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Abstract 

An iterative numerical technique for the evaluation of queue length distributions is applied 
to multi-queue systems with one server and cyclic service discipline with Bernoulli schedules. 
The technique is based on power-series expansions of the state probabilities as functions of 
the load of the system. The convergence of the series is accelerated by applying a modified 
form of the epsilon algorithm. Attention is paid to economic use of memory space. 

Keywords: Power-series algorithm, traffic intensity, waiting time, epsilon algorithm, memory 
space;- 

1. Introduction 

Queueing systems with more than one waiting line are very hard to analyse 
when the joint  queue length distribution is not of some kind of product form. In 
Hooghiemstra et al. [8] and Blanc [1-3] a numerical technique has been devel- 
oped for the evaluation of performance measures for such multi-queue systems. 
The technique is based on power-series expansions of the state probabilities as 
functions of one parameter (the traffic intensity) of the systems. The coefficients 
of these power series can be recursively calculated for a large class of multi-queue 
models. The coefficients of the power-series expansions of the moments of the 
queue length distributions follow directly from those of the state probabillities. In 
most instances a bilinear transformation ensures convergence of the power series 
over the whole range of traffic intensities for which the system is stable. We have 
introduced in Blanc [2,3] extrapolations of the coefficients of the power series in 
order to accelerate the convergence of the series. One of these extrapolations will 
be combined with the epsilon algorithm (cf. Brezinski [6], Wynn [13]) in the 
present paper. The advantages of the present technique are that quantities are 
calculated iteratively, that it is relatively easy to compute additional terms of the 
power series in order to increase accuracy, that algorithms for accelerating the 
convergence of sequences can be applied, and that, once the coefficients of the 
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power series have been obtained, it requires little effort to compute performance 
measures for various values of the traffic intensity (compare with numerical 
techniques based on truncation of the state space and solution of large sets of 
balance equations). The main drawback is the large amount of memory space 
necessary to store the coefficients of the power series of the state probabilities. 
The available memory space mainly limits the size of the models which can be 
handled. Therefore, attention will be paid to optimize the use of the available 
memory space. 

The power-series algorithm will be applied to a multi-queue model with one 
server and cyclic service discipline with Bernoulli schedules. This kind of model is 
often used to study distributed computer systems with a single communication 
channel and a cyclic access scheme. Several authors have derived general relations 
or have proposed approximations for the mean waiting times in such systems (cf. 
Boxma and Groenendijk [4], Boxma and Meister [5], Cooper [7], Kiihn [9], Servi 
[10], Takagi [11], Watson [12]). Our approach provides exact data for moderate- 
sized systems, which are of interest in itself for studying the interaction between 
queues, and which may be helpful in finding and validating approximations for 
large scale systems. 

The organisation of the paper is as follows. The multi-queue model with cyclic 
service will be described in section 2. Section 3 is devoted to the derivation of the 
scheme for- calculating the coefficients of the power series. A modified form of the 
epsilon algorithm is introduced in section 4. Section 5 contains remarks on the 
implementation of the power-series algorithm, section 6 some numerical examples 
for the multi-queue model. Possible extensions of the model and the algorithm 
will be discussed in section 7. Section 8 contains some technical details of the 
power-series algorithm. 

2. The multi-queue model 

The system consists of s queues. Jobs arrive at queue j according to a Poisson 
process with rate 2t j, j = 1 . . . . .  s. The single server inspects the queues in cyclic 
order, i.e. queue 1, 2 , . . . ,  and after queue s again queue 1, etc. When the server 
finds queue j non-empty, he serves the first arrived job in this queue. After 
completion of the service of a job at queue j the server starts another service at 
this queue with probability qj when this queue is not empty; otherwise the server 
switches to the next queue ( j  = 1 . . . . .  s). The times for switching from one queue 
to the next will be neglected in the present study. Service times at queue j are 
assumed to be identically, exponentially distributed with mean 1/#i ,  j = 1 . . . .  , s. 
Each queue may contain an unbounded number of jobs. See section 7 for a 
discussion on the relaxation of some of these model assumptions. Note that the 
server visits queue j according to a Bernoulli schedule with parameter q j; this 
includes exhaustive service (q_/= 1) and one-limited service (qj = 0), .j = 1 . . . . .  s. 
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First, the condition for ergodicity of the system will be considered (cf. Ktihn 
[9]). The sum of the arrival processes at the various queues is a Poisson process 
with rate A .'= Z~=I)D- The service rate of an arbitrary job i s / , j  with probability 
X J A ,  j = 1 . . . .  , s. Hence, the load or traffic intensity p of the system is in a 
natural way defined by 

j ~  1 ~-, ~ '~J (2.1) 
p :-- A ~.tj A ~j 

"= j = l  

and a necessary and sufficient condition for ergodicity of the system is 

p < 1. (2.2) 

Because the traffic intensity p will be used as a variable in power-series expan- 
sions, the arrival rates will be written as 

a jR = }k j ,  j = 1 . . . . .  s. (2.3) 

It will be assumed that the system is in steady state and hence (2.2) will hold. Let 
Nj denote the number  of jobs in queue j (waiting or being served), j = 1 . . . . .  s. 
The supplementary variable H, indicating the queue to which the server attends, 
is introduced in order to transform the queue length process into a Markov 
process (which can be described as a multidimensional quasi b i r th -dea th  process). 
Let n = ( t / l , . . . ,  n s )  be a vector with non-negative integer entries. Note that when 
the system is empty (in state 0) the value of H is not determined. Therefore, the 
probability that the system is empty at load p will be denoted by P(P; 0). For 
n 4= 0 the state probabilities are defined as follows: for h = 1 . . . . .  s, 0 ~< 0 < 1, 

p(p; n, h ) := P r { N j =  nj, j =  1 . . . . .  s, H =  h; at load p}.  (2.4) 

Let I{ E} stand for the indicator function of the event E, and let ej be a vector 
with zero entries except an entry of one at the j t h  position ( j  = 1 , . . . ,  s). When 
the server attends queue, h, a state n with n h = 1 could only have been entered 
through an arrival at queue h if all queues were empty (h - - -1 , . . . ,  s). Note 
further that the server may reach queue h from any queue h - j  ( j  = 1 , . . . ,  s) on 
condition that all intermediate queues h - j  + 1 , . . . ,  h - 1 are empty (h = 1 , . . . ,  s; 
read here and below queue i + s for queue i whenever i < 1). With this in mind, 
the balance equations for the state probabilities (2.4) are readily verified to be, for 
h = l , . . . , s ,  n h > 0 ,  

[pj~=laj + l~h]p(p; n, h) 

=ahpp(p;  O)I{n = %} 
s 

+ p Y~. ajp(p;  n- -e j ,  h ) I { n j > O ;  n j> 1 if j = h }  
j = l  
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+ [ qh + (1 - qh)I( n i= 0 Vi, i=g h } ]/xhp(p; n + e h, h) 
s--1 

"q- Z [ 1 - - q h - j ' + q h - j I { r l h - - j = O } ] I ( r l i  ~ 0 ,  i 
j=l  

X lXh_jp(p ; n + e h _ j ,  h-j); 

p ~_~ a ip(p; O)= Izjp(p; e/, j ) .  
j = l  j = l  

= h - j + l  . . . . .  h - l }  

(2.5) 

(2.6) 

3. The power-series algorithm 

The power-series algorithm will be discussed briefly in this section. The reader 
is referred to Blanc [2] and Hooghiemstra et al. [8] for more details and a 
motivation of the method. First, introduce the bilinear mapping of the interval [0, 
1] onto itself: 

O = P ( O ) =  I + G - G O  O= l + G p  ' G>~O. 

Then, introduce the following power-series expansions, for h = 1 , . . . ,  s, 
.r 

oQ 

p(p(O); n, h)=O "'+'''+"~ E Okb(k; n, h), n * O ,  
k=O 

o o  

p ( p ( O ) ; 0 ) =  ~ Okb(k;O). 
k=0 

Replace p by 0 in the 
the power-series (3.2) 
sponding powers of O 
scheme for computing 
n h 

(3.1) 

(3.2) 

balance equations (2.5) according to (3.1), and substitute 
into these equations. Equating the coefficients of corre- 
in the resulting equations leads to the following iterative 
the coefficients of the power-series (3.2): for h = 1 . . . . .  s, 

>0 ,  for k = 0 ,  1, 2 . . . . .  

(l + G)l.thb(k; n, h) 

+ ~ a # b ( k ; n - e j ,  h) l (n#>O; n j > l i f j = h }  
j = l  

+ [ qh + (1 -- qh)l( ni=O Vi, i*  h }1/%[(1 + G ) b ( k -  1; n + e h ,  h) 

•  h ) I { k >  l)] 
s--1 

+ ~ [1--qh-j+qh-il(nh-j=O}] 
j = l  
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• i = h - j  + l ..... h-1}lxh_j 

•  h - j ) I {  k > O} 

- G b ( k -  2; n + eh_j, h - j ) I {  k > 1}]. (3.3) 

To determine the coefficients of p(p(O); 0) the law of total probability is used 
instead of (2.6) to complete the recursive scheme, because the term with b(k; O) 
vanishes in (2.6). Substituting (3.1) and (3.2) into the law of total probability 
gives: 

b(O; O) = 1 ,  
s 

b(k ;  0 ) =  - Y'....Y'. Y ' ~ b ( k - n l - . . . - n s ; n , h ) ,  k = l , 2 , . . . .  
0 < n t + . . . + n s < ~ k  h = l  

(3.4) 

There are several ways to compute the coefficients b(k; n, h) recursively from 
(3.3) and (3.4). One convenient way is the following. Calculate all coefficients 
b(k; n, h) with k + n l + . . . + n s = m  before those with k + n l + . . . n s = m + l  
(m = 0, 1, 2 . . . .  ), and on each hyperplane k + n 1 + . . .  +n~ = m, m fixed, calcu- 
late all 'coefficients b(k; n, h) with k = j  before those with k = j +  1, j = 0, 
1 . . . .  ,m - 1 (m = 0, 1 , . . . ) .  See section 8 for more details. Once the coefficients of 
the power-series expansions of the stateprobabili t ies have been determined, those 
of the moments  of the queue length distribution can be obtained as well. Write 

OQ 

E{NT) = E OkL(~:; J), j = l  . . . . .  s, v = l , 2  . . . . .  (3.5) 
k=l 

It follows readily from (3.5) and (3.2) that for j = 1 . . . . .  s, v = 1, 2 , . . . ,  k = 1, 
, . . . ,  

L(k; j )= I2...2 h). (3.6) 
0 ~ < n l  q- . . .  +ns<~k h = l  

It is more convenient for obtaining moments  of the queue length distribution to 
compute first their coefficients via (3.6) and then to use (3.5) than to compute  
first the state probabilities via (3.2) and then the moments directly from the state 
probabilities. In the first way, algorithms for accelerating the convergence can be 
applied to partial sums of the series (3.5); see section 4. Moreover, the second 
way will be more laborious when one is not interested in the (many!) state 
probabilities themselves. 

This section is concluded with a discussion of the stationary waiting time (W h) 
distribution of jobs arriving at queue h (h = 1 , . . . ,  s). The number  of jobs at 
queue h left behind by a job departing from that queue is equal to the number  of 
jobs that arrived at queue h during the sojourn time of the departing job. Because 
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arrivals occur according to a Poisson process, this implies (cf. Takagi [11]) for 
h = l  . . . . .  s, Izl <1, 

1 
E{ z Nh } = 1 + (1 - z)Xn/#h E{e-xh(1-z)w~ }" (3.7) 

The moments of the waiting time distributions can be obtained from the mo- 
ments of the marginal queue length distributions through relation (3.7). Let W be 
the waiting time of an arbitrary job, irrespectively of the queue at which it arrives, 
in steady state. Then, with (3.7) and (2.1), 

E { W } =  -x-E{Wh}= E Nn - 0  / A .  (3.8) 
h=l h=l 

Finally, we note that the expected values of the waiting times for jobs in the 
various queues of a cyclic service system satisfy the following conservation law 
(cf. Boxma and Groenendijk [4], Watson [12]): 

-~h P an/,].  (3.9) Y'~ E{Wn} = 1 - p  h=l 
h=l 

By Little's formula and (2.1), relation (3.9) is equivalent to the following relation 
for the mean queue lengths: 

i 1 ~' Nn}= p ian/#2h. (3.10) 
h=l~h E{ l - - O h =  1 

Related to the conservation law is the fact that for the present models 

p ( p ; O ) = l - p ,  o r p ( p ( 0 ) ' 0 ) =  ( 1 + G ) ( 1 - 0 )  (3.11) 
' 1 + G - G O  ' 

cf. (3.1), so that definition (3.2) implies (see also (3.4)): 

1 ( G ) ~-1 
b(k;O)= I + G  ~ ' k = l , 2 , . . . .  (3.12) 

Relations (3.10) and (3.12) provide useful checks on the correctness and the 
accuracy of the computations. In the special case that all mean service times are 
equal (i.e.i.% = ~, h = 1 . . . .  , s) then (3.9) and (3.10) lead, with (3.8) and (2.1), to 

E N h = ~ E { W } =  1 _  o, 

the well-known results for the M / M / 1  system. Note that relations (3.8)-(3.13) 
hold for any set of Bernoulli parameters { q j, j = 1 . . . . .  s }. 

4. Application of the epsilon algorithm 

The epsilon algorithm aims to accelerate the convergence of slowly convergent 
sequences or to determine a value for divergent sequences (cf. Wynn [13], 
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Brezinski [6]). The epsilon algori thm consists of  the following tr iangular  recursive 
scheme: for  m = 0, 1 . . . . .  x = 0, 1 . . . . .  

((m)x+l = , : (m+ 1 )~K_I  q" [ ( ( m +  1) - -  ( (m)]  - 1  , (4.1) 

wi th  initial values, for m = 0, 1 , . . . ,  

((m) "~" ~'(om) = Sm ; (4.2) 

here S,,,, m = 0, 1 . . . .  , is the part ial  sum of  a series. Only  the even sequences 
,(m) m = 0, 1 . . . .  } will be sequences which m a y  converge faster to a limit than  ~ 2 K  ' 

{ Sin, m = 0, 1 . . . .  }, x = 1, 2,. The odd  sequences : ,(-,) " ' "  I. "2x+l, m = 0, 1 . . . .  } are jus t  
in te rmedia te  steps in the calculat ion scheme, x = 0, 1 . . . . .  W h e n  S m is the par t ia l  
sum of  a power-series, say 

m 

S , , =  S,,,(8) = ~ c , O  i, m = 0 ,  1 , . . . ,  (4.3) 
i = 0  

then the epsi lon algori thm transforms this sequence of polynomials  into se- 
quences of  quotients  of two polynomials .  More  precisely, , ( , , -2 , )  will be a ~'2t~ 

quot ient  of  a po lynomia l  of degree m - x over a polynomial  of  degree x, and  

_ . ( , , , -2~)  O ( # m + l  Is,,, -2~ I = ), 8 ~ 0 ,  ~ = 1 , 2  . . . . .  m = 2 x ,  2 x + l  . . . .  ; 

(4.4) 

see W y n n  [13]. Because m a n y  queueing systems have the proper ty  that  the v th  
momen t s  of  the queue length dis t r ibut ion are of order  (1 - p ) - "  as p 1' 1, v = 1, 
2 . . . . .  we propose  to modi fy  the initial values for the epsilon a lgor i thm as follows 
when  this a lgor i thm is applied to accelerate the convergence of power-series for 
moments ,  cf. (3.5). Before applying the epsilon algorithm, we first extrapolate  the 
coefficients of  the power series to take into account  the pole at 0 = 1. This 
ext rapola t ion  has been in t roduced in Blanc [1,2]. I t  means  that  we take for first 
order  momen t s  

0 m + l  

((Ore) = am -[- Cm 1 - -  0 '  m = 1, 2 , . . . ,  (4.5) 

and  for second order  moments  

Cm - -  Cm-- 1 
((Ore) = am -[" Cm 3i- 1 -- O 1 -- O'  m = 1, 2 . . . . .  (4.6) 

instead of the second relat ion of  (4.2); here S,,, is of the form (4.3) and  c=, m = 1, 
2 , . . . ,  s tand  for coefficients of  a series as def ined in (3.5). It is our  experience tha t  
the use of (4.5) and  (4.6) instead of (4.2) leads to considerably  faster convergence 
(cf. Blanc [2]), and  this proper ty  is preserved in higher order  sequences { - ( ' )  "2K , 
m = 1, 2 . . . .  }, • = 1, 2 , . . . ,  p roduced  by  the epsilon algorithm. Fo r  instance,  
when  relat ion (4.5) is used as an  initial sequence, then 

0 m + l  OOm+I(c m -  Cm_l) 
e ~2"- 2) = S"  + c" T'-Z-ff- 0 + ( 1 - 0 ) ( I - a 0 )  ' (4.7) 
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with 

. ~ C m ~  Cm-1 
a -~- Cm--1 -- C m _ 2 ,  m = 2 ,  3 , . . .  (4.8) 

For  comparison, if relation (4.2) were used as an initial sequence, then 

~0  m + 1Gin Cm 
e(2 "-2)  = S,,, + (1 - -  i f 0 )  ' O =  - - 'Cm- -  1 m = 2, 3 , . . . .  (4.9) 

It will be clear that (4.7) provides a better approximation of S~ than (4.9) when 
Soo indeed possesses a pole at 0 = 1. We notice that e(2 m-2) as given in (4.7) is 
identical to the approximation proposed in Blanc [3, formula 4.19]. F rom the 
theory of the epsilon algorithm (cf. Brezinski [6], Wynn [13]) it follows that if S~ 
is a rational function of 0 with, as denominator,  a polynomial  of degree r + ~,, 
r = 0, 1 , . . . ,  which contains a factor (1 - 0) ~, then 

e(2~ ) = Soo, for m >~ m 0, (4.10) 

when (4.5) or (4.6) is used as an initial value for p = 1, or v = 2 respectively; the 
constant  m 0 depends on the degrees of the numerator  and of the denominator  of 
Soo. This result holds for 0 smaller as well as larger than the radius of convergence 
of the series Soo(O), cf. (4.3). Therefore, if the moments  of the queue length 
distribution are rational functions of P, it would not be necessary to use the 
transformation (3.1). However, experience learns that it is still advisable to use 
the mapping (3.1) in such a case, because the convergence of the series may be 
slower and the power-series algorithm may be numerically instable when G is too 
small. The latter seems to occur when some state probabilities possess more 
singularities than the moments, as functions of p. To obtain a good value of G a 
test run of the power-series algorithm with G = 0 is needed in order to estimate 
the radius of convergence of the various power series. 

The performance of the modified epsilon algorithm (cf. (4.5), (4.1)) is il- 
lustrated in table 1 on the basis of an asymmetrical two-queue system with 
alternating service discipline (i.e. ql = q2 = 0). The arrival rates are h 1 = 0.64, 
h 2 = 0.32, and the service rates are #1 = 1, /~2 = 2 (hence P = 0.8). We have 
chosen G = 2. The exact values indicated in this table have been obtained by  
means of calculations with m up to 250. It should be noted that the rate of 
convergence of the sequences f~.(m) I."24 , m = 1, 2 , . . .  } does not increase monoto-  
nously with increasing r (see the columns with 2x = 6 in table 1). This may be 
caused by pairs of complex conjugate singularities of the mean queue lengths as a 
function of p. In general, it is quite unpredictable which sequence produced by  
the epsilon algorithm will converge most rapidly. It may depend on the value of 
G. When the model  is more symmetrical or when the traffic intensity is lower, the 
performance of  the epsilon algorithm will be better  than in the case of table 1 
(and vice versa). More research is needed to discover how the power-series 
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Table 1 
Performance of the modified epsilon algorithm 

181 

m E(  N 1 } (exact: 3.27159431) 
,(0 m ) { (2m-- 2) ,(4m-- 4) ,(m-- 6) ,(Sin-- 8) tE~I-- 16) 

20 3.2545 3.2702 3.2742 3.2712 3.2721 3.271366 
24 3.2639 3.2704 3.2726 3.2711 3.2716 3.273994 
28 3.2683 3.2707 3.2720 3.2713 3.2715 3.271606 
32 3.2702 3.2710 3.2717 3.2714 3.2716 3.271599 
36 3.2711 3.2712 3.2716 3.2715 3.1716 3.271596 
40 3.2714 3.2714 3.2716 3.2714 3.2716 3.271595 

m E( N 2 } (exact: 0.65681138) 

,(o 
20 0.69101 0.65968 0.65162 0.65762 0 . 6 5 5 8 3  0.657269 
24 0 . 6 7 2 2 5  0 . 6 5 9 2 4  0 . 6 5 4 8 4  0 . 6 5 7 8 4  0 . 6 5 6 8 2  0.652011 
28 0.66345 0.65863 0.65605 0.65749 0 . 6 5 6 9 4  0.656788 
32 0 . 6 5 9 5 3  0 . 6 5 8 0 3  0.65653 0.65720 0 . 6 5 6 8 9  0.656801 
36 0.65788 0.65753 0.65672 0.65707 0.65685 0~656807 
40 0.65722 0.65718 0.65679 0.65721 0.65683 0.656810 

algorithm can be combined most effectively with the epsilon algorithm or any 
other algorithm for accelerating the convergence of sequences (cf. Brezinski [6]). 

5. I m p l e m e n t a t i o n  

The main restriction in applying the power-series algorithm is the required 
amount  of memory space. Therefore, this section is devoted to ideas for an 
efficient implementation of the power-series algorithm. One way to limit the 
required amount  of memory space is the reduction of the number of coefficients 
b(k; n, h) which have to be calculated (cf. (3.2), (3.3), (3.4)) by applying 
algorithms for accelerating the convergence of sequences such as the epsilon 
algorithm discussed in section 4. Other ways may be found in preventing that 
part of the available memory positions remains unused and in reusing the 
memory positions which are occupied by coefficients b(k; n, h) that will no 
longer be needed in later computations. These topics will be addressed below. 

Suppose that the coefficients of the power-series expansions of the state 
probabilities and the moments of the queue length distribution have to be 
computed up to the M t h  power of 0 for a particular model. This implies that the 
coefficients b(k; n, h) must be calculated for all k and n with k + n 1 + . . .  + n  s = 
m ,  m = 0,  1 . . . . .  M and for h = 1 . . . . .  s (cf. (3.2), (3.5), (3.6)), i.e. 

s ( M + s +  l (5.1) 
s + l  ] 
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of those coefficients are needed. When these coefficients would be stored in 
rectangular  arrays, then 

s ( M +  1) s+l (5.2) 

memory  posi t ions would be required. Hence, there is a considerable reduct ion in 
storage requirement  when a two-dimensional  array of size (5.1) is used to store 
the coefficients b(k; n, h). In order to be able to locate the coefficients, the 
following mapp ing  of the lattice points  (k,  n), k + n~ + . . .  + n  s ~< M, onto  the set 
of integers 0, 1,...,~[M+s+l'~s+l j -- 1, can be used (cf. Blanc [2]): 

C ( k ; n ) =  E k + j +  ~.,n, (5.3) 
i = l  

j = 0  j + l  

The  drawback of this procedure is that it costs quite some computa t ion  t ime to 
determine the locations of the 3s + 2 coefficients which are in general involved in 
each step of the i teration (3.3) by using (5.3) directly. Therefore, we give a .more 
efficient a lgori thm for determining the locations of these 3s + 2 coefficients 
s imultaneously in section 8. 

A further reduct ion of the storage requirement  can be obtained by the 
following considerations.  In many  circumstances one is not  interested in all the 
individual  state probabilities (3.2), but  only in some aggregated measures of 
per formance  such as the first and second order  moments  of the queue length 
distr ibution and a few characteristic probabilities. In this case it will be more  
efficient to store the coefficients of the power-series expansions of this l imited 
number  of per formance  measures in separate arrays. The coefficients b(k; n, h) 
can then be deleted f rom memory  as soon as they are no longer needed in later 
steps of the i teration (3.3), and we can use the following mapping  to locate these 
coefficients: 

CM(k; n) = C(k; n) mod  D M. (5.4) 

Here D M is the maximal  distance which occurs between the value C(k; n) and 
any of the values C(k - 1; n), C(k; n + eh )  , C ( k  - 1; n + eh), C(k - 2; n + eh), 
h ----- 1 , . . . ,  s (cf. (3.3)), over all points (k;  n) with k + nl + . .+  ns < M. It is readily 
verified that  this implies (see also section 8) that  

D M = m a x ( C ( k ; n ) - C ( k - 2 ; n + e s ) ; k + n l + . . . + n ~ < ~ M ) ,  (5.5) 

if the coefficients b(k; n, h), h = 1, . . . .  s, are computed  in order  of increasing 
value of C(k; n) (cf. (5.3)). It turns out that  the  max imum in (5.5) is a t ta ined at 
the point  (M;  0), so that  

+ ( M + s - 2 ) s + l  D M  = ( M + s +  1 s + l  ) - 2 [ M + s - l ~  s + l  ) 

= ( M ? s ) + ( M + s - 2 )  
s - 1  " 

(5.6) 
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Table 2 
Maximum number of terms M at a storage capacity of 10 6 coefficients 

183 

# queues 2 3 4 5 6 

Rectangular 78 23 11 6 4 
Triangular (5.3) 142 50 28 19 14 
With modulus (5.4) 997 123 46 26 18 

This approach requires sD M memory positions to store the coefficients b(k; n, 
h). Beside these coefficients also those of the aggregated performance measures 
have to be stored. However, in order to apply the epsilon algorithm to the 
coefficients of these measures, they must be determined also when the modulus 
operator in (5.4) would not be used. To illustrate the gain which is obtained by 
applying (5.4) and (5.6), we show in table 2 the maximum number M of terms of 
the power series (3.5) which can be computed when respectively rectangular 
arrays (cf. (5.2)), the mapping (5.3) (cf. (5.1)), or the mapping (5.4) are used and 
when there is storage capacity for 10 6 coefficients b(k; n, h). 

6. Examples 

In this section numerical data for cyclic-service systems which have been 
obtained with the aid of the power-series algorithm will be presented. The value 
of G in the mapping (3.1), the number of terms M of the power-series (cf. (3.5)), 
and the number  of steps ~: in the epsilon algorithm (cf. (4.1)), which were needed 
to obtain these data, depend on various properties of the models. Generally, these 
quantities increase with increasing traffic intensity, with increasing number of 
queues, with increasing asymmetry between the parameters of the various queues, 
and with decreasing value of the Bernoulli parameters q j, j = 1 . . . .  , s. 

Table 3 shows the way in which the expected values and standard deviations of 
the waiting times depend on the values of the Bernoulli parameters ql and q2, for 
a two-queue system with /~1 = ~2 = 1 and ~k I = 2k 2 = 0.45 (i.e. p = 0.9). For com- 

Table 3 
Dependency of the waiting time distributions on the parameters of the Bernoulli schedules (p = 0.9) 

ql q2 E{W~) E(W2]. o(W~) o{~) 
0.0 0.0 9.000 9.000 11.187 11.187 
0.5 0.5 9.000 9.000 11.547 11.547 
1.0 1.0 9.000 9.000 12.362 12.362 
0.0 0.5 14.697 3.303 18.220 3.851 
0,5 1.0 15.694 2.306 19.145 2.378 
0.0 1.0 16.364 1.636 19.390 1.809 
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Table 4 
Standard deviations of the waiting times for symmetrical systems (/xj = 1, j = 1 ... . .  s) 

O s = 2  s = 3  s = 4  

erda. 1 - lim. erda. 1 - lim. exh. 1 - tim. 

0.10 0.491 0.490 0.493 0.492 0.494 0.493 
0.30 1.071 1.056 1.081 1.070 1.086 1.078 
0.50 1.901 1.835 1.925 1.881 1.935 1.906 
0.70 3.693 3.460 3.730 3.598 3.743 3.680 
0.80 5.876 5.414 5.919 5.680 5.933 5.846 
0.90 12.36 11.19 12.41 11.87 12.42 12.31 
0.95 25.29 22.67 25.33 24.20 25.35 25.21 

pa r i son ,  the  s t a n d a r d  dev ia t ion  of  the wai t ing  t ime  in an  M / M / 1  sys t em wi th  
p = 0.9, /z = 1 a n d  F I F O  service discipl ine is 9.950. 

I n  table  4 the  s t a n d a r d  devia t ion  of  the  wa i t ing  t ime  d i s t r ibu t ion  has  b e e n  
l is ted fo r  s y m m e t r i c a l  sys tems  with e i ther  exhaus t ive  service (q j  = 1, j = 1 , . . . ,  s )  
o r  I - l i m i t e d  service (q j  = 0, j = 1 , . . . ,  s) .  T h e  m e a n  wai t ing  t imes  fol low d i rec t ly  
f r o m  (3.13) for  s y m m e t r i c a l  systems,  and  do  no t  d e p e n d  on  the Bernoul l i  

schedule .  
T a b l e  5 shows  the inf luence  of  a re la t ively  heav i ly  l oaded  queue  on  the  m e a n  

wa i t ing  t imes  a t  queues  which  are four  t imes m o r e  t ightly loaded ,  for  va r ious  
service schedules .  T h e  p a r a m e t e r s  of  the sy s t em are, in the case of  s = 3 (4) 

queues :  /.t 1 = 1, g j  --- 2, j = 2,3(,4); a I = 2 a j ,  j = 2,3(,4); qj = q2, J = 3(,4); a n d  
p = 0.8. N o t e  tha t  the d i f ferences  in m e a n  wai t ing  t imes of  the l ight ly  l o a d e d  
queues  are no t  negligible,  a l though  their  a r r iva l  a n d  service ra tes  are  the same.  I t  

shou ld  be  n o t e d  tha t  the m e a n  wai t ing  t imes can  be  c o m p u t e d  m o r e  ef f ic ient ly  b y  
so lv ing  the set  o f  equa t ions  p r o p o s e d  b y  C o o p e r  [7] in the case  of  exhaus t ive  

service  at all queues  (ql  = q2 = 1). 
T a b l e  6 is c o n c e r n e d  wi th  the order  in which  the server  a t t ends  the  queues .  T h e  

s y s t e m  consis ts  o f  4 queues  A, B, C, D,  wi th  p a r a m e t e r s  a A = a B = 0.16, a c = a D 
= 0 . 6 4 ,  # A = P C = I ,  g B = / ~ D = 4 ,  q j = 0  for  j = A ,  B, C, D,  a n d  p = 0 . 9 .  F o r  

Table 5 
The influence of one relatively heavily loaded queue (p = 0.8) 

s = 3  ql q2 E{WI} E{W2) E{ I'V3 } E(W} 
0 0 4.170 1.644 1.677 2.915 
1 0 1.515 6.936 7.004 4.242 
1 1 2.453 4.869 5.319 3.773 

s = 4  ql q2 E(W1) E( 1~2 ) E~V3) E(W4) E( I,V ) 

0 0 4.190 1.719 1.745 1.774 2.724 
1 0 1.334 5.499 5.554 5.610 3.866 
1 1 2.344 3.979 4.183 4.460 3.462 
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The effect of the 
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order in which the server attends the queues 
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Order E(WA} E{Ws) E{Wc} E{WD) E{W) 
A B C D 1.654 1.549 9.547 7.585 7.173 
A DC B 1.654 1.485 9.544 7.611 7.176 
A C B D 1.670 1.486 9.543 7.597 7.172 
A DB C 1.639 1.548 9.547 7.597 7.177 
A B D C 1.638 1.531 9.545 7.613 7.181 
A C D B 1.671 1.499 9.547 7.583 7.169 

each queue the minimum mean waiting time has been printed in bold type in the 
table. It can be seen that for each queue A, B and D separately it is best to follow 
after queue C and it is worst to precede queue C, the most heavily loaded queue. 
This difference is relatively largest at queue B (4.3%). 

7. Comments 

The power-series  algorithm has been applied in this paper to a single server, 
multi-queue system with cyclic service discipline, Bernoulli schedules, infinite 
buffers, Poisson arrival streams, exponential service time distributions and negli- 
gible switching times. It can also be applied to several variations and extensions 
of this model. Service disciplines like random allocation or priority for the longest 
queue can be treated in the same way as cyclic service. Disciplines like gated 
service or K-limited service (at most K jobs  are served at each visit of the server 
to a queue with this discipline) pose some problems, because supplementary 
variables with rather large ranges of values are needed to transform the queue 
length process into a Markov process. The power-series algorithm can, in princi- 
ple, also be  applied to models with finite buffers. The main difference with 
infinite buffer  systems is that steady state occurs at any traffic intensity p, p > 0. 
Therefore, we propose to use the conformal mapping 

0( .)  O - c +  ~ o=T-cO_o, c>_.o, (7.1) 

of [0, oo) onto  [0, 1), instead of the conformal mapping (3.1). Further, the 
modification of .the epsilon algorithm as in (4.5) and (4.6) should not  be applied 
since the moments  of the queue length distribution are finite for all values of the 
traffic intensity when buffers are finite. Application of the power-series algorithm 
to finite buffer  systems is a subject for further research. Note,  however, that it 
may be more  efficient to solve the set of balance equations directly when buffer 
sizes are small. Exponential distributions in the model may be replaced by  
phase-type distributions (cf. Blanc [3]). This requires the introduction of one 
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supplementary variable for each non-Poissonean arrival process and one supple- 
mentary  variable when one or more service time distributions are non-exponen- 
tial. Non-zero switching times can also be incorporated in the model and the 
algorithm, but they must have phase-type distributions. Then a two-valued 
variable should be added indicating whether the server is serving a job or moving 
from one queue to the next. In this case the variable H indicating the position of 
the server is also defined when all queues are empty. The distribution of H when 
the system is empty  cannot be recursively calculated, because the server may turn 
an arbitrary number  of cycles around the queues when they are all empty. Sets of  
s linear equations have to be solved to compute the coefficients of the power-series 
expansions of the probabilities that the system is empty and the server is moving 
between two adjacent queues. The coefficients of all other state probabilities can 
be calculated in a recursive manner.  

8. Technical details of the algorithm 

In section 5 a mapping of the lattice points (k,  n) to the set of integers has 
been discussed (cf. (5.3)). In this section we given an efficient procedure for 
determining the values of this mapping in an integrated way for all lattice points 
which occur at one step of the power-series algorithm (cf. (3.3)). This procedure is 
based on the following properties of the mapping C(k; n) that are straightfor- 
wardly verifiable: 

C(k; n - e j ) =  C ( k ;  n -  e++~) - v ( j ) ,  

C ( k -  1; n + e j + l ) =  C ( k -  1; n + e j ) -  v(j) ,  (8.1) 

with 

J 

v(j)== k + j - l +  ~ n  i (8.2) 
i = 1  

J 

for j = 0, 1 . . . . .  s; here and below, both (k; n - %+1) and (k  - 1; n + %) stand 
for (k; n), while both (k; n - %) and (k  - 1; n + %+1) are equivalent to (k  - 1; 
n). Further,  the iteration (3.3), (3.4) will proceed along points (k; n) according to 
increasing values of C(k; n). This order will be indicated later (cf. (8.4)). The 
predecessor of the point (k; n) in this order is denoted by (k* ,  n*). The 
procedure to locate the points which are needed in the iteration step (3.3) then 
reads: 

C(k; n) = C ( k * ;  n*) + 1; 
For  j "-= 0 to s calculate v ( j ) ;  
For j := s downto 1 do C(k; n - ej) := C(k; n - ej+a) - v ( j ) ;  
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If k >/1 then for j - '=  0 to s do C(k - 1; n + ej§ := C(k - 1; n + ej) - v ( j ) ;  
I f k > / 2 a n d  G > 0 t h e n f o r j - ' = 0 t o s - 1  do 

J 
k - l +  ~ n ~  

C ( k -  2; n + e j+a) :=  C ( k -  2; n + ej) - v ( j )  i=lj (8.3) 

k + j - l +  Y~n i 
i = 1  

Finally, we present a procedure for calculating the coefficients of the power-series 
expansions of the state probabilities and the moments  of the queue length 
distribution according to (3.3), (3.4) and (3.6) up to the M t h  power of 8, along 
points with increasing values of C(k;  n). 

b(O; O):= 1; 
for p : = l  to 2, j : = l  to s, m : = l  to M d o f , ( m ;  j ) - '=  0; 
suml  := 0; 
for m := 1 t o M  
for n s .'= m downto  0 
for ns_ 1 .'= m - n~ downto 0 

for n a := m - n s - . . .  - n 2 downto 0 do 
[ k : = m - n  s -  . . .  - n l ;  

if k = m  then {b(m;  0 ) :=  - s u m l ;  suml  : = 0 )  else 
{determine the memory positions of the points needed in (3.3) with the aid of 
(8.3); 
sum2 -'= 0; 
f o r h : = l  t o s d o  
[calculate b(k; n, h) according to (3.3); 

sum2 -'= sum2 + b(k; n, h)]; 
suml  := suml  + sum2; 
for p :---1 t o 2 a n d  j : = l  t o s d o  

L ( m ;  j )  :=f~(m; j )  + n~ • sum2 (cf. (3.6))}]. (8.4) 

The variable suml  in (8.4) is used to determine b(k; 0), k = 1 , . . . ,  M, according 
to (3.4). 
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