact that the use of subsets allows
us to evaluate more models with the same computational budget. If we use
subsets of a given size, sampled uniformly at random, they will be different for
every generation. These will act as successive screens that every model will need
to pass in order to survive in the long term. The result is a regularizing effect
and increased robustness of the final models because there is less opportunity for
pathologies or for learning the noise that may be present in the data.

3This is true for smaller subset sizes (10-75%). For bigger subset sizes the distribution of
model fitness deviates from the normal, and can be modeled as a Weibull distribution.
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Figure 6.1: Partial fitness evaluations of archive models. The left plot illustrates the
sorted fitness values of an archive of a Kotanchek run at the last generation. Seven models
(emphasized as stars) are selected from 100 archive individuals for further analysis. The plot
at the right size shows the histograms of fitness distributions of model 1 and model 7 (the best
and the worst from the selected set of models), computed on 10000 random subsets of 20, 50,
and 80% of the training data. We see that the widths of the histograms, i.e. the deviation of
the estimated fitness from the true fitness, are inversely proportional to the size of the subset,
and to the quality of the individual itself. E.g., model 1, which is the best one in the archive,
has the narrowest fitness distribution, which becomes narrower as the subset size increases.

More effort because of archive re-evaluations

In the new approach the number of function evaluations is kept constant per
generation. Therefore, by design, the computational budget spent on fitness
evaluations of every new population does not change. An additional budget,
however, is required due to the presence of an archive in ParetoGP. At each
generation we create a new archive by merging the old one of the previous
generation with the new population, and selecting a fixed number of individuals
located at the Pareto front in fitness-complexity space.

Since a new subset to evaluate the population is selected randomly at every
generation, in principle, the fitness of the archive needs to be reevaluated
using exactly the same subset. Smits and Vladislavleva (2006) considered this
necessary, to make sure that we compare “apples with apples”, when updating
the archive for the next step. At each generation the extra computational effort
is equal to the product of the archive size and the number of records in the
current subset. This implies that the additional effort grows when the subset size
increases during the run. For the case where the subset size increases from 10%
to 100%, the archive re-evaluation step causes an increase of the total reference
computational budget by 45%.
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Figure 6.2: Approximated fitness distributions of the seven archive models from
Figure 6.1 computed using random subsets of 20, 50, and 80% of the original data
set for the Kotanchek problem.

The increase to 145% of computational budget is certainly not negligible,
despite the fact that considerable improvement in the quality of solutions is
obtained compared with the standard regression; see numerical experiments of
(Smits and Vladislavleva, 2006).

6.3.2 Soft ordinal ParetoGP - better solutions with less

effort

Given the additional effort required to re-evaluate the archive at every new
generation, we hypothesize that re-evaluation of achive models on the same subset
during updating the archive is not necessary to get a good enough ranking.

To observe the influence on the ranking of two individuals, we have to examine
another distribution which is derived from a consideration of the difference in
the estimated fitness of both individuals. This second distribution gives a direct
estimate of the probability of having a wrong estimate of the rank of the two
given individuals.

In Figure 6.3 the distributions of two different cardinal approaches to estimate
the ranking of two individuals are modeled - taking the difference of fitness
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estimates obtained on the same subset, and taking the difference of fitness
estimates obtained using different subsets of a similar size.

Comparing fitness of models evaluated on the same subset (left-hand side
of Figure 6.3) gives the most accurate estimates of the true difference in fitness,
and correspondingly in the true ranking of the individuals. Surprisingly, the error
in comparing fitness of models evaluated on different subsets (left-hand side of
Figure 6.3) is still small enough to make reasonably accurate decisions on the
ranking of individuals even for small subset sizes.

The essential elements of creating robust solutions are:

• Abundant exploration, caused by the use of larger population sizes and
a softer selection process;

• Sufficient exploitation, caused by selecting potentially good parent
models for further propagation. Despite the fact that the fidelity of the
selection process is lower due to partial fitness evaluation, the exploitation
of good models in the archive is still sufficient, due to the fact that winning
models need to survive multiple low-fidelity screens to stay in the game
and keep propagating. That being said, goal softening by means of partial
fitness evaluations introduces new modes of exploitation. It allows bad-but-
lucky models to propagate in the short term, but guarantees that truly good
models (which are good on all data points) will survive multiple screens and
keep propagating in the long term.

Since robust solutions of high quality are obtained when the balance between
abundant exploration and sufficient exploitation is maintained, we hypothesize
that allocating more computational budget to the initial part of the run
(for exploration) at the expense of budget allocated to the end of run (for
exploitation), may increase the speed-to-solution, provided that the exploitation
stays sufficient at the end of the run. Such approach is discussed in the next
section.

Goal softening comes from:

• the use of subsets instead of the entire data set;

• use of random subsets of a given size at every generation; (has a regularizing
effect on the models by reducing the chances for over-fitting)
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Figure 6.3: The histograms represent the difference in fitness values of the two
archive models, calculated 10000 times on the same subset (the left-hand side),
and different subsets of the same size (the right-hand side). The models used in
this analysis are model 5 and model 6, selected in Figure 6.1. Notice, that the widths of the
histograms on the left-hand side are much narrower than of the ones on the right-hand side.
This indicates that a higher variance in the actual value of the difference in fitness values of the
two models is introduced by evaluating them on different subsets. However, not the actual value
of this difference is important. Only the sign matters to make a decision about the ranking.
Thus, the fraction of the histogram area to the left of zero can be used to derive the probability
of making an incorrect ranking. Notice, that even in the worst case (the lower-right plot) an
error in ranking is made in only 32% of evaluations. This plot corresponds to evaluations on
20% of the original data - an evaluation scheme used only at the beginning of the evolution.
Given our commitment to soften the selection goals at the first generation, and only gradually
improve the screening towards the end of the evolution - a 30-40% chance to make a mistake
in ranking becomes more than appropriate.
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• not re-evaluating the archive models at every generation, and giving them
a chance to stay in the archive for a while.

There is synergy among these principles for guiding the search for better and
more robust solutions.

6.4 Case Studies

6.4.1 Goals of Experiments and test problems

Three test problems are used for regression experiments in this section:

1. Salustowicz1d100 problem is generated using the Salustowicz1d function
(5.4); it contains 101 records, with inputs sampled uniformly from the range
[0, 10]4,

f1(x) = x3 exp−x cos x sin x(sin2 x cos x− 1);

2. Kotanchek problem, drawn from (5.5), consists of 100 records, with
inputs sampled randomly uniformly from the box [0, 4]× [0, 4],

f2(x1, x2) =
e−(x2−1)2

1.2 + (x1 − 2.5)2
;

3. Tower problem is an industrial data set of gas chromatography measurements
of the composition of a distillation tower. The underlying data set contains
5000 records with noise and 25 potential input variables.

Table 6.1 presents parameters for ParetoGP used in all experiments unless
indicated otherwise.

The overall aim of all experiments was to get the highest quality results with
the largest reproducibility and the lowest computational cost. In this chapter we
focus on three case studies described below.

4In (Vladislavleva et al., 2007) this problem is referred to as Maarten problem, because
the function and the data sets are kindly provided by Maarten Keijzer. With many thanks to
Maarten, the decision is taken to synchronize the name of this problem with the name of the
first author of a publication where the function first appeared (see (Keijzer, 2003; Salustowicz
and Schmidhuber, 1997)).
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Table 6.1: Parameter settings of reference ParetoGP runs. Note, that the other
experiments described in Cases I-III have the same settings except for the population size, and
the size of the data set used for fitness evaluations.

Number of independent runs 30
Number of cascades 10

Number of generations per cascade 25
Total number of generations 250 (500 in PGPA)

Population size 100 (200 in PGPB)
Archive size 100

Run Performance measure Area% under Pareto front
Accuracy measure 1−NMSE (smaller values preferred)

Complexity measure Expressional
Population tournament size 5

Archive tournament size 3
Crossover rate 0.95
Mutation rate 0.05

Rate of mutation on terminals 0.3
Function set 1(Kotanchek, Tower) +,−,∗,/,ex,e−x,

xreal, x + real,x · real
Function set 2 (Salustowicz1d100) Function set 1, sinx, cos x

CASE I

The first experiment is an extension of a setup, discussed in (Smits and
Vladislavleva, 2006). It is based on partial fitness evaluation of GP individuals
on a random subsets of the original data set. Now, the selection of subsets
is performed randomly and uniformly from the collection of the available data
records. During the run the subset size is gradually increased, and the population
size is gradually decreased. As a result, a better exploration is pursued at
the beginning of the evolution when more individuals are evaluated at a time,
albeit more coarsely, and exploitation is improved towards the end of the run,
when fitness evaluations are refined by adding more data points. Five different
experiments are performed for various starting subset sizes of {10%, 20%, 40%,
60%, 80%} of the original data size.

Unlike (Smits and Vladislavleva, 2006), the number of function evaluations
per generation is constant. Therefore, when the scheme of increasing the data
subset size is chosen, and the number of records used for each generation is
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defined, the population size for a given generation is obtained by dividing the
number of function evaluations (the budget) per generation by the number of
records in a subset. All experiments were repeated at least 50 times to get
reliable statistics.

CASE II

In a second set of experiments we are repeating the set up described in Case I with
one small modification. We are no longer re-evaluating individuals in the archive
at every generation, but only at every tenth generation. The computational
budget assigned to these archive re-evaluations is cut by 90% compared with
Case I. This introduces further softening of the selection process, since archive
individuals that accidentally obtain (unrealistically) high fitness values, can still
survive in the archive for up to ten generations, and, hence, compete and
propagate their features to their offspring. As noted in the previous section,
the error in ranking caused by this approach are relatively small, and should still
produce solutions comparable with the solutions of Case I.

CASE III

In the previous two cases the computational budget per generation was kept
constant. In the third set of experiments we examine the effect of re-distributing
the total computational budget in such a way that we spend 50% more function
evaluations at the first generation, gradually decrease the budget over the run,
and end up with spending 50% less at the last generation, compared with the
corresponding runs of Case I and II. The total budget per run, however, does
not change. The intention is to have even more exploration in the beginning of
the run, at the expense of exploitation near the end of the run. The scheme for
archive re-evaluations is the same as in Case II (once every ten generations).

6.4.2 Empirical results

The simulation results for the three cases are summarized in Table 6.2. We used
the following criteria for estimating the performance of different experiments: the
median and the interquartile range (IQR) of the percentage of the area under
the Pareto front for 50 independent replicates, and the total number of function
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Figure 6.4: Summary of all results for the Salustowicz1d100 problem. The bubbles
represent the results of the different experiments in Cases I-III in terms of the median
performance measure over 50 independent runs (y-axis), interquartile range of the performance
measure (x-axis), and the normalized total number of function evaluations per run (the size
of the bubbles). Smallest bubbles located at the zero region are preferred. Same labels as in
Table 6.2 are used. See a magnified area of interest in Figure 6.5.

evaluations per run normalized by the size of the training data set. For each
criterion, lower values indicate better performance.

The results in Table 6.2 are also displayed as bubble charts in Figures 6.4,
6.5, 6.6, and 6.7. The size of the bubbles in these charts is proportional to the
budget that was spent for a particular experiment.

Examining the results for Case I, we observe a clear improvement of the
median fitness as well as the IQR for smaller starting subsets. The surprising
fact is that even for very small datasets (like Salustowicz1d100 and Kotanchek)
the optimal strategy is to start with a low subset size of 10% to 20%. This is
most probably related to the low dimensionality of these problems. Note, that
the runs starting with the smaller subset sizes also consume less computational
budget because the archive reevaluations are cheaper. The ordinal runs starting
with small subset sizes (OPGP10 and OPGP20) considerably outperform the
reference ParetoGP runs with a constant population size of 100 (PGP), and even
those with twice the number of generations (PGPA) or twice the population size
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Table 6.2: Empirical results for three test problems. The table represents the results
of different experiments in terms of the median and the interquartile range of our performance
measure over 50 independent runs and the normalized total number of function evaluations per
run (cpu budget). The performance measure is the percentage of the area under the Pareto
front of the archive solutions in complexity vs. fitness space. For all three quality characteristics
- median and the IQR of the Pareto front area percentage, and the cpu budget - smaller values
are preferred. There are three types of standard reference runs: PGP (ParetoGP) - with the
population size of 100, and 250 generations, PGPA with twice the number of generations, and
PGPB with twice the population size compared with the PGP runs.

Experiment Salustowicz1d100 Kotanchek Tower Budget
µ̃ IQR µ̃ IQR µ̃ IQR per run

Reference
PGP 1.81 1.39 2.20 0.735 1.55 0.325 250000
PGPA 1.23 0.93 2.05 0.786 1.39 0.334 500000
PGPB 1.57 1.12 2.06 0.630 1.41 0.334 500000

Case I
OPGP10 1.04 0.26 1.86 0.662 1.33 0.209 367169
OPGP20 1.02 0.34 2.02 0.633 1.37 0.368 372486
OPGP40 1.15 0.34 2.10 0.764 1.39 0.300 387703
OPGP60 1.24 0.54 2.18 0.831 1.57 0.362 404590
OPGP80 1.34 0.71 2.30 1.002 1.46 0.422 422122

Case II
Q10 1.05 0.31 1.93 0.431 1.32 0.250 273119
Q20 1.20 0.46 1.95 0.382 1.34 0.253 269886
Q40 1.24 0.65 2.18 0.652 1.41 0.285 268003
Q60 1.20 0.80 2.23 0.630 1.56 0.405 267790
Q80 1.76 1.89 2.14 0.710 1.44 0.380 268222

Case III
ER10 1.03 0.30 2.00 0.624 1.52 0.387 276610
ER20 1.10 0.29 1.92 0.571 1.35 0.296 271850
ER40 1.19 0.60 2.00 0.527 1.35 0.333 268876
ER60 1.42 1.14 2.12 0.520 1.39 0.287 268201
ER80 1.57 1.32 2.14 0.809 1.42 0.331 268379
ER100 1.65 1.75 2.32 0.802 1.64 0.327 250000
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(a) Magnified area of interest

Figure 6.5: Summary of results for the Salustowicz1d100 problem. Magnified area
of interest. The bubbles represent the results of the different experiments in Cases I-III in
terms of the median performance measure over 50 independent runs (y-axis), interquartile range
of the performance measure (x-axis), and the normalized total number of function evaluations
per run (the size of the bubbles). Smallest bubbles located at the zero region are preferred.
Same labels as in Table 6.2 are used. PGP - reference ParetoGP runs, OPGP - ordinal ParetoGP
runs of Case I, Q - quick ordinal runs of Case II with less frequent archive re-evaluations, ER
- exploratory runs of Case III with re-allocated computational budget. The numbers in the
labels indicate the starting percentage of the subset size. The area of interest is the lower-left
corner of the graph. The most successful experiments for the Salustowicz1d100 problem are
OPGP10, Q10, ER10, OPGP20, which again confirms that starting from small subsets leads to
solutions superior in terms of best median fitness and consistency of independent runs. Note
the substantial budget savings in Q10 and ER10, which correspond to Case II, and Case III,
respectively.

(PGPB).

In Case II, we examine the effect of not re-evaluating the archive individuals
at every generation but only once every ten generations. The bubble charts
show only a slight deterioration in the results for the median fitness and the
IQR, compared with the ordinal runs from Case I. Considering the budget,
these experiments are nevertheless very competitive. The advantage is that
the computational budget is now very close to the original budget of the PGP
reference run.



Chapter 6. Model Evaluation through Goal Softening 174

Figure 6.6: Summary of results for the Kotanchek problem. The bubbles represent the
results of the different experiments in Cases 1-3 in terms of the median performance measure
over 50 independent runs (y-axis), interquartile range of the performance measure (x-axis), and
the normalized total number of function evaluations per run (the size of the bubbles). We use
the same labels as in Table 6.2. PGP - reference ParetoGP runs, OPGP - ordinal ParetoGP
runs of Case I, Q - quick ordinal runs of Case II with less frequent archive re-evaluations, ER -
exploratory runs of Case III with re-allocated computational budget.The numbers in the labels
indicate the starting level of the subset size. The area of interest is the lower-left corner of
the graph. Note, that the most successful experiments are Q20,Q10, ER20, OPGP10, which
confirms that starting from small subsets leads to solutions superior in terms of best median
fitness and consistency of independent runs.

In Case III the aim was to examine whether there was any benefit in
relocating a part of the computational budget from the end to the beginning of
a run. The results are comparable with the results of Case II, however there is a
clear deterioration in reproducibility of the independent replicates. We speculate,
that by relocating 25% of the computational budget from the second half of the
run to the beginning, we actually assign too much weight to exploration and not
enough to exploitation. While a thorough analysis of other budget distribution
schemes is required, the provisional conclusion is that a constant computational
budget per generation is a good default strategy.
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Figure 6.7: Summary of results for the Tower problem. The most successful
experiments for the Tower problem are OPGP10, Q10, and PGPB. The first two are no
surprise, we observe the same results for other test problems. The PGPB corresponds to the
reference ParetoGP runs that uses twice the population size for the same number of generations.
The high quality of these results is caused by the nature of the tower problem. This real
industrial problem is more challenging with respect to the variable selection (25 candidate
inputs). Besides, the exact underlying input - output relationship may not exist. It is no
surprise that PGPB runs with a bigger population size and hence better exploration produce
better solutions than exploitative PGPA runs with more generations. It is important to note,
that this improvement requires a higher computational budget.

6.5 Summary

This chapter confirms and refines the findings of (Smits and Vladislavleva, 2006)
that the use of goal softening consistently generates results that are superior both
in terms of median fitness, consistency between independent runs, and required
computational budget. It can be concluded that starting with subset sizes of
only 10% to 20% generates optimal results for all three test problems.

More analysis is needed to find appropriate default settings for the starting
subset size. If the proposed strategy works well on small subset sizes of 10%
of the original size, smaller sizes may be beneficial since they allow even larger
starting population sizes for the same computational budget, and, hence, better
exploration.
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Experiments also confirm that there is no need to re-evaluate the archive
individuals at every generation, keeping essentially the same quality of results
at the lower computational budget. Finally, the experiments of this chapter
demonstrate that keeping the number of function evaluations per generation
constant over the run, is a good default setting and seems to provide the necessary
balance between exploration and exploitation in soft ordinal Pareto GP.

In some way, the goal softening by soft ordinal Pareto GP, as many other
subset selection schemes, or niching mechanisms, like age-layered population
structures (Hornby, 2006), or Hierarchical Fair Competition (Hu et al., 2005)
introduce new modes to exploitation - they allow bad-but-lucky models to
propagate in the short term, but guarantee that truly good models, that are
robust and good on all data points, will survive multiple screens and proliferate
in the long term.

Improvement in the performance of Soft Ordinal Pareto GP over the standard
Pareto GP can be explained by a proper balance of abundant exploration and
sufficient exploitation. A softer selection process with partial fitness evaluations
allows using larger population sizes for better exploration. The fact that ‘good’
individuals have to survive multiple low-fidelity fitness evaluations on different
subsets to stay in the archive and keep propagating allows sufficient exploitation
of ‘good’ genetic material.

Two major questions remain. The use of stochastic subset selection and
changing the subsets at each generation seems to pursue additional regularization
among regression models, because they need to survive multiple screens on
different subsets to stay in the archive. Lower values of the Pareto front area
percentage corresponding to the solutions of the soft ordinal approach support
the hypothesis of (Banzhaf et al., 1998) about regularization effects of stochastic
sampling, but raises a question: Is randomness necessary to achieve robustness?
Giving up randomness may contribute to active information re-use, at least for
models that stay in the archive and do not need to be fully reevaluated if the
training subset does not change completely.

The second question is whether the alternative strategies for increasing the
subset size in a non-linear fashion can provide further enhancement in the quality
of final solutions. The issues of non-stochastic subset selection, non-linear subset
size increase, and possible information reuse are addressed in the next chapter.



7
Model Evaluation through Incremental

Evolutions on Essential Data Records

This chapter introduces a novel strategy for a quick generation of compact and
accurate regression models on multi-dimensional input-output data via Pareto
genetic programming. The essence algorithm evaluates more potential solutions
on smaller subsets of data, starting with ‘the most important’ data records.

This algorithm ranks the training set in the order of decreasing importance
and partitions it into nested subsets of non-linearly increasing size. The speed at
which the size of the training subset is increased depends on the balancedness and
compressibility of the input-output data, and is determined by the cumulative
information content of the data.

Since the training subsets are nested in the essence algorithm, and only
slightly change from generation to generation due to the addition of new points,
further savings of the computational budget can be achieved, if intermediate
fitness values of persistent individuals are archived and updated when new data
are added to the training subset.

7.1 Motivation

The previous chapter presented a soft approach to symbolic regression via
archive-based Pareto genetic programming in the spirit of ordinal optimization.
It pursues abundant exploration by coarse evaluation of more potential solutions
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at the beginning of the run and maintains sufficient exploitation by refining the
evaluation process in the course of a run. The fidelity of fitness evaluations
depends upon the size of the training subsets, which increase linearly during
the run. The stochastic subset selection in the presented strategy enhances the
robustness of the solutions obtained due to additional regularization.

This chapter presents another method of reducing the computational effort
of an evolutionary algorithm, aimed at improving the effectiveness of the search
by quickly zooming into the promising areas of the search space.

In Figure 7.1 different schemes for classical and ordinal approach to evolutionary
algorithms are plotted. The top plots represent the percentage of the size of the
training set per generation. The bottom plots present the corresponding size of
the population at each generation. Plots in the first column refer to the standard
regression setting, when a given set of individuals is evaluated on all fitness cases
at each generation. The plots in the second column illustrate an example of
the ordinal approach, when the size of the training set linearly increases from
20% to 100% of the original size over the first 95% of generations, and at the
last 5% of generations individuals are evaluated on the total training set. Due
to partial fitness evaluation, the population size can be effectively increased
up to 500% of the original size, provided that the computational budget per
generation is constant and equals the total number of function evaluations in
standard regression setting.

The experiments of the previous chapter performed on three test problems
indicated that with the same computational budget a significant improvement can
be achieved through an ordinal approach to symbolic regression over the standard
Pareto GP approach with respect to the quality of solutions and reproducibility
of independent runs. Starting with a subset size of 10% to 20% of the training
set provided the best results for all three test problems.

Changing subsets at each generation in the soft ordinal Pareto GP seemed to
be necessary to obtain a significant improvement in the results, since keeping the
same subset for several generations and increasing it in a step-wise fashion did
not produce significant improvements; see (Smits and Vladislavleva, 2006). This
raised the question whether the training subsets changing at each generation and
drawn randomly from the training set are necessary to obtain the improvement
in reproducibility and quality of solutions. The second question was about the
alternatives for a linear increase of the training subset size.
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Figure 7.1: Schemes for partial fitness evaluation with the fixed budget allocation.
The four columns the figure represent four various modeling schemes with partial fitness
evaluations on subsets of the given data set. Column I represents a reference GP run where
a population of a fixed size is evaluated on all records of the data set over all generations. In
column II the size of the subsets used for partial fitness evaluations are increasing linearly from
20% to 100% over the first 95% of generations, and over the last 5% of generations the classical
scheme is used. The population size per generation is computed according to the formula
100/subsetSize × 100%. Columns III and IV are the examples of the schemes for non-linear
increase of the subset size, that implies a gain in the cumulative population sizes over the run,
and hence further improves exploration.

From the plots in the columns three and four of Figure 7.1 we observe that if
the size of the training subset is increased slower than linearly, a larger exploration
can be achieved with bigger population sizes over most of the generations. Of
course, the improvement of individuals will take place only if the balance between
exploration and exploitation is maintained. The hypothesis is that if subsets
contain a sufficient amount of information about the underlying response surface
at all times, the balance between exploration and exploitation will be preserved
even if longer training is applied to small subsets, and the subset size increases
slowly (e.g., as in columns three or four of Figure 7.1).

Chapter 2 of this thesis presents a technique for weighing and ranking the
records in the input-output training set in the order of decreasing importance.
The results of Chapter 2 suggests that the proposed smits procedure when
applied to one of the four weighing functionals, can be successfully used for
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compression of the training set to smaller subsets containing a similar amount of
information about the data.

The main property of the training set ranked with the smits procedure is
the nested balancedness of its subsets. In other words, the first m records of the
ranked set are sufficiently ’space-filling’ for each integer size m, m < N , m > k,
where N is the number of records in the training set, and k is the neighborhood
size used for weighing the data1. This interesting property calls for an application
of the ordinal approach presented in the previous chapter to the nested subsets
of the training set ranked with the smits procedure.

If the subsets of increasing size in the ordinal approach to genetic programming
are nested, we can extensively re-use information about persistent individuals
and building blocks from previous generations. Besides, nested subsets slowly
changing over several generations would allow additional racing of individuals as
in (Teller and Andre, 1997). On the other hand, the use of nested subsets over a
GP run may increase the complexity of individuals, which would be the opposite
effect compared with the regularization observed for the use of random subsets
changing at each generation.

The first goal of this chapter is to find out whether the use of nested subsets
can outperform the use of random subsets in soft ordinal Pareto GP.

The second goal of this chapter is to suggest a sensible procedure for a non-
linear increase of the subset size such that it improves the quality of GP solutions
for both random and nested sub-sampling.

7.2 ESSENCE algorithm

This section introduces a novel heuristic to define the scheme for increasing the
subset size, which is based on the cumulative information content of the training
set ranked in the order of decreasing importance of records. The new scheme of
the non-linear subset size increase is designed for incremental modeling of nested
subsets of the ranked training set, but can be also used with random subsets, as
we show in the Case Studies in the next section.

The new algorithm employs methods of data weighing and ranking presented

1In more detail, the subset of the first m records of the ranked set has the maximal cumulative
weight compared with other subsets of m records, where the weight is defined according to a
selected weight functional
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in Chapter 2: 1) Weighing the data with surrounding and non-linearity weights
(with respect to surrounding by k nearest-in-the-input space neighbors, and
with respect to the deviation from the least-squares regression hyper-plane
approximating the k nearest-in-the-input-space neighbors); 2) Ranking the data
in the order of decreasing importance with the simple multi-dimensional iterative
technique for sub-sampling (smits) applied to a selected weight functional; 3)
Estimating the cumulative information content (CIC) of the data set ranked
with the smits procedure using a selected weight functional.

The smits procedure ranks the input-output data set of size N in such a
way that for an arbitrary integer number m, k < m < N , the first m records
of the sorted set always form a sufficiently balanced subset. The ’balancedness’
is interpreted in terms of the selected balancing, i.e. weighing functional. We
suggest to use the smits procedure with four weighing functionals for sensible
compression of data to balanced nested subsets of arbitrary size.

The first idea of the new algorithm consist in using the nested subsets of the
first m records of the data set ranked by the smits procedure for incremental
modeling. The ordinal approach of modeling small subsets with big populations
and gradually increasing the size of the subsets while decreasing the size of the
populations can be applied to the smits-based ranking of the training set. This
approach may reinforce discovery and exploitation of good genetic material from
the very beginning of the evolution, because the small data sets obtained as
described above will by design contain maximal information content compared
with other subsets of similar sizes. The exploration of alternative solutions will
still be maximized, since small training subsets will allow large population sizes
within a fixed computational budget.

Obviously, the speed of increasing the subset size should depend on the
structure of the total data set and on the amount of information contained in the
starting subset. If the size of the training subset grows too quickly, the additional
exploration guaranteed by the ordinal approach will quickly deteriorate, because
the population sizes will have to be decreased to keep the budget constant. If
the size of the training subset grows too slowly (e.g., does not increase at all),
the exploitation may deteriorate at the expense of over-exploration. Besides,the
performance of final solutions will be too sensitive to the starting subset size, to
the imbalancedness of the original data set, and to the success of the exploration
stage.



Chapter 7. Incremental Evolutions on Essential Data Records 182

The second idea of the new algorithm is to use the shape of the cumulative
information content of the ranked data set to determine the speed, at which
nested subsets increase in size. For example, imagine, that by analogy with the
soft ordinal approach to symbolic regression, the user decides to start modeling
with a training subset of 10% of original size and wants to incrementally add
points until 100% of data is added to the system by 95% of the total number
of iterations (generations). Instead of linearly increasing the size of a training
subset from 10% to 100% over 95% of generations, we suggest to linearly increase
the information content of the training subset from 10% to 100% over the same
number of generations. In general, this approach implies a non-linear increase of
the size of the subset.

In Figure 7.2 we illustrate the procedure on the Ksinc data from Chapter
2. Figure 7.2(c) presents schemes of a non-linear addition of new points to the
training subset set such that the cumulative information content of the used
subset (obtained with a corresponding weight) grows linearly per generation.

To obtain the scheme plotted in Figure 7.2(c) the user needs to find the value
CIC0.1 of the cumulative information content corresponding to the first 10% of
records of the ranked training set, and then quantize the CIC curve on the interval
[CIC0.1, 1] by the number of levels corresponding to 95% of planned generations.
The subset size, corresponding to the CIC at level i will determine the size of the
training subset at generation i

100 totalGenerations.

The scheme for decreasing the population size follows from the scheme of
increasing the subset size; see Figure 7.2(d). Since all comparisons in this chapter
are based on a fixed computational budget, the population size corresponding to
the training subset of r% records (r ∈ (0, 1]) is equal to 100/ r

100% of the original
population size.

The suggested procedure of applying symbolic regression to the training set
ranked with the smits procedure with incremental addition of new points to the
training subset such that its cumulative information content increases linearly
over the evolutionary run, will be referred to as the essence algorithm, because
it is expected to perform an Effective Search Space Exploration (via Nested
Content-based Evolutions).

Due to the fact that the size of the training subset in the essence algorithm
may change every generation, the archive in the ParetoGP system still needs
to be re-evaluated on a training subset, common with the population’s training
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Figure 7.2: Cumulative Information Content guides the speed of increasing the
training subset size for incremental modeling. The first plot represents the Ksinc data
set of 100 points and the tru response curve, defined by Eq. (2.13). The second plot represents
the cumulative information content of the first m records of the KSinc data set ranked with
the smits procedure for the proximity, surrounding, and non-linearity weight on two nearest-
in-the-input-space neighbors. The second and the third plots represent the scheme for subset
size increase and the corresponding scheme for population size decrease (in percentages of the
original sizes) for an incremental modeling run, where training data consists of nested subsets
of the ranked set and is supplied in a non-linear fashion such, that the cumulative information
content increases linearly per generation. The population is computed as 100/subsetSize to
keep the computational budget constant per generation. The thin black line in Figure 7.2(c)
corresponds to the linear increase of the subset size used in (Smits and Vladislavleva, 2006) for
random subsets. In Figure 7.2(d) the difference in the areas under the curves quantifies the
gain in the exploration due to bigger population sizes.
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subset once in a while. We prefer to do it at the end of each cascade, as in the
soft ordinal ParetoGP approach, when the population is re-initialized.

In the next section the essence algorithm via ParetoGP is compared with
the with the soft ordinal ParetoGP presented in the previous chapter.

7.3 Case Studies

7.3.1 Goals of experiments

The goal of the experiments in this chapter is two-fold. First, we want to
compare the effectiveness of regression on random subsets with the use of nested
subsets obtained from a good ranking of the training set. Second, we want to
study whether the essence algorithm on nested subsets with new points added
incrementally in a non-linear fashion produces better results than the soft ordinal
approach on random subsets with sizes increasing linearly over a GP run.

Based on the conclusions of experiments and demonstrations of Chapters 2
and 5, two weighing functionals can be selected for ranking training sets with
the smits procedure, the surrounding and non-linearity weights. The default
number of nearest-in-the-input-space neighbors, suggested in Chapters 2 and 5
is the number of significant input dimensions plus one.

Chapter 5 indicated that weighing and ranking the data with non-linearity
weights seems to be the best general purpose approach (for a reasonable number
of dimensions), but it can be inferior to the use of the surrounding weight in
cases of extreme imbalancedness of the data, when the distances to k nearest -in
-the -input space neighbors differ significantly. Such situations would imply that
the deviation from the hyper-plane passing through those neighbors looses the
meaning of local non-linearity of the response surface at a given point. In the
experiments of this chapter we intend to further analyze how the difference in the
smits-based rankings of data with the non-linearity and the surrounding weight
is affecting the quality of GP solutions in the incremental modeling framework 2.

A comprehensive comparison of the standard ParetoGP reference runs with
the soft ordinal runs and the essence runs is performed according to the scheme
given in Figure 7.3.

2We expect the essence algorithm based on the surrounding weight to outperform the
essence algorithm based on the non-linearity weight at least on the KotanchekImbalanced
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Figure 7.3: Types of Experiments. The horizontal axis divides the experiments by subset
selection scheme, the vertical axis divides the experiments by the speed of subset size increase.

Below we provide notations and explanation of all experimental schemes and
emphasize the main comparison groups with an asterisk (*). The first word in
the experiment name (except for Reference runs) stands for a subsetting scheme
- Random - codes random subsets, Essence or Nested codes nested subsets. The
second word in the experiment name for Nested and Essence experiments codes
a procedure for determining the ranking of points: NonLinearity corresponds to
the non-linearity weight, Surrounding corresponds to surrounding weight. ‘Rand’
in the NestedRand NonLinearity experiment stands for a ranking obtained with
a random transposition of records in the training set.

The word after the underscore symbol in the experiment name stands for
the speed, at which the subset size is increased. Linear codes linear increase.
NonLinearity codes the speed determined by the cumulative information content

of the data, ranked with the smits procedure using non-linearity weight.
Surrounding codes a non-linear speed determined by the cumulative information

content of the data, ranked with the smits procedure using surrounding weight.
The speed of increasing the subset size in the Essence experiments is determined
by the weight functional used for the smits-based ranking (i.e. by the shape of
the corresponding cumulative information content). Summarizing, we have the

and the Tower problems.
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following experiments:

• REFERENCE* denotes the standard reference ParetoGP runs with
settings given in Table 7.1.

• Random Linear* denotes the soft ordinal GP runs on subsets of the
training set drawn randomly at each generation, with the size of the subsets
increasing linearly from 10% to 100% in the first 95% of the total number
of generations.

• EssenceNonLinearity* stands for the essence GP runs on the nested
subsets of the training set ranked with the smits procedure based on the
non-linearity weight, with the subset size increasing in a non-linear fashion
based on the cumulative information content of the ranked training set
used.

• EssenceSurrounding* - stands for the essence GP runs on the nested
subsets of the training set ranked with the smits procedure based on the
surrounding weight, with the subset size increasing in a non-linear fashion
based on the cumulative information content of the ranked training set
used.

• Random NonLinearity and Random Surrounding stand for the soft
ordinal GP runs on subsets drawn randomly at each generation, with the
size increasing in a non-linear fashion, based on the cumulative information
content of the nested subsets obtained with the smits procedure based on
the non-linearity and the surrounding weights respectively. This means
that the speed at which the subsets size is increased is the same as in the
Essence runs, but the subsets are not nested, but drawn randomly from the
entire subset. Note, that the non-linear speed of adding new points is based
on the assumption that the subset of the first m records is as balanced
as possible with respect to the selected weight functional. This implies
that it will contain the maximal amount of information compared with
other subsets of size m, and particularly with a subset of m records drawn
randomly from the training set. The difference in information contents will
only increase for the data sets that are not balanced.

• NestedNonLinearity Linear and NestedSurrounding Linear denote
the GP runs on nested subsets of the training set, ranked with a smits
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procedure using the non-linearity and the surrounding weights, where the
size of the subset increases linearly from 10% to 100% of the original size
in the first 95% of generations.

• NestedRand Nonlinearity stands for the GP runs on nested subsets of
the training set, with records permuted in a random order, and the size
of the subsets increasing in a non-linear fashion from 10% to 100% of the
original size according to the shape of the cumulative information content
of the set ranked with the smits procedure using the non-linearity weights.
We perform this experiment to find out whether the special order of data
induced by the smits procedure is essential to obtain the improved results.

7.3.2 Test problems and GP settings

Experiments mentioned above are performed on three test regression problems.
1) KotanchekImbalanced problem (see Chapter 5) consists of 100 points

sampled from the Kotanchek function (Eq. 5.5) on the interval [0, 4]× [0, 4] in a
special non-uniform way:

f1(x1, x2) =
e−(x1−1)2

1.2 + (x2 − 2.5)2
.

At most one half of the records of the KotanchekImbalanced data captures the
non-linearity of the response surface, see Figure 7.4(a). The test set for the
KotanchekImbalanced problem consists of 1681 points and forms a uniform mesh
on the input interval [0, 4]× [0, 4].

2) Salustowicz2dBioN problem is sampled from the Salustowicz2d response
surface (see Eq. (5.6)):

f2(x1, x2) = (x2 − 5)x3e−x cos x sin x(sin2 x cos x− 1).

The input set comes from the study of the relation of plants’ feeding systems to
the amount of the floating sludge for the Biox water purification plant. While the
input points of the Salustowicz2dBioN problem correspond to an undesigned set
of 3931 measurements of two Biox-related variables scaled to the interval [0, 10]×
[−5, 15], the response is computed from equation (5.6), see Figure 7.5(a). The
test set for the Salustowicz2dBioN problem contains 4489 records, and forms a
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uniform mesh on the interval [0, 10]×[−5, 15]. Note that the input interval for the
Salustowicz2dBioN problem is different from the interval of the Salustowicz2dBio
problem, analyzed in Chapter 5. The latter used the Biox input set scaled to
[0, 15]× [−2, 13].

3) Tower problem comes from an industrial application and consists of 5000
records and 25 potential input variables; see Smits and Vladislavleva (2006) and
Chapter 5. It represents gas chromatography measurements of the composition
of a distillation tower. We plot the output of the tower problem in Figure 7.6(a).
The test data for the Tower problem is the same as the training data.

The Tower data set went through a preprocessing stage that is worth
describing. This real-life data contains 25 input variables, many of which may be
insignificant in the input-output relationship. To apply the essence algorithm
to this problem, we needed to rank the data with the non-linearity and the
surrounding weights in the subspace of significant dimensions. We therefore
performed the screening runs of 20 generations to obtain the ranking of driving
variables, as described in Smits et al. (2005). The screening runs resulted in the
following subset of significant variables: x1, x4, x6, x12, and x23.

We performed the smits ranking of the Tower data in the five-dimensional
input space of significant variables. Initially the entire set of 5000 records was
weighted with the non-linearity and surrounding weights. After the first weighing
we observed that the weights of two points (both non-linearity and surrounding)
exceeded the weights of other points 250 and 300 times. These high weights of
two records clearly indicated outliers, which were removed from the training set.
The resulting set of 4998 records was then ranked by the smits procedure in
the five-dimensional subspace of inputs with a fractional distance metric ‖ · ‖1/6

(see Chapter 2 for fractional distances). The cumulative information contents
and schemes for subset size increase plotted in Figures 7.6(b) and 7.6(c) are also
computed in the space of significant inputs and response.

The rankings obtained from the smits procedure using non-linearity and
surrounding weights were used to rank the total Tower training set of 25 input
variables. This process resulted in the same number of variables used in all
experiments including the essence experiments. To ensure fair comparisons,
the essence experiments and experiments on nested subsets were performed on
180 generations only, compared with 200 generations of the reference runs since
the screening runs aimed at variable identification are 20 generations long.
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Figure 7.4: KotanchekImbalanced data. The Figure represents the contour plot of the
two-dimensional KotanchekImbalanced data with 100 points sampled non-uniformly from the
input interval [0, 4] × [0, 4]. At least a half of the data records does not capture the non-
linearity of the response surface. Plot (b) represents the Cumulative Information Contents of
the two rankings of the KotanchekImbalanced data obtained with the smits procedure with
the non-linearity weights (thick black line) and the surrounding weights (dashed line). Plot (c)
illustrates the scheme of addition of new points for the essence algorithm, calculated based
on the CICs of the plot (b) and on the intention to start modeling with subsets of 10% of the
original size and to increase the subset size over the first 95% of generations.
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Figure 7.5: Salustowicz2dBioN data. Plot (a) represents the input data of the
Salustowicz2dBioN problem with 3931 points and the contour plot of the Salustowicz2d
function. Plot (b) represents the Cumulative Information Contents of the two rankings of
the the training data obtained with the smits procedure with non-linearity weights (thick black
line) and surrounding weights (dashed line). Plot (c) illustrates the scheme of addition of new
points in the essence algorithm, calculated based on the CICs of the plot (b) and on the
intention to start modeling with subsets of 10% of the original size and to increase the subset
size over the first 95% of generations.
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Figure 7.6: Tower data. Plot (a) represents 5000 response samples of the Tower problem.
Plot (b) represents the Cumulative Information Contents of the two rankings of the the Tower
data obtained with the smits procedure in the subspace of five significant inputs with non-
linearity weights (thick black line) and surrounding weights (dashed line). Plot (c) illustrates
the scheme of addition of new points in the essence algorithm, calculated based on the CICs of
the plot (b) and on the intention to start modeling with subsets of 10% of the original size and
to increase the subset size over the first 95% of generations. Due to the necessity to perform
screening runs of 20 generations to identify driving variables in the Tower problem, the schemes
for the essence experiments are computed for 180 generations, while the schemes for Reference
runs and Random runs are computed for 200 generations.
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All test problems are modeled with symbolic regression via Pareto genetic
programming. In all experiments of this chapter we used the tree-based Pareto
GP system that exploits the minimization of the two-dimensional fitness function,
consisting of numerical error and expressional complexity of GP individuals (see
Chapter 3 for more details). At each generation we preserve an archive of a
fixed number of elite solutions located closest to the Pareto front in the objective
space of model complexity and model error. Crossovers between archive and
population individuals and point mutations of the archive individuals are used
as genetic operators. In the case of crossover, crossover points are selected from
the same or similar levels of the parent trees. Constants are randomly generated
from the interval [−10, 10]. Other settings are given in Table 7.1.

We use the percentage of the area under the Pareto front of archive solutions
at the last generation as the primary measure for comparisons of the quality
of final solutions;see Chapter 3. To compare the predictive capabilities of the
solutions in extrapolation, we also use the root of the mean squared error of the
archive solutions on the test data 3.

7.3.3 Empirical results

To exclude the outlier GP runs from the comparison, we selected the top 75%
of the runs for each regression problem. The box plots in Figures 7.7(a),
7.8(a), and 7.9(a) represent the percentages of areas under Pareto fronts at
the last generation. The box plots in Figures 7.7(b), 7.8(b), and 7.9(b)
represent the comparison of the root mean squared errors of final solutions
on test sets requiring extrapolation. We emphasize the experiments for the
primary comparison in bold: Reference, Random Linear, EssenceSurrounding
and EssenceNon-Linearity.

For all three problems we see that the essence experiments significantly
outperform not only the reference runs but also the soft ordinal runs on random
subsets (Random Linear) for both performance measures. We use the Wilcoxon-
Mann-Whitney (ranksum) tests for comparing the medians of Pareto front area
percentage and RMSE over 75 independent runs. The p-values of these tests are
given in Figure 7.2.

As we expected, the essence runs based on the ranking of data with respect

3The errors of the solutions of the Tower problem are compared on the training set.
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Table 7.1: GP Parameters used in Empirical Experiments (unless stated
otherwise).

Number of independent runs 100
Budget per generation 100N function evaluations

(N is the number of records)
Total number of generations 220

for Reference runs
Total number of generations 180

for Essence runs of Tower problem
Total number of generations 200

for all other runs
Reference Population size 100

Archive size 100
Population tournament size 7

Archive tournament size 5
Crossover rate 0.95
Mutation rate 0.05

Rate of mutation on terminals 0.3
Basic Function Set +, −, ∗, /, square, xreal,

x + real, x · real, ex, e−x

Function Set for Salustowicz2dBioN Basic Set, sin x, cos x
Fitness Measure Normalized Sum

of Squared Errors
Complexity Measure Expressional Complexity

Performance Measure 1 Percentage of Area
Under Pareto Front

Performace Measure 2 Root of the Mean Squared
Error on the TEST data

to the surrounding weight functional show a slightly better behavior, which is
statistically better for the Tower problem for both performance measures, and
is statistically the same for the KotanchekImbalanced and Salustowicz2dBioN
problems.

For the Salustowicz2dBioN and Tower problems the essence experiments
are statistically outperforming all other experiments with the exception of the
last experiment of incremental addition of points from a Salustowicz2dBioN
data, permuted randomly, and added to the training subset at the ‘speed’
equal to the ‘speed’ of the EssenceNonLinearity experiment. The results of
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this NestedRandomOrderNonLinearity experiment are statistically the same for
the Salustowicz2dBioN data, however are significantly worse for the two other
problems. We explain the good performance of the experiment corresponding
to NestedRandomOrderNonLinearity by the nature of the Salustowicz2dBioN
data, which is heavily over-sampled in the training region. Subsets of 10% of
original size already contain 393 points, which—even when sampled randomly
from the training set— may contain a sufficient amount of information about the
Salustowicz2D response surface.

There is little difference between Random Surrounding, NestedSurrounding
Linear, and NestedNonLinearity Linear for KotanchekImbalanced and Tower
problems. For the Salustowicz2dBioN data the Random Surrounding experiment
is significantly under-performing compared with NestedSurrounding Linear and
NestedNonLinearity Linear experiments.

7.4 Summary

This chapter studies the performance of symbolic regression performed by means
of incremental modeling of training data ranked in a special way. Our approach
applies maximal modeling effort (measures by the size of the population) to
subsets of ‘essential’ data records, and gradually increases the training subset size
by adding new records, in the spirit of ordinal optimization. The new algorithm
is called essence, and is expected to perform Effective Search Space Exploration
by Nested Content-based Evolutions.

The special way of ranking the training data consists of (i) weighing the data
with one of the weighing functionals, introduced in Chapter 2, and (ii) applying
the iterative smits procedure to rank the weighted set in the order of decreasing
importance, while inferring the cumulative information content of the ranked set.

An input-output data set ranked with the smits procedure has the property
of nested balancedness, i.e. its first m records (k < m < N) have the maximal
cumulative information content over other subsets of size m.

Evaluating the fitness of GP models on smaller subsets of the data, we can
effectively increase the population sizes while keeping the number of function
evaluations constant per generation. In soft ordinal Pareto GP, modeling is
performed on random subsets of data with the size increasing linearly over the
GP run, starting usually from 10% (see previous chapter). The linear increase
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Figure 7.7: Empirical Results on the KotanchekImbalanced data. Box-plots
corresponding to the primary comparison experiments are emphasized in bold.



Chapter 7. Incremental Evolutions on Essential Data Records 196

1 2 3 4

NestedRand_NonLinearity

EssenceNonLinearity

EssenceSurrounding

NestedNonLinearity_Linear

NestedSurrounding_Linear

Random_Surrounding

Random_Linear

Reference

Pareto Front Area Percentage

(a)

0.02 0.06 0.1 0.14

NestedRand_NonLinearity

EssenceNonLinearity

EssenceSurrounding

NestedNonLinearity_Linear

NestedSurrounding_Linear

Random_Surrounding

Random_Linear

Reference

RMSE on TEST Data

(b)

Figure 7.8: Empirical Results on the Salustowicz2dBioN data. Box-plots
corresponding to the primary comparison experiments are emphasized in bold. Interestingly
enough, the results of the NestedRand NonLinearity experiments corresponding to an
incremental modeling of the data records, randomly permuted before the modeling, produces
results statistically indifferent from the results of the essence experiments. This may be related
to the over-sampled nature of the Salustowicz2dBioN problem and to an accidentally good initial
random permutation. Further analysis of the Salustowicz2dBioN problem confirmed that other
random permutations of the data set may cause deterioration of the results.



197 7.4. Summary

1.2 1.4 1.6 1.8

NestedRand_NonLinearity

EssenceNonLinearity

EssenceSurrounding

NestedNonLinearity_Linear

NestedSurrounding_Linear

Random_Surrounding

Random_Linear

Reference

Pareto Front Area,%

(a)

0.065 0.085

NestedRand_NonLinearity

EssenceNonLinearity

EssenceSurrounding

NestedNonLinearity_Linear

NestedSurrounding_Linear

Random_Surrounding

Random_Linear

Reference

RMSE on Training Data

(b)

Figure 7.9: Empirical Results on the Tower data. Box-plots corresponding to the
primary comparison experiments are emphasized in bold.
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Table 7.2: Part I. Significance of the comparisons of the experiments on
KotanchekImbalanced and Salustowicz2dBioN test problems. The last eight
columns of the Table represent the p-values of the Wilcoxon-Mann-Whitney test of
comparing the medians of the distributions of the percentages of areas under Pareto
Fronts and of RMSE errors of solutions over 100 independent GP runs. Smaller values
of sample medians of both measures are preferred. All test are performed at the 95%
confidence interval. Primary comparison groups are emphasized in bold.
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KotanchekImbalanced

Pareto Front Area, %
Reference 1.5792 – – – – – – – 0.

Random Linear 1.3129 0.01 – – – – – – 0.
Random Surrounding 1.3016 0.04 0.73 – – – – – 0.

NestedSurrounding Linear 1.1594 0.00 0.10 0.04 – 0.91 – – 0.
NestedSurrNonLinearity 1.2143 0. 0.10 0.04 – – – – 0.
EssenceSurrounding 0.9882 0. 0. 0. 0.25 0.16 – 0.61 0.

EssenceNonLinearity 1.0428 0. 0. 0. 0.10 0.02 – – 0.
NestedRand Nonlinearity 3.6953 – – – – – – – –

RMSE on Test Data
Reference 0.0630 – – 0.95 – – – – 0.

Random Linear 0.0630 0.18 – 0.12 – – – – 0.
Random Surrounding 0.0649 – – – – – – – 0.

NestedSurrounding Linear 0.0543 0.04 0.30 0.01 – 0.77 – – 0.
NestedNonLinearity Linear 0.0589 0.15 0.63 0.09 – – – – 0.

EssenceSurrounding 0.0507 0.01 0.04 0.00 0.36 0.36 – – 0.
EssenceNonLinearity 0.0434 0. 0. 0. 0.02 0.04 0.17 – 0.
NestedRand Nonlinearity 0.1670 – – – – – – – –

Salustowicz2dBioN

Pareto Front Area, %
Reference 1.840 – – – – – – – –

Random Linear 1.820 0.37 – – – – – – –
Random Surrounding 1.435 0.83 0.58 – – – – – –

NestedSurrounding Linear 0.806 0. 0. 0.00 – 0.07 – – –
NestedNonLinearity Linear 1.024 0. 0.00 0.04 – – – – –

EssenceSurrounding 0.700 0. 0. 0. 0.00 0. – – –
EssenceNonLinearity 0.675 0. 0. 0. 0.01 0. 0.8 – –

NestedRand Nonlinearity 0.665 0. 0. 0. 0. 0. 0.29 0.45 –

RMSE on Test Data
Reference 0.1082 – – – – – – – –

Random Linear 0.1098 0.54 – – – – – – –
Random Surrounding 0.0963 0.77 0.42 – – – – – –

NestedSurrounding Linear 0.0756 0. 0. 0.00 – 0.09 – – –
NestedNonLinearity Linear 0.0827 0. 0.00 0.01 – – – – –

EssenceSurrounding 0.0491 0. 0. 0. 0.00 0. – – –
EssenceNonLinearity 0.0405 0. 0. 0. 0. 0. 0.44 – 0.26

NestedRand Nonlinearity 0.0485 0. 0. 0. 0.00 0. 0.84 – –
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Table 7.2: Part II. Significance of the comparisons of the experiments on
Tower problem. The last eight columns of the Table represent the p-values of the
Wilcoxon-Mann-Whitney test of comparing the medians of the distributions of the
percentages of areas under Pareto Fronts and of RMSE errors of solutions over 100
independent GP runs. Smaller values of sample medians of both measures are preferred.
All test are performed at the 95% confidence interval. Primary comparison groups are
emphasized in bold.
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Tower Problem

Pareto Front Area, %
Reference 1.5587 – – – – – – –

Random Linear 1.3160 0. – – – – – –
Random Surrounding 1.2958 0. 0.0220 – – – – 0.3800

NestedSurrounding Linear 1.2648 0. 0. 0.0934 – 0.01 – 0.0311
NestedNonLinearity Linear 1.2868 0. 0.0303 0.6968 – – – 0.7592

EssenceSurrounding 1.2362 0. 0. 0.0000 0.0079 0. 0.01 0.0001
EssenceNonLinearity 1.2563 0. 0. 0.0007 0.1995 0. – 0.0066

NestedRand Nonlinearity 1.3015 0. 0.3579 – – – – –

RMSE on Training Data
Reference 0.0795 – – – – – – –

Random Linear 0.0726 0. – – – – – –
Random Surrounding 0.0720 0. 0.0527 – – – – –

NestedSurrounding Linear 0.0709 0. 0.0000 0.0238 – 0.09 – 0.0715
NestedNonLinearity Linear 0.0715 0. 0.0098 0.5028 – – – 0.6217

EssenceSurrounding 0.0693 0. 0.0000 0.0000 0.0008 0. 0.03 0.0000
EssenceNonLinearity 0.0700 0. 0.0000 0.0000 0.0444 0. – 0.0007

NestedRand Nonlinearity 0.0718 0. 0.0914 0.9049 – – – –

of the subset size, however, may not be the best way to improve the fidelity of
fitness evaluations in the course of a run.

This chapter has introduced a new scheme for increasing the size of training
subsets that depends of the training data, and can be used either with random
subsets (Soft Ordinal Pareto GP), or with nested subsets of the ranked data (the
essence algorithm). In the new subsetting scheme the subset size grows slower
than linearly, and hence, allows the use of larger population sizes within the same
computational budget.

The experiments of this chapter are designed to compare the effects of using
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random and nested subsets with sizes growing linearly and non-linearly over the
GP run. Three regression problems, all containing imbalanced data, are used for
these experiments. Results of the experiments indicate that the new incremental
modeling approach on nested subsets of the training set ranked with the smits

procedure, with non-linear increase in the subset size, produces results that are
significantly than results of the reference Pareto GP runs and of the soft ordinal
Pareto GP runs in the old setting (random subsets increasing linearly). The
comparison is based on the values of two performance measures: percentage of
area under the convex hull of the archive solutions in the objective space of model
expressional complexity and model accuracy for the training data, and the best
root mean squared error of archive solutions on the test data.

A statistically significant difference between effects of the surrounding
and non-linearity weights is present only on the Tower problem, where the
essence algorithm applied to data ranked with surrounding is outperforming
the essence algorithm applied to non-linearity based ranking. This supports
our recommendations in Chapter 5 to use the surrounding weights instead of the
non-linearity weight for ‘very imbalanced’ problems, where the average distance
to k nearest-in-the-input-space neighbors varies significantly among the training
points.

The essence algorithm seems to be the best way to produce considerably
better solutions with the same computational budget. We speculate that
the incremental modeling by the essence algorithm may also produce ’better
solutions faster’, since the training data can be sensibly compressed to a smaller
subset of similar information content, and incremental modeling can be stopped
much earlier than the standard regression runs enable. An important property
of the essence algorithm is the possibility to get a reliable set of intermediate
solutions from the GP system, almost at all times. Due to the fact that even at
the beginning of the run the problem is modeled on a subset of data containing
the highest information content with high population sizes, good solutions can
be discovered in the early stages (if information content of the starting training
subset is sufficiently high), and are being tested further on prototype data in the
course of a run.

In further research we wish to incorporate automatic variable selection,
automatic dimensionality reduction, and automatic selection of important records
into the essence algorithm, and to develop early stopping criteria for incremental
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evolutions presented in this chapter. Intelligent evaluation of competing
individuals in a spirit of racing would be desired as well.
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8
Problem Analysis and Reduction

This chapter summarizes some of the current methods for model interpretation,
problem analysis and reduction employed by Pareto genetic programming.
Practical considerations of convergence identification, variable selection, and
ensemble selection are presented.

8.1 Analysis of problem difficulty

According to the framework of iterative model-based problem solving, the stage
of problem analysis and reduction follows the stage of model development. As
we said in Chapter 3, the stage of model development in symbolic regression
itself is an iterative loop over three phases of model generation, evaluation, and
selection (see Figure 8.1. In principle, several iterations of evolutionary search
as well as several replications of evolutions are required at the stage of model
development, to produce individuals of sufficient quality that can be interpreted
at the problem analysis and reduction stage. The question on how many
iterations and how many replications to do is an open research question. The
answer obviously depends on the available time budget and on the knowledge on
reproducibility of the evolutionary strategy. While for research papers we perform
50 to 100 replications to obtain sufficiently large samples for comparing statistical
significance of performance improvements of particular strategies, in practice only
few replications are sufficient for interpreting the results and drawing preliminary
conclusions.
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The question on the necessary number of generations is a tricky one, due to
the fact that initially neither anything is known about the problem difficulty,
nor a realistic level of prediction accuracy can be estimated. The time required
to obtain solutions of sufficient quality is hard to estimate. For this reason the
initial cycles over data-model-problem analysis are short due to the short model
development stage.

Even if there are no strict time constraints, it may not be very practical to
perform the evolutionary search or the fixed values of internal parameters for too
long, since it is known to stagnate at the large number of iterations. The problem
of stagnation, or loss of performance improvement is directly related to the
balance of exploration and exploitation in the evolutionary search. If exploration
of the new areas of the search space of alternative solutions deteriorates over
the evolutionary run, then excessive exploitation of discovered solutions may
lead to convergence, or inbreeding, when the population of individuals converges
to the same solution due to diversity loss. In archive-based Pareto GP as
opposed to the standard GP the problem of inbreeding is effectively tackled
by re-initialization of the population of individuals at regular intervals. The
existence of the archive with Pareto-aware control of prediction accuracy and
model complexity guarantees diversity of the archive. Avoidance of convergence
of the population and the archive in Pareto GP, however, does not eliminate the
problem of performance stagnation at the high number of generations. If we
model the data for too long, at some point we will observe stagnation, and it is
practical to stop the evolutionary process as early as possible, after stagnation is
achieved.

The measure according to which the performance progress of a symbolic
regression run is evaluated and monitored, makes a lot of difference in determining
stagnation period. Standard GP most often exploits the fitness landscapes -
the graphs of the best fitness in the population per generation. In Pareto
GP this performance measure corresponds to the best fitness in the archive
per generation. Since the archive is updated using non-dominated sorting, the
procedure guarantees that the best error in the archive does not get worse during
the run. This implies that the landscapes of the best fitness in the archive are
monotonously increasing.

Due to the fact that the measure for the best fitness in the archive does not
fully capture the overall quality of the archive solutions, different performance
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ProblemSolvingas aDirectedFeed-backLoop
DataGeneration,Analysis andAdaptationPart I,   Chapter 8 of Part IIIProblemAnalysis andReductionPart III

ModelDevelopmentModelGeneration ModelEvaluation ModelSelection
Part II

Figure 8.1: Generic scheme for model-based problem solving as a loop over data
generation, analysis and adaptation, model development, and problem analysis and
reduction.
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measure is often used to monitor the quality of symbolic regression - the
percentage of the area under Pareto front in the model complexity vs. model
error objective space (see Chapter 3).

One practical drawback of this theoretically founded measure is the additional
computation time required for its evaluation. In cases where time is crucial and
all computations must be reduced to the essence, we advise to use the “best error”
measure for on-line monitoring of the evolutionary progress, and use the “area
percentage” for off-line analysis of obtained solutions, and a posteriori analysis
of problem difficulty. In principle, the user may decide to visually monitor the
performance of the evolution by observing snapshots of the archive plotted in
the objective space of model complexity and model error. With well presented
graphics (like for example the one produced by the ParetoFrontLogPlot function
in the DataModeler add-in for Mathematica) it is easy to observe whether the
Pareto front of the archive is being pushed towards zero during the evolution,
and exact computations of the Pareto front area may be omitted for speed.

Irrespectively of which measure is selected for performance monitoring, it is
convenient to plot it on the log-log scale over the generations. A rule of thumb
in deciding that evolution is progressing is the observation that the graph of its
performance measure corresponds to a line on a log-log scale.

In Figure 8.2 we give examples of two experiments performed on the (hard)
Salustowicz2dBio data from Chapter 7. Experiment A corresponds to the
standard Pareto GP runs (plots at the left-hand side of Figure 8.2). Experiment
B corresponds to EssenceSurrounding runs from Chapter 7(plots at the right-
hand side). Both experiments are performed with the same budget of function
evaluations. Each experiment consists of 50 independent replications over 200
generations. Plots 8.2(a) and 8.2(b) present the graphs of the best error in the
archive plotted in the linear scale1. Note that examination of the performance
of experiment A may entice to draw a conclusion on stagnation of experiment
A. When the same graphs are plotted on the log-log scale (see Figure 8.2(c) and
8.2(d)), the steady performance increase is clearly observed in both experiments.
The slope of the line (approximating the performance measure or the mean of
the performance measure in the log-log scale) may be interpreted as the speed of
convergence to solutions, or as the speed of the evolutionary progress. Clearly,

1Note that for the essence runs monotonicity of the fitness landscape in not guaranteed,
since the training size is changing at each generation according to the essence algorithm.
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(a) A: Best error
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(b) B: Best error
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(c) A: Best error Log-Log scale
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(d) B: best error Log-Log scale

10
0

10
1

10
2

10
0

10
1

Generations

P
ar

et
o 

F
ro

nt
 A

re
a 

P
er

ce
nt

ag
e,

 %

(e) A: PF Area % Log-Log scale
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(f) B: PF Area % Log-Log scale

Figure 8.2: Monitoring performance measure on log-log scale is informative
indicator of evolution performance, and the potential to achieve performance
improvement. By observing plots (c)-(e) we can certainly conclude that the system would
have achieved a performance improvement in the experiment A as well as in the experiment B,
if runs would have continued for a larger number of generations.
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Figure 8.3: The slope of the value of the performance measure per generation
plotted in the log-log scale can be interpreted as the speed of performance
improvement, or the speed of evolution. The increment of this median in the case of
Pareto Front area percentage can be interpreted as a difficulty or a progress of the Pareto GP
system in modeling data at certain generation. As long as the median performance measure is
close to a line in the log-log scale - evolution progresses.

experiment B achieved a higher speed of convergence to solutions than experiment
A in both performance measures (see Figure 8.3).
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The speed of evolutionary progress can also be used as an indicator of problem
difficulty at a particular generation. For the experiments in the example above,
by observing the speed of progress on the Figures 8.2(e) and 8.2(f) we conclude
that experiment B does not seem to be difficult for the Pareto GP system (which
implements the essence algorithm in this case), while experiment A is rather
difficult, since the speed of the performance improvement achieved by generation
200 is relatively slow. To conclude this example, we add that it would be
incorrect to state that in Figure 8.3 the Pareto GP system does not have a
potential to come up with an archive of sufficiently high quality, but it would
be plausible to hypothesize that achieving a sufficiently high quality of solutions
(and hence, a sufficiently low Pareto front area percentage) may take from 103

to 104 generations, if stagnation does not happen.

8.2 Analysis of problem dimensionality

Spurious variables are one of the major culprits of problems with industrial
data analysis and empirical modeling, and especially with design and analysis
of experiments. Reducing the data space to a subspace of significant variables is
crucial for developing robust and simple regression models. In Table 1.1 (on the
high-level comparison of some of the regression methods) we indicated that all
non-evolutionary methods have a high risk of producing solutions that contain
insignificant inputs. This danger may (most certainly) imply a fast deterioration
of performance of the final solutions when more irrelevant variables are added to
the data.

Of course, any researcher practicing empirical modeling (including the author)
will assure that the application of a modeling method should be preceded by
a scrupulous data analysis and pre-processing step. The question arises how
to perform this data pre-processing step to exclude insignificant variables from
the data. Strange as it might seem, not many researchers practicing empirical
modeling with parametric methods will understand this question at all. With
respect to the goals of parametric methods, irrelevant variables are not a threat
- since the primary task is is to generate an optimal solution (of a minimal
order) that minimizes the prediction error out-of-sample. This goal does not
imply that insignificant variables should be excluded. Especially for the training
accuracy, adding a few irrelevant variables may actually improve the prediction
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error of produced models - we refer to this phenomenon as to over-fitting.
Examples of such a situation can often be observed in symbolic regression: models
with a higher than needed number of variables obtain a slight improvement
in prediction error at the expense of increased complexity. Unlike parametric
methods optimizing the error, symbolic regression pursues a slightly different
(and loosely formulated) goal - to identify the optimal space and optimal model
structures that convincingly describe the observed response as a function of the
identified driving inputs.

Those practitioners who worry about the presence of insignificant inputs
do not have too many options to identify them beforehand. The best but
also the most time- consuming method models all subsets of input variables,
and analyzes the results with respect to prediction error and robustness. For
dimensionality 10-1000 this is a hardly practical approach. Another approach
would be to perform a principal component analysis or a factor analysis to reduce
the problem dimensionality to a smaller number of meta-variables which are linear
combinations of the original variables, or to extract the latent dimensionality of
the problem and get some knowledge about the number of factors containing
the same information. The potential problem of these ‘classical’ approaches
used for analysis of data generated by a non-linear system, is the fact that they
only take into account mutual linear correlations between variables, and hence
have limited capabilities in analyzing the relevance of non-linear combinations of
inputs to the output. Besides, they do not select but create new variables in the
new reduced set, eliminate multicollinearity (which is most often present in real
measurements), and are sensitive to outliers, which heavily reduces applicability
of these approaches to analysis and plausible interpretation of (messy) industrial
data.

There are several variable selection strategies developed in the field of machine
learning (mostly for classification problems). They can be divided into two groups
- filter strategies and wrapper strategies. In a filter approach a subset of variables
is selected according to a certain criterion, and then is supplied to an induction
engine for model development. In a wrapper approach, variable selection is guided
by the induction engine (i.e. is wrapped around the engine), and depends on the
performance of models.

Variable selection through wrapping is introduced in (Kohavi and John,
1997) with the goal of selecting a subset of optimal variables that minimizes
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the prediction error of a classifier. The paper is interesting for many reasons,
particularly because the authors explore the relation of optimal variables to their
relevance, give formal definitions of variable relevance (albeit for classification),
and analyze the shortcomings of filter algorithms. The relevance is defined
in terms of the Bayes classifier - the optimal classifier for a given problems.
The variable is called strongly relevant, if its removal causes a performance
deterioration of the Bayes classifier. The variable x is called weakly relevant,
if it is not strongly relevant, and there exist a subset of variables S, such that
the performance of the Bayes classifier on S is worse than its performance on
S

⋃
x. The authors also emphasize that finding a subset of optimal variables is

not the same as finding a subset of relevant variables, if optimality is understood
as minimization of prediction error. This agrees with our observation of symbolic
regression which will improve the prediction error by using additional irrelevant
variables, if not discouraged to do so.

Kohavi and John (1997) suggest to directly apply a wrapper approach to
forward selection or backward elimination of optimal variables. They prefer
a computationally cheaper heuristic for incremental forward selection, which
creates nested subsets of optimal variables starting from an empty subset. A
simplistic explanation would looks as follows. At the first step, the model
induction engine creates d models using single variables x1,. . . ,xd, and selects
the ‘optimal’ variable that implies a model with the minimal prediction error. At
the second step, the engine produces d− 1 models on two variables, one of which
is the optimal variable selected at the first step. Two variables are selected and
used in a combination with the remaining d−2 variables for the third step of the
wrapper approach with forward selection, and so on. In backward elimination,
the first step produces d models containing all combinations of d − 1 variables,
and then variables are iteratively eliminated from the selected optimal subsets.
Obviously, the approach is heuristical in nature, since only particular subsets
of variables are considered, but heuristics and meta-heuristics are the current
practical reality of most variable selection methods due to the size of data being
considered.

An important general feature of wrapper methods is the fact that they look
for subsets of optimal rather than relevant variables, and optimality depends on
biases and accuracy estimation of a particular induction engine.

One of the unique capabilities of genetic programming is a built-in power
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to select significant variables for constructing models and to gradually omit the
variables that are not relevant for describing the response. Variable selection
based on genetic programming has been exploited in various applications of
industrial data analysis, where the significant inputs are generally unknown, or
their number needs to be minimized (for examples see (Francone et al., 2004;
Gilbert et al., 1998; Landry et al., 2006; Neshatian et al., 2007; Poli, 1996; Sherrah
et al., 1997; Yu et al., 2007)).

We speculate here, that genetic programming incorporates the features of
the wrapper approach for selection of optimal variables blended directly into the
evolutionary search - relevant variables that are crucial for describing the response
must be present in high-fitness individuals, and variables, present in high fitness
individuals are candidates for being optimal variables. A complication is that
optimality depends on a particular stage of evolution, since high fitness is a
relative notion in evolutionary search. Anyway, the usual approach to variable
selection based on GP is to analyze variable presence in the best equations,
and infer variable sensitivity based on the presence rates (and average it over
independent runs, or over independent experiments with different GP settings).

In (Smits et al., 2005) a variable selection strategy based on Pareto GP was
introduced. In the remainder of this section we shall highlight its main features
and speculate on the reasons for its good performance.

Variable sensitivity analysis is based on the assumption that fitness of a
variable is related to fitness of the host individual. On one hand, high-fit
individuals should contain high-fit variables (compare with optimality feature
given above). On the other hand, not all variables may be equally important
in a given individual, and variables present in a high-fitness individual are not
necessarily relevant (in particular, variables participating in inactive code are
irrelevant, e.g. ... + x1/x1 − x2/x2). This raises the question on how to assign
credits to variables to obtain plausible sensitivities.

Smits et al. (2005) introduced a procedure for variable sensitivity analysis in
Pareto GP through a straightforward fitness inheritance scheme of a posteriori
credit assignment. The main idea of this scheme is to uniformly distribute the
fitness of the host individual over all variables present in the individual, and
then sum up the obtained scores over all occurrences of a variable in a selected
set of individuals and use the obtained cumulative scores as sensitivities of the
selected set of variables to the performance of the selected set of individuals.
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Such credit assignment based on fitness inheritance, can be applied either to the
total population (or to any subset of individuals from a population), or to the
archive, or to the Pareto front individuals from the archive2.

A posteriori sensitivity inference based on the straightforward fitness inheritance
applied to the Pareto front individuals of the archive seems to be a more robust
way to avoid sensitivity distortion caused by unimportant variables that might
be present in the archive equations. Since the Pareto front is a set of optimal
(non-dominated) trade-offs in the space of model complexity and model error,
the Pareto front solutions of the minimal model error will by definition have a
minimal expressional complexity, possible for the given error. This suggests from
all high-fitness individuals, those of minimal complexity will be chosen, which
are likely to have less inactive code. Those variables that are present in high-fit
individuals but are irrelevant for describing the response, will likely be present in
low-fitness individuals in smaller fractions than relevant variables. Therefore, the
overall cumulative score of such irrelevant variables is likely to be smaller, than
the overall score of relevant variables, and the sensitivity analysis based on the
Pareto-optimal archive solutions will likely identify relevant variables rather than
optimal variables only. To further improve the differentiation between relevant
variables, which are crucial for describing the response, and optimal variables,
which are present in the high-fitness equations, we suggest to perform sensitivity
analysis using fitness inheritance on the subset of archive solutions located at the
knee of the Pareto front (in the low error-low complexity region).

We speculate, that the appropriateness of the variable sensitivity computed
through the fitness inheritance scheme directly depends on the model selection
strategy, used for identifying the set of individuals to which fitness inheritance
should be applied. For example, even if models are developed with the standard
GP method and single objective fitness measure, it seems appropriate to perform
the sensitivity analysis not on all population individuals but on the Pareto
front individuals in the complexity/error space. In this case, the additional
computational effort required for complexity evaluation of population individuals
is minimal, since for standard GP the calculations should be performed only once
after the solutions are obtained through the standard GP run. The Pareto-based
model selection will drive variable selection towards discovery of relevant (in

2The the number of individuals in the archive is fixed, and may contain a lot more individuals
than there are on the Pareto front in a selected complexity versus model error objective space.
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the sense of complexity/accuracy trade-off) rather than optimal (in a sense of
accuracy) variables.

It is also important to emphasize that model selection strategy applied to all
sub-expressions of individuals seems to be more robust than selection applied
to particular individuals (expressions associated with the root-nodes for tree-
based representation). This requires minor additional computation effort (for
evaluating finesses of all intermediate nodes in the individual), but produces more
reliable statistics. Higher reliability also comes from the fact that the impact of
inactive code on the sensitivity is reduced, since variables that are present in
inactive subexpressions are likely to get lower cumulative scores compared with
variables present in active sub-expressions, which do influence the high fitness of
the host individual.

In Pareto GP, variable sensitivity analysis of archive equations is executed
through the entire run - this allows to implement adaptive variable selection
on-line3.

It is possible to imagine that more criteria than just expressional complexity
and error can be incorporated into into credit assignment and model selection
for variable sensitivity in order to have a positive impact on the identification
of relevant variables. For example, niching of individuals per dimensionality is
likely to achieve this goal, since variables that are present in low-dimensional
high-fitness individuals are likely to be more relevant than variables present in
high-dimensional high-fitness individuals.

In summary, is that variable selection and sensitivity analysis is an important
step of model interpretation, is one of the most significant distinctive features
of Pareto GP compared to other methods for variable selection and for
model development, is performed with minor additional computations, and can
effectively reduce dimensionality of the problem for the next Data analysis-Model
development-Problem analysis cycles.

To conclude we emphasize that variable selection is performed automatically
without a bias of the domain expert. Because of this fact, it is important to always
confront the obtained sensitivities with the assessment of the problem owner.
A critical assessment of variable importance will inevitably lead to increased
insight into the problem. Two situations are possible - the domain expert either

3For the purpose of generality and fair comparison of methods, no adaptive variable selection
was used in the experiments of this dissertation, since adaptive elimination of the least
significant variables makes the search easy, especially at the initial stage.
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accepts the sensitivity analysis, because it “makes sense”4, or the domain expert
does not accept it, since it does not make any sense at all. Both cases lead to
new insight into the problem. If the variable selection is acceptable, it means
that the dimensionality of the problem can be effectively reduced and a new
problem solving cycle can be started. If variable selection is unacceptable, it
is an important sign that the information which the expert is anticipating to
retrieve is not present in the data.

8.3 Analysis of solution reliability

8.3.1 Model ensembles

A critical assessment of the reliability of solutions produced by the Model
development phase is a major issue in model-based problem solving. Besides
the numerous efforts done to incorporate the drive for generalization and
interpretability into the model development phase itself, a close scrutiny of
generated solutions is needed to extract reliable models appropriate for deployment.

The major challenge of using empirical models in industrial applications is the
potential to produce dangerously wrong predictions in the unobserved regions of
the input space. Since there is an infinite number of response surfaces perfectly
fitting any given data set, we aim at discovering those that are the simplest or
the smoothest, or have a predefined model structure (as in parametric methods).
In general, if nothing is known about the behaviour of the underlying system
(e.g. about the ‘true’ response surface), data-driven models can be fully trusted
only at the data points (in noise-free cases). Whether we attempt to predict the
response outside the observed region of inputs, or we predict the response within
the observed region for new data records, in both cases model predictions should
be treated with caution. The main challenge of model maintenance is to identify
these moments, and alarm when predictions of reduced validity are about to be
generated.

The problem of developing robust and trustworthy models with Pareto GP

4On hindsight, since unexpected or counter-intuitive variables can be selected as important
ones, or some variables that are considered to be important turn out to have little relevance
for a description of the response, the conclusion of the expert: “In principle it makes a lot of
sense”, often comes after some mind work, preceded by :“Hmmm, this is very strange - can’t
be true.”
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is addressed in recent studies by Kotanchek et al. (2007, 2008). The idea of
assessing the trustworthiness of predictions is resting on the following generic
tenet (see (Kotanchek et al., 2007)): If we can select an ensemble of models that
are accurate and diverse, these models will be constrained to agree in predictions
where there is data, and constrained to disagree in predictions where there is
no data. The disagreement between these ensemble models, if determined as a
function of the input space, can be interpreted as a measure of trustworthiness
of the ensemble.

The idea of using ensembles for improved generalization of the response
prediction is by far not new in regression, and has been extensively used
in neural networks (see, for example,(Hansen and Salamon, 1990; Krogh and
Vedelsby, 1995; Liu and Yao, 2002; Liu et al., 2000; Wolpert, 1992)), and even
more extensively in boosting machine learning in general (albeit, mostly for
classification), see (Folino et al., 2006; Freund, 1995; Freund et al., 1993; Iba,
1999; Paris et al., 2001; Schapire, 1990; Sun and Yao, 2006) for more examples.

Krogh and Vedelsby (1995) presented the idea of using the disagreement of
ensemble models for quantifying the ambiguity of ensemble prediction for neural
networks, but the approach has not proliferated in symbolic regression. Krogh
and Vedelsby (1995) expressed the ensemble generalization error as the variance
trade-off between the bias and the variance of the ensemble. They defined it as a
difference between two quantities - the weighted sum of generalization errors on
individual networks and the weighted average of ambiguities w.r.t. the selected
ensemble, determined as the weighted sum of squared deviations of prediction
errors at sampled points from the weighted mean of predictions. This last term of
the weighted average of ambiguities is called ensemble ambiguity and contains all
correlations of individual networks. The authors suggested to evaluate ensemble
ambiguity on a random set of points sampled from the input space.

The approach of trustworthiness quantification introduced in (Kotanchek
et al., 2007), attacks the notion of trust in symbolic regression via Pareto
genetic programming (the approach can be seamlessly incorporated into standard
GP as well). The ensembles are built from the archive individuals such that
combinations of Pareto-optimal solutions, and solutions producing predictions
with the smallest mutual correlations are selected. After the ensemble is built,
its ambiguity (the term is called disconsensus) is defined as the prediction
range at a selected point for small ensembles, or as the 0.1 − 0.9 quantile
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range. The prediction at a selected point x is computed as the median-average
of ensemble predictions (the latter is defined as an average of three to five
predictions surrounding the median prediction). The final ensemble prediction is
an aggregate of predictions of all ensemble individuals, and the value of ensemble
prediction at the arbitrary point x is defined as a pair of the median average
prediction at x, and the ensemble disconcensus at x.

Note that unlike boosting methods aiming at improving the prediction
accuracy through a combination of weak learners into an ensemble, symbolic
regression aims at constructing model ensembles for estimation of the reliability
of predictions of ensemble models.

The hardest part in building ensembles is to pick out a proper strategy to
select individuals for an ensemble, such that the individuals provide similarly
accurate predictions of the observed response at the given input points, but are
as diverse as possible in all other aspects (the amount of publications on ensemble
selection for machine learning, and especially for NNs appearing since the ’90s is
a confirmation of a great challenge).

A heuristical method presented in (Kotanchek et al., 2007) pursues the goal
of combining multiple criteria in diversity definition - Pareto optimal solutions
represent the ultimately diverse solutions with respect to individual’s complexity
(expressional, or non-linearity-based) and prediction error, while the uncorrelated
models represent the solutions that are (sub-optimally) least correlated with
respect to prediction error.

It is worth to note that if the diversity of the prediction error were the only
important criterion for selecting models into an ensemble, the selection problem
could have been elegantly and explicitly formulated as a quadratic minimization
problem. If the task is to select eB ensemble individuals from a set of B best
individuals {f̂1, . . . , f̂B}, accurately predicting the observed response such that
they are least correlated with respect to the prediction error, then the solution
can be identified as a solution of the following optimization problem:

min
∑

1≤i≤j≤B

ci,jzizj ,

s.t.
∑

i

zi = eB ,
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where zi is the binary variable indicating whether individual f̂i is selected
into the ensemble, and ci,j =

∣∣∣R
(
f̂i(x), f̂j(x)

)∣∣∣, is the absolute value of the

correlation coefficient between the responses predicted by f̂i and f̂j . This
problem, called a Quadratic Knapsack problem, has been studied extensively in
operations research, and there are many exact and heuristic methods for solving
it. The only warning that needs to be made is that if we do not want to build
ensembles from over-fitting models, we need to explicitly include a minimization
of generalization error into the problem formulation, and make it at least a
bi-objective minimization problem. One of the options is to use a composite
minimization function with an added term corresponding to the generalization
error, but the general question on how to best incorporate multiple objectives for
ensemble selection in the best way remains open.

8.3.2 Application for sequential designs

The primary goal of constructing model ensembles in Pareto GP is computation of
the ensemble disagreement, which is used as a trust metric for ensemble prediction
(this goal is more important than the reduction of the prediction error). Another
benefit of constructing model ensembles lies in the application to adaptive data
collection. Targeted data collection appeared as a side application of the ensemble
trust metric, and seems to become one of the most significant applications of
trustworthiness identification of data-driven models. When an unknown function
has to be reliably re-constructed in a high-dimensional space, and collection
of data (measured or simulated) is severely limited—due to intolerable time
requirements, financial expenses or both—adaptive data collection and modeling
is one of the few solutions for tackling this problem.

Model-based problem solving through adaptive data collection is a natural
approach to learning, where the knowledge of the unknown underlying system
is gathered incrementally through a series of steps of data collection, model
development, and problem interpretation. It therefore naturally fits to a generic
scheme depicted in Figure 8.1, where an arbitrary modeling method is used for
Model Development rather than the depicted evolutionary search.

Incremental learning through the iterative process of experimental design,
empirical model building, and analysis of the model is classic in the response
surface methodology approach (RSM) to optimization; see (Box and Draper,
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Figure 8.4: Response surface methodology as an iterative process of knowledge
collection through validating or denying conjectures made and re-fined iteratively.

1986; Khuri and Cornell, 1987; Kleijnen, 2008b). RSM is used for optimization
of an unknown system, but also for mapping the system into the response surface.
In a general sense, RSM can be seen as an approach of understanding the
given simulation system. In such ‘learning’ by means of RSM the user has to
repeatedly perform the conjecture-design-experiment-analysis steps to come to
an appropriate model of the response surface that can be adequately optimized,
see Figure 8.4 adopted from (Box and Draper, 1986).

In RSM the user has to repeatedly (1) make a conjecture on the type of the
parametric model (appropriate model structure), and the area of the input space
(design space) where the data will be collected, (2) design the experiments in
the selected input region (for the selected model type) such, that the number
of calls to a system is minimal, (3) perform the experiments (note that until
all experiments are finished, nothing is supposed to be done to incrementally
interpret preliminary results of an unfinished design), (4) build the model based
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on the obtained data, analyze and verify it w.r.t. the conjectures, learn the
consequences of the use of the developed model and make a new conjecture5.

One of the distinguishing features of symbolic regression is the fact that
model structure does not have to be imposed upfront, but is being discover
through the evolutionary search. This implies that the use of symbolic regression
in the iterative process of learning in a spirit of RSM adequately eliminates
the conjecture phase of the conjecture-design-experiment-analysis loop. It is
important to note that the goal of iterative learning with symbolic regression
depicted in Figure 8.5 is somewhat broader than the goal of RSM, in the sense
that RSM as depicted in Figure 8.4 (see (Box and Draper, 1986; Khuri and
Cornell, 1987)) aims at gathering knowledge through confirming or denying
conjectures, whereas symbolic regression aims at gathering knowledge in general.
Specifically, the main goals of the framework of adaptive data collection with
symbolic regression introduced in (Kotanchek et al., 2008) are:

• Modelling the response behavior,

• Identifying prediction uncertainty of data-derived models,

• Reducing uncertainty and improving accuracy via targeted data collection.

By adaptive data collection via trustable symbolic regression we mean
sequential data collection and modeling on nested designs. The basic tenet of this
approach is to use ensembles of diverse models to iteratively collect data points
at the areas of maximal ensemble disagreement, i.e. in the areas of maximal
prediction uncertainty; see also (Box and Draper, 1986).

Application of the generic idea of targeted data collection through ensemble
disagreement can be traced back to early 90’s, used for classification through
ensembles of neural networks, and so-called query algorithms (Freund et al.,
1993; Krogh and Vedelsby, 1995; Seung et al., 1992). Probably, the introduction
of multi-objective fitness functions which reinforced diversity into symbolic
regression models, enabled the application of ensemble-based adaptive data
collection for response surface identification.

5Our main focus is on the regression part of RSM, where the the response surface is being
constructed in the region of interest. We do not touch the optimization part of RSM, where
steepest descent or adapted steepest descent algorithms are used for searching for optimum.
We refer the interested reader to (Angün et al., 2002; Kleijnen, 2008b)
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Figure 8.5: The benefit of ensemble-based adaptive experimentation via trustable
symbolic regression is that it removes the Conjecture step from the learning
process. Instead of having to blindly choose a potentially winning option from a multitude
of options and make a conjecture about model structure and complexity before designing
an experiment, the user is offered an opportunity to select from the set of winner options -
Pareto GP solution ensembles. In addition, symbolic regression also provides the user with
trustworthiness estimation of generated predictions.

We would like to emphasize that ensembles in this application of trustable
symbolic regression are created for estimating uncertainty of prediction, and
ensemble models are constrained to agree on all available data points and be
diverse, in a sense that they disagree in predictions everywhere but in the data
records. This approach is different from boosting, which combines models that
are accurate on different subsets of data for improving the general prediction
accuracy, and understands the model diversity in terms of diversity of the
information captured by ensemble members.

The framework of targeted data collection presented in (Kotanchek et al.,
2008) can be summarized in the following generic steps:

1. Build models on initial data collection and select an ensemble of diverse
models and in parallel perform problem analysis and reduction,
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2. Identify locations of maximal prediction uncertainty by maximizing the
ensemble disconsensus function. (Extrema can be found using efficient
numerical optimization algorithms for global or local optima, like NMinimize
or FindMinimum functions of Mathematica.

3. Collect new data at appropriate locations (taking into account physical
constraints for real measurements, or feasibility of simulated realizations for
simulated data). (Kotanchek et al., 2008) demonstrates a hybrid strategy
of collecting three new points per iteration of adaptive data collection -
the choice is made to collect two new points, located at the maximum
and minimum of ensemble prediction, and the third new point is located
in the point of maximal ensemble disagreement, found at step (2). It
might be beneficial to introduce some balancing strategies into the selection
of new data records, such that in addition to exhibiting high ensemble
disagreement they would also form space-filling sets when combined with
the previously collected data.

4. Build new models (possibly performing variable selection) and repeat steps
(1)-(3). (Since the new points contain a point of maximal ensemble
disagreement, the old ensemble models are not likely to be valid or accurate
on the new points, and therefore remodeling is required. Previous results
can be seeded as the initial population into the new evolutionary run.)

This is a preliminary formulation of the proposed framework and further
research is necessary to search for more appropriate selection schemes for
model ensembles, and appropriate selection schemes for new locations of data
records. However, the positive impact of the framework even in such a simplistic
formulation, illustrated on several examples in (Kotanchek et al., 2008), is
impressive, since it allows a fully automatic production of trustworthy global
non-linear non-parametric regression models, coupled with a fully automatic
data collection targeted at the areas of maximal uncertainty in the non-linear
behaviour of the unknown system.



9
Conclusions

9.1 Summary of contributions

9.1.1 Contributions in view of research questions

This thesis has studied adaptive data-driven problem solving as an iterative
series of the following steps: (1) acquisition, analysis and adaptation of data,
(2) development of diverse collections of robust and interpretable models that
explicitly describe the relationships of given data, and (3) analysis of the
developed models for the purpose of obtaining insight into the data-generating
system for its interpretation, analysis, and adaptation.

Having to work mostly with given multidimensional data, we studied ways
to perform an assessment of data balancedness and overall quality in order to
maximize the insight into the data a priori and independently from the modeling
tool, and hence without modeling-bias. Chapter 2 attempts to resolve research
question (6) of section 1.4.4 on the ways to balance given data for the purpose
of improving the results of Pareto GP. It presents several intriguingly simple
heuristics for weighting, ranking and compressing multi-dimensional input-output
data and for inference of the data’s cumulative information content.

For model development we use a particular method for creating symbolic
regression models, called Pareto genetic programming. Pareto GP is an
evolutionary strategy for searching for simple non-linear expressions of input-
output relationships in the space of all symbolic expressions of variable length.
In Pareto GP, selection of potentially suitable expressions is guided by more
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than one criterion of fitness. Competing objectives like maximization of
prediction accuracy and minimization of structural complexity of input-output
expressions are optimized simultaneously in the course of a model development
run. Pareto GP also has a memory in the form of an archive of ‘best’ expressions
that is maintained and updated during the run. Pareto-aware archiving of
successful intermediate solutions throughout the evolutionary run explicitly
enforces structural and behavioral diversity of GP solutions and makes it possible
to collect statistics on the presence of variables in good solutions and perform
input sensitivity analysis during the run; see (Smits et al., 2005) and Chapter 8
of the thesis.

A Pareto GP system does not lack creativity (which is true for all evolutionary
strategies), and even when it is constrained to produce accurate and concise
expressions, it often generates compact models that agree with the data but
show a wild behavior ‘in-between’ the data points. The risk of over-fitting, i.e.
of unnecessary growth in the non-linearity without improvements in prediction
accuracy, and over-specialization on training data at the expense of poor
prediction on the test data, is the scourge of all (other than linear) empirical
modeling methods and has to be avoided at any cost.

Research question (3) on avoidance of over-fitting in Pareto GP is tackled
in Chapter 4. Experiments of that chapter bring us to the firm conclusion
that explicit non-linearity control must be performed during the evolutionary
run to avoid creation of senseless models. (Experiments with explicit control of
expressional complexity of regression models clearly demonstrate that the risk
of over-fitting is not eliminated, since response surfaces determined by compact
expressions may still exhibit highly non-linear behavior.)

Non-linearity control can be done in many ways, such as interval arithmetics,
numerical stability and range checking, catching pathologies on intermediate test
sets, etc.; see, e.g.,(Keijzer, 2003; Kotanchek et al., 2007). The potential benefit
of explicit control of the non-linearity complexity measure presented in Chapter
4 (performed independently from interval arithmetic calculations, and hence at
additional costs), lies in the fact that it explicitly maintains the behavioral
diversity of solutions w.r.t. non-linearity in addition to mitigating the risk of
pathologies among best-of-the-run solutions.

Research questions (2) and (4) are addressed by introducing a heuristic for
alternating multiple optimization objectives in a two-dimensional optimization
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framework. Such alternating of objectives at each generation allows exploiting
the effectiveness of two-dimensional optimization when more than two objectives
are of interest (we considered prediction accuracy, expressional complexity, and
the order of non-linearity). It therefore contributes to modified and seemingly
improved navigation through the search space of potential solutions. When
applied to alternation of expressional complexity and the order of non-linearity,
it contributes to reduced over-fitting. Results of the experiments on all test
problems of Chapter 4 show that alternating the order of non-linearity of GP
individuals with their structural complexity in parallel with prediction accuracy
maximization produces solutions that are both compact and have smoother
response surfaces; hence, they contribute to better interpretability and easier
deployment.

Research question (1) on the development of algorithmic improvements of
the Pareto GP system, which would stimulate the creation of ‘better’ solutions
faster, is one of the main goals of this thesis. It is addressed in Chapters 5 – 7.
Questions (2), (3) and (5) are tackled in these Chapters as well.

It is important to emphasize that despite the fact that interesting results and
significant performance improvements are obtained with respect to all research
questions raised in this thesis, the questions cannot be discarded, and should
be subjected to further research. The further research should not only aim at
validating the proposed methods on a larger set of problems, or at improving
them with respect to open questions mentioned in all Chapters of this thesis.
The research should also aim at developing new and better methods to resolve
the research questions of section 1.4.4 and to produce models satisfying the
requirements of section 1.2.

9.1.2 Practical impact of this research

The growing demand for symbolic regression modeling within the R&D department
of Dow Benelux B.V. and the Dow Chemical Company and the success stories
which preceded and even accompanied this study, have been encouraging to
further pursue the research.

This PhD project contributed to:

• The development of a prediction model for characterization of low-density
polyethylenes, used for on-line and off-line process control, implemented on
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three plants, running for already two years and recognized in 2007 as the
most effective technology for characterizing materials of this group 1.

• The implementation and testing of a novel algorithm for creating input-
output (structure-property) relationships, patented by the Dow Chemical
Company.

• The minor and major enhancements of the GP toolbox for MatLab utilized
by researchers of the Dow Benelux B.V. and the Dow Chemical Company in
nearly 30 applications 2, and used for model building in 18 internal reports
and several external publications, among which are (Castillo et al., 2006;
Jordaan et al., 2004; Kordon et al., 2004; Kordon and Lue, 2004; Kordon
et al., 2006) 3.

9.2 Application Domain of Symbolic Regression

Application of symbolic regression together with classical modeling techniques
may have a synergetic effect in both industry and academia. The potential areas
of co-application of symbolic regression with other data-driven modeling methods
are mentioned in the introduction. We summarize the industrial applications,
where symbolic regression via Pareto GP can have (or has had) a big impact.
Some of these benefits are illustrated for application areas in manufacturing
industries, but will also hold for other industries, e.g., finance, information
technology, or services (see Chapter 1).

Integration of theoretical and empirical modeling

The ever-growing industrial competition demands shorter development cycles.
When time is crucial, the empirical generation of fundamental relationships in
process variables is certainly preferable over the discovery of first-principle models
and developing a mathematical apparatus to efficiently operate with them. For
this reason, this thesis studies the possibilities of efficient generation of diverse
sets of plausible and transparent data-driven models in a framework of iterative

1The value and the information is kindly provided by Sjoerd de Vries, Dow Benelux B.V.
2The number of projects is kindly provided by Guido Smits, my co-supervisor.
3This list of papers and reports is kindly provided by Arthur Kordon, The Dow Chemical

Company
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knowledge extraction and problem solving. When such a technology is developed
and proliferates in industry, then both high-throughput empirical modeling cycles
and the low-throughput fundamental modeling insights will take place at the
same time, provide feed-back for each other, and synergetically contribute to
understanding the system in question.

Chapter 1 states that understanding of the fundamental laws of nature,
and hence, the development of fundamental models that would help to control
or predict the consequences, is one of the main goals of industrial research.
The problem is that in some profit oriented companies, understanding the
fundamental laws of nature is not the primary goal, but rather the secondary
goal that would eventually lead to the primary goal of maximizing the profit.
Especially nowadays, when a recession is being forecasted, when these companied
take decisions on how to invest $M millions into k out of K (K >> k) R&D
projects to maximize the profits in the coming months,the projects aimed at
understanding fundamental models have little chance of being selected, since
short-term results, and especially short-term profits are difficult to guarantee. I
see and recommend empirical modelling through symbolic regression as a tool
that would help ‘fundamental modelers’ in industry to cope with deadlines on
deliveries of short-term results (which would be data-driven), while enhancing the
potential and the delivery of long-term fundamental discoveries (which would be
possible if the projects are funded and thinking time is avalable).

Research acceleration

Fast large-scale symbolic regression is a bridge between theoretical models and the
available data. If sufficient speed can be achieved in discovering diverse insightful
and applicable models describing complex multi-variate relationships on large-
scale data, it will free more thinking time for researchers to develop fundamental
models and perform intelligent experimentation. This will accelerate research,
since the usual Data-Model-Insight cycle will be performed fast and will guide
the development of fundamental models.

The unique capabilities of symbolic regression in automatic identification of
driving variables and variable transformations allow an efficient reduction of the
dimensionality and non-linearity of the problem. Since the problem space can
be substantially reduced and ’linearized’, new opportunities open well developed
classical approximation techniques, since they can be applied to a much wider
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range of problems. The novel approach to compressing the input-output data
introduced in Chapter 2 allows to extract meaningful subsets of the data with
the same or similar information content and can make the problem tractable for
the modeling techniques that can produce accurate and robust models on small
data sets (few thousands of records), but may fail in convergence on larger data
sets.

The other applications of symbolic regression that industry can and has
benefitted from are building inferential sensors, empirical emulators, modeling
structure-properties relationships for new products and planning adaptive targeted
experimentation.

Inferential sensors

Inferential sensors have been used in industry for quick predictions of difficult-to-
measure process variables through combinations of available and easy-to-measure
inputs. Inferential sensors generated with symbolic regression are widely used
for controlling dynamic on-line processes; see, e.g., (Jordaan et al., 2004; Kordon
et al., 2004; Kordon and Smits, 2001).

Emulators and Meta-Models

Empirical emulators are models mimicking the behavior of complex systems,
either physical or already modelled, e.g. expensive black-box simulations.
Emulators are often necessary for interpreting, adapting and optimizing the
system in question. Transparency of models generated by symbolic regression
makes them the first choice for building emulators of complex systems; see
(Ashour et al., 2003; Kordon et al., 2003; Toropov and Alvarez, 1998) for
examples.

Development of new products

Developing new products is an important application area for symbolic regression.
Development of input-output models for discovery of structure-property or
structure-activity relationships is a one of the major applications in the areas of
drug discovery and polymer product development. Pharmaceutical companies are
concerned with understanding complex multi-variate relationships between the
molecular structures of the drug’s compounds and the drug’s activity. Polymer
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research is looking for relationships between molecular structures of polymer
mixtures and physical properties of the resulting polymers, like robustness, odour,
and gloss. Both industries are now undergoing a shift towards high-throughput
experimentation, where trustworthy symbolic regression is going to have a sweet
spot (see the next section for elaboration on this statement).

9.3 Considerations on the future

The future of symbolic regression is undoubtedly bright. In addition to developing
algorithmic improvements for symbolic regression via Pareto GP, this thesis
makes a modest attempt to join the efforts of researchers practicing symbolic
regression to popularize the technology as an eminent research acceleration and
knowledge discovery tool.

It appears that despite all the benefits mentioned above and supported
by industrial applications, the potential of symbolic regression via genetic
programming is heavily underestimated by the modern research communities—
at least in the areas of data mining and knowledge discovery within machine
learning. The fraction of research papers aiming at scalable trustworthy symbolic
regression is almost negligible in the total amount of publications. Supervised
learning is mainly used for classification and only to a small extent for regression.
Parametric approximations with neural networks still seem to be dominating
regression-type applications. When I asked my colleagues why the efforts on
classification and regression are so disproportional in publications and books
on data mining, and why symbolic regression via genetic programming has not
emerged as a leading application for regression in data mining, the answer
was very interesting and quite prosaic. The colleagues hypothesized that it is
mainly due to the fact that the technology is not implemented as a function in
SAS and other popular software packages. I have little doubt that this “sin of
omission” will be fixed in the nearest future, not only because symbolic regression
automatically discovers trustable relationships on given data and automatically
identifies significant variables and variable transformations, but also because in
the last three years I have been observing the (exponentially) growing interest
for this particular technology in industry (not only at Dow Chemical)4.

4The scepsis of academia towards symbolic regression via GP also has seemed to be decaying
if not exponentially, than still in a faster than linear fashion.
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Of course, to make the future brighter, we will have to put considerable
effort into making symbolic regression scalable and intuitively transparent for
industrial applications. I am not stating that we have arrived at the point where
symbolic regression is an industrial-scale technology. More efforts are needed to
enable our tools to model data of hundreds of records in a minute, a million
of records in an hour, or tens of thousands of variables in a day. I am stating
that all necessary ingredients are there to make symbolic regression industrially
scalable in the nearest future (maybe one-two years?). Recent advances in
GPU computing, effective representations of individuals, model selection and
niching strategies, co-operations, co-evolutions, multi-processor machines are
all contributing conditions to pursue the research in trustworthy and scalable
symbolic regression.

To support these statements, I would like to mention two reports that have
been very encouraging, namely a “Roadmap for High Throughput Technologies”
by InsightFaraday (2004) and the “Towards 2020 Science” report by Emmott
et al. (2006).

According to (InsightFaraday, 2004), data handling and interpretation is
one of the core capabilities required to underpin all high technology platforms,
which can benefit from high-throughput experimentation. Identification of
the key response parameters in data analysis and the ability to estimate
them mathematically are stated as keys for developing robust process scale-
up (InsightFaraday, 2004). In the mean time, these are the main distinctive
capabilities of symbolic regression. In Table 9.1 we reproduce a fragment
summarizing the required capabilities in data handling, interpretation, modeling
and prediction. The features, which are required for high-tech platforms and
by coincidence are currently present in symbolic regression via Pareto GP, are
emphasized with a check mark. We recognize that the application of these
capabilities to high-throughout technologies via symbolic regression is still a
subject of further investigation. With an exclamation mark we denote the
capabilities which would require minor to medium efforts to be implemented
in symbolic regression, and therefore should be prioritized in future research.

In addition to data handling and interpretation, the other important point
of application of symbolic regression to high-throughput research is in the
automation and robotics engineering, in particular, real-time multi-parameter
monitoring and full sensor feed-back for process control.
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Table 9.1: Data Handling and Interpretation is one of the five cross-platform
High Throughput capabilities Required to under-pin all technology platforms.
The other four are Instrumentation, Automation and Robotics engineering, Integration, and
Organizational Implementation (InsightFaraday, 2004) (extract of the table reproduced with
permission of InsightFaraday Partnership). The required capabilities, which are currently
present in symbolic regression via Pareto GP are emphasized with a check mark (note, that
application of these capabilities to high-throughout technologies is still a subject to further
investigation). With exclamation mark we emphasize the capabilities, which would require
minor to medium efforts to implement in SR, and, therefore, they should be prioritized in the
future research.

Short term Medium term Long Term
Data
Handling &
Interpretation

- Statistical
Experimental
design

- Data capture
and analysis

- Data
modeling and
prediction

- Data systems
for operations

- Process
modelling and
simulation

- Greater
training in
DoE: more
access to
statisticians

X Handling
very large
design
spaces

X
Multivariate
modeling

- Standards
&
Connectivity
to allow
cross-
platform
use

! User-friendly
“intuitive”
software

! “Live” data
interpretation
on large data
sets

X Algorithms
for inferential
correlations

X Prediction
for complex
product
performance

X Integrate
scheduling into
DoE and data
interpretation
feedback

X Cross-
correlate
numerous
end-points
effects

! Standards
for data
transfer:
data
streaming
from remote
networks

X Self-
optimizing
“whole-
process”
feedback
algorithms



Chapter 9. Conclusions 234

Another motivating challenge for application of symbolic regression lies in
the phase of integration of high-throughput technology standards and operability,
where the effective integration of design of experiments and data analysis is listed
as the major issue. Experiments that can be performed in a high-throughput
fashion, inevitably push the procedures on the design of these experiments and on
modeling the obtained data towards automation. In particular, (InsightFaraday,
2004) states: “...This is a particular issue in adoption of systems that allow for
iterative feed-back - i.e. where integration of DoE and data analysis and data
interpretation must be done “on the fly” - requiring methods for fast correlation
in live data streams.” The framework for targeted data collection combined with
the automatic trustworthy modeling seems to offer an intriguing possibility for
high-throughput technologies in the integration of design of experiments, data
analysis, and modeling in an automated fashion.

To conclude I would like to comment on the Draft Roadmap towards 2020
science, accompanying the “Towards 2020 Science” report edited by Emmott
et al. (2006). This is an exciting thought-provoking document that represents
selected directions of science between 2006 and 2020 with respect to five
dimensions: Issues, Computational Platforms, Concepts/Tools from computer
science, Scientific challenges, and Goals.

The Goals of this roadmap (like the system approach in biology, full
model of a single cell, computational theory of synthetic biology) are more
aligned with the goals of computational evolution suggested by Banzhaf et al.
(2006). However, the ’conventional’ artificial evolution, and particularly symbolic
regression via GP, seem to be very relevant for the directions mentioned for
scientific developments. Below we cite a subset of these developments, and
speculate that the applicability of symbolic regression towards them has to be
carefully and critically accessed, and, if positive, it should be used to actively
guide future research.

Towards solution of Issues: • Versioning of datasets, models, and algorithms

used routinely and widespread in science.

Towards Computational Platforms: • Move towards program execution for

scientific applications hosted in the database (taking the application to the

data, rather than the data to the application).

• Symbolic computation integrated into scientific databases and programming

languages.
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• Ability to rapidly build complex distributed systems from shared components

that are trustworthy, predictable, reliable, scalable and extensible.

• Proof of concept for automated experimentation (2006).

Towards Concepts/Tools from Computer Science: • Bayesian networks used

to model effects of toxins in metabolic pathways (E.V.:Symbolic regression

may be an alternative)

• Active learning techniques start to proliferate in science - towards autonomous

experimentation [and understanding of the brain].

• Integration of sensors [environmental, physiological, chemical] and machine

learning and data management - towards automated experimentation.

• Widespread de novo creation of models, theories and solutions (e.g. protein-

drug candidates) from data using advanced machine learning.

• Autonomous experimentation and sophisticated sensor networks being used

routinely to undertake otherwise impossible experiments.

Towards Scientific Challenges: • ‘Postdictive’ modeling possible for a wide

range of systems.

Towards Goals :

• Keystone-species identification.

• Reliable global warming, natural disaster and weather prediction models.

• Predictive models of effects of rainforest destruction, forest sustainability,

effects on climate change on ecosystems, effects of climate change on

foodwebs, restoration ecology planning, global health trends, sustainable

agricultural solutions (2015).

I would like to repeat that these directions for scientific development seem to
have a potential to benefit from the flexible principles of industrial scale symbolic
regression, several of which are presented in this thesis. The only way to check
whether trustworthy symbolic regression can contribute to advancing the science
towards 2020, is to actually try to apply it to the corresponding challenges in an
organized fashion.

Over the last three years I have learned one thing for sure: the advancements
in the modern algorithms are guided by the challenges we are trying to meet.
Predictive and computational powers of evolutionary modeling methods are
literally co-evolving together with the complexity of the new modeling problems.
This process does not show any signs of stagnation in the nearest future,
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which means that the future of computational scientists is bright: there is
plenty of work, with success almost guaranteed, irrespectively of economic
downturns. So may the bond of an open mind and the adventurous inclination
towards combining working principles of evolution into meta-principles, meta-
strategies, and meta-heuristics, bring us the sweet taste of convergence to the
accomplishment of our goals.



A
Chebyshev Polynomial Approximations

Approximating a function means finding for a given function f a function g from
a certain class that is in a specific way close to f . There exist a great number
of approximation problems depending on the class of functions where g is being
sought from, the method by which g is being found, and the meaning of closeness
between g to f .

Interpolation of a function is a partial case of the approximation problem,
when values of g must coincide with the values of f in some points. These points
are called knots of interpolation, or interpolation nodes.

To evaluate the closeness of the given function f and its approximation g the
metrics of various functional spaces are used depending on a problem. Usually
these are the metrics of the space of functions continuous on an interval (finite
or infinite, also multidimensional), C([a, b]), and functions integrable up to an
order p on an interval, Lp([a, b]). Metrics are the measures of distance between
functions. For the above mentioned spaces they are determined by formulae:

‖f − g‖C([a,b]) = max
x∈[a,b]

|f(x)− g(x)|,

‖f − g‖Lp([a,b]) = (
∫

[a,b]

|f(x)− g(x)|p)1/p.

Usually one looks for approximations of f in a form of

Pf =
n∑

j=1

αj gj , (A.1)
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where g1, g2, . . . , gn are given functions from a certain class.
Example 1. Approximation by algebraic polynomials in C([a, b]): f is a real

continuous function on [a, b], functions gj(x) are monomials xj , j = 1, . . . , n.

Approximation P (x) =
∑n

j=1 αj xj .
Example 2. Approximation by trigonometric polynomials in C([a, b]): f is a

real continuous function on [a, b], functions gj(x) are βi cos ix + γi sin ix.

Example 3. Lagrange interpolation in C([a, b]): Given f ∈ C([a, b]), and a
set of points a = x1 < x2 < · · · < xn = b, let f(x1), . . . , f(xn) be known. If
gi(x) ≡ li(x) =

∏
j,j 6=i

x−xi

xj−xi
, and λi(f) = f(xi), i = 1, . . . , n, then the problem

of linear interpolation can be formulated as follows:
For function f given in points {xi}, i = 1, . . . , n find an approximation L(x) =

(Pf)(x) =
∑

i αili(x), such that it coincides with f in points {xi}: L(xi) =
f(xi) for all i = 1, . . . , n. Points {xi} are called knots of interpolation,
functions li(x) - Lagrange monomials.

When f is given in a tabulated form (x1, f(x1), . . . , xN , f(xN )) direct
interpolation through f(x1), . . . , f(xN ) is the worst way to approximate f ,
since no values are given between the points, and the quality of approximation
cannot be evaluated. According to the Weierstrass approximation theorem,
any continuous function on [a,b] can be approximated with any precision by
a polynomial of a sufficiently large degree. This means that if f contains errors,
a perfect approximation of f can be found that will model both f and the noise
extremely well. When this happens, f is said to be over-fitted. Over-fitting
should be avoided as much as possible since the error in tabulated values can be
drastically magnified by the interpolating polynomial between the interpolation
nodes and the approximation will then become useless. Instead, a smoothing of
data with a best fit polynomial of minimal degree is encouraged.

The concept of the best fit polynomial, or polynomial of the best approximation
is accredited to the Russian mathematician Pafnuty Lvovich Chebyshev. He
studied the best approximations of continuous functions, and got a whole series
of results on best fit polynomials.

If Pn is a space of algebraic polynomials of degree n on interval [a, b], a
polynomial of the best approximation of f in Pn in metric C is a polynomial
Pf ∈ Pn with the least deviation from f , i.e.

‖Pf − f‖C([a,b]) = max
Q∈Pn

‖f −Q‖C([a,b]) ≡ En(f). (A.2)
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Chebyshev proved that for given degree n the best approximating polynomial
Pf for function f in C([a, b]) is unique and is sufficiently characterized by the fact
the the number of points on interval [a, b] in which the difference f(x) − Pf(x)
takes the value maxx∈[a,b] |f(x)− Pf(x)| with alternating signs is at least n + 2
(the celebrated Chebyshev alternation theorem (Rivlin, 1974)).

The main goal in approximating a continuous function by polynomials is
a polynomial which among all polynomials of the same degree has a smallest
deviation from the true function. It is known how to construct this polynomial
for approximations in the space of square-integrable functions L2. However, for
other spaces the construction of the best fit polynomial is a difficult problem,
with a solution known only for a few single cases. Therefore, several techniques
have been developed to build ’nearly’ best fit approximations.

For major classes of functions studied in calculus there exists such polynomial
approximations for which approximation error decreases at the same order as the
error of the best fit polynomial by n → ∞. Examplea are an approximation
of a periodic function by partial sums of its Fourier series, or approximation of
a continuous function by trigonometric interpolation polynomials at equidistant
knots, or algebraic interpolation polynomials with knots at zeros of Chebyshev
polynomials.

Let us come back to the Example 3 and analyse the error of approximation of
function f by the Lagrange interpolating polynomial Ln. For functions n times
continuously differentiable on [a, b], the following representation holds:

Theorem. Let f ∈ C(n)([a, b]), and Ln be a Lagrange polynomial of degree
n − 1 constructed on points a ≤ x1, . . . , xn ≤ b. Then for any x ∈ [a, b] there
exist ξ = ξ(x) ∈ [min(x1, . . . , xn, x),max(x1, . . . , xn)] such that

f(x)− Ln(x) = (x− x1) . . . (x− xn)
f (n)

n!
. (A.3)

Thus, the difference of the function and its interpolating polynomial of degree
n− 1 can be represented as a polynomial of degree n. Let us denote it by Rn(x).
From (A.3) the remainder term can be estimated as:

‖Rn(x)‖C([a,b]) ≤
‖f (n)‖C([a,b])

n!
‖(x− x1) . . . (x− xn)‖C([a,b]), (A.4)

where ‖g‖C([a,b]) = maxx∈[a,b] |g(x)|.
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The bound in equation (A.4) for Lagrange interpolation is minimized if
polynomial Pn(x) = (x − x1) . . . (x − xn) has minimal deviation from zero, i.e.
has minimal norm ‖Pn‖C([a,b]). Such a polynomial is unique for a fixed n. It
carries the name Chebyshev; see (Rivlin, 1974; Tchebycheff, 1857).

Chebyshev polynomials denoted by Tn(x), n ≥ 0 are determined recursively:

T0(x) = 1, T1(x) = x, (A.5)

Tn+1(x) = 2xTn(x)− Tn−1(x), n > 1. (A.6)

The consequence of (A.6) is that the leading term of Tn(x) is 2n−1.
For x ∈ [−1, 1] the following representation holds: Tn(x) = cos(n arccosx), n ≥

0, x ∈ [−1, 1]. Therefore,
1)|Tn(x)| ≤ 1, / > n ≥ 0, > x ∈ [−1, 1],
2)Tn has n + 1 extrema on [-1,1]: x̂m = cos πm

n , m = 0, . . . , n, and Tn(x̂m) =
(−1)m.

3)Tn has n distinct zeros: xm = cos (π(2m−1)
2n ) ∈ [−1, 1], m = 1, . . . , n.

Since n distinct zeros of a polynomial Tn(x) of degree n are found, it can be
represented as Tn(x) = 2n−1(x− x1) . . . (x− xn).

4) Polynomials T0, T1, . . . , Tn−1 are linearly independent. Moreover, in
L2([a, b]) they are orthogonal with a weighting coefficient 1√

1−x2 :

∫ 1

−1

Ti(x)Tj(x)√
1− x2

=
π

2
δij , i, j = 1, . . . , n. (A.7)

Besides, the system of Chebyshev polynomials satisfies a discrete orthogonality
relation. If xm, m = 1, . . . , n are n zeros of polynomialTn(x), then for
0 < i, j < n

n∑
m=1

Ti(xm)Tj(xm) =
m

2
δij , (A.8)

n∑
m=1

T 2
0 (xm) = m. (A.9)

The most important property of polynomial Tn(x)/2n−1 is that it has minimal
norm among all polynomials Pn(x) with the leading coefficient equal to 1
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(miminax property), i.e.

max
x∈[−1,1]

|Pn(x)| ≥ max
x∈[−1,1]

|Tn(x)/2n−1| = 1/2n−1. (A.10)

Polynomial Tn(x)/2n−1 is thus called a polynomial with minimum deviation
from zero on [-1,1].

Introducing a transform z : [a, b] → [−1, 1] such that z(x) = (2x−(b+a))/(b−
a), we can determine a Chebyshev polynomial on interval [a, b]:

Tn(x; a, b) = Tn(z(x)) = Tn((2x− (b + a))/(b− a)). (A.11)

T̂n(x) has n zeros on [a, b], and leading coefficient (2/(b−a))n ·2n−1 = 22n−1/(b−
a)n.

The minimax property (A.10) implies that polynomial T̃ (x) = Tn(x; a, b)(b−
a)n/22n−1 has a minimal norm among all polynomials Pn on [a, b] with leading
coefficient 1, i.e.

max
x∈[a,b]

|Pn(x)| ≥ max
x∈[a,b]

|T̃n(x)| = (b− a)n/22n−1. (A.12)

Now after a polynomial of degree n with minimum deviation from zero on
interval [a, b] is constructed, the error bound (A.4) can be minimized. Let select
Pn(x) = (x−x1) . . . (x−xn) = T̃ (x) = (b− a)n/22n−1 Tn((2x− (b+ a))/(b− a)).
By definition of Pn(x), the points x1, . . . , xn are zeros of polynomial T̃n(x) on
interval [a,b], where

xm =
a + b

2
+

b− a

2
cos(π

2m− 1
2n

), m = 1, . . . , n. (A.13)

From (A.12) ‖Pn‖C([a, b]) = (b − a)n/22n−1. Hence, if zeros (A.13) are
selected as nodes for Lagrange interpolation of degree n − 1 for function f ∈
C(n)([a, b]), the upper bound of the interpolation error is:

‖Rn(x)‖C([a,b]) ≤
‖f (n)‖C([a,b])

n!
(b− a)n/22n−1. (A.14)

The given bound for Lagrange interpolation over zeros of Chebyshev polynomial
of degree n on [a,b] cannot be improved.

The exact characteristics of the behavior of the error of Lagrange interpolation
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of degree n − 1 over zeros (A.13)of Chebyshev polynomial T̃n is given by the
following bound:

En−1(f) ≤ ‖f − Ln‖C([a,b]) ≤ (2 +
2
3

ln n)En−1(f), (A.15)

where En−1(f) is the error or the best-fit polynomial for f on [a, b] defined in
equation (A.2).

This bound shows that interpolation of order n − 1 over zeros of Chebyshev
polynomial T̃n gives an approximation that does not differ much from the best fit
polynomial. This gives a so called rule of thumb: in polynomial approximation
the ’best a priori ’ choice is the Lagrange interpolation at zeros of the Chebyshev
polynomial.

Implementation details

The approximating polynomial can be found as an expansion over Chebyshev
polynomials on [a, b]:

P (x) =
n−1∑

i=0

αiTi(x; a, b), (A.16)

Ti(x; a, b) = Ti(
2x− b− 1

b− a
), i = 0, 1, . . . , n− 1. (A.17)

It is required that P (x) satisfies the following condition: for a given set of
points x1, . . . , xn

n∑

k=1

Ti(xk; a, b)f(xk) =
n∑

k=1

Ti(xk; a, b)P (xk), i = 0, . . . , n− 1. (A.18)

By choosing points x1, . . . , xn to be zeros of Chebyshev polynomial Tn(x; a, b)
on [a, b], we can find coefficients (αi) of the expansion P (x) =

∑n−1
i=0 αiTi(x; a, b):

αi =
∑n

k=1 Ti(xk; a, b)f(xk)∑n
k=1 Ti(xk; a, b)Ti(xk; a, b)

. (A.19)

The approximation determined in this way can be constructed with low
computational efforts. Condition (A.18) does not require the approximation
P (x) to coincide with the function f(x) in any point on [a, b]. However,
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wonderful properties of Chebyshev polynomials ensure that P (x) will coincide
with the Lagrange interpolating polynomial, built over zeros of n-th Chebyshev
polynomial Tn(x; a, b) on [a, b]. This means that P (x) at first has equal values
as f(x) in n points defind in equation (A.13), and also minimizes the error of
interpolation of f on all polynomials of degree n− 1.

Coefficients (α)i are computed from the following set of equations:

α0 = 1/n(T0(x1; a, b)f(x1) + · · ·+ T0(xn; a, b) f(xn))

α1 = 2/n(T1(x1; a, b)f(x1) + · · ·+ T1(xn; a, b) f(xn))
...

...
... (A.20)

αn−1= 2/n(Tn−1(x1; a, b)f(x1) + · · ·+ Tn−1(xn; a, b)f(xn))

The system of Chebyshev polynomials on thr interval [a, b] satisfies a recurrent
relation:

T0(x; a, b) = 1, T1(x; a, b) =
2x− (b + a)

b− 1
,

Tn+1(x; a, b) = 2
2x− (b + a)

b− 1
Tn(x; a, b)− Tn−1(x; a, b). (A.21)

Columns of table (A.20) for coefficients (αi) should be computed from left to
the right, in a top-down manner.

Let us denote Ti(xj ; a, b)f(xj) = gi,j , zj = 2 cos π(2j−1)
2n , i = 0, . . . , n− 1, j =

1, . . . , n.

Then the gi,j are computed by recurrent formulae (A.21):

g0,j = f(xj), g1,j = 1/2zjf(xj) = 1/2zjg0,j ,

gi,j = zjgi−1,j − gi−2,j , i = 2, . . . , n− 1. (A.22)

As soon as a column of the table is computed, it is added to the sum of
previous columns:

αi := αi + gi,j , i = 0, . . . , n− 1. (A.23)
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At the next step the coefficients αi are computed as

α0 := 1/nα0, αi := 2/nαi, i = 1, . . . , n− 1. (A.24)

Now, when coefficients of P (x) =
∑n−1

i=0 αiTi(x; a, b) are found, we can
evaluate the quality of approximation. One way to do this would be to evaluate
each Ti(x; a, b) in a set of point where the error is sought for, while accumulating
the sum P (x). Instead, we are using the Clenshaw recurrence relation, which
performs both processes simultaneously (Press et al., 1992). Applied to the
Chebyshev recurrence in the form (A.21) and an approximation P (x), the
Clenshaw formula looks like:

yn+1 ≡ yn ≡ 0,

yp = 2
2x− (b + a)

b− 1
yp+1 − yp+2 + αp, (A.25)

p = n− 1 . . . , 0

By expressing (αi) from (A.25) and substituting them in (A.16) one gets an
efficient way to compute values of P by evaluating recurrence relation (A.25)
without finding values of the Chebyshev system:

P (x) = α0 − y2 +
2x− (b + a)

b− 1
y1. (A.26)

Here x is a vector of points, which implies that (A.25) should only be computed
once to find the values of P (x) and, hence, the error of approximation in x.
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