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16
STATISTICAL MODELS FOR THE
DEVELOPMENT OF PSYCHOLOGICAL
AND EDUCATIONAL TESTS

Thegeneral idea behind modern measurement in
thesocial and behavioral sciences is that human
behavior is driven by a Iimited number of traits,
attitudes, opinions, skilIs, and abilities. Each of
these attributes serves as an explanation of the
cohesion in certain sets of observable behaviors
and constitutes what the researcher is really in-
terested in. Examples are as follows. Clinical
andpersonality psychologists may be interested
in traits such as introversion and anxiety, soci-
ologists in attitudes toward euthanasia or reli-
giosity, and developmental psychologists in the
Piagetiandevelopmental abilities of conservation
andtransitive reasoning. Many interesting appli-
cationscan be found in other disciplines such as
education (e.g., knowledge of disciplines taught
atschool), marketing research (e.g., service qual-
ity of medical facilities), political science (e.g.,
opinions about government policy), and social
medicine (e.g., quality of life after surgery). The
philosophical status of these attributes has been
debatedin several sources (e.g., Borsboom, 2005;
MichelI, 1990). Here, we will simply take them
forgranted as organizing principles behind cohe-
sivesets of observable behaviors.

This takes us to the way these attributes
are measured. Because these attributes are la-
tent, conclusions about them have to be inferred
from sets of cohesive behaviors that are as-
sumed to be driven by these attributes. Thus, in
practice, evidence on the unifying cause comes
from what is believed to be its effect-that is,
the data collected on the set of observable be-
haviors that are assumed to be typical of this
cause. This is done as follows. A set of J
stimuli--questions, statements, tasks: items, for
short-is presented to a representative sample
of N respondents from the population of inter-
est, and each respondent provides responses to
each item. Responses can be choices from a set
of answers, as in selected-response items (e.g.,
muJtiple-choice items) for measuring knowl-
edge of national history, or sentences refiecting
the answer to a question, as in constructed-
response items, ratings on an ordered scale for
each attitude statement in a set, or verbal ac-
counts of the process that lead to the solution
of transitive reasoning problems.

Tests can have different appearances. For ex-
ample, the respondent may react to a paper-and-
pencil test and encircle response options, write
down answers, rate statements, or manipulate real



objects, such as a pen through a maze as in in-
telligence testing. In computerized testing, sim-
ilar actions may be performed by pressing keys
on a keyboard, moving a mouse, or touching a
screen. Likewise, surveys including sets of items
for measuring attitudes and opinions need not
only be verbal (i.e., as in a street or a telephone
interview) or in writing (e.g., as in mail surveys)
but mayalso be administered through the Inter-
net, which in principle enhances their possibili-
ties comparabie with computerized testing.

The qualitative responses to items-choices
from a number of precoded options or written
sentences, ratings on discrete ordinal scales, ver-
bal explanations-are coded next as integers,
following the principle that the more evidence
a response gives of a higher level of, in these
examples, knowiedge, attitude, and ability, the
higher the item score. Obviously, whether this
coding is meaningful depends on the degree to
which the items adequately reflect relevant as-
pects of the attribute of interest. If the theory or
the operationalization of this attribute is primi-
tive, or even wrong, responses may have a mud-
dled relationship to the attribute and responses
to different items may exhibit little cohesion.
Thus, the use of a sound theory and a meaning-
ful operationalization into a set of items are pre-
requisites for the production of a set of cohesive
quantitative item scores that form the basis for
the construction of a measurement instrument-
a test, for short.

Numerous statistical models have been pro-
posed for analyzing the item scores produced
by N respondents who reacted to J items
(Boomsma, Van Duijn, & Snijders, 2001; Van
der Linden & Hambleton, 1997). The applica-
tion of such models produces information on the
following:

• Dimensionality of the data-th at is, the
number of mathematical dimensions needed
to explain the data structure. The relations
among these dimensions are described in
a probabilistic model and are often taken
as evidence of one or more explanatory at-
tributes. This may enlighten the meaning of
measurement and mayor may not confirm
the researcher's expectations. From a practi-
cal angle, one dimension supports the use of

one "measurement rod" or scale for the at-
tribute of interest, and multiple dimensions
may call for several scales.

• Quality ofindividual items, such as an item-
difficulty parameter, which indicates the
ability level required for sol ving the prob-
lem with ave rage probability, and an item-
discrimination parameter, which indicates
how weil the item separates lower ability
levels from higher levels. Items that are toa
easy or too difficult and items that discrim-
inate weakly may be rejected from the final
test because they are not properly tuned ta
the group to be measured.

• Quality of the whole test, such as the accu-
racy of measurement that is possible with
a set of items of good quality that together
constitute a scale. This accuracy may be ex-
pressed in one summary statistic, known as
reliability, or as a function of the scale in-
dicating how accurately the test measures
at different scale levels. Quality is also ex-
pressed as scale validity, indicating the de-
gree to which test performance is driven by
the attribute(s) of interest and the degree
to which performance on individual items
is driven by these attributes. Validity takes
the form of a series of results from research
rather than a single index or function.

After a scale has been constructed on the ba-
sis of information on dimensionality and item
and test quality, measurement values for in-
dividuals locating them on the scale are de-
termined. These measurement values express
the individual's attribute level and can be used
to classify the individual for entry or nonen-
try in a course, for receiving or not receiv-
ing therapeutic treatment-either psychological
or medical-and for admittance to or rejectian
from a job. Each of these uses of measurements
emphasizes the need for reliable and valid
instruments.

The statistical models referred to are united in
the family of item response theory (IRT) modeis.
The purpose of this chapter is to discuss a few
well-known and regularly used models that are
representative of the IRT family. Four of these
IRT models are used to analyze data from an



arithmetic test. It is explained how these mod-
els can be used to construct tests and also how
they are complementary to one another. Finally,
we discuss other possibilities offered by IRT for
data analysis and the construction of scales for
the measurement of attributes.

ASSUMPTIONS OF
ITEM RESPONSE THEORY

We assume that a test or a questionnaire consists
of J items, which are meant to measure the la-
tent attribute(s) of interest. The scores on items
are modeled by random variables, Xj, indexed
j = 1, ... ,1, and are usually integer valued: Xj =
Xj, with Xj = 0, I, for example, expressing incor-
rect or correct responding, and Xj = 0, ... ,m, for
example, expressing the degree to which some-
one agrees with an attitude statement. These are
the most frequently used possibilities, referred
to as dichotomous and polytomous scoring, re-
spectively. The latent attribute is often called the
latent trait, where the word trait is assumed to
also capture personality traits, attitudes, opin-
ions, skills, and abilities, but a neutral term such
as latent variable would probably fit in better
with mainstream statistics. Latent variables are
denoted eq, with q = I, ... , Q, and collected in
vector O.

Three classes of assumptions are relevant for
IRT modeIs. The first class of assumptions de-
scribes the relationship between the probabil-
ity of a particular score on item i and the la-
tent variables, denoted P(Xj = xjIO). This is
the response function. For dichotomously scored
items, it is known as the item response function
(IRF), P(Xj = IlO) == Pj(O). Most IRT models
assume that the IRF is monotone nondecreasing
in 0, coordinate-wise in each element eq, q =

I, ... , Q. This is the mono toni city (M) assump-
tion that says that the probability of, for example,
a correct response does not decrease-that is, re-
mains constant or increases-when either one of
the es increases while the others are kept con-
stant. If one latent variabIe, say alienation, drives
item responses (and thus 0 = e), then Assump-
tion M says that the probability of saying "Yes"
to the question whether one avoids neighborhood

festivities does not decrease-often increases-
with higher values of e.

For polytomously scored items, several pos-
sibilities for defining response probabilities
exist (e.g., Mellenbergh, 1995). One such possi-
bility is P(Xj ~ xjle), with Xj = I, ... ,m, which
is the item step response function (ISRF). As-
sumption M says that P(Xj ~ xjle) is nonde-
creasing in e. For example, a respondent rates on
a5-point scale to what degree he or she avoids
neighborhood festivities; and Assumption M says
that the probability of rating at least the (Xj +
1)st category-that is, obtaining at least score
xj--does not decrease when level of alienation
increases.

The second class of assumptions describes
the relationships between the items. Specifically,
conditioning on 0 simplifies the joint conditional
distribution of the J item scores, collected in
vector X = (Xl"" ,Xj) with realization x, into
the product of marginal conditional distributions,
such that

j

P(X = xlO) = rr P(Xj =xjIO).
j=1

This is the assumption of loc al independence
(U), in statistics better known as conditional in-
dependence. Equation (16.1) implies that for two
items i and k,

i,k = 1, ... ,1; i < k,
(16.2)

but reversely, U is not imp lied by this set
of zero covariances. Thus, LI represents a
stronger independence property than that rep-
resented by the set of ~J(J - 1) conditional
covariances in (16.2). Consequently, (16.2) is
known as weak local independence (WU) (Stout,
2002) or, using a more general terminology,
conditional uncorrelatedness. Obviously, U and
WU only hold when 0 contains all Q latent
variables relevant for measurement, and failure
of these properties in real data is an indication
that the dimensionality of the data is different
from what the researcher expected. Several pro-
cedures have been proposed that explore the data
for dimensionality in an effort to approach (16.2)
(Stout et al., 1996).

The third set of assumptions refers to the num-
ber of latent variables. Typical of psychological



measurement is the requirement that the test mea-
sure one latent variabIe. This renders measure-
ments to unambiguously reflect one "thing" at a
time and not a mixture, just as one wants the scale
of a thermometer to reflect only temperature and
not a mixture of temperature, air pressure, humid-
ity, and wind velo city. Thus, the majority of IRT
models assume that () = 8 and thus Q = 1 (for
an overview, see Van der Linden & Hambleton,
1997). This is Assumption D = 1. This simpli-
fying assumption is somewhat at odds with psy-
chological reality, whereby responses to items
are usually driven by multiple psychological
properties (an arithmetic item requires not only
arithmetic ability but also reading skilIs, verbal
comprehension, and sometimes also spatial ori-
entation), so that unidimensionality is an ideal
and multidimensional models are more realistic
(thus assuming D ? 2). Nevertheless, unidimen-
sional IRT models are of ten seen as reasonable
approximations to the real dimensionality, which
may be defendable when one dominant property
drives item responses and the influence of others
is minor or may be ignored.

SPECIAL CASES OF
(M, LI, D = 1) MODELS

In this section, several well-known and much
used IRT models are discussed. The most impor-
tant distinctions are between nonparametric and
parametric models and between models for di-
chotomous and polytomous item scores.

Monotone Homogeneity Model for
Dichotomous Items

Mokken (1971) introduced the monotone ho-
mogeneity model (MHM) for dichotomously
scored items. The MHM is defined by the as-
sumptions of M, LI, and D = 1. This model is
important in practice because it implies that indi-
viduals are measured on an ordinal scale. To see
this, define the observable total score

and note that for two individuals, v and w, with
total scores X+v < x+w, the MHM implies for
each value t of 8 that

P(8 > tlX+ = x+v) ~ P(8 > tlX+ = x+w)

(16.4)
(Grayson, 1988; Hemker, Sijtsma, Molenaar, &
Junker, 1997). Equation (16.4) is known as sto-
chastic ordering of the latent variabIe by the to-
tal score (SOL). SOL implies that for expected
values (E)

SOL means that the observable total score X+ Of-
ders individuals on the scale of latent variabIe e;
thus, a fitting MHM implies an ordinal scale fOf
person me asure ment.

The fit of the MHM can be investigated in two
steps. First, the dimensionality of an item set is
investigated, and second, the monotonicity of the
IRFs is investigated.

Mokken Sealing and
Dimensionality Investigation

Mokken (1971, chap. 5) and Sijtsma and
Molenaar (2002, chap. 5) proposedan exploratory
item selection procedure that combines the inves-
tigation of the dimensionality of the data with an
evaluation of the quality of the items found to
assess the same dimension. This method selects
items into clusters on the basis of the strength
of their relationships with the latent variables
such that each cluster measures a different e.
Items that predominantly measure a 8 that is not
shared by any of the other items are declared
unscalable.

Strength of relationship is indexed by means
of the item scalability coefficient Hj, which is
defined as follows. Let Cov(Xj,Xd denote the
covariance between item scores Xj and Xk and
Cov(Xj,Xk)max the maximum possible covari-
ance given fixed marginals of the 2 x 2 frequency
table of bivariate counts; then, Hj is defined as

I. Cov(Xj,Xd
H __ kl_J_' _

J - I. Cov(Xj,Xdmax'
k#}



For a set of J items evaluated as one test, coeffi-
cient H is defined as

i-I i
L L Cov(Xj,Xd

H = j=lk=j+1
i-I i
L L Cov(Xj,Xk)max

j=lk=j+1

and is seen to be a positively weighted aver-
age of the J item coefficients, Hj (j = I, ... ,J)
(Mokken, 1971, pp. 148-153),

i
L L CoV(Xj,Xk)maxHj

H = j=lki-j
i
L L COV(Xj,Xk)max

j=l ki-j

such that H is bounded by

j=I, ... ,J.
(16.9)

Given the interpretation of Hj, coefficient H in-
dexes the average strength of relationship of the
J items with the latent variabIe e. The stronger
this relationship, the better-more accurately-
thetest separates relatively low es from relatively
high es (Mokken, Lewis, & Sijtsma, 1986). Thus,
if the MHM holds, a high H indicates accurate
person ordering by means of X+.

For the class of (M, LI, D = I) models-
MHM and special cases that we shall encounter
shortly-it can be shown that

for all (j, k) , j -=I k.
(16.10)

Because IRFs are nonlinear, other association
measures may be in order; see Holland and
Rosenbaum (1986) for suggestions and also
a more general positive covariance condition
known as conditional association of which
(16.10) is a special case. Using the positive-sign
property of (16.10), it foUows that

Thus, positive values of Hand Hj are necessary
conditions for the MHM model to hold; hence,
negative values are in conflict with the model.

Mokken (1971, p. 184) defined a scale as a set
of items for which, denoting correlation by pand
given a suitably chosen constant c,

1. Pjk > 0 for aU item pairs (j,k), j -=I k and

2. Hj ~ c > 0 for aU items j.

Positive correlations and positive Hjs both are
implied by (16.10), and requiring a positive lower
bound c means that only those items are admitted
in the scale that have a positive relationship with
e, the strength of which is controUed by the mag-
nitude of c.

Exploratory item analysis focuses on selecting
items in the same subset that have high Hjs rela-
tive to one another and low Hjs relative to items
that are in another subset. High Hjs are due to
the same common e assessed by the items in the
same subset, and low Hjs express a weak rela-
tionship with the e assessed by the items in the
other subset.

The algorithm that does the item selection is
a bottom-up procedure that selects items one by
one, starting with the pair out of 1J(J - 1) candi-
date pairs that has the highest, significantly pos-
itive Hjk value (this is H for two items). In each
of the next selection steps, from the unselected
items an item is selected such that (1) it has a
positive correlation with the items already se-
lected and (2) its Hj relative to the items already
selected is significantly greater than 0 and also
Hj > c, and if more items satisfy Conditions (I)
and (2), from this set the item is selected that (3)
together with the items already selected in previ-
ous steps of the algorithm produces the greatest
common H. This results in a subset of items that
predominantly measure the same e, while a high
value of H in (16.8) guarantees accuracy of or-
dinal person measurement in the sense of SOL
(16.4) that is controUed by the choice of 10wer
bound c.

If the data are unidimensional, in principle aU
items fit in the same cluster. However, ifthe items
have different Hjs, which is the common situa-
tion in practice, higher c values may cause more
items to remain unselected. This is not because
they do not assess e but because they do so more
weakly than c aUows. The researcher should de-
cide what he or she considers a desirabIe outcome
and may take considerations into account such



as the degree to which only few items can ade-
quately cover the attribute weIl.

For multidimensional data-say each subset
of items assesses a particular e, and different sub-
sets assess different es, to keep things simple-
the typical sequence of outcomes is that, first, low
evalues (near 0) lead to the selection of (nearly)
al! items in one cluster and, second, higher e
va]ues result in the clustering that reftects true
dimensionality. Hemk:er, Sijtsma, and Molenaar
(1995) recommended running the cluster algo-
rithm for different evalues, starting at 0, using
increments of 0.05, and stopping at 0.6. The data
section in this chapter wil! offer an example.

Confirmatory item analysis evaluates a set of
i items as a given scale. This situation is rel-
evant when the researcher is interested in test-
ing the hypothesis that a newly constructed test
represents a scale. Also, he or she may consider
one or more items in an existing test to have be-
come archaic-for example, due to the use of
old-fashioned words-and have them replaced by
others or the instrument may be investigated for
use in another population. In each of these cases,
the researcher takes the i-item test as given and
estimates its Hand Hj coefficients to assess test
score and item qua]ity, respectively.

Stout et al. (1996) have proposed a method
for dimensionality investigation that searches
for the partitioning of the item set that ap-
proximates WLI (16.2) as wel! as possible but
without taking item quality into considera-
tion (Van Abswoude, Van der Ark, & Sijtsma,
2004) as Mokken's method typically does. These
and other methods have been compared by Van
Abswoude et al. (2004).

In real data, the relationship between item
and latent variabIe may be monotone, as the
MHM assumes, but it is regularly found that
for some items in the test the relationship is
either monotone by approximation-the empir-
ical curve tends to increase but shows several
small local decreases-or sometimes even dis-
tinctly nonmonotone. Mokken's method selects
items having Hjs of at least e in subsets, which
ascertains IRFs that show at least a tendency to
increase in e, just as a regression curve with a

positive regression coefficient does. The higher
the va]ue of e, the stronger this tendency and,
rough]y, the smaller the chances that ]oca] de-
creases are such that the curve can no longer be
evaluated to be approximate]y monotone. Thus,
for most evalues, within selected item subsets
the additional investigation of Assumption M is
useful, and this is true a fortiori the smal!er cis.
Assumption M is investigated as follows.

Define a total score without Item j, cal!ed a
restscore and denoted R(_j), as

Like X+, restscore R(_j) estimates person order-
ing on e, which is justified by the same stochastic
ordering results (16.4). The MHM implies mani-
fest monotonicity (MM) (Junker, 1993),

P[Xj = 11R(_ j) = r] nondecreasing in r = 0, ... ,J - l.
(16.14)

Junker and Sijtsma (2000) showed that an
MM result as in (] 6.14) is not obtained when
R(_j) is rep]aced by X+. MM can be used to
estimate the IRF by means of nonparametric re-
gression. One straightforward possibility is to es-
timate for each va]ue of r the proportion of the
popu]ation that have Item j correct, p]otting these
proportions as a function of rand then checking
visual!y for MM and testing ]ocal decreases for
significance by means of a normal approximation
to the binomia] test (Mo]enaar & Sijtsma, 2000).
This approach yie]ds a limited number of at most
i discrete points of the IRF. Ramsay (199]) pro-
posed a kemel smoothing approach to obtain a
continuous estimate of the IRF. Karabatsos and
Sheu (2004) discuss a Bayesian approach to eval-
uating Assumption M.

In our data examp]e, we used the program
MSP (Molenaar & Sijtsma, 2000) to estimate the
Hand Hj coefficients and select items into clus-
ters for different evalues, and a]so to estimate
discrete versions of the IRFs. The program Test-
Graf98 (Ramsay, 2000) was used to estimate con-
tinuous versions of the IRFs.



Monotone Homogeneity
Model for Polytomous Items

Molenaar (1997) generalized the MHM to
polytomous item scores by redefining Assump-
tion M for conditional probability P(Xj ~

xjle), for Xj = I, ... ,m. Obvious as this choice
may seem, it has been found to have many
far-reaching consequences at the theoretical
level, which show that the generalization of
dichotomous-item models to polytomous-item
models may be problematic. Here are two
conseq uences.

First, Hemker et al. (1997) found that the SOL
property does not hold for the polytomous-item
MHM or for most other IRT models for ordered
polytomous items. Van der Ark (2005) estab-
lished SOL in many data sets by producing a
wealth of robustness results for several, much
used polytomous-item modeis, thus demonstrat-
ing convincingly that ordinal measurement prop-
erties could be maintained at the practicallevel.

Second, P[Xj ~ xjIR(_j)l has been shown not
to be monotone in general, thus losing MM
(Junker & Sijtsma, 2000). Specifically, a nonde-
creasing observable curve, P[Xj ~ xjIR(_j)J, is
neither a necessary nor a sufficient condition for
Assumption M, but much practical experience
with simulated data suggests that such monotone
curves tend to be supportive of Assumption M.
Software for estimating these curves is available
(Molenaar & Sijtsma, 2000; Ramsay, 2000).

Fortunately, as concerns dimensionality analy-
sis, Mokken's item selection method has been
generalized successfully by defining coefficients
Hj and H for polytomous items, maintaining
the properties in (16.8), (16.9), (16.11), and
(16.12). The program MSP can be used here
as weil.

The Three- and Two-
Parameter Logistic Models

The three-parameter logistic model (3PLM)
(Birnbaum, 1968) is an (M, LI, D = 1) model that
specializes Assumption M to alogistic IRF with
three item parameters,

( )
(1- Yj)exp[aj(e - Dj)]

Pj e = Yj + -l-+-e-x-p[-a-j (-e---D-j-)]-'

0< Yj < 1, aj > O. (16.15)

In (16.15), parameter Yj is the lower asymptote
for e --> -00, parameter Dj is the location or dif-
ficulty parameter, and parameter aj is the steep-
est slope or discrimination parameter of the IRF,

evaluated at the point with coordinates (Dj, '~Yj).
After it has been established whether the data are
unidimensional and the smooth S-shaped IRFs
in (16.15) fit the data, these item parameters are
estimated and then summarize three important
aspects of the item: Positive (i.e., non zero) Yj
indicates that people with low es have a nontriv-
ial probability of giving the correct answer, as in
multiple-choice items; Dj indicates the degree to
which the item is difficult for the population of
interest; and aj indicates the degree to which the
item separates es that are low compared with D
from es that are high compared with D.

The two-parameter logistic model (2PLM)
(Birnbaum, 1968) specializes Assumption M of
the 3PLM by assurning that Yj = 0, j = 1, ... ,1,
resulting in

aj > O.

(16.16)

The interpretation of the remammg two item
parameters is the same as in the 3PLM.

The estimation of the item parameters and the
latent variabie is straightforward. Let XNxJ be
the data matrix produced by a sample of N indi-
viduals, indexed by v, who responded to J items.
AIso, let 0N = (e], ... , eN) and w = b,b, Ct) =
(yt, ... , YJ, D, , ... , bJ, a, ,... ,aJ); then, assum-
ing independent and identically distributed
(iid)-sampled individuals and LI (16.1), the like-
lihood of the data can be written as

L(XNXJ = xNxJION,W)
N J

= IIIIPj(evtvj[l-Pj(ev)]'-Xvj,
v=1 j=1



with (16.15) inserted for Pj(8v) or (16.16) in-
serted for Pj(8v) and w* = (8,0:) replacing w.
Several methods have been proposed for es-
timating the parameters taking this likelihood
as a starting point. The oldest method is joint
maximum likelihood (JML) estimation, which
maximizes the likelihood in (16.17) simultane-
ously for all parameters in e and w. How-
ever, JML has been shown to fail because in
the presence of N incidental parameters in e,
the structural parameters in ware estimated in-
consistently (Neyman & Scott, 1948). Marginal
maximum likelihood (MML) estimation of the
item parameters does not suffer from this prob-
lem and yields consistent estimates for the item
parameters in w as the number N of respondents
grows. We will briefly review the much used
MMLmethod.

Define the problem as follows. Let f( 8) de-
note the probability density of 8 with parameters
collected in T; then, the marginallikelihood is

P[XNXJ = xNxJlw,T]
N J

= TI le]] Pj(8tVj[I-Pj(8)]\-XVj f(8)d8.

(16.18)

The integral gives the marginal probability of the
item-score vector of person v, Xv, which can be
denoted by P(XvIW,T), so that we may define

P(XvIW,T)
J

=1IJ PA8tvj[l- Pj(8)]I-xvj f(8)d8
e j=\

(16.19)

and write the marginallikelihood as
N

P[XNxJ = xNxJlw, T] = IJ P(xvlw, T).
v=1

(16.20)
Often, the normal density is chosen for f(8),
with parameters T = (J.l, (J2).

The probability on the left in (16.20) is a func-
tion of 3J parameters in w, and these, as weil as
those in T, can be estimated by MML (see Bock
& Lieberman, 1970, for details;, also see Baker &
Kim, 2004, chap. 6). Estimation of eN then fol-
lows from evaluating the posterior distribution of
each 8v, denoted P( 8v lxv; W, T) and computed by
means of Bayes's theorem,

P(8 I· ) - P(xvI8v;w)f(8vIT) (16.21)vXv,W,T - (I ) .P Xv W,T

In (16.21), f(8vIT) serves as the prior density
of 8v and is assumed to be the same for each e
value. The probability of person v's data in Xv is
weighted by the density of each 8 from the prior,
and given the marginal likelihood in the denom-
inator, which is independent of 8, this results in
the posterior of 8v. The mean of this posterior of-
ten is taken as the estimate of 8v (e.g., Bock &
Mislevy,1982).

Fisher's information function expresses the
measurement quality of one or more items rela-
tive to the latent variabIe. Let Pj (8) be the first
derivative of the IRF with respect to 8. Then, for
Qj( 8) == 1 - Pj( 8), Fisher's information function
for item j, denoted Ij (8), is

and given LI, Fisher's information function for
the J-item test equals

J

1(8) = L Ij(8).
j=\

Insertion of (16.15) and (16.16) in (16.23) gives
the test information functions for the 3PLM and
the 2PLM, respectively.

The test information function provides the sta-
tistical information in the J items together for
estimating 8, and I(8)-1/2 gives a lower bound
on the standard error for estimated 8, which is
achieved asymptotically for maximum likelihood
(ML) estimation as J --+ 00. Suppose one wants
a test to measure accurately at a cutoff score
denoted 80, then test information, I (80), should
have a value high enough to result in a stan-
dard error that is sufficiently small for the test
application envisaged. This can be accomplished
by selecting items that contribute relatively large
Ij(8o) values to I(8o). Equation (16.22) shows
that the IRFs of these items have relatively steep
slopes at 80. Van der Linden (2005) discusses
many examples of test construction based on this
item selection principle.



Fitting the 3PLM and the 2PLM

For short tests (J < 20), the standardized pos-
terior residuals, also known as root-mean square
deviates (RMSDs), are evaluated (Zimowski,
Muraki, Mislevy, & Bock, 1996). The RMSD is
based on the standardized differences between
the posterior probability of a correct response at
selected values of e and the expected probabil-
ity at those evalues. RMSD > 2.0 indicates item
misfit.

Computer Software

The program BILOG-MG (Zimowski et al.,
1996) was used to estimate both the 3PLM and
the 2PLM and evaluate their fit. Parameters were
estimated using MML, and the RMSD was used
to assess item fit.

The Graded Response Model

To our knowiedge, a feasible generalization
of the 3PLM to polytomous items does not ex-
ist to date. The most direct generalization of
the 2PLM to polytomous items is the graded
response model (GRM) (Samejima, 1997). The
GRM is an (M, LI, D = I) model that specializes
the ISRF, P(Xj ~ xjle), as

exp[aj(e - Ojx)]
P(Xj~xjle)= I+exp[aj(e-Ojx)]'

J

Xj > 0, aj > O. (16.24)

Note that this response function is equivalent to
that of the 2PLM but that the difference lies in the
item score that is modeled: Polytomous Xj ~ Xj
in the GRM and binary Xj = 1 in the 2PLM, and
that they coincide when m= I. The GRM has been
characterized as a cumulative probability model
(Hemker et al., 1997; MeUenbergh, 1995). Such
models are sometimes associated with data stem-
ming from arespondent's global assessment of the
rating scale and the consecutive choice of a re-
sponse option from aU available options. Baker
and Kim (2004, chap. 8) discuss ML estimation of
the item and person parameters of the GRM, and
Samejima (1997) discusses goodness-of-fit meth-
ods. The program MULTILOG (Thissen, Chen, &
Bock, 2003) can be used to estimate parameters
and evaluate the fit of the GRM to the data.

The Rasch (1960) model, also known as
the one-parameter logistic model (1PLM), is
obtained from the 2PLM by setting aj = I, for
j = 1, ... ,1, which results in

p(e)= exp(e-o})
J 1 +exp(e - Oj)

Thus, within the same test, items are assumed
to separate es equally weil at different item dif-
ficulty levels. Item parameters can be estimated
by means of MML (Thissen, 1982), and assum-
ing these estimates to be the true values, person
parameters can be estimated by means of ML.
Because the Rasch model is a me mber of the
exponential family (Fischer, 1974), conditional
maximum likelihood (CML) estimation is an-
other possibility. In this sense, the Rasch model
is unique in IRT, and therefore we will discuss
CML in some detail.

Estimating the Rasch Model

Let ç = exp(e) and Cj = exp(-Oj); then
(16.25) becomes

ÇCp.(.1=) __ J_
J~ -I+çcj'

Let € = (ç], ... ,ÇN) and € = (cl"",cJ). AIso,
let xv+ = I~=]Xvj and x+j = I~=IXvj. Using
this notation, the likelihood in (16.17) can be
written as

L(XNxJ = xNxJI€,€)

N J

= IlIlpj(çrVj[I-Pj(ç)]'-Xvj
v=1 j=1

N J x .
IJ ç:v+ IJ c+J

v=1 j=1 J

N J
IJ IJ (l+çvcj)
v=lj=1

Note that in (16.27) the marginals ofthe data ma-
trix XNxJ are sufficient statistics for estimation
of the latent parameters of the model. CML pro-
ceeds as foUows.

Let the person marginals of XNxJ = XNxJ be
collected in XN+ = (XI+"" ,XN+). Consider the



probability of the data conditional on these per-
son marginals XN+,

Standard texts on the Rasch model (e.g., Fischer,
1974) explain in much detail that this equation
can be shown to depend only on the item param-
eters E and the sufficient statistics for e and E

but not on e. The resulting equation is then taken
as a so-called conditional Iikelihood and solved
for E; this yields CML estimates for E. These
CML estimates are consistent and close to being
maximally efficient (Eggen, 2000). In practice,
the CML estimates of E are used to estimate ç
by means of ML (for details, see Fischer,
1974; Hoijtink & Boomsma, 1995). Fisher's
information functions for items and tests are
found by deriving the typical expressions for
the Rasch model for Ij(8) (16.22) and 1(8)
(16.23).

CML thus enables us to estimate one set of
parameters independently of the other set. Sta-
tistical!y, this is known as parameter separability.
At the theoreticallevel, the possibility of making
statements about items irrespective of the person
distribution and, reversely, about persons irre-
spective of the difficulty level of the test is known
as specific objectivity. Fischer (1974) considers
specific objectivity crucial for measurement, but
this point of view also has met with criticism
(e.g., Borsboom, 2005). At the practical level,
parameter separation is considered convenient
for equation of scales, constructing item banks,
and adaptive testing; these topics are discussed
later.

Fitting the Rasch Model

Goodness-of-fit tests for the Rasch model
have been summarized by Glas and Verhelst
(1995). Here, we mention the asymptotic X2

tests, RI and R2. The RI statistic tests the null
hypothesis that the ] IRFs are parallel logis-
tic curves as in (16.25), and R2 tests whether
WLI (16.2) holds under the Rasch model for
al! ~J(J - 1) item pairs simultaneously. Re-
jection of parallellogistic curves for al! items
simultaneously could be indicative of differ-

ent slopes between IRFs, and the approximate
standard normal statistic called Uj (Molenaar,
1983) may be used to test whether observed
IRFs are steeper (say, Uj < -1.645) or flat-
ter (say, Uj > 1.645) than expected under the
Rasch model. Rejection of WLI (indicated by
a significant R2) may be taken as evidence of
multidimensionality.

The program RSP (Glas & Ellis, 1993) was
used in our data example. Item parameters were
estimated using CML, and person parameters us-
ing ML assuming item parameter estimates to be
the true values. Fit of the Rasch model toJ items
was assessed using statistics Rl and R2 and fit to
individual items using statistic Uj.

Masters's (1982) partial credit model (PCM)
is an extension of the Rasch model to polytomous
item scores and is of ten used for practical data
analysis. For ordered, polytomous item scores,
0, ... ,m, the PCM models m adjacent score
pairs, (O,l), ... ,(m-l,m), as separate Rasch
modeis:

P(Xj =xjI8;Xj =xj-l VXj =Xj)
exp( 8 - Djx .)

}

1 +exp(8 - Djx)'
}

As in the Rasch model, parameter Djx. locates
}

this response function on the 8 scale, and for
8 = Djx ., the probabilities of having an item score

}

of either Xj - 1 or Xj both equal 0.5. Combin-
ing the m - 1 conditional probabilities in (16.29)
yields the PCM

Note that Xj = 0 creates a problem in the numera-
tor; hence, one chooses I~=I(8 - Djs) == 0, which
results in I';.-oP(Xj = xjl8) == l. This choice}-
also defines P(Xj = 018) to be decreasing, which
is seen as a desirabie property.



Masters (1982) used data matrix XNxJ with
elements Xvj = 0, ... ,m, and decomposed item
scoresxvj into m binary scoresxvjs (s = 1, ... ,m),

with Xvjs = 1 if Xvj = s, and Xvjs = 0 otherwise.
The marginal person total scores xv+ = rj=l Xvj,
with v = 1, ... ,N, are sufficient statistics for es-
timating eN. The counts for each separate score

'. "N . h 1on Item j, x+js = kov=1 Xvjs, Wit s = ,... ,m,
are the m sufficient statistics for each of the
parameters Ojs, with s = 1, ... ,m. Following a
two-stage approach, CML is used for estimating
the item parameters and ML for estimating the
person parameters assuming that the item param-
eter estimates are the true values. Goodness-of-
fit assessment is directed primarily at evaluating
response functions, but the investigation of As-
sumption LI has met with considerable numeri cal
problems. The program OPLM (Verhelst, Glas, &
Verstralen, 1994) can be used for estimating and
fitting the PCM.

The 3PLM, the 2PLM and its generalization,
the GRM, and the Rasch model and its gener-
alization, the PCM, define response curves by
means of parametric functions-here, logistic
functions. Hence, these are parametric IRT mod-
els. Within the classes of models for dichoto-
mous item scores, different models take differ-
ent sets of item parameters into account. Hence,
they provide descriptions of the data at differ-
ent levels of complexity, each allowing for inter-
esting explanations of the responses provided by
the respondents. The GRM and the PCM provide
models for different response probabilities but
define similar item parameters.

Unlike parametric IRT modeis, the MHM im-
poses order restrictions on response functions,
thus leaving them free to vary as long as As-
sumption M is satisfied. This is a nonparametric
IRT model (e.g., Junker, 2001; Sijtsma & Mei-
jer, 2007; Stout, 2002). In general, nonparam-
etric models are based on weaker assumptions
than parametric modeis. This is true within the
set of models discussed here but not between any
pair of nonparametric and parametric IRT models
conceivable (e.g., Hemker et al., 1997).

The MHM is more general than the parametric
models discussed here. For dichotomous-item
modeis, in the nested sequence MHM-3PLM-
2PLM-IPLM, each next model is a special case
of the previous model. For polytomous-item
modeis, Hemker et al. (1997) have shown not
only that the GRM and the PCM are both spe-
cial cases of the MHM but also that they do not
imply one another and, even stronger, that they
cannot be true simultaneously: There is no set
of response functions in one model that can be
transformed into another set that also satisfies the
other model. However, differences bet ween these
models are often so small that in real-data analy-
sis it may be difficult to distinguish the fit of one
model from that of the other.

Because of their generality, nonparametric
models have proven to be excellent starting
points for deriving properties of IRT models in
general (e.g., Ellis & Van den Wollenberg, 1993;
Hemker et al., 1997; Holland & Rosenbaum,
1986; Junker, 1991, 1993; Stout, 2002). For ex-
ample, Ellis and Van den Wollenberg (1993)
showed that IRT models in general are true for
subpopulations that have the same e but not for
individual respondents. This implies that for a
particular e value, say ed, a response probabil-
ity like P(Xj = lied) = 0.7 (dichotomous scor-
ing) means that 70% of the respondents having
the same ed provide a 1 score and 30% a 0
score, whereas the same individual is assumed
to provide the same item score across indepen-
dent replications. This is the random sampling
interpretation of response probabilities (Holland,
1990). This interpretation contradicts general
notions about human behavior, which assume
that individuals show variation in response to
the same item. This would imply the stochas-
tic subject interpretation of response probabil-
ity (Holland, 1990): P(Xj = lied) = 0.7 now
means that respondent v produces a 1 score in
70% and a 0 score in 30% of the random draws
from his or her personal distribution of scores on
item j. This has led Borsboom (2005) to argue
that models for individual performance should
be based on 10cally independent, repeated mea-
surements, but he also noted that such repetitions
usually are not available. This is achallenging
conclusion that will need more attention in future
developments.



Also interesting is the stochastic ordering re-
sult in (16.4). SOL holds for al! dichotomous-
item (M, LI, D = I) modeis, including logistic
models and also the MHM, which al!ows for ir-
regular IRFs that are flat in some regions of e and
jagged elsewhere. SOL also holds for the PCM
but not for the GRM and the polytomous-item
MHM (Hemker et al., 1997).

Final!y, for sets of either dichotomous or poly-
tomous items that subsume under relaxed versions
of each of the assumptions in (M, LI, D = 1), if
i ---+ 00, then the total score X+ is a consistent ordi-
nal estimator of e (Junker, 1991). Thus, in nearly
each IRT model, there is an intimate relationship
between ordering according to the observable X+
and the latent e, even in models that do not imply
the SOL property. This suggests that, in general,
little harm is done if the intuitively sensible total
scoreX+ is used for ordering persons (Van der Ark,
2005) under nearly any model that either assumes
(M, LI, D = I) or even violates these assumptions
in controlled ways.

Due to the complexity of many test data sets,
IRT modeis, either nonparametric or parametric,
will not readily fit at the first attempt unless
the data set is supported by sound empirical re-
search that is based on well-articulated substan-
tive theory. However, in most research, this is
more the exception than the rule. Thus, IRT mod-
els are often rejected, which marks the beginning
of multiple, complicated rounds of data analysis,
in which severallikely possibilities-Ieaving out
items, trying subdivisions of the item set, fitting
other models-are tried and overfitting is a real-
istic danger. Nevertheless, such data exploration
may yield an acceptable result that, although it is
different from what one had in mind at the out-
set, may provide a better understanding of what
caused the model misfit. On the other hand, it
rarely happens that a researcher starts an item
analysis without at least a hunch or, better, an idea
about the structure of his or her test. So rather
than adopting a purely exploratory attitude, in
practice, researchers of ten wil! look for a confir-
mation of their expectations and not just take any
outcome for granted.

Even though nonparametric modeIs are of-
ten considered exploratory and parametric mod-
els confirmatory data tools, in our opinion both
approaches basical!y are used in the same way

when analyzing complex test data. Nonparam-
etric models may be a little more "open minded"
because they use item selection procedures such
as Mokken's (1971) and because they esti-
mate the full response function, thus allowing
many peculiarities of the data to become visi-
bie (Ramsay, 1991). Thus, in this sen se, they are
exploratory methods that let the data "speak for
themselves." However, in those cases in whjch
the researcher expects his or her item set to be
(M, LI, D = 1), Assumptions LI and D = 1 can be
evaluated using methods proposed by Stout et al.
(1996) (not discussed here), Assumption M can
be tested using the regression of an item score on
the rest score (16.13), and measurement quality
can be assessed using the Hand Hj coefficients.
Thus, the same methods that were considered ex-
ploratory tools when the researcher did not have
a strong belief about his or her data have become
confirmatory tools for testing his or her hypothe-
sis about the test.

More than nonparametric modeis, probably
due to their orientation toward statistical model
testing, parametric models are often considered
null hypotheses that are evaluated by means of
formal statistical tests for the fit of the model to
the data. First, statistical tests are used to find out
whether a particular assumption of the model fits
the data for al! i items simultaneously. For exam-
ple, the lPLM may be evaluated by means of the
RI statistic, which assesses whether i IRFs are
parallellogistic curves, and the Rz statistic, which
assesses WLI for al! ~i(J -1) item pairs. Sec-
ond, because models often are found not to fit the
data for the whole i-item test, one starts search-
ing for items that could be deleted such that the
model fits the data of the remaining item subset,
one tries to find a subdivision of the item set in
dimensional!y distinct item clusters, or one uses
other models to explain the data structure. This
may involve several rounds of statistical testing
of particular aspects of the modeion (parts of)
the data.

Thus, both parametric and nonparametric IRT
data analyses often proceed in an exploratory
rather than confirmatory manner, and as with
most analyses of complex, highly multivariate
data, the nature of the process depends much on
whether one has strong hypotheses about one's
measurement instruments or not.
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Table 16.1 MHM Analysis Results-"Scale Analysis": Pj Values and Hj Values for Total Test (15 Items);
"Dimensionality Assessment": Hj Values for Several Lower-Bound eValues; and Total H Values (Last Row)

Scale Analysis Dimensionality Assessment

j Pj Hj c = 0.30 c = 0.35 c = 0.40 c = 0.45

1 0.34 0.17 us us us us us us us
2 0.48 0.31 0.33 us us us us us us
3 0.31 0.35 0.37 0.39 0.42 0.47
4 0.48 0.36 0.39 0.41 0.45 us us us
5 0.24 0.40 0.43 0.42 0.47 0.52
6 0.42 0.36 0.40 0.43 0.45 us us us
7 0.64 0.26 us us us us us us us
8 0.22 0.43 0.46 0.46 0.48 0.46
9 0.90 0.31 0.33 0.36 0.41 0.60
10 0.68 0.35 0.36 0.39 0.43 0.55
11 0.12 0.48 0.49 0.48 0.51 0.52
12 0.32 0.37 0.40 0.41 0.42 0.60
13 0.08 0.46 0.48 0.46 0.48 0.52
14 0.64 0.31 0.36 0.40 us us us us us
15 0.75 0.28 0.31 us 0.42 0.65

Total H 0.34 0.39 0.42 0.45 0.44 0.49 0.56 0.60

NüTE: "us"meansthe itemwasunscalabledueto negativeHjk withoneof theselecteditemsor becausethe
Hj valuewassmallerthanlower-boundc.

A PRACTlCAL DATA
EXAMPLE: ARITHMETlC OF
PROPORTlONS AND RATlOS

The nested sequence of dichotomous-item
MHM, 3PLM, 2PLM, and lPLM was used to
analyze correct (score 1)/incorrect (score 0)
scores from a IS-item arithmetic test. Dutch
primary school students (N = 612) were asked to
solve problems involving proportions and ratios.
A typical constructed-response item is "If 10
oranges cost $7.50, what do 3 oranges cost?"
The MHM, the 3PLM, the 2PLM, and the 1PLM
were fitted, in that order. This order of analysis
shows neatly that as models impose more struc-
ture on the data, from the point of view of the
model this may lead to simpIer results and a test
that is "pure" in terms of formal, psychometric
properties, but from the point of view of the data
this may lead to a loss of items and thus a loss
of information on classifying individu als on the
basis of their test scores.

The proportions of correct answers (P-values,
second column of Table 16.1) varied greatly. Item
13 was the most difficult item (smallest P) and
Item 9 the easiest item (largest P). The third col-
umn shows the 15 item-scalability values (all Hjs
significantly larger than 0; test results not tabu-
lated). In an MHM analysis, c = 0.3 is consid-
ered the minimum for inclusion of items in a
scale (Sijtsma & Molenaar, 2002, chap. 5). Be-
cause Hj < 0.3 for three items and because Hj
was small for several other items, the possibility
of nonmonotonicities in the IRFs was evaluated
next.

As an example, we discuss the IRF of Item
15 (HlS = 0.28). lts low Hj value does not con-
tradict the MHM but suggests that this item con-
tributes little to an accurate person ordering. This
suggestion would be supported by a violation
of Assumption M. The discrete IRF estimate
(Figure 16.1: left-hand panel, adapted from MSP)
shows a significant decrease between two groups
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based on rest scores (16.13) without Item 15,
for that reason called restscore groups (two-
tai1ed norma15% test of P[XI5 = 1IR(-15) = 4] =
P[XI5 = 1IR(-15) = 5]; Z = 2.11, p = 0.035).
The continuous IRF estimate (right-hand panel,
adapted from TestGraf98) is based on weighted
averages of P[XI5 = 1IR(-15)J across neighbor-
ing rest-score groups, but it does not pick up this
violation. Based on this result and the large p-
va1ue of the normal test, we do not take this vi-
olation very seriously. Because none of the other
14 estimated IRFs showed significant violations,
we conclude that the data support Assumption M
for all items.

To assess dimensionality, items were clustered
using c = 0.30, 0.35, 0040, and OAS. For c = 0.30,
a 13-item cluster without Items 1 and 7 was found
(note that now Hl5 = 0.31). Compared with the
IS-item test, H increased from 0.34 to 0.39. The
IRFs estimated from the data without Items 1
and 7 did not show violations of Assumption M.
Thus, the 13-item cluster satisfies the MHM and
allows for sufficiently accurate measurement. A
higher c of 0.35 led to the additional rejection
of Items 2 and 15. For c = 0040, two clusters
were found, and for c = OAS, three clusters were
found, while severa1 other items proved unscal-
able. This sequence of outcomes-first, (nearly)
all items are in the same cluster, and later, the
cluster is split into smaller clusters while other

items are unsca1ab1e-is taken as evidence of uni-
dimensionality (D = 1) (Hemker et al., 1995).
This conclusion was corroborated by inspection
of the item content, which was highly simil ar
both for items that were in the same cluster and
for items that were in different clusters.

Based on the MHM analysis, Items 1 and 7
were removed from the test, and then BILOG-
MG (Zimowski et al., 1996; default settings were
used) was used to first fit the 3PLM to the data
and then the 2PLM. The y estimates ranged from
0.011 (SE = 0.008) to 0.102 (SE = 0.068); none
was significant1y larger than O. A likelihood ra-
tio test that compared the fit of the 2PLM and the
3PLM resulted in X(df=13) = 17.98 (p = 0.16);
hence, the fit of the mode1s could not be distin-
guished, which confirmed that the y parameters
could be dropped. In addition, for the 2PLM,
the RMSD item fit statistics did not suggest mis-
fit for any of the 13 items. Table 16.2 shows
the a and 8 estimates. Figure 16.2 (solid curve)
shows the standard error for {j (i.e., l( 8)-1/2; see
(16.23» based on aH 13 items. The highest mea-
surement precision was obtained for 0.75 < 8 <
1.00. Thus, the test seems to measure the most
accurate at the higher region of the sca1e.



Table 16.2 Estimated Item Parameters and Item Fit Statistics for the 2PLM and the Rasch Model

2PLM / MML Estimation Rasch /CML Estimation

j aj (SE) 8j (SE) RMSD 8j (SE) Uj

2 0.73 (0.09) 0.11 (0.09) 1.20
3 0.90 (0.10) 0.73 (0.09) 0.60 -0.38 (0.10) 0.36
4 0.92 (0.10) 0.07 (0.08) 1.45 -1.43 (0.10) 0.49
5 1.08 (0.14) 0.97 (0.10) 0.76 0.17 (0.11 ) -0.41
6 1.00 (0.14) 0.30 (0.08) 0.66 -1.04 (0.10) 0.04
8 1.24 (0.16) 0.99 (0.09) 0.42 0.27 (0.11) -0.31
9 0.52 (0.09) -2.80 (0.44) 0.94
10 0.69 (0.08) -0.83 (0.11) 0.64
11 1.11 (0.17) 1.56 (0.15) 1.37 1.11 (0.13) -0.53
12 1.01 (0.12) 0.67 (0.09) 0.81 -0.44 (0.10) -0.15
13 1.01 (0.15) 1.95 (0.19) 0.62 1.74 (0.15) 0.39
14 0.72 (0.09) -0.60 (0.10) 0.94
15 0.52 (0.08) -1.46 (0.21) 0.75

NOTE: Item difficulties under MML and CML have been estimated using different norming of
latent variabIe scale.
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The different slope parameters found in the
2PLM analysis suggest that the Rasch model
will not fit the data for aH 13 items. Indeed, us-
ing RSP (Glas & Ellis, 1993) resulted in signif-
icant misfit (R] = 64.20, dj = 36, p = 0.003;
R2 = 128.07, dj = 72, p = 0.000). Next, a
subset of 8 items with nearly the same IRF
slopes was selected (based on the as; the re-
sulting item subset can be found in Table 16.2).
For this subset, RSP analysis supported the hy-
pothesis of equal slopes (R] = 29.44, dj = 21,
P = 0.10). This was further corroborated by the
standard norm al Uj values (IUjl < 1.645 for all
j). In addition, support was obtained for As-
sumption LI (R2 = 36.62, dj = 24, p = 0.05).
Figure 16.2 (dashed curve) shows the standard
error (i.e., 1(8)-1/2) for ê based on the 8 items.
Eight Rasch items selected from 13 2PLM items
necessarily provide less statistical information
for the ML estimation of 8, but the loss of pre-
cision was small because the 5 excluded items
had relatively flat IRFs.

The MHM analysis of the 15 items showed
that the Hjs were relatively small and the
IRFs were monotone. A dimensionality analy-
sis using varying lower-bound evalues sug-
gested that 13 items with Hj ~ 0.3 together
measured one latent trait. Together these re-
sults suggest that the IRFs had relatively weak,
positive slopes and that the 13 selected items
contributed modestly to accurate person order-
ing using X+. The 3PLM analysis supported
the conclusion that each of the IRF lower as-
ymptotes was O. The 2PLM fitted the data for
the 13 items. A further selection of 8 items
with approximately equal slopes led to a fit-
ting Rasch model, but given that the items con-
tributed modestly to person ordering, one may
seriously wonder whether one is prepared to
sacrifice 5 items to have a fitting Rasch model.
Also, note that item selection was data driven
and that this provides less compelling evidence
for rejecting so many items than substantive
reasons would.

In this chapter, we have introduced IRT as a fam-
ily of related models for measurement. We have
concentrated on the analysis of data from a sin-
gle test or questionnaire, because they represent
the majority of IRT applications in most areas
of science that use tests and questionnaires for
measurement. This chapter has emphasized the
estimation and fit evaluation of IRT models for
single-test data, but several other analyses such
as the following are possible:

• Differential item functioning (DIF) is aimed
at checking whether an IRF or ISRF of an
item is the same in different groups from the
population of interest, such as boys and girls
and different ethnic groups. If the response
function of item j is different, the item is
said to exhibit DIP. DIF is often taken as
a sign that in one group the item measures
abilities or skills that are irrelevant for item
performance in the other group. An exam-
ple is an arithmetic test that also requires
elementary language skilIs and a low-Ievel
group that varies considerably with respect
to these language skilIs so that language
skilis level affects item performance differ-
entially, whereas the individuals in the other
group all have a skilIs level high enough not
to affect item performance differentially.

• Person-fit analysis is aimed at identifying
respondents who produce patterns of item
scores, x, that are atypical for the group to
which they belong or relative to the IRT
model that was fitted to the test data for this
group. An example is students who have
guessed excessively for correct answers in
educational tests and thus produced pat-
terns of Is and Os that are unrelated to item
difficulty.

• Cognitive skills diagnosis is aimed at
modeling the skills necessary to complete
a task successfully or the cognitive process
that underlies the response to a cognitive
task. Models may formulate linear restric-
tions on item parameters to formalize skill
contributions, assume multidimensional



latent variables to formalize a more complex
ability structure, or assume a multiplicative
structure for noncompensatory response
processes. A fitting model provides infor-
mation on skill deficiencies that require
additional training or on the strategies used
by children to solve complex cognitive
problems. This may provide information
on the developmental phase in which they
are. This kind of information contributes
to a better understanding of what a test
measures-that is, to its validity.

Large-scale educational testing done by large
testing agencies, such as Educational Testing Ser-
vice (Princeton, NJ) and CITO National Insti-
tute for Educational Measurement (Arnhem, The
Netherlands), uses possibilities offered by IRT
such as the foHowing:

• Equating: Items from different tests measur-
ing the same ability or skiH are displayed
on a common scale, and students who have
taken these different tests are comparable
with one another on this scale and also with
cutoff scores used for decision making.

• Item banking: This refers to the composi-
tion of a large set-hundreds-of items that
measure the same ability or skill or sets
of abilities and skilIs in a particular do-
main that is of interest for the evaluation
of educational goals. An item bank con-
tains the psychometrie properties of aH the
items and also their position on a com-
mon, calibrated scale that is obtained by
equating a large number of tests. In ad-
dition, an item bank contains information
on item content, frequency of item use
in tests, dates when they have been used,
and so on, and together with the psycho-
metrie information on item difficulty and
other item properties, this information can
be used to assem bIe tests from the bank that
simultaneously agree with a list of speci-
fications deemed necessary for a particular
application.

• Adaptive testing: This is aimed at present-
ing by computer to the examinee the small-
est number of items that provides the most

accurate estimate of his or her 8 value in
terms of 1(8)-1/2. The items are presented
consecutively, and after each response, the
estimation of 8 is updated; the next item
from the item bank to be presented is the one
suited best to the examinee's {j as we know
it at that point in the testing process. This
adaptive testing procedure stops if a formal
criterion is satisfied-for example, if the
standard error of {j drops below a preset
maximum value.

Equating, item banking, and adaptive testing
require large-scale research and funding and are
only feasible when the scale of the test applica-
tion is such that the investments pay off. They
are of more general interest because they make
fuH use of the possibilities that parametric IRT
modeis, in particular the lPLM, the 2PLM, and
the 3PLM, have to offer. Central is the possibility
of equating scales, and the 8 scale is a convenient
tooI for this.

The authors wish to express their gratitude to
CITO National Institute for Educational Mea-
surement for generously making the data avail-
able that we used for iIlustrating IRT model
analysis.
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