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COMMUN. STATIST.—STOCHASTIC MODELS, 11(3), 471-496 (1995)

DEVELOPMENT AND JUSTIFICATION
OF THE POWER-SERIES ALGORITHM
FOR BMAP-SYSTEMS

Wilbert van den HOUT
Hans BLANC

Tilburg University, Faculty of Economics
P.O.Boz 90158, 5000 LE Tilburg, The Netherlands

ABSTRACT

The applicability of the Power-Series Algorithm is extended to batch Marko-
vian arrival processes and phase-type service time distributions. This is done
for systems with a single queue, but the results can readily be extended to
models with more queues like fork-join models, networks of queues and polling
models. The theoretical justification of the algorithm is improved by showing
that in light traffic the steady-state probabilities are analytic functions of the
load of the system. For the BMAP/PH/1 queue a recursive algorithm is de-
rived to calculate the coefficients of the power-series expansions of the steady-
state probabilities and moments of both the queue-length and the waiting time

distribution.
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1 INTRODUCTION

If customers arrive one at a time and future arrivals are independent of the
arrivals in the past, a Poisson process is usually a good description of the ar-
rival process. However, these conditions may not be satisfied. Comnsider for
example a central computer with a feW different terminals where the offered
jobs consist of several data packets and the number of active terminals varies
with time. Because of the correlation between successive arrivals, the Poisson
process would be an inadequate approximation here. Also in the study of ATM
systems, the Poisson process is considered to be unsuitable to model the bursty
nature of the arrival process. A far less limited class of arrival processes is the
class of batch Markovian arrival processes (BMAP), introduced by Neuts [10]
and reformulated more elegantly by Lucantoni [9]. This class of arrival pro-
cesses contains many well-known special cases like Markov-modulated Poisson
processes, processes with phase-type (PH) interarrival times (not necessarily
independent) and overflow processes from finite Markovian queues. Also pro-
cesses of which the subsequent batch sizes depend on each other or on the
interarrival times are included in this class. A detailed list of special cases is
given by Lucantoni [9].

The Power-Series Algorithm (PSA4) is a device to compute performance
measures for queueing systems that can be described as a continuous time
Markov process and is especially suitabie for multi-queue systems. The basic
idea is to transform the large or infinite set of non-recursively solvable balance
equations into a set of recursively solvable equations. This is done by multi-
plying all transition rates in the arrival process by a scalar p. For low values
of p the system will be relatively empty and for high values it will be full, so p
is a measure of the load of the system. Clearly, the steady-state probabilities
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are functions of p, and the PSA calculates the power-series expansions of these
functions. The PSA has been applied to coupled processor models [8], queues
in parallel [2], the shortest-queue model [5] and various polling models [4].
Recently, the PSA has been extended to calculate partial derivatives of perfor-
mance measures with respect to system parameters [6]. All previous models
have Poisson arrival streams and exponential or Coxian service times. The aim
of the present paper is to extend the PSA to models with batch Markovian
arrival processes and phase-type service time distributions and also to provide
a better theoretical justification of the algorithm. The discussion is restricted
to the single server queue to keep the notation simple and to provide a basis
for the analysis of multi-queue systems. It will be shown, for the BMAP/PH/1
queue, that in light traffic the steady-state probabilities are analytic functions
of p, so that they can be represented by their power-series expansions in p. A
recursive algorithm is derived to compute the coefficients of these expansions.
From these expansions the expansions of moments of the queue-length and the
waiting time distributions are obtained.

Benes [1] uses a similar recursion as that of the PSA for a finite-state
Markov model of a telephone switching system. He does not address numerical
issues concerning this method. The MacLaurin series approach by Gong and
Hu [7] for the GI/G/1 queue and by Zhu and Li [16] for the Markov-modulated
G/G/1 queue is also quite similar to the approach of the PSA. Starting from
the Lindley equation instead of the balance equations, they directly obtain the
expansions of the moments of the system time and the delay without computing
the queue-length distribution. They can allow for non-Markovian (but not
general) interarrival and service times. The complexity of the algorithm is
comparable to the complexity of the PSA, but they do not comnsider batch
arrivals and because the approach is based on the Lindley equation the method
seems to be unsuitable for multi-queue systems. Reiman and Simon [12, 13]
consider queueing networks and obtain expansions of performance measures

from a sample path argument, restricting the total number of arrivals in the
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sample path. Because of the complexity of the approach only a few coefficients
can be calculated, which they combine with heavy traffic limits. Lucantoni [9]
analyzed the BMAP/G/1 queue using the matrix-analytic approach. For the
single server queue, it appears to be preferable over other methods but the
method can not readily be extended to general multi-queue systems.

In Section 2 the BMAP/PH/1 queue and its global balance equations
will be described. In Section 3 the algorithm to calculate the coefficients of
the power-series expansions of the steady-state probabilities is derived and it is
proved that in light traffic the power-series expansions converge. In Section 4
it is shown how these power series can be used to compute moments of the
queue-length and the waiting time distribution. In Sections 5 and 6 some

examples are given and conclusions are drawn.

2 THE BMAP/PH/1 QUEUE

The behaviour of a batch Markovian arrival process depends on an underlying
continuous time Markov process. Transitions in this process may trigger batch
arrivals. Let the number of states of this process be I. The transition rate from
state h to state 4 is equal to pog; (ki =1,...,] < 00; 0 < Z;-'=1 ap; < 00).
When such a transition is made, a batch of size m arrives with probability
gmri (m = 0,...,M < oo). It is assumed that the maximal batch size M
is finite and that the underlying Markov process is irreducible (for p > 0),
which is no restriction because only the steady-state behaviour will be studied.
Because of the extra degree of freedom from multiplying by p, the ap; can be
assumed to be normalized such that the queue is stable for p € [0,1). Then
p corresponds to the usual definition of the load of the system. The following

matrices and vectors will be used:

A={on}tni=1,.1 Qm = {@mhithi=1,..1r Am = {OhiQmhithi=1,..I;
& = Ae, A = diag(a).
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Notice that "™  Q,, = ee” and TM__ A,, = A. The steady-state distribution

v of the underlying Markov process is determined by

Since the underlying Markov process is assumed to be irreducible on a finite
state space, the solution to these equations is unique.

The service times are mutually independent random variables and also
independent of the arrival process. They have a phase-type distribution with
J phases. The initial phase is phase j with probability ¢;. A transition
from phase j to phase k is made with rate f;5,. Service is ended with rate
Bio (5. k = 1,...,J < 00; 0 < ©{_0Bir < ). The mean service time is

assumed to be finite. The following matrices and vectors will be used:

¢ = {d;i}i=1,..0: B ={Bir}irk=1,..0s Bo={Bjo}j=1,..7,

B=Be+p, B=dig(B)
The model can easily be extended to include models with set-up times, where
the distribution of the first service time after an idle period differs from the
other service times. This can be done by replacing the distribution ¢ by ¢ in
the balance equations for the empty states and all formulas derived from them.
Any pair of phase-type distributions can be modelled with identical transition
rates B,3, and different initial distributions ¢ and ¢, by taking B block-
diagonal, with the blocks corresponding to the different distributions. With
some more effort, also service time distributions with a positive probability
mass at zero can be modelled, but this results in more possible transitions.

The queue-length distribution is determined under the assumption that

the service discipline is non-preemptive, workconserving and non-anticipating.
This means that services are not interrupted, the server is idle only if the
system is empty and the service order and service times are independent. Ex-
amples are first-come-first-served, last-come-first-served and service in random

order. For this class of service disciplines the order of service does not influence
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the queue-length distribution. The waiting time distribution is studied under
the assumption that the service discipline is first-come-first-served, so that the
waiting time distribution can be determined by conditioning on the state of

the system at arrival instants.

Consider the continuous time Markov process {(MN,I;, Ji);t > 0} on 2 =
N x {1,...,I} x {1,...,J}. Here N, denotes the number of customers in
the system (waiting or being served), I; the state of the BMAP and J; the
service phase, all at time £ > 0. For N, = 0, let J; be the initial phase of
the next customer to be served, so that the initial phase of the service of any
customer is determined right after the departure of the preceding customer.
The steady-state probabilities p(p;n,%,7) are defined explicitely as a function
of the load p:

tll’lgpl‘{ (Nt’Ith) = (n’i1j) \ (N0,IO’J0) = (‘n‘b,imio), at load P },

for (n,4,7) € © and p € (0,1). For p = 0 all empty states are absorbing, so
depending on the initial conditions (ng,1s,jo) the steady-state distribution can
be any distribution with all probability mass in the empty states. To make

the steady-state probabilities right-continuous functions in p = 0, take
p(05m,%, ) = limp(p;n,i,5) = 1(n = 0)uidy, for (nyi,j) € .

For p € (0,1) the process is ergodic, so the steady-state distribution does not
depend on the initial conditions and is uniquely determined by the normaliza-

tion equation

oo I J
22> plpnyd,g) =1 (1)
and the balance equations

[pa: + Bi1(n > 0)] p(pi i, )
Man I
= ¥ X pUiGmn p(pin—m,h,3)

m=0 h=1

J
+ kgl :3’6.1'1('"’ > 0) p(p;naiak)
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M~

+ ﬁk0¢j p(p;n+ lai’k)a

k=1

for (n,1,7) € Q. In the right-hand side (RHS), the first term corresponds
to a change in the process underlying the BMAP, possibly triggering a batch
arrival. The operator A denotes the minimum of two numbers. The second
and third terms correspond to changes in the service phase, without and with
service completion respectively.

Since the number of states is not finite, the balance equations can only
be solved in special cases. Approximations can be obtained by truncating the
state space. Alternatives are the matrix-geometric approach and the PSA.
The latter will be described in the next section. If the buffer size of the queue
is finite, the state space is also finite. Hence, solving the balance equations
directly seems more natural than using the PSA. However, for large buffer sizes

the PSA may still be more efficient.

3 THE POWER-SERIES ALGORITHM

In this section it is proved that the steady-state probabilities are analytic
functions of p in light traffic and recursive relations are derived to calculate
the coefficients of the power-series expansions. This is done in three steps.

In Theorem 1 it is proved that the state probabilities satisfy p(p;n,1,7) €
O(p[™), for p | 0. Here [n],, denotes n/M rounded upward:

[n]ly =min{k € N|k >n/M}, forn >0,
and O(p!), for p | 0, denotes the set of all functions f satisfying
3s5,r>0 such that 0 < p < § = |f(p)| < Fpt.

In the rest of the paper for p | 0’ will be omitted. The order property derived
in theorem 1 does not imply that the steady-state probabilities are analytic
in light traffic. For example, the function f(p) = ,/p is in O(1) but it is not
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analytic at p = 0. This order property is the reason for assuming that the
maximal batch size M is finite.

The order property found in Theorem 1 is used in Theorem 2 to de-
rive recursive relations for the coefficients of the power series, basically by
determining all derivatives at p = 0. That these coefficients exist and can be
calculated still does not prove that the steady-state probabilities are analytic
in light traffic, since the power series may not converge. For example, the
series 2, nlp™ has finite coefficients, but it does not converge for p # 0, so
it is not analytic at p = 0.

Finally, in Theorem 3 it is proved that the power series found in The-
orem 2 do converge for p small. One would like to have convergence for all
values of p € [0,1), but in general this is not the case. An example will be
given with singularities close to the origin. To obtain convergence in these
cases, techniques like conformal mappings and the epsilon algorithm can be

used.

Theorem 1. The steady-state probabilities of a BMAP/PH/1 queue satisfy
plpin,i,7) € O (p™™) ,  for (n,i,5) € Q.

Proof. Let I'y be the set of all phases of the service time distribution from
which service can be ended within k transitions:
0, for k =0,
Ie=1¢ {7€{L,...,J}|Bj >0}, for k=1,
T U {j =3 .} he%:._l Bin > 0} , fork>2.

Because the mean service time is finite, a K < J exists such that I'x is the set

of all phases {1,...,J}. Define the following subsets of the state space Q:

Qe ={(n,1,5) € n <€+ 1(j €TY)}, for0<k<K and {>0.
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The states with £ 4+ 1 customers are only in ¢ if the service phase is in T.

In steady state, the rates at which the process leaves and enters ;4 are equal:

2395 > 3 ¥
A0 meteniTigers) El PinGmin  P(pin,1, 7)
I M I
&5 (B S g iy
I
= Z . {:g.'i0+ = ﬂjh} p(p;l-}-l,i,j)
I=}J¢§k hely
+ > E :HJ'O 2 ¢h p(P;l+ 2’7;,.7')'
1=1j=1 hely,

The first term of the left-hand side (LHS) corresponds to a sufficiently large
batch arrival. The summation over m is zero if the upper index is smaller than
the lower index. If the number of customers is £+ 1 and the service phase is in
T't, then after a batch arrival or a transition to a service phase not in T the
system will leave . If the service phase is not in I'y, then after a service
completion or a transition to a service phase in T'y the system will enter (.
Finally, if the number of customers in the system is £-+2, a service completion
will bring the system back into (, only if the new service phase is in T'.

The set {29 9 contains all empty states. Because probabilities are bounded,
it is true that

p(P;n)i,j) € 0(1)1 for ('"‘77",.7') € Q0,0-
Suppose that for some k € {0,...,K — 1} and £ >0

ppinsing) € 0 (™), for (n,4,5) € Qe (4)

In the first term of the LHS of (3), the summation over m is non-zero only if
n>£L—M+1+1(j € Ty). Therefore, because of the induction hypothesis
(4), the first term is in O(pHt[¢-M+1+1F€MM) M) C O(pl#+1), The second term
of the LHS has the same or higher order. Since all coefficients in (3) are non-
negative, this implies that all probabilities in the RHS with positive coefficients
also have this order, especially those in the first term:
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p(pil+1,4,5) € O (p™) , for j € Tuys\Da.

Hence, (4) is true for (n,%,5) € Q41 and, by induction over k, also for
(n,i,j) € Qk,e. The fact that Qs = Qoy1 finishes the proof of Theorem 1,

by induction over /. 0

Theorem 1 shows that the order of the steady-state probability of a certain
state is at least equal to the minimal number of batch arrivals needed to
reach that state from an empty system. If the maximal batch size is one, then
p(p;n,i,7) € O(p™), which is indeed what was used in the previous applications
of the PSA. The theorem also shows that, if the power-series expansion of
p(p;n,i,5) exists, the coefficients of all powers p* with k < [n]y are zero.
Theorem 2 describes how this can be used to calculate the remaining
coefficients. For this it is convenient to use matrix notation. Define the I by

J matrices of steady-state probabilities

Pn(P) = {P(P5na":aj)}.'=1,.,.11;j=1,...,_7, for n > 0.

In matrix notation, the normalization (1) and balance equations (2) are:

et ioPn(p)e =1, (5)

pAPA(p) + Pa(p)Bl(n > 0)
MAn
= 3 PARPam(p) + Pa(p)BLn > 0) + Poia(p)Bod”,

for n > 0. The Markov process underlying the BMAP is not influenced by

(6)

the queue-length and service process and when the queue is empty, the service
phase is distributed according to the initial distribution ¢:

o0

> Pu(p)e=v, Pop) = Pop)ed”.

n=0
Together this renders

Po(p) =vo™ - ZP (p)ed’. (7

n=1
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In the derivation below, this equation will be used instead of the normalization

equation.

Theorem 2. The steady-state probabilities of a BMAP/PH/1 queue can

formally be expanded as power series in the load p of the system:
Pn(P) = Z PkUk,rn (8)

where the Uy are determined by

Uso = V¢T, (9)
kM
Uk,O = - Z Uk,ne¢Ta (10)
n=1
~ Man _
Uk,n[B - B] = Z AﬁUk—l,n—-m - AUk—l,n + Uk,n+1ﬂ0¢T; (11)
m=0

fork>1and1 <n<kM, and with Uy, = O ifn > kM.
Proof. Define for p € [0,1) and n > 0:

Pﬂ(p)) for k = 0.
Rk—lln(p) - pk_l‘élﬂ—llﬂ’ fOI k Z 1

Bn(p) = {

Rk,,, = ]ifl[fjl p"‘Rk,n(p), for k> 0.
P

If the steady-state probabilities P,(p) are analytic in p, then the ﬁk,n are the
coefficients of the power-series expansions and the functions Ry ,(p) are the
P.(p) without the first k — 1 terms of the expansion. It will be shown below
that the Rk,n are well defined and identical to the Uy,,.

From theorem 1 it follows that, whether or not the P,(p) are analytic,

A

Bn=0, forn>kM,
foralln > 0. If f?.km exists, then

lim p™* Ruy1 n(p) = Lim p™* Ry n(p) — Rigm = O.
pl0 plO
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Replacing P,(p) by Ron(p)in the balance equations () for n > 1 and equation

(7) renders respectively

MAn
RO,n(P)[B — B] = Z pAﬁRO,ﬂ—m(P) - PARO,n(p) + Ront1 (P)ﬁod’T’ (12)
m=0
Roo p) = U¢T Z Roﬂ 6¢T (13)
n=1
Letting p | 0 in (13) renders
Ry =vo”. (14)

This shows that R, exists.
Since Ro,o exists, and Ro,n = O for n > 1, all Ry .(p) are well defined.
Using (14), (12) and (13) can be rewritten as

— Mnan n
Ryn(p)[B Bl = % pAL, [Rinon(p) + Bopem]

i : : (15)
—pA [Rl,n(P) + RO,n] + [Rl,n+1(P) + RO,'n-}-l] ,30¢T,
R1 o Z Rl,n 6’¢T (16)
n=1
Dividing by p and letting p | 0 renders

ﬁl.ﬂ[B — B] = AZRO,O + Rl.n+1ﬂo¢T> (17)

A M A
RI,O = — Z R1,n8¢T. (18)

n=1
for <n < M. Considering n = M down to n = 0 shows that, since I;’.O,O exists
and fil,M.H = 0, all the RL,._ exist.
Next, suppose that for some K > 1 it has been shown that for all 1 <
k< Kandn2>1,

_ MAan “ ,\
Rk,n(p)[B - B] = mE_O PAZ'; [Rk,n—m(p) + p—(k~1)Rk—1,n—m]
—pA [Rh.n(P) + P“(""I)Rk—l,n] (19)
+ [Rk,n+1 (P) + P_(k_l)Rk—lm-l-l] ﬁo¢T,
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Bao(p) = — 3" Bin(p)ed®, (20)

n=1

and that the corresponding fikm exist and satisfy

MAn N
RinlB—Bl=Y AZRisnm— ARu 10+ BiniaBod”, (21)
m=0
kM
Rk,o = - Z Rk,ne¢T- (22)
n=1

for 1 < n < kM. Equations (19) and (20) are the balance equations (6) and
equation (7) without all terms with order less than k. By (15) to (18), this is
true for K = 1. By replacing Rgn(p) by the well-defined Ri.1..(p) + p¥ Rgn
in (19) and (20) and using (21) and (22), it can be shown that then (19) and
(20) are true for k = K +1. Dividing by p®** and letting p | 0 shows that (21)
and (22) are also true for k = K + 1. By induction this proves that Rk,n exists
for all k,n > 0 and that they satisfy the same equalities as the corresponding
Uk n, which implies that they are identical. 0O
A more intuitive way to find the recursive relations (9), (10) and (11) would
be to assume beforehand that in light traffic the steady-state probabilities are
analytic, so that the power-series expansions (8) exist. Two analytic functions
are equal if and only if all coefficients of the power-series expansions are equal.
Therefore, substitution of these expansions into (6) and (7) and equating coef-
ficients of corresponding powers of p on either side of the equality signs, would
lead to the same recursive relations.

The sets of equations that need to be solved in (11) only differ in the
RHS, so only once a LU-decomposition needs to be calculated. Because the
mean service time is finite, [B — B) is non-singular. In previous applications,
the service time distributions were assumed to be Coxian. Then [B — B]
consists of zeros, except for the main diagonal and an adjacent diagonal so
that no extra work needs to be done to compute the LU-decomposition and
the algorithms can be scalar, while in the present case the algorithm needs to

be a matrix algorithm because of the BMAP and the PH-type distributions.
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From formulas (9), (10) and (11) it can be seen that each matrix U,n is
a function of matrices of which either the first index is smaller or of which the
first index is equal and the second index is larger. Therefore, the coefficients
can be recursively calculated for increasing values of k and for each fixed k for
decreasing values of n, starting with n = kM. For n > kM the coeflicients are
zero. The PSA to compute all coefficients up to and including the coefficients

of the K-th power of p is as follows:

Power-series Algorithm

Calculate Uy from (9)

fork=1,...,K do
Calculate Uy, from (11) for n = kM,...,1
Calculate Uy, from (10)

Notice that coefficients are only calculated for probabilities P,(p) withn < KM
and that the number of calculated coefficients decreases with n. The mem-
ory requirements to store all coefficients approximately equal %K M t{imes
the memory requirements of an I by J matrix of reals. However, if one is
not interested in the complete queune-length distribution, but only in some
characteristics of the distribution (like the probability of an empty system or
moments), the memory requirements can be significantly reduced. If the mem-
ory space of matrices that are no longer needed for the recursion is used again,
the required number of matrices is only KM, which is equal to the number
of considered steady-state probabilities. So the memory requirements of the
PSA are comparable to the requirements when the state space would be trun-
cated to solve the balance equations directly. The number of multiplications
to compute the coefficients is of the order I2J2 M2 K2,

In the following theorem it is proved that in light traffic the steady-state
probabilities are analytic in the load p, which justifies writing the steady-state
probabilities as power series in p. This is proved by showing that the power

series found in Theorem 2 have a convergent majorant. The radius of con-
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vergence of this majorant is a lower bound on the radius of convergence of
the probabilities. Until now, analyticity in light traffic was only proved for a
specific coupled processor model (8], using the special M/M/I structure un-
derlying the model.

Theorem 3. In light traffic the steady-state probabilities of a BMAP/PH/1
queue are analytic functions of the load p.
Proof. For a vector z, a not necessarily square matrix A and 1 < p,q < o0,

consider the following vector and matrix norms:
1

’ Az
ety = (S loaf) s 1Al = max 22l

W lzlla
The matrix norm ||.|11 is the maximal absolute column sum, |.||eo,c0 the max-
imal absolute row sum, ||.||1,0c the total absolute sum and ||.||oo,1 the maximal

absolute value. The following inequalities hold for 1 < p, g,r < oo:
|4+ Bllpg < [[Allg + [ Bllpas  [[4Bllp,q < l|Allps || Blir,gs

known as the triangle inequality and consistency.

Applying these norms to equations (9), (10) and (11) shows that

[Toolleon <1,
kM

”Uklollmfl S a 21 ”Uk,n“oo,l,
n=

[Uknlloor < bmax{|[U-1,n-mlloo,1, for 0 <m < M An; ||Upnsalloo} s
for k>1and 1 <n < kM, where

o= [led 11 = J[d]le > 1,
. M T T T > =1
b= {mgo J| A7 loo00 + || Alloo,e0 + 1180 ||1,1} (B — B) 1.

So if there are non-negative numbers uy,, such that

kM
Uk,0 Za E Uk, (23)

n=1
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Upn > bmax{up-1pn-m, for 0<m < M AR} Upnyr},

for k> 1and 1 <n < kM and with ug, =0 for n > kM, then
”Uk,n”oo,l S Uk,n- (24)

Equality in (23) would give better bounds, but then it would be far more
difficult to solve. If b < 1, a solution to (23) is

blmha, for k = [nlu,
kn —
b (b 4 e)k=Iha—t . for k > [n]u,

with ¢ = abM, and if b > 1 a solution to (23) is

b(M+1)[n]M—n, for k = [n]u,
Ukn =
b(M+1)[n]M—n c(b + c)k—r"]M"‘l, for & > ’—n-|M’

with ¢ = max{a(b+ b* + ... + bM),bM*1}, That these solutions satisfy the
first inequality in (23) can be verified by evaluating the RHS. To verify the
second inequality, first show that uy, is non-increasing in n for fixed values
of k by considering six cases: [nly = [n + 1]y or [}y = [n 4+ 1] — 1 and
k= [n]u, ®=[n]u + 1 or k> [n]u + 1. Therefore the maximum is attained
for m = M A n. The inequality is then shown by considering the same six
cases.

In both solutions and for all n > 0 the geometric series ke [l PFn
converges if |p| < (b+ ¢)~'. But then the bound (24) implies that also the
power-series expansions of the steady-state probabilities (8) converge and are

analytic for |p| < (b+ ¢)~?, which proves Theorem 3. o

An upper bound on the error in p(p;n,i,j) that is made when only the first

K coefficients are computed is given by

K 00
p(pin,5,3) = > PUkmis| < Y pruin.
k=[r ]t k=K +1
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Unfortunately this bound is only valid for p < (b+ c)~!, which is usually too
small to be of any practical use.

There are systems for which the power-series expansions (8) converge for
all p € [0,1). For example, the steady-state probabilities of an M/M/1 queue
are equal to (1 — p)p™, n > 0. These are finite polynomials, so the analytic
continuations of the steady-state probabilities are entire functions of p. More
generally, for an M*X /GE;/1 queue, it can be shown by studying the balance
equations that the steady-state probabilities are finite polynomials in p (Ug,n =
O for all k > Jn + 2). The arrival process M* has exponential interarrival
times and batch arrivals with finite maximal batch size. The GEj; service
time distribution is a generalized Erlang distribution, i.e. the convolution of
J independent, not necessarily identical, exponential distributions.

On the other hand, there are also systems for which the analytic contin-
uations of the steady-state probabilities have singularities near the origin, for
example the GE;/M/1 queue. Let the service rate be equal to 1 and let the in-
terarrival time be the convolution of two exponential phases with rates pa; and
pay (normalized such that ;1; ;1-; = 1, which implies a; + a2 = oy > 4).
The steady-state probability of the event that there are n customers in the

system and the arrival process is in phase 7 is equal to

(1~2)p— 52);r for n=0,i=1,
plpin,i) =14 (1-2z)(p~ »z)2"t for a2l i=1,
(1-2)52" for n>0,1=2,
with z the solution of the equation z = (-E8—)(24~) in the interval (0,1):
1
2= 3 [ 1+ poyag — \/(71+ pozlcxg)2 —~4ptagay | . (25)

The analytic continuations of these steady-state probabilities as functions of

the load p all have branch points where the root in (25) has branch points, that
-1

is at p1 2 = (—alaz + 2,/a1a2) . Both these singularities are negative and

can lie arbitrarily close to p = 0 if ajay is large enough, that is if one of a; and
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iy is large and the other is close to one. This seems to be a typical example:
the convergence of the power series is worse when a system has parameters

that are of different orders of magnitude.

If the radius of convergence is smaller than one, the following bilinear conformal
mapping can be used [2]:

(1+G)p 4
_=— = ————— > 0.
¢ 1+ Go’ p TTGI=0)’ for G> 0 (26)

This transformation maps the interval [0,1) onto itself and the disk in the
complex plane C with centre p = G(1 +2G)™! and radius 1 — § onto the unit
disk. The steady-state probabilities can be expanded as power series in terms
of 6:

- 7} 00
B(8)= P, [ ———— ) = 0N 3" gEy,
®) (1+G(1—-6)) 200

and the coefficients are now determined by
%.0 = V¢Ta
kM -
I/lc,() = - .Z_:l .‘/k'ne(,b »
a — — MAn
Ilkuﬂ(]' + G)[B - B] = %_11"0[’3 - B] + Z ATTH‘/"_II"""‘
m=0

—AVieipn + (1 + A)Vins1 8o 0" — GVi-1,2+18007,

for k> 1and 1 <n < kM, and with V,, = O if n > kM.
Lower bounds on the radius of convergence are similar to those in The-

orem 3, with b replaced by

M -
be = tia{ X 4]0 + | Ao
+G + (14 26)By¢" 11} (B = B) 1.

The corresponding lower bound on the radius of convergence is usually still too
small to be useful for estimating errors. Nevertheless, the mapping does serve
its purpose. For G — oo, the mapping (26) maps the disk |[p — 3| < 1 in the

positive half plane onto the unit disk. So far, no singularities were found inside
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the positive part of the unit disk. If this is generally true, then the analyticity
in light traffic of the steady-state probabilities ensures that convergence can
always be obtained by choosing G large enough, since all singularities can
be mapped outside the unit disk, while keeping the unit interval inside the
unit disk. Unfortunately convergence is usually slow for large G' so many
coefficients need to be calculated, introducing more numerical errors. The
memory requirements of the algorithm with mapping are about the same as

without mapping, but the number of multiplications is roughly doubled.

4 THE QUEUE-LENGTH AND WAITING
TIME DISTRIBUTION

When the coefficients of the steady-state probabilities have been calculated up
to the coefficients of the K-th power of p, the probability p,(p) of n customers

in the system can be approximated in the obvious way:

K
pu(p) = €T Pi(ple~ Y. p*e"Uine, forn>0.
© k=[nlm

The epsilon algorithm can be used to accelerate the convergence of these se-
ries. For a description of this algorithm see Wynn [15] or Blanc [3, 4]. If the
conformal mapping (26) is used, then p and U should be replaced by 6 and V.
The same is true for all other formulas in this section.

After the p,(p) have been computed, the £-th moment of the number of
customers in the system Ly(p) can easily be calculated from them. However,
to accelerate the convergence, it is better to compute the coefficients of the

power-series expansions of these moments:

Ly(p) = 3 n'pa(p) = 2 n* 3 pe"Ukne = 3 pdss,
n=1 n=1 k=[nlm k=1

with

kM
LT
dg,k = Z ne Uk'ne.

n=1
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Since Ly(p) has a pole of order £ at p = 1, the power series will converge slowly
for heavy traffic, but the rate of convergence can be strongly improved by using
the fact that the series {dys}r>o Will usually tend to a polynomial in k of order
£—1ask — oo, For£ =1 and £ = 2, this means that there are constants a,
b and c such that limp_co(dix — @) = 0 and limj_oo(dax — b — ck) = 0. This

leads to the extrapolations

K oo K PK+1
Lp) = D pdie+ 3 prdix=3 ptdie+t dxk T (27)
k=1 k=K+1 k=1 —P
K o0
Ly(p) ~ Y pdax+ Y, p*{dax + (dox ~ dag-1)(k - K)}
k=1 k=K+1
K d —d K+1
_ kd d 2,K 2K~1| P )
kzzip 2k + {dzx + 1=, 1=, (28)

For higher order moments similar extrapolations can be used. From the re-
currence formula by Takacs [14], it can be shown that these approximations
of L,(p) are exact for all values p € [0,1) for M/PH/1 queues if K > 2¢,
even if the power-series expansions of the steady-state probabilities do not
converge for all p € [0,1). This underlines the advantage of evaluating the
power-series expansions of the moments instead of calculating the moments

from the steady-state probabilities.

Characteristics of the waiting time distribution are found by conditioning on

the state of the system at arrival instants. Define

An,m(p) = pA'?nPﬂ(p)'

The (4, 7)-th element of A,.n(p) is the arrival rate of batches of size m that
result in a transition to state (n + m,%,7). The mean customer arrival rate

equals _
oo M M
Mp) =YY meTAumlple=p Y meTALv,

n=0m=1 m=1

where v is again the steady-state distribution of the Markov process underlying

the BMAP. Clearly A(p) is linear in p. Let A denote A(p)/p.
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One customer in each batch arriving in an empty system has zero waiting
time. Therefore the probability that an arbitrary customer is served without
delay, is equal to the arrival rate of batches that arrive in an empty system

divided by the total arrival rate:

M
Pr {No Delay, at load p} = L5 3 eTAon(p)e

Moments of the waiting time distribution can be calculated under the
assumption that the service discipline is first-come-first-served, because then
the waiting time only depends on the situation at arrival instants. First let p,
be the J-vector of which the j-th element equals the £-th moment of a residual
service time, when service is in phase j. Let the scalar ji,; be the £-th moment
of a complete service time. Conform Neuts (page 46 of [11}), p, and ji; are
given by

w,=t(B-B)te, ju=¢ "y, forl>1.

The waiting time is zero for customers that are the first in a batch arriving at
an empty queue. Otherwise the waiting time consists of a residual service time
(e‘ven if the queue was empty, since the initial service phase has already been
chosen) and a number of complete service times. Let g, , be the J-vector
whose j-th element equals the ¢-th moment of the waiting time of a customer
arriving in a batch of size m while just before arrival there were n customers
in the system and the service process was in phase ) j. For each £, the p,,,

can be calculated by conditioning on the position in the batch:

ﬂ'l,n,m = Z # {N1 + (n + h - 2)["18} )
h=1+1(n=0)
Honm= 4 w{p+ (n+ b —2)[fae + 2 py + (n + b — 3)ife]},

for n > 0,1 <m < M. Finally, the £-th moment of the waiting time distribu-

tion is given by
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The use of extrapolations like in (27) and (28), and the use of the epsilon algo-
rithm again strongly accelerate the convergence. The mean waiting time can
also be calculated from the mean queue length with Little’s formula. Moments
of the sojourn time or moments of the waiting times of the first or last cus-
tomer in a batch (instead of an arbitrary customer) can be found in a similar

way.

5 EXAMPLES

In this section some numerical examples are given. These will concern the
H,/H,/1, Hf /H,/1 and MMPP,/H,/1 queues. The parameters are chosen
such that, for p = 1, the mean number of arrivals per unit time and the
mean service time are both equal to 1. The hyperexponential distributions
have variance 2 and balanced means. The probability that in the H¥ arrival
process the batch size equals m is 0.25 for 1 < m < 4. In the MMPP,
arrival process, the interarrival times also have variance 2, the steady-state
distribution of the underlying Markov process is [0.5,0.5] and two subsequent
interarrival times have correlation coefficient 0.125 (if ¢? is the variance divided
by the squared mean, the correlation coefficient is at most (1 — ¢~?), which
is 0.25 in this case). For these models the expectation and variance of the
number of customers in the system have been evaluated for different values
of K, the number of calculated coefficients. In all cases the mapping (26)
was used, where G was chosen such that the maximal coefficient in absolute
value was not too large. The epsilon algorithm was used, in a similar way as
in Blanc [4]. The results are given for p = 0.7 in Table 1 and for p = 0.9 in
Table 2. A dot indicates that the value rounded to the first 4 digits is the same

as the value above it. In Table 3 the results are given for the same models,
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TABLE 1. Low variance and correlation, p = 0.7.

493

Hy/Hy/1(G = 2)

HY /Hy/1 (G = 2)

MMPP,/H,/1 (G = 3)

K E Vv E 1% F |4

5 4.014 28.02 7.701 96.57 3.452 63.56
10 3.897 27.68 7.448 95.08 4,922 43.31
15 3.985 27.71 7.445 95.05 4.879 43.67
20 4.878 43.59
30

TABLE 2. Low variance and correlation, p = 0.9.
H,/H,/1(G=2) HY /H,/1 (@ =2) MMPP,/H,/1 (G = 3)
K -E |% E |4 E 14
5 17.45 365.4 34.95 1199 .3501 1265
10 17.19 352.1 32.23 1220 22.23 536.4
15 17.14 355.2 32.13 1232 21.37 570.6
20 32.12 21.34 559.2
30 21.36 562.8
40 560.2
50 560.3
75
TABLE 3. High variance and correlation, p = 0.9.
Hy/H,/1 (G = 6) HY /H,/1 (G = 2) MMPP,/H,/1 (G =T)

K E vV E v E |4
5 34.76 1349 76.54 3905 56.76 1252
10 33.36 1441 63.88 3714 42.67 2138
15 33.49 1418 61.17 4384 41.75 2237
20 33.48 1411 59.46 4636 41.93 2220
30 1413 60.61 4494 42.02 2193
40 60.61 4498 41.88 2175
50 60.56 4504 41.90 2145
75 4505 2208
100 2209
125 2208

150
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but with the variance of the interarrival times and the service times equal to
4 and the correlation coefficient equal to 0.15.

It is surprising that the power-series expansions of the moments of the
MMPP,/H, /1 system converge quite a lot slower than those of the H /H,/1
system, while the system itself is less congested. This illustrates that it is
difficult to predict the behaviour of the power series. The difference between
the models in Table 2 and the models in Table 3 is that the system parameters
in the latter models have a wider range, which results in slower convergence.
Perhaps this could be avoided by some kind of scaling, but this has not been
thoroughly investigated yet. The results also illustrate that, usually, higher
order moments require more terms of the expansions to reach a similar accu-

racy.

6 CONCLUSIONS

The Power-Series Algorithm has been extended to batch Markovian arrival
processes and phase-type service time distributions. The previous scalar algo-
rithms are now replaced by matrix algorithms. The sets of equations that need
to be solved in each step of the algorithm differ only in the right-hand side, so
calculating the LU-decomposition needs to be done only once. The analysis
in this paper can be extended to multi-queue systems, like fork-join models,
networks of queues and polling models. Because of the high dimensionality,
the number of queues and the sizes of the supplementary spaces of the arrival
and service processes have to be limited, but for moderately sized systems the
PS4 is applicable.

The theoretical justification of the PSA has been improved, by showing
that in light traffic the steady-state probabilities are analytic functions of the
load p, and a lower bound on the radius of convergence has been obtained. The
radius of convergence can be arbitrarily small, but analyticity in light traffic

justifies the use of techniques that improve the convergence of the power series,
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like conformal mappings and the epsilon algorithm. With these techiniques,
the PSA is also applicable in heavy traffic.

For the single server queue, comparing the PSA with the matrix-geometric
approach, the latter appears to be preferable. The service time distribution
need not be phase-type, the required memory space is much smaller and the
method seems to be more stable for models with extreme parameters. How-
ever, the matrix-geometric approach can not be applied to multi-queue models,
and an important advantage of the PSA is its flexibility, illustrated by the wide
range of models it has been applied to.
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