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PERFORMANCE EVALUATION OF POLLING SYSTEMS BY MEANS 
OF THE POWER-SERIES ALGORITHM 

J.P.C. BLANC 
Faculty of Economics, Tilburg University, P.O. Box 90153, 5000 LE Tilburg. The Netherlands 

Abstract 

Polling systems are widely used to model communication networks with several 
classes of messages. • single transmission channel mad • collision-free ~cess protocol. 
However, they can only be analysed exactly for some special service disciplines. The 
power-series algorithm provides a means for thc numerical analysis of  polling systems 
with • moderate number of stations, for a wide variety of  access protocols. This paper 
contains • general description of the power.series algorithm, with emphasis on the 
application to • general class of polling systems with Poisson arrival streams, with 
Coxian service and switching time distributions, with infinite buffers, with a fixed 
periodic visit order, and with • Bernoulli schedule for each visit to a station. The 
applicability and the complexity of the algorithm are discussed for several more service 
disciplines for polling systems. 

I. Introduction 

Polling systems are queueing models in which several classes of jobs, tasks 
or messages compete for service by a single unit, in which access to the service unit 
is granted according to a collision-free protocol, and in which the times required 
for switching service from one queue to another may be non-negllgible. They are 
widely used to model computer and communication systems. Examples of applications 
of polling systems are computer-terminal communication systems, In which jobs 
are generated by the users of the terminals and in which the central computer 
examines the terminals and allows them to transmit data one at a time, and local 
area networks (LANs) consisting of several stations (the queues) connected by a 
single communication channel (the service unit), in which a token is passed among 
the stations and in which only the station which is in the possession of the token 
is allowed to transmit messages (the jobs) over the channel. For surveys on polling 
systems, the reader is referred to Takagi [25,26], where available solution techniques 
for these models are reviewed, and to the paper by Levy and Sidi [22], which is 
more oriented towards modeling and application aspects. 

Only few exact results have been obtained for polling systems, The most 
general type of results consists of pseudo-conservation laws, expressions for a 
weighted sum of the mean waiting times at the various queues (cf. Boxma [9]). 
More detailed results have only been obtained for polling systems with specific 
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service disciplines such as fixed priorities attached to the queues (cf. Jaiswal [18], 
Klimov and Mishkoy [201), and periodic polling orders with either exhaustive or 
gated service at each queue (cf. Cooper [15], Eisenberg [16], Baker and Rubin [I], 
Sarkar and Zangwill [23]). Therefore, it is useful to develop algorithms for the 
numerical evaluation of queucing characteristics for a more general class of polling 
systems. The power-series algorithm (PSA) is a new tool for the performance 
evaluation of moderately sized multi-queue systems which can be modeled as multi- 
dimensional quasi-birth-death processes. Such processes consist of a vector of 
components which describe the number of jobs in each queue, and possibly one or 
more supplementary components with a finite range, which may be used, for instance, 
to model Coxian service time distributions. Polling systems form an important class 
of systems which can be modeled by such a process. The basic idea of the PSA is 
the transformation of the non-rccursivcly solvable (infinite) set of balance equations 
for the stationary state probabilities into an, in principle, rccursively solvable set 
of equations by adding one dimension to the state space. This transformation is 
realized by means of power-series expansions of the state probabilities as functions 
of the occupancy (load) of a system in light traffic. The basic idea of the PSA has 
been introduced in Hooghiemstra et al. [ 171. The algorithm has been further developed 
by Blanc [3-6, 8], which has led to more efficient implementations of the algorithm, 
faster convergence of the power series by means of the epsilon algorithm 
(Wynn [281), especially when the occupancy of a system is high, and a broader 
scope of applications for the algorithm. The PSA has been applied to several types 
of multi-queue models such as the shortest-queue model (Blanc [2,6]), the coupled- 
processor model (Hooghiemstra et al. [17], Blanc [4]), and some polling models 
(Blanc [5,7,81). The PSA provides accurate data for moderate sized systems, which 
are of interest in themselves for studying the interaction between queues, and which 
may be helpful in finding and validating approximations for large-scale systems. 

The aim of the present paper is to give a survey of various aspects related 
to the PSA, with emphasis on the application to polling systems. The paper 
generalizes and unifies previous results on this topic, discussed in Blanc [5,7,8]. 
First, a general description of the principle and the applicability of the PSA will 
be given (section 2). Then, the complexity of the computations of the PSA when 
applied to polling systems with various service disciplines will be discussed 
(section 3). Next, the PSA will be considered in more detail for polling systems 
with Poisson arrival streams, with Coxian service and switching time distributions, 
with a general periodic visit order, and with a Bernoulli schedule for each visit to 
a station (section 4). Finally, potential further extensions of the models and the 
algorithm will be indicated in section 5. Polling systems with Bernoulli schedules 
were previously considered by Servi 124] and Tedijanto [271. This class of disciplines 
includes exhaustive and i-limited service, and may be used as an approximation to 
K-limited service (K > 1). Properties of systems with limited service and Bernoulli 
schedules (with zero switching times) have been compared in Blanc [71. The Markovian 
nature of Bernoulli schedules causes systems with such disciplines to be easier to 
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analyse than systems with limited service, in particular when applying the PSA (see 
section 3.2). Another advantage of the class of  Bernoulli schedules over the class 
of  limited service disciplines is that the first one is richer because it uses real-valued 
parameters. A disadvantage of  Bernoulli schedules may be their random nature, 
which will lead to larger standard deviations of  performance measures than with 
comparable limited service disciplines. 

2. The power.series a lgor i thm 

The PSA will be discussed in the following sections for a general class of  
models. Topics include conditions for application of  the algorithm, means for 
accelerating the convergence of  the series, and notes on implementation of  the 
algorithm. 

2.1. DESCRIPTION OF THE MARKOV PROCESS 

Consider the following class of  multi-dimensional quasi-birth-death processes. 
The process consists of  an s-dimensional vector N := (N~ . . . . .  N,) and a supplementary 
variable F. The components of  the vector N, which describe the number of jobs in 
the various queues in steady state, take nonnegative integer values, and the variable 
F may take a finite number of  values, say in the set O. In fact, the supplementary 
space does not need to be the same for each n e IN'. However, the maximum of  
the sizes of these spaces over all n, n e IN', should be finite. For simplicity of the 
discussion, we will assume that the supplementary space is the same for each n, 
while it is possible that some states (n, 9) cannot be entered. The size o f  the set 
O will be denoted by l o b  The stochastic process (N, F) is a stationary Markov 
process of  which each component Nj , j  = I . . . . .  s, has a b i r th-death  structure. This 
means that the time until a transition occurs from a state (n, ¢) to some other state 
is negative exponentially distributed, and that one-step transitions are only possible 
to states with at most one unit more or one unit less in one of  the first s entries. 
The one-step transition rates are defined to be: for (n, 9) e IN' x O, j = 1 . . . .  , s, 
Ve O, 

Z aj(n, 9, 1//): arrival rate to queue j at state (n, 9), leading to a transition to the 
state (n + ej, 9"); 

di(n, 9, 9') : the departure rate from q u e u e j  at state (n, 9), leading to a transition 
to the state (n - ej, 9"), with dj(n, 9, lp') = 0 if n i = 0; 

u(n, 9, 9") : the  phase-transition rate from state (n, 9)  to state (n, 9"). 

Here, e /E  IN' is the vector with zero entries except an entry o f  one at the j t h  
position ( j  = 1 . . . . .  s), and 2' is a parameter which will be used as a variable in 
power-series expansions; the relative arrival rates aj(n, 9, V) are assumed to be 
normalized such that the systems are stable for 2" < 1. 
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2.2. BALANCE EQUATIONS 

The state probabilities are defined as follows: for (n, @) ~ IN' x O, 

p(n, q~) := Pr{(N, F) = (n, q~)]. (2.]) 

The description of  the process in the previous section implies that the state probabilities 
(2.1) satisfy the following balance equations, for (n, @) ~ IN S x t9, 

{" } 5". 5". g 
j = l  ~EO ~ 0  

$ 

= ;(, ~'~ ~ ,  a j ( n - e j , v , ~ P ) p ( n - e j , ~ / ) l { n j  > O} 
j - I  ~ O  

$ 

+ ~., "Y'. dj(n+ej,v,@)p(n+ej,¢)+ Y'. u(n,v,@)p(n,v). 
j = !  i/tee ~ e  

(2.2) 

Here, I{E] stands for the indicator function of the event E. The infinite set of  linear 
equations (2.2) can not, in general, be solved recursively because the equation for 
p(n, @), (n, 9) E lN$ x 0,  involves terms with p(n + ej, V/), J= 1 . . . . .  s, It/ E 0,  
and because there exist no local balance relations for most models in the class of  
models that will be considered. 

2.3. CONDITIONS FOR APPLICATION OF THE ALGORITHM 

The solution method for the set of  equations (2.2) on which the standard PSA 
is based relies on the following property of  the state probabilities: 

pCn, cp) = O ( z " , ÷ ' " ÷ ' , ) ,  as Z $ 0, for (n, 9) ~ IN$x O. (2.3) 

This property 
(n, 9) e ~ '  x 
exists a path 
uCn, t. 

can be shown to hold on the following conditions: for each state 
O, n ;~ 0, either p(n, 9) = 0 (the state cannot be entered), or there 
0o, Ot . . . . .  O,, in O for some v, 0 < v < l O I  such that 00 =~p, 

> 0 for i = 1 . . . . .  v, and 

$ 

~., ~., d j (n ,Ov ,  V ) > 0 ;  (2.4) 
j = l  ~ ¢ 0  

i.e. for each reachable n, n ;~ 0, there must be at least one positive departure rate, 
and for each reachable state (n. @) E IN' x O, n ;~ 0, the probability that a departure 
occurs before any arrival takes place, after the process has entered this state, must 
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be positive. The proof of  this assertion relies on induction to the sum of the queue 
lengths n ! . . . . .  n, and to the length of the path v. It is an extension of the proof 
of a stronger condition than the one above, which has been discussed in Blanc [3], 
and which requires that for each reachable state (n, q~) ~ IN' x O, n ~ 0, there is at 
least one positive departure rate (i.e. v = 0 in (2.4) for each ~p). However, the latter 
condition does not hold in polling systems for states in which the server is switching. 
The above condition (2.4) is fulfilled for polling systems which are usually considered 
for modeling computer-communication systems, but it is not, for instance, if service 
only starts when the number of jobs in a queue has reached some threshold larger 
than 1. It will be clear that (2.4) cannot hold for empty states (0, ~p), ~p ~ O. For 
these specific states, property (2.3) trivially holds. However, these states require a 
special treatment, as will be seen in the next section. 

2.4. THE COMPUTATION SCHEME 

The computation scheme of the PSA for the class of models described in 
section 2.1 will be given here in its simplest form. A more complicated form may 
be needed in order to avoid numerical instabilities. These matters will be discussed 
in the next section. Based on property (2.3), the following power-series expansions 
are introduced: for (n, q~) ~ IN' x O, 

p(n, q~) = Z nt+'''+n" ~ zkb(k;n, cp). (2.5) 
k - O  

When the power-series (2.5) have been substituted into the balance equations (2.2), 
then equating the coefficients of corresponding powers of;(  in the resulting equations 
leads to the following set of equations for computing the coefficients of the power- 
series (2.5): for (n, cp) ~ IN' x O, for k = 0, I, 2 . . . . .  

$ 

+ ~.~ ~ Eaj(n-ej,  IF, qJ)b(k;n-ej, ~)l{nj > O} 
j~l ~ 0  

-aj(n, q~, IF)b(k- l;n, qJ)l{k > 0}] 

,1 

+ ~ ~ d: (n + ej, I F, q~)b(k - l;n + ej, IF)l{k > 0}. (2.6) 
j -  I v/¢ 0 

This set of eqs. (2.6) forms a recursive scheme with respect to the components 
(k ; n). In order to make this observation more precise, we introduce the following 
partial ordering -~ of vectors (i; m, IF), (k; n, q~) ~ IN 1 **x e :  
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(i;m, t//).< (k;n, ~p) i f l + m i + . . . + m $  < k + nl + ... + n$; 

o r i f i + m l + . . . + m s = k + n t + . . . + n s  and i<k .  (2.7) 

It is readily verified that the set of  eqs. (2.6) expresses coefficients b(k; n, 9) in 
terms of  coefficients with a lower order with respect to -< with the exception of  
the terms with b(k; n, ~v), vIE O. Hence, the set of  eqs. (2.6) can be divided into 
subsets of  at most 1(91 equations with unknowns b(k; n, 9), 9 ~ e .  The same 
conditions which guarantee that (2.3) holds, cf. (2.4), also guarantee that these 
subsets of  equations possess a unique solution. The only exceptions are formed by 
the empty states, i.e. states with n = 0, for which all departure rates vanish so that 
eqs. (2.6) reduce to: for 9 E O, k = 0, 1,2 . . . . .  

$ 

u(O, cp, lg)b(k;O, cp) = - ~_~ ~ aj(O, cp, ~v)b(k-  l ;O, ¢p)i{k > O) 
~Ee j= l  ~ e  

$ 
+ Z Z dj(ej, I/I, fD)b(k- l ; e j ,  ~)]{k > O} + Z u(O, lg, ¢p)b(k;O, V/). (2.8) 

j=l ~eO v/cO 

It is readily verified by summing eqs. (2.8) over 9, 9 E (9, that these are dependent 
sets of  equations for the coefficients b(k; 0, 9), 9 E (9, for each k, k = 0, 1, 2 . . . . .  
To this end, it should be noted that for each k, k = 0, 1,2 . . . . .  

$ # 

,T_., y_., 
~ c O  j= l  ~'Ee j= l  ~EE) ~ee 

because of  a necessary balance in transitions between the set of  empty states and 
the set of  states with one job in the system. In order to obtain an additional equation, 
the law of  total probability can be used. Substituting (2.5) into the law of  total 
probability gives: 

b(O;O, ~) = l, 
~pEO 

~ b ( k : O , c p ) = -  ~ ~ b ( k - n ! - . . . - n , ; n , ~ ) ,  k=  1,2, . . . .  (2.9) 
~eO O<nl+...+njSk O/EO 

Note that the right-hand sides of  (2.9) contain only coefficients of  states of  a lower 
order with respect to -~ than (k; 0, 9). Now, all but one of  the equations (2.8) 
together with (2.9) determine b(k; O, 9), 9 ~ O, for k = 0, I, 2 . . . . .  i f  the Markov 
process (N, F),  conditioned to the event that N = 0 and no arrivals occur, is an 
Irreducible Markov process on a subset of  19 (note that the determinants o f  these 
sets of  equations do not depend on k, k = 0, 1 . . . . .  so that it is sufficient to consider 
the solvability of the set of  equations for k = 0). 
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The PSA is most efficient when the coefficients b(k; n, ¢) can be computed 
recursively from (2.6) and (2.9). Whether this is possible depends on the structure 
of the supplementary space. The computation scheme is recursive if for each n E IN* 
the values of the supplementary variable F can be ordered such that transitions 
without N leaving the state n are only possible in one direction. More formally, if 
"<n is an ordering of the set O, then it should hold that 

u(n, ~p, 9") = O, if 9" "~n ¢, for all ¢, V / 6 0 .  (2.10) 

The ordering does not need to be the same for all n E IN'. If no ordering with the 
property (2.10) exists for some n, then a set of at most ]0[ linear equations has to 
be solved for such an n. Therefore, Coxian distributions are much easier to handle 
with the PSA than more general phase-type distributions. Once the coefficients of 
the power-series expansions of the state probabilities have been determined, those 
of the moments of the joint queue length distribution can be obtained as well. Write 

j - I  k-O 
V~ IN'. (2.11) 

It follows from (2.11) and (2.5) that for v~ IN', k=0, 1,2, .... 

3 

f(k;g)= ~.~ ~.~ I'I n;~b(k-nl-. . .-n,;n,~).  (2.12) 
OSnl+.,.+naSk ~ E O  j - , I  

It is more convenient for obtaining moments of the queue length distribution to 
compute first their coefficients via (2.12) and then to use (2.11) than to compute 
first the state probabilities via (2.5) and then the moments directly from the state 
probabilities. In the first way, algorithms for accelerating the convergence can be 
applied to partial sums of the series (2.11), and the storage requirement for the 
coefficients can be reduced: see sections 2.5 and 2.6. 

2.5. CONVERGENCE OF THE POWER-SERIES 

Experience has taught us that the power-series (2.5) and (2.11) usually do not 
converge for all values of X for which a system is stable (by definition, for Z <  1). 
One way to overcome this difficulty is to introduce the following bilinear mapping 
of the interval [0, 1] onto itself, 

O= (I+G)z, G>0. (2.13) 
I + G z  

This transformation maps possible singularities of  the power-series in the region 
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I G ] I + G  
X -  > IZl < 1, (2.14) 

1 + 2G I + 2G ' 

outside the unit circle in the complex d-plane. Another computation scheme is then 
obtained by introducing power-series expansions of the state probabilities as functions 
of d, by replacing Z by d in the balance equations (2.2) according to (2.13), and 
by substituting the power-series in d into these equations. Equating coefficients of 
corresponding powers of d in the resulting equations leads to a set of equations 
which differ from (2.6) mainly through the occurrence of terms with coefficients 
of the form b ( k  - 2; n + e j ,  v/). Any singularity outside the circle 1 2 ' -  1/21 = 1/2 
may be removed from the unit disk by this procedure with an appropriate choice 
of the parameter G. 

Another technique for removing singularities from inside the unit disk is 
application of the epsilon algorithm or a related algorithm. The epsilon algorithm 
aims to accelerate the convergence of slowly convergent sequences or to determine 
a value for divergent sequences (cf. Wynn [281, Brezinski [I21). It converts a 
polynomial into a quotient of two polynomials. The epsilon algorithm consists of 
the following triangular recursive scheme: for rn = 0, 1 . . . . .  ~¢= 0, 1 . . . . .  

~¢+ I = t~(~ "~ + ,.(m) O, = Sm " ~ ' -  I , c ' - I  = ' (2.15) 

here, the initial sequence S,,,, m = 0. 1 . . . . .  consists of partial sums of a series. 
Only the even sequences { ~ ) ,  m = 0, 1 . . . .  }, r =  1, 2 . . . . .  may be sequences 
which converge faster to a limit than the initial sequence. The odd sequences are 
only intermediate steps in the calculation scheme. When S,,, is the partial sum of 
a power-series, say 

m 

S,,, = S , t ( Z ) =  Y. c k Z ~, m = 0 , 1 , . . . ,  (2.16) 
k,,.O 

then the epsilon algorithm transforms this sequence of polynomials into sequences 
of quotients of two polynomials. More precisely, ~,~-2,0 will be a quotient of a 
polynomial of degree m - ~" over a polynomial of degree ~ and 

S,. _(,,.- 2 r) 2.,.÷ 1 - ~ r  = O (  ), Z---~0, ~ ' = I , 2  . . . . .  m = 2 x ' , 2 r + l  . . . .  ; (2.17) 

(see Wynn [28]). When the heavy traffic behaviour of the moments of the queue 
length distribution is known beforehand, the performance of the epsilon algorithm 
can be improved by a modification of the initial values 4 ") (of. Blanc [5]). Before 
application of the epsilon algorithm, the coefficients of the power-series are extrapolated 
to take into account the pole at Z = 1. This means that we take for first-order poles 
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,~m+! 
~ " )  = S,,, + c,,, ~ ,  m = 1,2 . . . . .  (2.18) 

1 - Z  

and for second-order poles 

Cm--C,M-I ] Z m+l 
= ~ ,  rn = 1,2 . . . .  ( 2 . 1 9 )  ~") Sin+  c,,~+ 1 - Z  I - Z  

instead of the last relation of (2.15); here, S,,, is of the form (2.16) and the c k, 
k = 0, I . . . . .  stand for coefficients of a series as defined in (2.11). The pole at Z = 1 
is preserved in other (even) sequences produced by the epsilon algorithm. It should 
be noted that not every queue grows without bounds as X 1" 1 in some systems (see, 
e.g. the discussion in section 4.5); modifications (2.18) and (2.19) should only be 
applied to those moments which do have a pole at Z = 1 in order to accelerate the 
convergence, although ~ ' ) d e f i n e d  by (2.18), respectively (2.19), will converge to 
the same limit as S,, if the latter sequence is convergent. 

The epsilon algorithm turns a divergent series into a convergent series if the 
analytic continuation of the function defined by the series at Z = 0 possesses only 
a finite number of poles as singularities inside the unit circle I ZI < 1. The latter 
seems to hold for all models considered. However, it may happen that the power 
series are so strongly divergent that numerical instabilities occur when a large 
number of terms is computed. In that case, a conformaI mapping as discussed 
above, cf. (2.13), should be used together with the epsilon algorithm. The value of 
G in the mapping (2.13), the number of terms M of the power-series expansions, 
and the number of steps s¢ in the epsilon algorithm, cf. (2.15), which are needed 
to reach a certain accuracy, depend on various properties of the models. Generally, 
these quantities increase with increasing load, with increasing number of queues, 
and with increasing asymmetry between the parameters of the various queues. 
Numerical experience has taught us that application of the epsilon algorithm strongly 
improves the performance of the PSA and that, in many cases, it even leads to good 
estimations of heavy traffic limits. To illustrate the above-discussed properties of 
the transformation (2.13) and of the epsilon algorithm, values of ~ - 2 , o  have been 
listed in table 1 for various values of G, m and x', for a specific quantity (namely, 
E{Nj + . . .  + IV,} for the ease Ddl of section 4.7). For each value of m and G the 
value of r ,  indicated by K'op t, has been determined for which the following difference 
was minimal: 

max { ~,~-2,c-, ',} _ min { ~ - 2 ' c - " } :  
i , = 0  . . . . .  u i , , O  . . . . .  a 

here, we have chosen a =  1 for m =  6 and m =  12, a = 3  for m = 2 0  and a = 5  for 
m = 36. Note that increasing o~ implies that a smaller number of iterations of  the 
epsilon algorithm can be executed. The values corresponding to ~¢ot, t have been 
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Table 2 

Accuracy of the dgofithm; CPU times 

m G PCL CPU G PCL CPU G PCL CPU 

6 0.0 3.72372 0: 0l 0.5 3.55850 0:01 1.0 3.62983 0:01 
12 0.0 3.79617 0:09 0.5 3.79787 0:10 1.0 3.82088 0: l0  
20 0.0 3.79675 l :24 0.5 3.79518 l : 23 1.0 3.79676 l :28 
36 0.0 3.79741 20:26 0-5 3.79741 20:57 1.0 3.79739 20:53 
36 1.5 3.79740 21:21 2.0 3.79739 20:58 2.5 3.79735 21:34 

underlined in table 1. The above criterion usually provides good estimates for the 
performance measures. As a further check on the accuracy of the algorithm, table 2 
contains the values of the left-hand sides of the pseudo-conservation law PCL (to 
be discussed in section 4.5, of. (4.30)) for the same model as in table 1, based on 
the values of E{Nj} with ~:= 1Cot ~ for each j ,  j =  1 . . . . .  s; for comparison, the 
known right-hand side of the pseudo-conservation law is 3.79746 for this example. 
Table 2 also contains the CPU times (displayed as minutes : seconds) which were 
required for the computations on a VAX-8700. Note that the required CPU times 
are subject to some randomness, because the amount of arithmetical operations is 
exactly the same for fixed m and G > 0. 

2.6. ON THE IMPLEMENTATION OF THE ALGORITHM 

For most models, limitations on storage capacity are more important restrictions 
on the applicability of the PSA than limitations on computing time. The complexity 
of the PSA mainly depends on the number of stations s and on the size of the 
supplementary space O. The evaluation of power-series expansions up to the Mth 
power of Z requires the computation of 

M + s +  1) 
s+  1 le] (2.20) 

coefficients b(k; n, q~), namely those with k + n I + . . .  + n s < M, ~p E O. The complexity 
of the computation of a single coefficient b(k; n, 9) depends on the structure of the 
model, in particular on the number of non-zero transition rates. If all transition rates 
which occur in eq. (2.6) are positive and if all entries k, n t . . . .  , n, are positive, then 
the computation of one coefficient b(k; n, 9) requires 1 + (2s + 1) IOI multiplications, 
(4s + 2) 1OI additions and subtractions, and 1 division. When the transformation 
(2.13) is used, then some additional terms appear in the recurrence relations, cf. 
Blanc [5], and the number of operations increases to 3 + (3s + 2) I O I multiplications, 
(5s + 3) I O I additions and subtractions, and 2 divisions. However, for most (polling) 
models, many transition rates vanish so that the number of operations will be less; 
see section 4.4 for an example. 
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In order to make an efficient use of  the available memory  space, we map the 
multi-dimensional region of  lattice points k + n 1 + . . .  + n, < M onto the set of  integers 
by means of  the one-to-one mapping (cf. Blanc [5]), 

c ( k ; n )  = . ( 2 . 2 1 )  
j - o  j +  1 

This procedure enlarges the number of  terms of  the power-series expansions which 
can be computed with a given storage capacity at the cost o f  increased computation 
time needed for the determination of the location o f  the coefficients in the array in 
which they are stored. A further reduction of storage requirement can be achieved 
when only a limited number of  performance measures have to be evaluated. In most 
cases, one is not interested in all individual state probabilities. Then, the coefficients 
of  the power-series expansions of  the important performance measures can be aggregated 
during the execution of  the PSA, cf., for example, (2.12), and stored in separate 
(relatively small) arrays, while the coefficients of  the state probabilities can be 
deleted as soon as they are not needed anymore in further computations. This 
approach reduces the storage requirement for calculating M terms o f  the power- 
series expansions to D u × I O i, where Dsz is the largest distance (in terms o f  the 
mapping C(k; n), of. (2.21)) between coefficients occurring in a single equation o f  
(2.6) (cf. Blanc [51), 

( ; )  ( ; )  r-+,-') DM = M s , if G = 0 ;  DM = M s + \  s - 1  , if G > 0 .  (2.22) 

Table 3 shows as an illustration the maximal number  o f  terms M which can be 
obtained with a storage capacity of  2 x 106 coefficients according to (2.22) with 
G = 0, as a function of  the number of  stations s and the size of  the supplementary 
space O. The maximal value of  M in the case G > 0 is at most one less than in the 

Table 3 

The maximal number of terms M at a storage capacity of 2 × 106 

s IO1: 4 8 12 16 20 24 28 32 36 40 44 48 

2 998 705 575 498 445 406 376 352 331 314 300 287 
4 56 47 42 39 36 35 33 32 31 30 29 29 
6 23 20 18 17 16 16 15 15 15 14 14 14 
8 15 13 12 It 11 It 10 l0 l0 l0 10 9 

10 It l0 9 9 9 8 8 8 8 8 8 7 
12 9 8 8 7 7 7 7 7 7 6 6 6 

case G = 0. While the above procedures reduce storage requirement and increase 
programming flexibility with respect to the number  of  stations, they add to the 
computational burden. When using the procedure to compute the values of  the 
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mapping C(k: n) in (2.21) simultaneously for a state and its neighbouring states 
described in Blanc [5], s ( s -  1) multiplications and divisions are required for each 
vector (k; n) if G = 0 and s(s + 1) if G > 0. Combining the results of this section, 
we obtain the following upper bounds on the number of operations (multiplications 
and divisions only) required for computing the coefficients of the power-series 
expansions of the state probabilities up to the Mth power of Z: 

(Ms+l+S + 1)[-s(s_ 1)+1Oi{2 +(2s  + 1)iOI}], 

s+l 

if G = 0; 

if G > 0. (2.23) 

Finally, we note that the time required to compute performance measures, given the 
coefficients b(k; n, cp), is negligible compared to the time required to compute these 
coefficients themselves. 

3. Polling systems 

Models for polling systems usually consist of several stations (queues), each 
with an arrival stream of jobs, which are attended to by a single server. The server 
visits the stations according to some control rule (service discipline). In many cases, 
switch-over times or set-up times are required when the server changes service from 
one queue to another. Important areas for application of these models are computer- 
communication systems, in which several stations share a common communication 
channel and compete for access to this channel, and manufacturing systems, in 
which several types of products have to be manufactured on a single production 
unit. 

3.1. SERVICE DISCIPLINES 

The service disciplines for polling systems can often be divided into three 
parts, which can be chosen independently of each other: 

A. 

B. 

C. 

a rule for the order in which the server visits the queues; 

rules for the number of services per visit to the various queues; 

a rule for the behaviour of the server when the system is empty. 

Examples of order-of-visit rules are: 

AI. polling in a fixed periodic order (cyclic: I, 2 ..... s, star: I, 2, I, 3 ..... I, s, 
scanning: I, 2 ..... s, s, s- I ..... I, or according to some general polling 
table): 
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A2. random or Markovian polling: the next queue to be visited is determined by 
a random mechanism which may depend on the current position of  the server 
(Markovian polling, cf. Boxma and Weststrate [ 111) or not (random polling, 
of. Kleinrock and Levy [191); 

A3. polling according to fixed priorities attributed to the queues: the next queue 
to be visited is the non-empty queue with the highest priority, of. Jaiswal [181, 
Klimov and Mishkoy [20]; 

A4. polling according to a dynamic (state-dependent) rule such as priority for the 
longest queue, of., for example, Cohen 1141. 

The choice of the order-of-visit rule will depend on the availability of  information 
about the presence of jobs at the various stations. Rules A1 and A2 require only 
local information, about the station where the server is present, but rules A3 and 
A4 require also information from other stations. Further, this choice may depend 
on the configuration of the system, i.e. on the existence or non-existence of  a direct 
connection between pairs of stations in the network, and on the distances between 
the stations, in terms of  mean switching times. 

Examples of  number-of-services rules are: 

BI. exhaustive service (the server remains serving until a queue becomes empty); 

B2. gated service (all jobs present in a queue at the instant at which the server 
arrived at that queue are served); 

B3. limited service (a fixed number of jobs are served, at most); 

B4. Bernoulli service (after each service, another service may be started with a 
fixed probability, cf. Servi [24], Tedijanto [271); 

BS. semi-exhaustive service (the server attends to a queue until the number of 
jobs in that queue has become one less than the number of jobs in that queue 
at the instant at which the server arrived at that queue, cf. Cohen [13]). 

The number-of-services rules may be different for the various queues, and may even 
be different at various visits to the same queue (e.g. when a queue occurs more than 
once on a polling table). 

Examples of  empty-system rules are: 

CI .  the server keeps on switching according to the order-of-visit rule; 

C2. the server remains at the last served queue; 

C3. the server goes to a state of rest; 

C4. the server goes to a specific queue (e.g. the queue with the highest load, or 
the queue with the largest arrival rate). 
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The choice of the empty-system rule will also depend on the availability of information. 
Rule C1 requires only local information; in fact, the server does not even have to 
know that the system is empty. The other rules require information from all stations. 

As far as the choices of these rules are not limited by the physical configuration 
of a system or by the available information, they can be used to optimize the 
performance of a system with respect to some criteria. 

3.2. COMPLEXITY OF THE ALGORITHM 

The complexity of the PSA, in the sense of the number of coefficients b(k; n, cp) 
which have to be computed in order to obtain some fixed number M of terms of 
the power-series expansions, will be discussed in this section for polling systems 
with various service disciplines. This complexity is given by (2.20), where the size 
of the supplementary space 0 depends on the service discipline and on the number 
of phases of the interarriva], service and switching time distributions. The supplementary 
space has to contain information on the position of the server (in the network, on 
the polling table, etc.), on the state of the server (switching, serving, etc.), and on 
the actual phases of the Coxian distributions. Here, the discussion wil l be confined 
to Poisson arrival streams at each station. Then, at each instant there is only one 
distribution of which the actual phase is relevant, because there is only one server 
in the system. Let ~P] > 1 be the number of phases of the distribution of the service 
times at queue j ,  j = l s, and h ug. > l the number of phases of the distribution t • • • , l , ~  

of the switching times from queue i to queue j ,  i, j =  1 . . . . .  s.  First, consider 
polling in a fixed (static) periodic order. Such order-of-visit rules can generally be 
described by a polling table of some finite length L, L ~ s. A polling table can be 
constructed by a mapping l : { 1 . . . . .  L} ~ { 1 . . . . .  s}. If the number-of-services 
rule is limited service for each visit, with limit K h for the hth entry on the table, 
h = 1 . . . . .  L, then the supplementary space consists for each entry h of the phases 
of the switch from queue l ( h  - 1) to l ( h )  - here, l(0) = l ( L )  - and of Kh times the 
phases of the services at queue l (h ) ,  so that its size becomes 

L 

h = l  

The lower bound 2L is realized when all service times and switching times are 
exponentially distributed and all service limits are equal to 1, and the lower bound 
2s is realized when moreover the polling order is cyclic. Next, consider order-of- 
visit rules which require only information on the current position of the server and 
on the number of  jobs at the stations to determine the next station to be visited. This 
set of rules includes Markovian polling, polling with fixed priorities, and polling 
with priority for the longest queue. If the number-of-services rule is limited service 
for each visit, with limit Kj for queue j , j  = i . . . . .  s, then the size of the supplementary 
space becomes 
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,It a $ 

l e l  = Z Z v9 
i , , l  j - I  j - I  

(3.2) 

The lower bound s 2 is realized when all service times and switching times are 
exponentially distributed (while we assumed that ~/.i = 0, i = I . . . . .  s) and all 
service limits are equal to 1. This lower bound presumes that switches of the server 
may occur between each pair of stations. The latter does not necessarily hold for 
Markovian polling; for this discipline, the lower bound is related to the number of 
non-zero entries in the matrix of transition probabilities for the server. When the 
distributions of the switching times depend only on the station to which (and not 
on the station from which) the server is moving, then ~t'/°j = ~7, i , j =  I . . . . .  s, and 
the size of the supplementary space can be reduced to: 

$ $ 

IOI = Z Kj ~t'] + Z ~jo > 2s. (3.3) 
j,,,I j , , l  

When switching times may be neglected, the size of the required supplementary 
space can be found by taking ',I.'9.- 0, i , j =  I, s, in (3.1), (3.2), (3.3), where 

l o i  - -  . • • , 

the lower bounds then reduce to s. The contribution to the size of the supplementary 
space of a station with a Bernoulli schedule (including exhaustive service) is the 
same as that of a station with l-limited service. Therefore, systems with Bernoulli 
schedules are most suitable for application of the PSA. Stations with gated or semi- 
exhaustive service discipline require, in principle, an unbounded supplementary 
space, and would therefore not fit in the framework of the class of models described 
in section 2.1. However, only a finite number of terms (M) of the power-series 
expansions are computed in practice, which implies that states with more than M 
jobs in the system are not considered. Consequently, the size of the supplementary 
space can still be derived from (3.1), (3.2), (3.3) for the various order-of-visit rules 
when there are stations with gated or semi-exhaustive service, namely by taking M 
as the service limit for these stations. However, it will be clear that the PSA is not 
very suitable for the analysis of systems with gated-type service disciplines. It is 
true that there exist other, more efficient, methods for analyzing systems with gated 
service (and exhaustive service), cf., for example, Sarkar and Zangwili [23], but 
they produce mainly mean waiting times, while the PSA also computes state probabilities 
and higher-order moments. The foregoing argument also implies that it is useless 
to consider service limits larger than M when computing M terms of the power- 
series expansions with the PSA, because performance measures for queues with 
such limits will be the same as when they had been computed with the exhaustive 
service discipline at those queues. In fact, the queue length process at stations with 
a limited service discipline is very similar to that at equivalent stations with exhaustive 
service in light traffic, while the range of the load for which this similarity continues 
increases with the service limiL Information on the intrinsic heavy traffic characteristics 
of a queue with service limit K has to be found in coefficients corresponding to 
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powers of Z higher than K. On the contrary, for a queue with a Bernoulli parameter 
q, all coefficients corresponding to powers of Z higher than 1 depend on q. As a 
consequence, systems with Bernoulli schedules arc much more easily studied over 
all parameter values of  the service discipline than systems with limited service, at 
least with the aid of  the PSA together with the epsilon algorithm. 

The foregoing discussion of the complexity of the PSA refers only to order- 
of-visit rules and number-of-service rules, and ignores the influence of empty- 
system rules. In fact, the above observations hold if the behaviour of  the server 
when the system is empty is similar to that when the system is not empty, e.g. for 
rule C1 and possibly for rule C4, depending on how interruptions of switches when 
the system is empty and a job arrives are handled. When this behaviour is deviating, 
then the size of the supplementary space may have to be larger than indicated 
above. For instance, when rule C3 is applied and if ~F°i is the number of phases 
of the distribution of the switching times from the state of rest to queue j, j = 1, . . . ,  s, 
while switches to the state of rest are instantaneous, then (3.2) should be modified 
to 

$ $ Jr 

I01 = ~ Kj ~F) + ~ ~ ~t'0,) >s + s 2, (3.4) 
j - I  i ,-O j - I  

while (3.3) remains unchanged if, moreover, ~i~o.j = ~'7, J = I . . . .  , s. Finally, note 
that the process (N, F) restricted to N = 0 is not an irreducible Markov process in 
the case of rule C2 (cach reachable empty state forms an irreducible subchain in 
this case), so that this rule does not fit in the framework of section 2.4. 

4. Systems with a polling table and Bernoulli schedules 

In this section, the PSA will be discussed in more detail for the class of 
polling models with infinite buffers, with Poisson arrival streams, with Coxian 
service and switching time distributions, with a fixed periodic visit order, and with 
a Bernoulli schedule for each visit. Section 5 contains some remarks on extensions 
of this class of models. 

4.1. DESCRIPTION OF THE MODEL 

The system consists of s queues and a single server..lobs arrive at queue j 
according to a Poisson process with rate 2j, j -- 1 . . . . .  s. Each queue may contain 
an unbounded number of jobs. The server inspects the queues in an order which is 
determined by a polling table of finite length L. This table will be described by a 
mapping l :  {1 . . . . .  L) -4 {1 . . . . .  s}. Throughout, it will be assumed that each 
station occurs at least once on the table, and that L has been chosen as small as 
possible, given a fixed visit order. Further, the convention l(O) - l(L) will be needed 
and used. Bernoulli schedules will be used to determine the number of  services 
during the visits of the server to the stations. When the server arrives at a queue, 
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at lcast onc job is scrvcd, unlcss this queuc is cmpty (in which case, thc scrvcr 
directly proceeds to the next queue on the polling table). After the completion of 
a service at queue l(h). the server starts serving another job at this queue with 
probability qh i f  queue l(h) has not yet been emptied; otherwise, the server proceeds 
to the next queue on the polling table (h  = 1 . . . . .  L ) .  At each station, jobs are 
served in order of arrival. Service times of jobs arriving at queue j are assumed to 
bc distributed according to a Coxian distribution with vth moment T,.j. v = 1.2 . . . . .  
j = ] . . . .  , s. The Coxian service time distribution at station j ,  j = 1 . . . . .  s, consists 
of ~ l  phases; with probability gj='q', a service is composed of phases ~p. ~p- 1 . . . . .  1. 
~p=  I ,  . . . .  ~P/ ,  and the transition rate from phase 9r is ,u} 'w. IF '=  1 . . . . .  ~P/.  
Consequently. the Laplacc-Stieltjes transform (LST) of the service time distribution 
at station j ,  j = I . . . . .  s, is given by 

,~ v~ ,1.~, Rc co> O. (4.1) 
¢=1 ~ - ¢  r--j 

The times which are needed for switching from queue l(h- 1) to queue l(h) are also 
assumed to be distributed according to a Coxian distribution, with vth moment 8,,h, 
v =  I. 2 . . . . .  and with parameters ~ ,  rr °.~', po.~, ¢ =  I . . . . .  ~'~h, which are defined 
in a similar way as those of the service time distributions, h = 1 . . . . .  L. 

The sum of the arrival processes at the various queues is a Poisson process 
with rate A := ~ .  tZi. The LST of the service time of an arbitrary job is ~(co) with 
probability ;t.//A, j =  1__ . . . .  s. Hence, the first two moments ~l and ~ of the 
distribution of the service time of 'an arbitrary job are given by: 

j . i  j . i  

The offered load pj to station j and the offered load P to the system are defined 
by s 

pj :=ZjTU,  p:= ~p j  =A.B 1. (4.3) 
j= l  

The first two moments cr~ and ~ of the total switching time during one cycle of 
the server along the queues according to the polling table are given by: 

L L L h - I  

O" I = ~ 61.~, 0" 2 = ~, 6 Z h + 2 ~  ~ (~ l ,8 | i .  (4.4) 
h - !  h= l  h - l  i - !  

4.2. CONDITIONS FOR STABILITY 

KUhn [21 ] has derived general conditions for stability of cyclic polling systems. 
Similar ideas lead for the present model with Bernoulli schedules and a general 
periodic polling order to the following conditions: 
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ZjE{C} <mj, for j =  1 . . . . .  s; (4.5) 

here, E{C} stands for the mean cycle time of  the server, i.e. the mean time the 
server needs to go once along the queues in the order listed on the polling table, 
so that ZjE{C} is the mean number of  jobs which arrive at queue j during one 
cycle, and mj stands for the mean number of  jobs at queue j which can be served 
during one cycle, j = 1 . . . . .  s. The latter quantities depend on the polling table and 
on the Bernoulli parameters, and are readily verified to be equal to: 

t. i { l (h )=j}  
m j =  ~ , j=  1 ... .  ,s. (4.6) 

/ , - z  I - q h  

Here, mj:=, ,*  whenever there is at least one h, h = 1 . . . . .  L, with l ( h ) = j  and 
qh = 1. The mean cycle time can be found by noting that, with V h. h = I . . . . .  L, the 
duration of  the hth visit in a cycle (to queue l(h)): 

L 

E{C} = a s + ~ E{Vh}, (4.7) 
h = l  

and, by balance arguments for the now of  jobs into and out of  the s queues, 

L 

/~jE{C} = ~ l { l ( h )= j }  E{Vh}/y U, j =  1 ..... s. (4.8) 
h = l  

Eliminating E{Vh}, h = 1 . . . . .  L, from (4.7) with (4.8) readily leads to 

E{C} = o'j ( 4 . 9 )  
1 - p  

The conditions (4.5) can be summarized in the following condition: 

X:=P+G=.  max { g j / m j } <  1. (4.10) 
J - I  . . . . .  j r  

This condition depends on the service discipline (in this case, the polling table and 
the Bernoulli schedules). An intrinsic condition for stability of a polling system is 
p < I. If this condition is satisfied, then it is possible to choose a service discipline 
such that the system is stable, e.g. one with exhaustive service at each station. We 
will call Z the occupancy of the system. Because this quantity X will be used as 
variable in power-series expansions, the arrival rates will be written, cL section 2.1, 
as 

Xj=ajx, j= l ..... s. (4.11) 
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4.3. BALANCE EQUATIONS 

For the formulation of the balance equations for the class of  polling systems 
described in section 4.1, it is most appropriate to introduce a triple (H, Z, ~)  of  
supplementary variables in order to transform the queue length process into a 
Markov process. The variable H will indicate the actual position on the 
polling table (the value of H, in the range 1, . . . .  L, changes at instants at which 
the server leaves a station), the variable Z will indicate whether the server is 
switching (Z = 0) or serving (Z = I), and the variable • will indicate the actual 
phase of  either the switching time or the service time. The state probabilities are 
defined as follows: for n e I N ' ,  h = l  . . . . .  L, ~ = 0 , 1 ,  q~=l . . . . .  W ° if ~ '=0,  
¢p= 1 . . . . .  W~(j,) if ~" = I, 

p(n, h, ~, qJ) := Pr{(N, H, Z, (D) = (n, h, f, e)}. (4.12) 

Noting that the Coxian distributions have been defined such that completion of  a 
service or a switch can only occur if ¢D = !, cL section 4.1, the balance equations 
for the state probabilities (4.12) are readily verified to be, for n e IN', h = 1 . . . . .  L, 
~=l . . . . .  w ° ,  

, f  

h,O, ~p) = X ~ .  aj p(n - e j ,h ,  O, ¢p)l{nj > 0} 
j - I  

o.1 ~oh.¢p(n.h_ 1.0. l ) / { n , h - t )  = 0} "° '¢*ip(n ,h ,O,  ~p+ l)/{cp < Wh o } +/ah_ I + "'h 

+ I~t(h" 1,1_ I ) rc°h'~p(n +et(h-i)  , h -  1, 1, 1)[1 --qh-I l{nt(h-l) > 0}]; (4.13) 

a n d  f o r  n e IN s, h = 1 . . . . .  L, q~ = 1 . . . . .  Wtl(h), nt(h)> O, 

' ='q']-(n,h, e) Z x ai+,-.,h)j, l, = j-l~ajp(n-ej'h'l ¢p)l{nj>O} 

• l ' ~ ÷ l n t n  h, 0,1 l ,e  +/at{h) e , ,  l , (p+ l ) l {~P<Wt l (h) }+/ . th  rct(h)p(n,h,O, 1) 

!,1 ~.1 ,q~ + qhllt(h) "'t(h) p(n + et(h), h, 1, 1 ). (4.14) 

I t  should be noted that for all cp, q~ = 1 . . . . .  W:(h) ,  

p(n,h,l ,q~)=O, i f  nt(h)=O, h = l  . . . . .  L. (4.15) 
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4.4. THE COMPUTATION SCHEME 

First. it will be shown that the Markov process (N, H, Z, ¢D) satisfies conditions 
(2.4) and, hence, that the state probabilities (4.12) possess the light traffic behaviour 
as indicated in (2.3). For this purpose, we introduce for each n E l~l', n ,  0, an 
ordering <,, of the vectors of supplementary values (h, ~, q~). For each n E IN', 
n ~ 0, we define for each h, h = 1 . . . . .  L: 

(h, ~'1, cPl) <,, (h, ~'2, q~) if ~'! < ~'2, or if ~'l = ~'2 and opt > q~, (4.16) 

i.e. the vectors are ranked in increasing order as 

(h, 0, q,o), (h, O, q,o _ 1) . . . . .  (h, 0, 1), (h, I, hurt(h)) . . . . .  (h, I, 1). (4.17) 

For each n E INs, n *: 0. there is an i with nl > 0, and by definition of the polling 
table there exists an h,, E {I . . . . .  L} such that l (h , , )=  i. The subsets (4.17) of 
vectors (h, ~', ~p) are ranked with respect to the component h by increasing order of 
h n + 1 . . . . .  L,  1 . . . . .  h n. i.e. for all ~'t, ~'2, 9t, ~ ,  

(ht,~'=,q~t)-~n(h2,~:z, cp2) if h t < h 2 < h , ,  o r i f  h n < h l < h  2, 

or if h 2< h n < h l .  (4.18) 

By the definition of the Coxian distributions and the service discipline, it 
follows that phase transitions without arrivals or departures of jobs are only 
possible to states with a higher order with respect to these orderings, and 
that from each reachable state (n, h, ~, 9) ,  n ~ O, there exists a path of states of 
increasing order with respect to -%, which leads with positive probability to a state 
(n, h o, 1, 1) for some ho E { 1 . . . . .  L} from which a departure is possible. Note that 
the state of  highest order is (n, h,,, 1, 1) and that this state is reachable by definition 
of h,. 

Based on the foregoing considerations, the following power-series expansions 
can be introduced, cf. (2.5), for n E IN', h = I . . . . .  L, ~= 0. 1, q~= I . . . . .  ~ if 
~" = 0, q~= I ..... Su:(h) if ~'= I, 

p(n,h, ~', cp) = Z "` * ' ' ' + " '  ~ z*b(k;n,h, ~, ¢p). 
k,=o 

(4.19) 

As indicated in section 2.4, the fol lowing set of equations fol lows from the balance 
equations (4.13), (4.14): for n E IN', h =  1 . . . . .  L, 9 =  1 . . . . .  ~ o  k = 0 ,  1, . . . .  
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laoh,~,b(k;n,h,O, cp) . o,q,÷ i = Ph b(k;n,h,O, cp+ l)l{~p < Wo} 

Jr 

+ ~., a i [b(k;n-e j ,h ,O,q~) l{n j  > 0 } -  b ( k -  l;n,h,O, rp)l{k > 0}]  
j . I  

;)tr h b ( k - 1 ; n + e t { h _ l ) , h -  l , l , l ) l { k  > O } [ l - q h _ l  t{ntch-i) > O}] 

o,1 noh,q,b(k;n,h_ l ,O,l)l{nt~h-l) = 0}; (4 .20)  +/Zh_l 

for n E IN', h =  1 . . . . .  L , j =  1 . . . . .  ~}Ch), nt(^)> 0, k = 0 ,  1 . . . . .  

. l ' *+lb(k;n ,h ,  1, ~p+ l)/{¢p < Wtl(h)} la]t'h~ b( k; n, h, I, ¢p) = r-t(h) 

- I ' l , r l '* t ,  t t ' - l ; n +  h , l , l ) l { k > O }  + u°'l tr)ih]b(k:n, h. 0.1)+ qh.-,h~.-,h~." e,h~. 
dt 

+ Y~ a t [ t , (k ;n  - e~, h, 1, q~):ini > o}  - b(k - l ; n ,  h, 1, q,)t{k > 0 } ] .  
),,1 

(4.21)  

This set of eqs. (4.20), (4.21) forms a recursive scheme for all coefficients b(k; n, h, (, cp) 
except those of  states with n = 0, because eqs. (4.20), (4.21) express the coefficients 
b(k; n, h, (, q~) in terms of  coefficients with a lower order, ei ther with respect to 
the partial ordering .~ defined in (2.7) or with respect to the orderings defined in 
(4.16) and (4.18). Hence, the only states which require further attention are states 
with n = 0 and ( =  0. For these states, eqs. (420) read: for h = 1 . . . . .  L, q~= 1 . . . . .  ~o,  
k = 0 , 1  . . . . .  

.o.**tb(k;O,h,O,~p+ 1)1{9 < q,o} I.t °" *b(k; O, h, O, cp) = e'h 

oA nok,.b(k;O,h_ 1,0,  l)+ y(k;h,  cp); + # h - t  (4 .22)  

here, the quantities y(k; h, q~), h = 1, . . . .  L, q~ = 1 . . . . .  ~ ,  defined by y(0; h, ¢)  : = 0 
and for k = 1 ,2  . . . .  by 

y(k;h, cp) := Pt{h-I - 1 ;e t (h- l ) ,h-  , , 

$ 

- ~ a j b ( k -  1;O,h,O, ~o), (4.23)  

consist o f t c rms  with coefficients o f l owcr  ordcr with respect to -< than (k; 0, h, 0, 9),  
cf. (2.7), and, hence,  can be considered to be known. The  sets o f  eqs. (4.22) are, 
for k fixcd, dependent ,  as in the general case, cf. (2.8). The  law of  total probability 
gives (of. (2.9)), 
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S't" 'e°S" b(k;O,h,O, ~)= ] I, for k = 0 ,  
- - '  ~ [ - r ( k ) ,  fo~ k = 1 ,2  . . . .  h - I  ~ = !  

(4.24) 

Here, for k = I, 2 . . . . .  

r(k).- E 2 , ~  ° , ,  

0 < n  I + . . .  + ~ s  'Ck 

E E (4.25) 

Consider, for k fixed, the set of equations consisting of (4.24) and all but one of 
the equations (4.22). It is readily verified that the determinants A(k) of these sets 
of equations are independent of k and are given by: 

, v* 

A(k) = A := O" I I ' I  I-I ,Uh 0'~', for k = 0, 1,2 . . . . .  (4.26) 
h . , i  ~ = i  

For k = 0, this set of equations is readily solved: for h = 1 . . . . .  L, q~ = 1 . . . . .  W if, 

b(0;0, h, O, ¢p) I = /I  h . t::rl/-tO'¢ ~"~ -o,v' (4.27) 

It is more tedious, but straightforward, to show that for k = 1, 2 . . . . .  

b(k;O,L,O, 1) 

t. 'el' I v ' ° f  h-1 

h - I  ~ - I  j - I  

~ y(t;l, v)}]. 
v = l  

(4.28) 

Once the coefficient b(k; O, L, O, l) has been determined according to (4.28), the 
other coefficients b(k; 0, h, 0, ~p), h = 1 . . . . .  L, ¢ =  1 . . . . .  W ° ,  can be sequentially 
obtained with the aid of (4.22). Hence, relations (4.27), (4.20), (4.21), (4.28) and 
(4.22) form a complete scheme for computing the coefficients of the power-series 
expansions of the state probabilities. 

The number of multiplications and divisions required to compute coefficients 
b(k; n, h, (. q~) for all ( and ¢ for k + nl + .  • • + n, < M for some M is (in the case 
G = 0) roughly given by (cf. (4.20), (4.21)), 

11I,,s_ s + l  

L L ] 
h . I  h - I  



178 J.P.C. Blanc, Performance evaluation of polling systems 

Here, the fact that terms vanish in (4.20) and (4.21) when k, nt . . . . .  n, are not all 
positive has been ignored. It should be noted that this number of operations can be 

~ I,(t) reduced by storing products like qh/J~(~) ,,t(h), cf. (4.21), in separate arrays. This 
number of operations is considerably less than the upper bound (2.23) for G = 0, 
where 1(91 is given by (3.1) with Kh= 1 for h =  1 . . . . .  L and with ~F~h_D,t(h) 
denoting Wh o . 

4.5. WAITING TIMES 

Let Wj denote a random variable distributed as the stationary waiting time of 
jobs arriving at queue j, j = 1 . . . . .  s. The number of jobs at queue j left behind by 
a job departing from the queue is equal to the number of jobs that arrived at queue 
j during the sojourn time of the departing job. Because arrivals occur according to 
a Poisson process, this implies (cf. Takagi [251), 

E{zN#} - z ) ) ,  Izl < 1 , j =  I . . . . .  s, (4.29) 

cf. (4.1). The moments of the waiting time distributions can be obtained from the 
moments of the marginal queue length distributions through these relations. The 
expected values of the waiting times for jobs in the various queues of a 
system with a cyclic polling order satisfy the following pseudo-conservation law 
(cf. Tedijanto [27]), 

cruz] 
1 - a j ( l - q j ) ~  r/i } 

j - I  

p f12 
l - p  2fl  

" 

,i=l j=l 
(4.30) 

Here, I//:= pi/p is the relative offered load at queue j, j =  1 . . . . .  s. This relation 
provides a useful check on the accuracy of the computations. For systems with non- 
cyclic periodic order-of-visit rules, a pseudo-conservation law is only known for the 
special case of exhaustive, gated and l-limited number-of-services rules (i.e. qh = 1 
or qh = 0, h = 1 . . . . .  L, in the present model), with the restriction that queues with 
l-limited service may be listed only once on the polling table, cf. Boxma et al. [10]. 

An important general property of the waiting times in systems with fixed 
polling orders is the following heavy traffic behaviour: for j = I . . . . .  s, E{Wi} 
tends to infinity as x T I if and only if (el. (4.6), (4.10), (4.11)), 

aj lmj  = max {ailmi}. (4.31) 
i - I  . . . . .  s 
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This implies that the modifications (2.18) and (2.19) for the initial sequence of the 
epsilon algorithm should only be applied to moments of distributions related to 
queues for which (4.31) holds. That only the arrival rates, and not the service rates, 
play a role in condition (4.31) can be explained by the fact that a certain (integer) 
number of jobs is served during each cycle of the server along the queues according 
to the polling table and the Bernoulli schedules. We will call service disciplines for 
which the mean waiting time at each station tends to infinity as the occupancy tends 
to one balanced disciplines. When the polling order for a system is fixed, then, in 
order that a discipline is balanced, the mean number of services attributed to the 
queues during one period must be such that 

rnj:rni=ai:a i, f o r i , j = l  . . . .  ,s .  (4.32) 

4.6. EXAMPLE: INFLUENCE OF THE MOMENTS OF THE SERVICE TIME DISTRIBUTIONS 

The aim of the examples in this section is to study the influence of higher- 
order moments of the service time distributions on the mean and the standard 
deviation of the waiting times. For this purpose, we consider systems with four 
stations, with equal arrival rates, equal mean service times, cyclic polling, and equal 
switching rates between the stations, for various service dmc distributions. Four 
distributions wil l  be considered, labeled A, B, C and D, each with mean 7tj = 1, 
j = A, B, C, D. Distributions A and C have second moments ~ j  = 3, j = A, C, and 
consist both of two phases; these distributions differ in the third moment: 7']A = 15, 
73C = 20.25. Distributions B and D have second moment "~j= 1.75, j = B, D; distribution 
B consists of four phases, 7]B = 3.98, while distribution D consists of three phases, 
73o = 6. The arrival rates arc: A.j = 0.2,  j = !,  2, 3, 4, and the switching times are 
identically, exponentially distributed, with G t = 0.I. Table 4 shows the mean and 
the standard deviation of the waiting times in several of such 4-station systems. The 
stations have either all I-limited service (L) or all exhaustive service ~ ) ,  and the 
stations are visited in cyclic order. Under the heading "system" it is indicated that 
the system consists either of four stations with different service time distributions 
("ABCD", visited in this order), or consists of two pairs of stations with different 
distributions ("ACAC/BDBD" indicates that the data for W^ and W c stem from a 
system with two stations with distribution A and two stations with distribution C, 
visited in the order ACAC; and analogously for W s and WD), or consists of four 
stations with identical distributions ("symmetrical" indicates that the data for W^ 
stem from a system with four stations with distribution A; and analogously for W n, 
W c and Wo). The numerical results indicate that the vth moments of the service 
time distributions have an impact on the overall level of the ( v -  1)th moments of  
the waiting time distributions, as in the case of the M/G/1 queue, but that the 
influence of the moments of the service time distribution at a certain queue on the 
moments of  the waiting time distribution at that queue is less important. It has been 
observed that the relative differences between W^ and W c, respectively W B and W D, 
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Table 1 

The influence of higher-order moments of the service time distributions on the w~ting time distributions 

System DCP EIW^} EIW.I ElWc) EIWo) crlW^l olWs} alWc) crlWol 

ABCD L 5.657 5.598 5.644 5.601 8,220 8,085 8 .231  8.082 
ABABICDCD L 5.651 5.599 5.650 5.600 8.039 7.894 8,408 8.268 
ACAC/BDBD L 7.018 4.239 7.010 4,234 10 .081 5.997 10.086 6.003 
symmetrical L 7.014 4.236 7.014 4.236 9.867 5.855 10.295 6,142 
ABCD E 4.873 5.052 4.873 5,052 7.285 7.817 7,272 7.673 
ABABICDCD E 4,873 5.052 4,873 5.052 7.076 7.523 7,476 7.962 
ACAC/BDBD E 6.213 3 . 7 1 3  6 , 2 1 3  3.713 9.459 5.413 9.374 5.356 
symmetrical E 6.213 3 , 7 1 3  6,213 3,713 9.172 5,219 9.655 5,545 

decrease when cr I increases. In the case of exhaustive service, the mean waiting 
times depend only on the first two moments of the service time distributions, as can 
be seen from the set of equations (given in Baker and Rubin [1] for general polling 
tables) which determine these quantities. 

4.7. EXAMPLE: THE INFLUENCE OF THE SERVICE DISCIPLINES 

The aim of  this section is to study the influence of  the Bernoulli parameters 
and of the polling order on the mean waiting times in a given asymmetrical system 
consisting of four stations, and to find the optimal values of the Bernoulli parameters 
for this system with respect to some cost functions which are linear functions of  
the mean waiting times. The parameters of  the stations are listed in table 5. The 

Table 5 

Parameters and cost coefficients for a system with four stations 

J '~ 7'tj ~j ;5,1 Pj ctj c2j c3j c4j c~j 

1 0.128 1.00 2.00 6.00 0.128 0.25 0.10 0.16 0.10 0.04 
2 0.128 0.25 0.31 0.70 0,032 0.25 0.10 0.04 0.40 0.16 
3 0.512 1.00 1.75 4.28 0.512 0.25 0.40 0.64 0.10 0.16 
4 0.512 0.25 0.09 0.05 0.128 0.25 0.40 0.16 0.40 0.64 

scrvicc timc distributions are cxponential (station 1) or consist of  two cxponential 
phases, so that they are completely determined by their first three moments.  The 
five cost functions that wc considcr for this system arc: 

Ci := ~ cijE{Wj}, i =  1 . . . . .  5. (4.33) 
j - !  
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Here, the coefficients of the cost functions are defined by: 

Clj := ~', C2j:= A ' c 3 j : = r  b =  P '  

1 ]-I 
C4j := ~'lj  k-I  j=1 . . . .  , s .  (4.34) 

Cost functions Ct, C2 and C3 are, respectively, station-, job- and load-weighted 
averages of the mean waiting times; cost functions 6"4, Cs and C2 are, respectively, 
station-, job- and load-weighted averages of the mean waiting times divided by the 
corresponding mean service times. 

First, we consider cyclic polling strategies: the stations are visited in the 
order 1, 2, 3, 4. Usually. the order in which stations are arranged in a cycle has only 
a minor influence on the waiting times, cf. Blanc [41. The switching times are 
identically, Erlang-2 distributed, with 61i = 0.05, j = 1, 2, 3, 4, so that cr I = 0.2. 
Table 6 contains a list of Bernoulli schedules for this cyclic polling strategy, and 
the corresponding values of the mean waiting times and the cost functions can be 
found in table 7. The schedules Da*, Db*, Dc*, Ddl and Dd4 are extremal in the 
space of Bernoulli schedules (ql, q2, q3, q4), 0 < qj <: I, j = 1,2, 3, 4. Intuitively, 
E{W,,} is minimal for Day and maximal for Dbv over all Bernoulli schedules for 
cyclic polling orders. The Bernoulli probabilities are the same for each queue in the 
schedules Dd*; the schedules De* and Dd4 are balanced disciplines, eL (4.32). The 
schedules Dr* are such that the maximal mean visit time to queue j, m i 7'l j, is the 
same for each queue ( j  = 1,2, 3, 4). For the schedules Dg*, the maximal mean 
number of services is proportional to the load of a queue, i.e. mi:rn i= p , :p j ,  
i . j  = 1, 2, 3, 4. The schedules Dh* have been determined by an extensive search. 
It is conjectured that cost function C,, is minimal over all Bernoulli schedules for 
the considered cyclic polling order for Dhv, v = 1 . . . . .  5, where Dh3 = Dd4. That 
the purely exhaustive discipline Dd4 is optimal for cost function C3 is obvious from 
the pseudo-conservation law (4.30). It is interesting to note that in Blanc [7], light 
traffic asymptotes of the mean waiting times have been determined by algebraic 
evaluation of the computation scheme of the PSA for the special case of cyclic 
polling, exponential service times and negligible switching times. These asymptotes 
indicate that it is optimal in light traffic to take for cost function Cio 1 = 1,2, 4, 5, 

qj= 1, if Oj<ci i. qi =0 '  if r/j> cij, j =  1 . . . . .  4. (4.35) 

The numerical results for the present example with non-exponential service times 
and non-negligible switching times suggest that it is still optimal to take qj = 1 for 
queues with r/j < clj, but that qi should increase with increasing load for queues with 
rlj> cij, j =  1, 2, 3, 4. This is supported by the stability condition (4.10), which 
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Bernoulli schedules for the model of table 7 

DCP 

Dal 
Da2 
Da3 
Da4 
Dcl 
Dc2 
Dc3 
Ddl 
Dd2 
Del 
Dfl 
Dgl 
Dhl 
Dh2 

qt q2 q3 q4 ZiP DCP ql qz q3 q4 ZIP 

1.00 0.00 0.00 0.00 1.1280 Dbl 
0.00 1.00 0.00 0.00 1.1280 Db2 
0.00 0.00 1.00 0.00 I.I 280 Db3 
0.00 0.00 0.00 1 . 0 0  1.1280 Db4 
1.00 1.00 0.00 0.00 1.1280 De4 
1.00 0.00 1.00 0.00 1.1280 Dc5 
1.00 0.00 0.00 1.00 1.1280 Dc6 
0.00 0.00 0.00 0.00 1.1280 Dd3 
0.80 0.80 0.80 0.80 1.0256 Dd4 
0.20 0.20 0.80 0.80 1.0256 D¢2 
0.20 0.80 0.20 0.80 1.1024 Dr2 
0.80 0.20 0.95 0.80 1.0256 Dg2 
1.00 1.00 0.50 1.00 1.0640 Dh4 
O. 15 1.00 0.75 1.00 1.0320 Dh5 

0.00 1.00 1.IX) 1.00 1.0320 
1.00 0.00 1.00 1.00 1.0320 
1.00 1.00 0.00 1.00 1.1280 
1.00 1.00 1.00 0.00 1.1280 
0.00 0.00 1.00 !.00 1.0320 
0.00 1.00 0.00 1.00 1.1280 
0.00 1.00 1.00 0.00 1.1280 
0.95 0.95 0.95 0.95 1.0064 
1.00 1.00 1.00 1.00 1.0000 
0.80 0.80 0.95 0.95 1.0064 
0.80 0.95 0.80 0.95 1.0256 
0.95 0.80 0.99 0.95 1.0064 
0.45 1.00 0.20 1.00 1.1024 
0.00 1.00 0.35 1.00 1.0832 

Table 7 

System with four stations with an offered load ofp  = 0.80 and with equal switching rates betwe©n the 
stations: cyclic polling order 

DCP ElWl) EIW:I EIW 3} £{W,) C, C2 C3 C, C 5 

Dal 1.06 1.59 9.52 7.43 
Da2 1.63 1.12 9.44 7.36 
De3 5.52 5.03 1.$4 19.68 
Da4 1.84 1.69 10.53 1.08 
Dbl 10.52 4.20 1.89 3.77 
Db2 4.70 13.05 2.33' 4.57 
Db3 1.17 1.32 10.66 1.16 
Db4 3.37 3.83 1.82 20.41 

Dcl 1.06 1.20 9.53 7.44 
Dc2 3.29 6.25 1.76 20.26 
Dc.3 1.17 i.80 10.64 1.15 
Dc4 9.89 9.02 1.82 3.67 
Dc5 1.86 1.23 10.55 1.08 
Dc6 5.71 3.16 1.56 19.78 

Ddl 1.62 1.50 9.43 7.35 
Dd2 3.11 3.32 3.75 5.11 
Dd3 4.28 4.77 2.87 5.06 
Dd4 5.01 5.65 2.52 4.90 

Dcl 5.39 5.03 3.33 4.51 
De2 5.10 5.46 2.72 4.78 
Dfi 1.97 i.49 8.28 1.67 
Dr2 3.37 3.20 4.10 3.15 
D81 4.20 8.11 2.35 7.26 
D82 4.71 6.53 2.44 5.65 

Dh I 1.80 2.03 6.18 1.74 
Dh2 5.48 2.64 4.06 2.33 
Dh4 1.79 1.45 8.40 1.27 
Dh5 2.69 1.60 7.02 1.41 

4.90 7.04 7.5 ! 4.66 6.57 
4.89 7.00 7.53 4.50 6.47 
7.94 9.54 5.22 10.59 13.87 
3.78 5.00 7.27 2.34 2.72 
5.10 3.74 3.66 4.43 3.81 
6.16 4.53 3.50 7.75 5.57 
3.58 4.98 7.25 2.17 2.70 
7.36 9.61 5. I2 10.22 14.10 

4.81 7.02 7.51 4.51 6.52 
7.89 9.76 5.14 1 1 . 1 1  14.38 
3.69 5.01 7.25 2.36 2.77 
6.10 4.09 3.70 6.25 4.48 
3.68 4.96 7.27 2.16 2.65 
7.55 9.42 5.21 9.90 13.64 

4.98 7.02 7.53 4.65 6.52 
3.82 4.19 3.85 4.06 4.53 
4.24 4.07 3.52 4.64 4.63 
4.52 4.04 3.43 4.98 4.65 

4.57 4.18 3.92 4.69 4.44 
4.51 4.05 3.54 4.88 4.57 
3.35 4.33 5.94 2.29 2.7 ! 
3.46 3.56 3.79 3.29 3.32 
5.48 5.08 3.66 6.80 6.49 
4.83 4.36 3.48 5.58 5.24 

2.94 3.55 4.60 2.31 2.50 
3.63 3.37 3.95 2,94 2.79 
3.23 4.19 5.92 2.11 2.46 
3.18 3.80 5.21 2.17 2.39 
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implies that  the purely exhaustive discipline Dd4 will outperform a n y  Bernoulli 
discipline for any system with cyclic polling when the offered load is sufficiently 
high, provided that all cost coefficients arc positive. 

Next, we consider more general periodic visit orders for the same system. 
Table 8 contains a list of polling tables and Bernoulli schedules. The schedules D*B 
arc balanced disciplines, cf. section 4.5. The Bernoulli parameters of stations which 
appear more than once on the polling table have been taken to b¢ the same for each 
visit. For the discipline DkB, we have also considered two variants: in discipline 
DkBP, the Bernoulli parameters of stations 3 and 4 arc such that the proportion 
between the average maximal duration of an intervisit time and that of the 
subsequent visit is the same for each visit; in DkBI, they are such that the 
average maximal durations of the intervisit times arc the same for each 
station. The schedules D*L and D*E in table 9 arc l-limited (qh = 0, h = 1 . . . . .  L), 
respectively exhaustive (qh = 1, h = 1 , . . . ,  L) disciplines with the same polling table 
as the corresponding discipline D*B. For all these disciplines, the switching times 
between any pair of stations arc identically, Erlang-2 distributed, with Sij = 0.05, 
j = 1 . . . . .  L, so that cr I = 0.05 x L, except for the scan-type disciplines Dm* and 
Do*, where the switching times between two consecutive visits to the same station 
have been taken negligibly small so that o" l = 0.3 in these cases. The "end"-stations 
in the cases DmL and DoL have in fact a 2-1imited service rule; for comparison, 
wc have inserted disciplines DnD and DpD, respectively, in which the "end"- 
stations have Bernoulli parameters 0.5 and the intermediate stations have l-limited 
service. For the disciplines Dk* and DI*, also a variant is considered in which it 
is assumed that the stations arc arranged in a cycle and that the mean switching 
times between stations 1 and 3, respectively 2 and 4, are twice as long as those 
between the other, adjacent, pairs of stations; hence, o" I = 0.4 for the disciplines 
Dk*C and o" ! = 0.5 for the disciplines DI*C. 

Table 8 

Polling tables and Bernoulli schedules for the model of table 9 

DCP Table 

DiB 132343 
DjB 13432343 
DkBP 134234 
DkBI 1342.34 
DkB 134234 
DIB 13432434 
Drab 31244213 
DnB 312421 
DoB 13422431 
DpB 134243 

ql q2 q3 q4 qs q6 q7 qs ZIP 

0.60 0.70 0.60 0.70 0.90 0.70 1.0192 
0.60 0.60 0.80 0.60 0.60 0.60 0.80 0 .60 1.0256 
0.60 0.83 0.84 0.60 0.75 0.72 1.0192 
0.60 0.75 0.89 0.60 0.83 0.20 1.0192 
0.60 0.80 0.80 0.60 0.80 0.80 1.0192 
0.60 0.70 0.70 0.70 0.60 0.70 0.70 0 .70 1.0256 
0.80 0.20 0.20 0.80 0.80 0.20 0.20 0.80 1.0192 
0.90 0.20 0.20 0.90 0.20 0.20 1.0192 
0.20 0.80 0.80 0.20 0.20 0.80 0.80 0.20 1.0192 
0.60 0.80 0.80 0.60 0.80 0.80 1.0192 
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Table 9 

System with four stations with an offered load of,o = 0.80 and with equal 
the stations: non-cyclic polling orders 

switching rates between 

DCP E{W~I EIW2I EIW 3 } E(W4} Ct C 2 ¢~ C4 C~ 

DiL 3.61 3.22 3.16 42.23 13.05 18.84 9.49 18.86 28.19 
DiB 5.87 5.85 2.76 5.32 4.95 4.40 3.79 5.33 5.01 
DiE 6.04 6.53 1.93 6.07 5.14 4.46 3.43 5.84 5.48 
DjL 5.91 5.27 3.30 14.17 7.16 8.11 5.54 8.70 10.68 
DjB 6.63 6.69 2,99 4.30 5.15 4.25 3.93 5.36 4.57 
DjE 6.91 7.94 1.92 4.96 5.43 4.24 3.45 6.04 5.03 
DkL 3.17 2,86 6.81 5.32 4.54 5.45 5.83 4.27 5.08 
DkLC 3,53 3.20 9.11 7.11 5.74 7.16 7.66 5.39 6.66 
DkBP 6.02 6.13 2.98 4.11 4.81 4.05 3.78 5.00 4.33 
DkBI 5.91 6.00 2,93 4.56 4.85 4.19 3.79 5.11 4.59 
DkB 6.06 6.13 2.98 4.05 4.81 4.03 3.77 4.98 4.29 
DkBC 6.52 6.59 3.17 4.30 5.14 4.30 4.02 5.32 4.58 
DkE 6.39 7.23 2.19 4.41 5.06 4.00 3.42 5.52 4.59 
DkEC 6.62 7.48 2.26 4.54 5.22 4.13 3.53 5.70 4.73 
DIL 5.59 4.96 5.80 4.53 5.22 5.19 5.53 4.93 4.84 
DILC 6.33 5.63 6,97 5.44 6.09 6.16 6.57 5.75 5.75 
DIB 6.71 6.71 3.12 3.76 5.08 4.09 3.94 5.17 4.25 
DIBC 7.19 7.21 3.29 3.97 5.42 4.35 4.18 5.52 4.51 
DIE 7.00 7.82 2.09 4.30 5.30 4.04 3,46 5.76 4.62 
DIEC 7.23 8.10 2.14 4,39 5.46 4.15 3.55 5.93 4.74 
DmL 1.60 1.62 7.09 5.81 4,03 5.48 5.79 3.84 5.17 
Drab 4.90 4.81 3.19 4.81 4.43 4.17 3.79 4.66 4.55 
DnL 1.07 1.11 21.81 16.98 10.24 15.73 16.89 9.52 14.57 
DnD 1.82 1.83 7,03 7.12 4.45 6,02 6.00 4.47 6.05 
DaB 4,63 4.57 3.30 5.31 4.45 4.36 3.89 4.75 4.84 
DnE 3.86 4.78 2.84 5.66 4.28 4.26 3.53 4.85 4.99 
DoL 1,84 1.87 7.04 5.69 4.11 5.46 5.79 3.91 5.14 
DoB 5.28 5.30 3.04 4.68 4.58 4.15 3.75 4.82 4.54 
DpL 3.15 2.86 6.80 5.52 4.58 5.53 5.85 4.35 5.20 
DpD 2.17 2.17 6.98 5.64 4.24 5.48 5.80 4.04 5.16 
DpB 5.91 6.05 2.94 4.50 4.85 4,17 3.79 5. l I 4.56 
DpE 5.82 6.81 2.11 5.63 5.09 4.36 3.45 5.77 5.26 

5. Conclusions 

A general framework for application of the PSA has been described in 
section 2. The PSA has been discussed in detail for a broad class of polling systems 
with periodic visit orders and Bernoulli schedules in section 4. Many polling systems 
with other service disciplines also fit in the general setting introduced in section 2. 
Examples are, cf. section 3, limited service (B3), of. Blanc [7], and Markovian (A2) 
and dynamic (A4) order-of-visit rules. Another possible extension consists of Coxian 
interarrival times, but they have a ~trong impact on the size of the supplementary 
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space O: the sizes indicated in (3 .1)-(3 .4)  should by multiplied by the factors ~' / ,  
the number  of  phases o f  the interarrival times at station J, for J = 1 . . . . .  s. Other 
variants are models with finite buffers which require a few minor modifications, 
e.g. concerning the definition of  the occupancy Z, if  all buffers are finite and the 
system is stable for any offered load, cf. Blanc [5]. Less straightforward generalizations 
of  the algorithm are needed for models with batch arrivals: then the b i r th -dea th  
structure is violated and the key property (2.3) does not hold. It seems 1o be possible 
to obtain a recursive set of  equations by introducing power-series expansions as 
functions o f  some root o f  Z in the case of  bounded batch sizes, but the applicability 
will be limited to small batch sizes because the required number of  coefficients will 
grow very rapidly with the batch sizes. A better alternative might be to consider 
models with Markov modulated arrival processes, although they have a similar 
impact on the size o f  the supplementary space as Coxian interarrival times, while 
they disturb the recursive character of  the computation scheme. A final extension 
of  the PSA which we mention here is the addition o f  migration to the processes, 
i.e. the admission of  transitions to states ( n + e i - e  i, ~), i , j=  1, . . . .  s, V ¢  O, 
n i > 0, from a state (n, q~) ¢ IN' x O, which makes it possible to model networks of  
queues in which jobs may move from one queue to another queue. The computation 
scheme will only be recursive if the network is acyclic, as will be shown in a future 
paper. 
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