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1 Introduction

Dynamic game theory brings together three features that are key to many situations in economy;,
ecology, and elsewhere: optimizing behavior, presence of multiple agents, and enduring consequences
of decisions. For that reason this framework is often used to analyze various policy problems in these
areas (see e.g. [2], [7] and [11]).

In applications one often encounters however systems described by a set of ordinary differential
equations subject to some algebraic constraints. These systems are known as descriptor systems.

As far as the authors know, except for the work [12], a study of differential games for descriptor
systems is lacking up to now.

In this paper we take a first step in trying to fill this gap. We consider the problem of two players
who like to optimize their performance given by a usual quadratic cost function depending both
on the state and control variables. The underlying system is described by a set of differential and
algebraic equations.

*Corresponding Author



We assume that the information structure of the game is of the open-loop type. That is, both
players only know the initial state and structure of the system, and the set of admissible control
actions are functions of time.

Linear quadratic control problems play an important role in applications. Therefore the linear
quadratic control problem for descriptor systems has been considered in the literature by various
authors too. The theory on the autonomous linear quadratic control problem for descriptor systems
is, e.g., well documented in [10]. Here one can find also many references to this literature. Like most
approaches for solving the linear quadratic control problem for descriptor systems, in this paper we
solve the corresponding game problem by first applying an appropriate transformation to the pencil
AE — A (see (3)). Under some additional simplifying assumptions on the system it is possible then
to solve the game, for both a finite and infinite planning horizon, using the theory for affine linear
quadratic differential games as documented in [4] and [5].

The outline of the paper is as follows. The next section formalizes the problem statement and
summarizes some basic properties about descriptor systems. In section three we present the main
results for the finite planning horizon, whereas section four contains those about the infinite planning
horizon. In section five we illustrate some of the theory by an example. Finally section six concludes.

2 Preliminaries
In this paper we assume that the dynamics of the game is described by
El’(t) = Al’(t) + Blul(t) + BgUg(t), ZL’(O) = Xy, (1)

where £, A € R")*047) rank(E) = n, B; € R")*™ and u; € R™ are the controls player 4 can
use to manipulate the system. Each player i has a quadratic cost functional J; given by:

/0 T (O Qua(t) + ! (8) Ruu(8) Yt + o (ty)Qie(ty). (2)

Here all matrices are constant in time, Q; = QF, and R; is positive definite (> 0).

The inclusion of player j’s control efforts into player i’s cost function is dropped because, due to the
open-loop information structure, this term drops out in the analysis.

From, e.g., [1] we recall the following results for the differential algebraic equation

Ei(t) = Ax(t) + f(t), x(0) = zo. (DAE)
and the associated matrix pencil

AE — A. (3)

System (DAE) and (3) are said to be regular if the characteristic polynomial det(AE — A) is not
identically zero. If the pencil (3) is not regular, then the system (DAE) is under-determined in the
sense that consistent initial conditions do not uniquely determine solutions (see [6]). If the pencil
(3) is regular, then the roots of the characteristic polynomial are the finite eigenvalues of the pencil.
If F is singular, the pencil is said to have infinite eigenvalues which may be identified as the zero
eigenvalues of the inverse pencil £ — AA. From [6] we recall the so-called Weierstrass canonical form.
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Theorem 2.1 If (3) is reqular, then there exist nonsingular matrices X and'Y such that

I, O

YTEX = {o N (4)

]andYTAX:[J O}

0 I,

where J is a matriz in Jordan form whose elements are the finite eigenvalues, I, € R¥** is the identity

matrix and N is a nilpotent matrix also in Jordan form. J and N are unique up to permutation of
Jordan blocks. O

If (3) is regular the solutions of (DAE) take the form
l’(t) = Xlzl(t) + XQZQ(t)

where with X = [X] X,], Y = [V Y], X1, YT € R+ X, vl € RF)X7 and

2(t) = e’'2(0)+ /t e’ )Y, f(s)ds
0
21(0> = [I O]X_l.l’(]

at) = _ZNZYthZ !
=0

under the consistency condition:
0 L)X oy =— E N'Y
[ 0= 275 lt”

Here k is the degree of nilpotency of N. That is the integer k for which N* = 0 and N*~! # 0. The
index of the pencil (3) and of the descriptor system (DAE) is the degree k of nilpotency of N. If E
is nonsingular, we define the index to be zero.

From the above formulae it is obvious that the solution x(¢) will not contain derivatives of the
function f if and only if £ < 1. In that case the solution x(t) is called impulse free. In general, the
solution x(t) involves derivatives of order k — 1 of the forcing function f if (DAE) has index k.
Next, let [V W] be an orthogonal matrix such that image V' equals the image of ET and image W
equals the null space of E. Then E = [F; 0][V W]T = E,VT, where F) is full column rank. The
next lemma characterizes pencils which have an index of at most one.

Lemma 2.2 The following statements are equivalent:

i) pencil (3) is reqular and has at most index one.
) E .
ii) rank VT4 | =0t (= rank(E 4+ VV'A)).
i) rank ([E AW]) =n +r (= rank(E + AWWT)). O

Since we do not want to consider derivatives of the input function in this paper, we restrict the analysis
to regular index one systems here. The above discussion motivates then the next assumptions.
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Assumption 2.3 Throughout this paper the next assumptions are made w.r.t. system (1):
1. matrix FE is singular;
2. det(AE — A) # 0;
3. rank([E AW] =n+r;

4. For every xy € R" there exist a u;(0) and u(0) such that G(Axg+ Biu1(0) + Baug(0)) = 0, or
equivalently, image GA C image G[B; Ba|, where G := [0 I]YT.
3 The finite planning horizon

In this section we consider the game (1,2) under the assumption that ¢y is finite. Furthermore we
assume that

XTQith = [ Qétf 8 :| ) 1= 172,Where Qitf S Rnxn.
With
zi(t) = X'z, with 7; € R” and 7, € R” (5)
o(t)

the game (1,2) has a set of open-loop Nash equilibrium actions (u1(.), us(.)) if and only if (u1(.), ua(.))
are open-loop Nash equilibrium actions for the game

G0l =10 n] [ ] e
+Y T Byus(t), [il(og } _ Xz, -

where player ¢ has the quadratic cost functional J;:

[t doxrax | 0 |+ doruo

+a1 (tr) Qi 1 (ty). (7)
From (6) it follows that
l’g(t) = —[O IT]YT(Blul(t) + BQUg(t))
= —Yy(Brus(t) + Bous(t)). (8)

Substitution of (8) into the cost functions (7) shows that (u(.), us(.)) are open-loop Nash equilibrium
actions for the game (1,2) if and only if (u1(.), us(.)) are open-loop Nash equilibrium actions for the
game



LL’l(t) = JSL’l(t) —+ YiBlul(t) —+ YiBQUg(t),

21(0) = [1,, 0].X o, (9)
with cost functional J; for player i given by
I 0
ts ’ ~ o[ 0 0
o] o -Bny | xtax |y
0 —-Y2B; —Y);B
0 0 —BIY[ 251 20y
ty
_ / (7 (O Myz(t) b+ 27 () Qur, 1 (8), (10)
0
where 27 = [2T(¢) uT(t) ul(¢)] and
Q Vi W
M= | V' Ry N; |. (11)
Wl NI Ry

For a spelling of the matrices defined in (11) see Appendix A. In Appendix B we introduced some
additional notation that will be used throughout this paper. Using this notation we obtain the next
result. An outline of the proof is given in Appendix C.

Theorem 3.1 Assume that the two Riccati differential equations

Ki(t) = —JTK;(t) — Ki(t)J + (Ki(t)Y1B: + V) R;:"
(B Y'Ki(t) + Vi') = Qi; Ki(T) = Qu,, (12)

have a symmetric solution K;(.) on [0,tf], i =1,2.
Then the linear quadratic differential game (1,2) has an open-loop Nash equilibrium for every initial
state if and only if matriz

I
H(ty)=[I00]e ™ | Q,
Qar,

18 invertible.

Moreover, if for every xy there exists an open-loop Nash equilibrium then the solution is unique. The
unique equilibrium actions as well as the associated state trajectory can be calculated from the linear
two-point boundary value problem

§(t) = My(t), with Py(0) + Qy(ts) = [2](0) 0 0]". (13)
Here
1,00 0 0 0
P=1| 000 and Q = —Qltf I, 0O
000 —Q2tf 0 I,



Denoting [yt (t), yi(t), y3(t)]" = y(t), with y; € R",i = 0,1,2, the state and equilibrium actions
are

*

()= | 4 | where 4300 = (o)
v5(t) = YalBy BalG- 1(Zyo
)+

and ! = Zyo(t
[ uj 1) ool
respectively. O

Similar as in [4, Theorem 7.2 and Proposition 7.5] one can relate the existence of open-loop
Nash equilibria for this game also to the existence of solutions of a set of coupled Riccati equations.
Following the lines of the proofs provided in [4] we obtain the next analogues.

Theorem 3.2
A. Assume that

i. The set of (coupled) Riccati differential equations
P(t) = —ATP(t) — P(t)A+ P(t)BG*BTP(t) — Q;
PT(ty) = [Q1;» Qu,]
has a solution P on [0,ts], and
ii. The two Riccati differential equations (12) have a symmetric solution K;(.) on [0,tf].

Then the differential game (1,2) has a unique open-loop Nash equilibrium for every initial state.
Moreover, the equilibrium actions are

{ Zj{g; } = G '(Z + BTP(1)3(t,0)[T 0)X a0, (14)

where ®(t,0) is the solution of the transition equation
O(t,0) = (A — BG~Y(Z + BTP()))d(t,0); $(0,0)=1I.

The corresponding state trajectory is given by

ﬁ@zx{gg]wmmﬂ@:é@mu%vwm

23(t) = Ya|By By)G~Y(Z + BT P(t))xi(t).

B. For allty € [0,t1) there exists for all xy a unique open-loop Nash equilibrium for the game (1,2)
if and only if the above Riccati differential equations i. and . have an appropriate solution for all
ty € [0, tl).

In case the game has a unique equilibrium the actions are given by (14). O



4 The infinite planning horizon
In this section we assume that the cost functional player ¢ = 1,2, likes to minimize is:

lim Ji(xo,ul,u%tf), (15)

tf—>oo

where

T (o, tn s, £7) = /0 T (O 0s() + uT () Rus(t) )t

subject to (1).
We assume that the matrix pairs (A, B;), ¢ = 1,2, are finite dynamics stabilizable. That is, if o(H)
denotes the spectrum of matrix H; C~ = {\ € C | Re(\) < 0}; Cf = {\ € C | Re(\) > 0}, then
rank([A\E — A, B;]) = n+r,V\ € CF. It can be easily shown that this assumption is equivalent with
the assumption that the matrix pairs (J, Y1 B;), i = 1,2, are stabilizable in (9). So, in principle, each
player is capable to stabilize the system (1) on his own.

We assume that the players choose control functions belonging to the set Us(xg) of square inte-
grable functions yielding a stable closed-loop system (see also e.g. [13]):

{u € L(0,00) | lim  Ji(ty, w0,u) € RU {~00, 00},
tlim x(xg, u,t) = 0}.

Here (g, u, t) is the solution of (1)!. Notice that the assumption that the players use simultaneously
stabilizing controls introduces the cooperative meta-objective of both players to stabilize the system
(see e.g. [4] for a discussion). For simplicity of notation we will omit from now on the dependency
of U on xg.

In the rest of the paper the algebraic Riccati equations

JUK; + KiJ — (KY1B; + Vi) R (Bl Y K; + V[T

and the set of (coupled) algebraic Riccati equations
0=A'P+PA—PBG'B"P+Q (17)
or, equivalently,

Zy

O:A§P+PJ—(PB+{
Zy

} )G HBTP+2)+Q

play a crucial role.

Definition 4.1 A solution PT =: (PT, P]), with P; € R™, of the set of algebraic Riccati equations
(17) is called

Mimy, oo Jilty, 20, u) = —o0(00) if Vr € R, 3Ty € R such that t; > Ty implies Ji(ty, zo,u) < r(>r).
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a. stabilizing, if 0(A — BG™'BTP) c CU~;
b. left-right stabilizing?(LRS) if

i. it is a stabilizing solution, and
ii. o(—AT + PBG'BT) c C{; O

The next relationship between certain invariant subspaces of matrix M and solutions of the Riccati
equation (17) is well-known (see e.g. [4, Chapter 7.3]). This property can also be used to calculate
the (left-right) stabilizing solutions of (17).

Lemma 4.2 Let C C R*" be an n-dimensional invariant subspace of M, and let C; € R™", i =
0,1, 2, be three real matrices such that

C=Im[cl, cT, cI".

If Cy is invertible, then P; == C;Cyt, i = 1,2, solves (17) and 0(A — BG~Y(Z + BTP)) = o(M|¢).
Furthermore, (Py, P») is independent of the specific choice of basis of C'. O

The next lemma summarizes the relationship between the LRS solution of (17) and the stable graph
subspace of matrix M. A proof of it can be found in [5] and [8].

Lemma 4.3

1. The set of algebraic Riccati equations (17) has a LRS solution (Py, Py) if and only if matriz
M has an n-dimensional stable graph subspace and M has 2n eigenvalues (counting algebraic
multiplicities) in C .

2. If the set of algebraic Riccati equations (17) has a LRS solution, then it is unique. O

Following [5] the following theorem can be proved.

Theorem 4.4 If the differential game (3,1) has an open-loop Nash equilibrium for every initial state,
then

1. M has at least n stable eigenvalues (counted with algebraic multiplicities). More in particular,
there exists a p-dimensional stable M -invariant subspace S, with p > n, such that

I
Im | Vi | CS,

Va

for some V; € R,

2In [4] such a solution is called strongly stabilizing.



2. the two algebraic Riccati equations (16) have a stabilizing solution.

Conversely, if the two algebraic Riccati equations (16) have a stabilizing solution and
T (t) =: [T (1), v (t), w1 (t)] is an asymptotically stable solution of

o(t) = Mo(t), z(0) = o,
then, with YT (t) == [T (t), L (t)],

ui(t) } -1 [ BT ]
. = -G t)+ Zx(t)|, 18
provides an open-loop Nash equilibrium for the linear quadratic differential game (3,1). O

Remark 4.5 Similar conclusions as in [5] can be drawn now. A general conclusion is that the
number of equilibria depends critically on the eigenstructure of matrix M. With s denoting the
number (counting algebraic multiplicities) of stable eigenvalues of M we have.

1. If s < n, still for some initial state there may exist an open-loop Nash equilibrium.

2. In case s > 2, the situation might arise that for some initial states there exists an infinite number
of equilibria.

3. If M has a stable graph subspace, S, of dimension s > n, for every initial state xy there exists,
generically, an infinite number of open-loop Nash equilibria. O

The next theorem shows that in case the set of coupled algebraic Riccati equations (17) have a
stabilizing solution, the game always has at least one equilibrium.

Theorem 4.6 Assume that

1. the set of coupled algebraic Riccati equations (17) has a set of stabilizing solutions Py, i = 1,2;
and

2. the two algebraic Riccati equations (16) have a stabilizing solution K;(.), i = 1,2.

Then the linear quadratic differential game (3,1) has an open-loop Nash equilibrium for every initial
state.
Moreover, one set of equilibrium actions is (fort > 0) given by:

{ Zlg } = -G HZ+ BTP)®(t,0)[I 0]X " a,, (19)

where ®(t,0) is the solution of the transition equation

&(t,0) = (J — BG™(Z + BTP))®(t,0); $(0,0)=1.

The corresponding state trajectory is given by
* _ xa{(t) * _ & -1
=X\, where z7(t) = ®(¢,0)[/ 0].X " xo,
5(t)
23(t) = Ya[By Bo)G™Y(Z + BT P)xi(t).
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Furthermore, the costs by using the actions (19) for the players are ([I 0]X ~tag)TM[I 0] X g, i =
1,2, where, with A, == J — BG™Y(Z + BT P), M; is the unique solution of the Lyapunov equation

1, (=G"HZ+ B"P)TIM[I, (-G~1(Z + BTP))"]" +
0.

ALM; + M Ay = (20)

O

Corollary 4.7 An immediate consequence of Lemma 4.2 and Theorem 4.6 is that if M has a stable
invariant graph subspace and the two algebraic Riccati equations (16) have a stabilizing solution, the
game will have at least one open-loop Nash equilibrium. O

The equilibrium actions (19) can be implemented also as a state feedback by considering the system:

i1(t) = (J — BG"Y(Z + BTP))z(t), 21(0) = [I 0]X .

ui(t) -1 3T Py
Then, [u;(t) } = -G Y(Z+ B'P)x(1).

Notice that in case the set of algebraic Riccati equations (17) has more than one set of stabilizing
solutions, there exists more than one open-loop Nash equilibrium. Matrix M has then a stable
subspace of dimension larger than n. Consequently (see Remark 4.5, item 3) for every initial state
there will exist, generically, an infinite number of open-loop Nash equilibria. This point was first
noted by Kremer in [8] in case matrix A is stable.

The above reflections raise the question whether it is possible to find conditions under which the
game has a unique equilibrium for every initial state. The next Theorem 4.8 gives such conditions.
Moreover, it shows that in case there is a unique equilibrium the corresponding actions are obtained
by those described in Theorem 4.6.

Theorem 4.8 Consider the differential game (3,1).
This game has a unique open-loop Nash equilibrium for every initial state if and only if

1. The set of coupled algebraic Riccati equations (17) has a LRS solution, and
2. the two algebraic Riccati equations (16) have a stabilizing solution.

Moreover, the unique equilibrium actions are given by (19). O

5 An Example

Consider the next simplified macroeconomic model in which the governments of two symmetric
countries aim at stabilizing domestic policies (see e.g. [2] and [3]).

$(t) = —pos(t) — drur(t) + drua(t), x(0) = xg (21)
@(t) = Pui(t) + aus(t) — vs(t), (23)
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where s is a measure of international competitiveness, u; is the domestic real money supply (used to
control the system) and ¢; denotes the deviation of the real output of country i, i = 1,2, from its
natural level. All parameters in this model are assumed to be positive. Moreover we assume that
output in a country is more affected by its domestic monetary policy than by the monetary policy
pursued abroad (i.e. @ > 3). The policy makers in each country choose their optimal monetary policy
so as to minimize the costs of the output gap (and inflation which might be viewed to be a fraction
of the output gap), the loss of international competitiveness due to a revaluation of the currency and
the loss incurred due to the fact that the government uses its control instrument. Assuming that the
cost functions are additive and quadratic and policy makers plan for an infinite horizon we get the
next objective functional for country i, ¢ = 1,2 :

/OOO{aSQ(t) + b2 (t) + Fuldt. (24)

Introducing z(t) := [s(t) ¢1(t) g2(t)] we can rewrite this model into the descriptor form (1,2) with

100 —¢py 0 O —¢1
E=]10200]|; A= v —1 0 |; B = « :
0 0 0 | - 0 1 1G]
] [a 00 ) a 0 0
BQ = ﬁ ) Ql = 0 b O and Qg = 0 00
Q@ | 0 0 0 0 0 b
Since o > [ it is easily verified that Assumption 2.3 is satisfied.
1 0 O 1 00
WithY:= |0 -1 0 |[and X:=| ~ 1 0 | the matrix pencil (£, A) can be rewritten
0 0 -1 —y 0 1
into its Weierstrass canonical form
1 00 —¢po 0 0
YP'EX={00 0| andY"AX=| 0 1 0
00O 0 01
Therefore, with X7 = [1, v, —7];
00 1 0 O
Xo=10|;Y'=|0|;andY)=| -1 0 [;
0 1 0 0 -1
M; and M, are respectively
a+~*  ayb  Bb a+v*h —Bvb  —ayb
avb T+a?b afb | and —Bvb 3% a3b
Gvb afb 3% —avb  afb T+ a?b

From this we get then, with d :=determinant(G) = (7 + a?b)? — a?3%b? (which obviously differs from
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zero), e :=T + a(a + B)b and f =7 + (a? — $%)b, the next expressions (see Appendix B)

2a7¢1be

F+a’b  apfb ] b +

J:_@?G:{ ah ot | A=
b-[ 3 oo i) 2] 1]
2:[—@ 0 } L [ —af }

=Foal A= T |-G

Since (J, Y1 B;) are stabilizable and [ ‘6}2} ]‘%/’ '

9, Theorem 9.4]). Next consider, with mys := a(a — 8)y*b%e; may := —p1aybf and mas := ¢ Bbr,
matrix M =

} > 0, i = 1,2, (16) has a stabilizing solution (see e.g.

— o 0 0 1 | 2d1avbe —ple —pie
—(a+7°) ¢ 0 | + P mi2 Moz Moz | . (25)
—(a+9%) 0 ¢ miz M3 Moo

Assuming that both ¢od — 2¢1aybe > 0 and ¢od — ¢1 (o + F)ybe > 0 it is shown in Appendix D
that (17) has a LRS solution. So this game has a unique open-loop Nash equilibrium under these
parameter conditions. The unique equilibrium actions are

[0 ] =[5 2] (400 | =

t Oé’}/b—qbl 1
58]ttt o e

261 (ayb=¢1h)
where 21 (t) = ¢ 7" Frata= b )t[l 0 0]xo.
The corresponding equilibrium state trajectory is

1

R N O | Ce Ty
¥ (t) = _(vv_km 1(t), with k= P p

The cost for both players are the same, i.e: m([1 0 0]zg)?, where m is given by (30).

6 Concluding Remarks

In this note we considered the linear-quadratic differential game for descriptor systems which have
an index one. Both necessary conditions and sufficient conditions were derived for the existence
of an open-loop Nash equilibrium. Moreover, conditions were presented that are both necessary
and sufficient for the existence of a unique equilibrium. Basically, the results were obtained by
reformulating the game as an ordinary affine linear quadratic differential game. Following the lines
and combining the results documented in [4] and [5] similar conclusions can be deduced.

The above results can be generalized straightforwardly to the N-player case. Furthermore, since
Q; are assumed to be indefinite, the obtained results can be directly used to (re)derive properties

12



for the zero-sum game. If players discount their future loss, similar to [4, Chapter 3.6], it follows
from Theorem 4.8 that if the discount factor ¢ is "large enough” the game has generically a unique
open-loop Nash equilibrium (all that changes is that matrix A has to be replaced by A — %6[
everywhere). Finally we conclude from (18) that the conclusion in [8], that if the game has an
open-loop Nash equilibrium for every initial state either there is a unique equilibrium or an infinite
number of equilibria, applies here too.

Obviously there are still many open problems to be solved. For instance, problems that were not
dealt with here are how to proceed in case the system is of a higher order index. Furthermore, the
approach taken here is not motivated from a numerical point of view. Stated differently, there may
be other ways to obtain the equilibrium actions advertized here which are from a numerical point
of view much more preferable (like for the linear quadratic control problem (see [10])). Also the
question emerges whether it is possible to solve this problem without making a preliminary ”state
decomposition”. Furthermore, all of these problems can be analyzed also under different information
structures.

Appendix A: shorthand notation M,

The matrices defined in (11) are given by:

Qi = X{Qina Vi = —XI‘FQiXﬁ/zBl,

W, = —XTQiXoYaBs, N, := BTV XTQ:XoYsBs,
Ry = BfYQTXgQ1X2Y231+R17

Ry = B;FYQTXEC_ZlXﬁ/zBm

Ry = BY) X]Q:X:Y,B,

Ry = BIYIXIQ.X,Y2Bs + Ry.

Appendix B: Notation
The next shorthand notation will be used.

Ay = diag{J, J}; B =Yi[B1, Ba;

0 0
| @i | 4 _ [ 010]M | Ru N |
=[G ]re=lhomal| o =¥ m]

13



where we assume throughout that this matrix G is invertible,

- - BTYT
B = g BTYT B BT = | P
- I T
e [0 1, [oroam || W,
2 BngT_’ | [00 1M, 0 S\ wip
[0 0 B
| 0 1
@ = [ Ql ] : S; = BG_lgiT; Agp = AL — [ Z } G 'BT
(2 Z
- ) i -3
S =151, Sy),A:=J—BG'Z; and M := 0 _;g
Notice that M also equals
J 0 0 -B . .
-y =JT 0 |+| 2 |G|z Bf BII.
-Q, 0 =JT Zs

Appendix C: Proof of Theorem 3.1

The proof of this theorem can be given along the lines of [4, Exercise 7.5 and Theorem 7.1]. Suppose
that (uj(.),u3(.)) is a Nash equilibrium. Then, according the maximum principle, the Hamiltonian

x1
H; = [1{ u{ ug]M, up | + @D?(Jfl?l + Y1 Biuy + Y1 Bous),

U2

is minimized by player ¢ with respect to u;. This yields the necessary conditions

o[ ] - [ e ]

Due to the invertibility assumption on matrix G we can rewrite this as

8] [ )

Here the n-dimensional vectors ;(t) and () satisfy

Dilt) = —(2Qua (1) + 2V (1) + 2Wais () + T (1)),
with ;(t7) = 2Qu, x(t ). (26)
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and

Via (t) + BT Y (t) |

Wi (t) + BTV da(t) |
21(0) = [1,, 0]X .

i (t) = Ja(t) — BG™*

In other words, if the problem has an open-loop Nash equilibrium then the differential equation (with

Pilt) = 3(t))

g | . (1)
o Pi(t) | =M | Pu(t) (27)
Vo (2) o(t)

with boundary conditions x4 (0) = [1,, 0].X ~
has a solution.

Let y(t) == [27(t), ¥ (t), ¥I(t)]F. Then the above reasoning shows that, if there is a Nash
equilibrium, then for every z1(0) the next linear two-point boundary value problem has a solution.

Zo, w1<tf> — QlthL’l(tf) = 0 and ¢2(tf) — Qgtfl’(tf) = 0,

§(t) = My(t), with Py(0) + Qy(T) = [z{0 0 0]". (28)
Here
100 0 0 0
P={000]| and@Q=| —Qir I O
000 —Qor 0 T

Following the lines of [4, Theorem 7.1, p.341], the first statement of the theorem follows then. To
derive the other statements recall that xo(t) = —Y2(Byui(t) + Bous(t)) and z(t) = X [ il } :

2
?”<« part” This part is left to the reader.

Appendix D: some worked details of the Example

Consider matrix M from (25). Notice that this matrix has the following structure:

1| P -1 —a
(29)

where ¢ = ¢%e > 0, r = ad + v*ebr > 0 and t = ¢;67ybF > 0. Under the assumption that
Pod — 2¢1aybe > 0 it follows then that also p > 0 and s > 0. Moreover, the assumption that
¢od — d1(a + [B)ybe > 0 implies that s — ¢ > 0 too.

The eigenvalues of d* M are: {s—t, 1(s+t—pE+/(s+ ¢+ p)2 + 8¢r)}. So under the above parameter
conditions, matrix M has precisely one negative eigenvalue, i.e. A\ = %(S-i—t— p— \/ (s+t+p)?+ 8qr).
An eigenvector corresponding with this eigenvalue is:

1
[0, p1, 2] = [5(8 +t4+p+/(s+t+p)?+8¢r), 1,17
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So, by Theorem 4.8, the game has a unique equilibrium. From Lemma 4.2 we have that the solution
of (17) is

2
p_ s+t+p+y/(s+t+p)2+8qr
= 2

s+t+pty/(s+t+p)2+8qr

2
s+t+p+y/(s+t+p)2+8qr

Denoting h := , the equilibrium actions are then according (19)

{“T(t) } — G Y Z+BTP)n(t)

us(t)
1 [ Tr+a* —apb ayb — ¢1h y
"3l —ag Fraz || —(avb— o) |[T1D
a1
B ayb — ¢1h 1
T itala—pB)b { -1 ] z(b).

2¢1 (ayb—¢1 h)

Here z,(t) = ™" Frata=mp '[1 0 0]aq.
The corresponding equilibrium state trajectory is then (see Theorem 4.6)

2t = X [ (t) }

) (t)

. . (a=P)(arb—o1h)
where with k := F+a(a—B)b

T5(t) = Y3[By Bo)G7Y(Z + BT P)xy(t)
So,

1
z*(t) = v—k x1(t).
| —(v = k)

From (20)we have that the corresponding costs for the players are 2l M;zo, i = 1,2, where, with

_ 7 po-l STy 2¢1(ayb — ¢1h)
Aq=J = BG(Z+BTP) = 6+ TR0

M; is the unique solution of the Lyapunov equation
I, (-G~YZ + B"P)"\M[I, (-G"(Z + B"P))"|" +
ALM; + M;Ay = 0.
With ¢ := %, simple calculations show that M; equals
oot v2b +2(8 — a)ybd + (7 + (a — 3)%b)d?
. 2(p2 — 2¢19) .

(30)

16



References

1]

2]

[12]

[13]

Brenan, K.E., Campbell, S.L., & Petzold, L.R. (1996). Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. Philadelphia: SIAM.

Dockner, E., Jorgensen, S., Long, N. van, & Sorger, G., (2000). Differential Games in Economics
and Management Science. Cambridge: Cambridge University Press.

Engwerda, J.C., Aarle, B. van, & Plasmans, J.E.J., (2002). Cooperative and non-cooperative
fiscal stabilization policies in the EMU. Journal of Economic Dynamics and Control, 26, 451-
481.

Engwerda, J.C., (2005). Linear Quadratic Dynamic Optimization and Differential Game Theory.
Chichester: John Wiley & Sons.

Engwerda, J.C., (2008). Uniqueness conditions for the affine open-loop linear quadratic differ-
ential game. Automatica, 44, 504-511.

Gantmacher, F., (1959). Theory of Matrices, vol. I,II. New York: Chelsea.
Jorgensen, S., & Zaccour, G., (2003). Differential Games in Marketing. Deventer: Kluwer.

Kremer, D., (2002). Non-Symmetric Riccati Theory and Noncooperative Games. Ph.D. Thesis.
Germany: RWTH-Aachen.

Lancaster, P., & Rodman, L., (1995). Algebraic Riccati Equations. Oxford: Clarendon Press.

Mehrmann, V.L., (1991). The Autonomous Linear Quadratic Control Problem. In: Lecture Notes
in Control and Information Sciences (Eds. M. Thoma and A. Wyner), Vol.163. Berlin: Springer.

Plasmans, J., Engwerda, J., Aarle, B. van, Di Bartolomeo, B., & Michalak, T. (2006). Dynamic
Modeling of Monetary and Fiscal Cooperation Among Nations. Series: Dynamic Modeling and
Econometrics in Economics and Finance, 8. Berlin: Springer.

Salmah, (2006). Kontrol Optimal Sistem Regulator Deskriptor Untuk Permainan Dinamis (Op-
timal Control of Regulator Descriptor Systems for Dynamic Games). Ph.D. Thesis. Indonesia:
Universitas Gadjah Mada, Yogyakarta.

Trentelman, H.L., (1989). The regular free-endpoint linear quadratic problem with indefinite
cost. SIAM J. Control and Optimization, 27, 27-42.

17



