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STOCHASTIC ORDERING USING THE LATENT TRAIT AND THE SUM 
SCORE IN POLYTOMOUS IRT MODELS 
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Ivo W. MOLENAAR 

UNIVERSITY OF GRONINGEN 

BmAN W. JUNKER 
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In a restricted class of item response theory (IRT) models for polytomous items the un- 
weighted total score has monotone likelihood ratio (MLR) in the latent trait 0. MLR implies two 
stochastic ordering (SO) properties, denoted SOM and SOL, which are both weaker than MLR, 
but very useful for measurement with IRT models. Therefore, these SO properties are investigated 
for a broader class of IRT models for which the MLR property does not hold. 

In this study, first a taxonomy is given for nonparametric and parametric models for polyto- 
mous items based on the hierarchical relationship between the models. Next, it is investigated 
which models have the MLR property and which have the SO properties. It is shown that all models 
in the taxonomy possess the SOM property. However, counterexamples illustrate that many models 
do not, in general, possess the even more useful SOL property. 

Key words: monotone likelihood ratio, nonparametric IRT models, parametric IRT models, poly- 
tomous IRT models, stochastic ordering. 

Introduction 

In the behavioral and social sciences, tests and questionnaires are often used to 
measure the position of respondents on a latent trait 0. Let a test consist of L dichotomous 
or polytomous items. Let the score on item i be denoted X i. The total score on the test, X+, 
is the unweighted sum of the L item scores Xi. In testing generally, and in item response 
theory (IRT) in particular, the total score X+, which is observable, is often used as a proxy 
for the unobservable latent trait value 0. In particular the ordering of subjects by X+ is 
usually assumed to approximate the ordering of subjects by 0. It is thus desirable to identify 
IRT models in which a higher total score corresponds to a higher expected latent trait 
value. 

For binary item scores, Grayson (1988) and Huynh (1994) showed that under the very 
mild conditions of latent trait unidimensionality (UD), local independence (LI), and item 
response functions (IRFs), P(Xi = 110), that are nondecreasing in 0, X+ has monotone 
likelihood ratio (MLR) in 0. This means that for 0 - C < K - L 

P(X+ =KI0) 
g(K, C; 0) = P(X+ = CIO) (1) 
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is a nondecreasing function of 0. 
Grayson (1988) also used the requirements that 0 < P(Xi  = ll0) < 1 and that 

dP (Xi = llO)/dO exists to prove MLR of X+. The first requirement is not very strong in 
practice because every IRF that does not meet this requirement can be replaced by an IRF 
that closely resembles it and that does meet the requirement. The second requirement is 
not needed in the proof given by Huynh (1994). Because of its widespread use, and its 
fundamental role in binary IRT models, We will concentrate for the remainder of the paper 
on the total score X+, although in certain settings other nondecreasing item summaries 
may be of interest (see, e.g., Rosenbaum, 1984, 1985). 

It can easily be shown that the MLR property is symmetric in its arguments, which 
means that MLR of X+ in 0 is equivalent to MLR of 0 in X+. MLR is a technical property 
that implies two stochastic ordering (SO) properties (Lehmann, 1959, p. 74) that are easier 
to interpret in an IRT context. These SO properties are both weaker than the MLR 
property, in the sense that neither SO property implies the MLR property (Lehmann, 
1959, sec. 3.3; see also, Junker, 1993; Rosenbaum, 1985). 

First, MLR implies that X+ is stochastically ordered by 0. That is, for any two re- 
spondents a and b with 0a < 0b, 

P ( X  + ~ x + lOa) ~ e ( x  + ~x+lOb). (80M)  

This first SO property (stochastic ordering of a manifest variable by 0, to be abbreviated 
SOM, in this case of X+ by 0) takes the ordering on 0 as a starting point. It implies that 
a higher latent trait value results in a higher expected total score (see Lehmann, 1986, 
p. 85, Lemma 2(i); which pertains to the stronger MLR property). 

The second SO property concerns the stochastic ordering of 0 by X+. For any constant 
v a l u e s o f 0 ,  and for all 0 -< C < K - < L ,  

P( O > s IX  + = C) <- P(  O > s l X  + = K).  (SOL) 

This second SO property (stochastic ordering of the latent trait, to be abbreviated SOL, in 
this case by X+), which takes the ordering of X+ as a starting point, is probably of more 
interest to the practical use of tests than SOM of X+, because only the ordering onX+ can 
be observed and inferences with respect to 0 may be drawn on the basis of X+. SOL byX+ 
is evidently what is required for making mastery decisions based on cutoffs for the total 
score X+; it also follows from SOL by X+ that a higher total score results in a higher 
expected latent trait value (Lehmann, 1986, p. 85, Lemma 2(i)). 

Many models for binary items begin with the three assumptions of latent trait UD, LI, 
and nondecreasing IRFs. The class of models that possess these three properties is called 
"strictly unidimensional" by Stout (1990) and Junker (1993). Mokken's (1971) formulation 
of monotone homogeneity was one of the earliest to explicitly consider all models satis- 
fying just these three assumptions. Recently, variations have been studied extensively by 
Ellis and van den Wollenberg (1993), who characterize a "stochastic subject" version of 
strict unidimensionality, and by Holland (1981), Rosenbaum (1984), and Junker (1993), 
who consider "random sampling" versions of strict unidimensionality (the terms "stochas- 
tic subject" and "random sampling" were introduced by Holland (1990) to denote two ways 
of justifying these modeling assumptions in psychological/statistical terms). The MLR 
result of Grayson (1988) and Huynh (1994) applies to all strictly unidimensional models. 
Parametric examples which thus have the MLR property include the normal ogive models 
and the logistic models for binary items (e.g., Lord, 1980). 

A general class of strictly unidimensional, monotone IRT models for polytomous 
items can also be defined (Hemker, Sijtsma, & Molenaar, 1995; Junker, 1991; Molenaar, 
1982, 1997). Holland and Rosenbaum (1986), Ellis and Junker (1995) and Junker and Ellis 
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(1995) have studied theoretical model-fit issues for these and other monotone latent 
variable models. However only recently has inference for 0 in this class of models been 
considered. Hemker, Sijtsma, Molenaar, and Junker (1996) show that the MLR result of 
Grayson and Huynh does not apply to this general class; the least restrictive model con- 
sidered by Hemker, et al. that possesses MLR of X+ by 0, is the Partial Credit Model 
(PCM; Masters, 1982) or a trivial generalization of it. For less restrictive models for 
polytomous items, counterexamples were found that showed that these models do not have 
the MLR property (Hemker, et al., 1996). 

In this paper, we investigate the weaker SO properties for a broader class of unidi- 
mensional polytomous IRT models for which the stronger MLR property does not hold. 
These SO properties and the MLR property will be related to a taxonomy for nonpara- 
metric and parametric IRT models for polytomous items, based on the hierarchical rela- 
tionships between the various models. First, this taxonomy is presented. Next, it is shown 
which of the models in the taxonomy have the MLR property and which models have one 
or both SO properties. 

A Taxonomy of Unidimensional Polytomous IRT Models 

A taxonomy of IRT models was given by Thissen and Steinberg (1986). Unidimen- 
sional parametric IRT models for polytomous items were organized as members of three 
distinct classes: divide-by-total models, difference models and left-side added multiple 
category models. This last class of models, which describe multiple-choice responses with 
guessing, is not considered in our taxonomy. Another difference is that we added two 
nonparametric models to our taxonomy. This clarifies the fact that all models from the first 
two classes can be integrated into one class of polytomous IRT models. Recently, Mel- 
lenbergh (1995) provided an alternative classification of parametric polytomous IRT mod- 
els, mainly based on the definitions of the conditional probabilities of choosing a particular 
answer category. 

We assume that all items have the same number of answer categories in the models 
we consider. Generalization of our discussion to models in which items have different 
numbers of answer categories is straightforward but would lead to more cumbersome 
notation. 

Divide-by-  Total  Mode l s  

Probably the best known member of the class of divide-by-total models (Thissen & 
Steinberg, 1986) is the PCM (Masters, 1982). Let each of the L items have rn + 1 ordered 
answer categories which are scored X i = O , . . . ,  m ,  respectively. Masters' PCM assumes 
the parametric form 

P ( X i  = j I 0 ; X / = j  orXi = j  - 1) = 
exp (0 - 8ij) 

1 + exp (0 - 8i/)' 
(2) 

where 6ij is the difficulty of step j of item i (Masters, 1982). We shall call the conditional 
probability P ( X i  = j[O; X i  = j or X i = j - 1) of responding in category j rather than 
categoryj - 1, given 0, the partial credit item step response function (partial credit ISRF) 
for step j of item i. 

To have a more compact notation the conditional probability P ( X  i = x I O) is denoted 
as zr/~, omitting the argument 0. From (2) it follows (Masters, 1982) that in the PCM ~-~ 
is 
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~exp ~(O-~j) 
k=o y=l 

where for notational convenience E°=l (0 - 6ij) =-- 0 in case o f x  = 0. Note that in the 
denominator of (3) we have the sum of the numerators across all answer categories, which 
explains the qualifier divide-by-total. We will further discuss this terminology after we have 
introduced the class of difference models (Thissen & Steinberg, 1986). In the Rating Scale 
Model (RSM; Andrich, 1978), ~ij "= ~i q- 'rj where 6i is the location of item i on 0 and "~ 
is the location of the j-th step of each item relative to that item's location on 0. Note that 
the RSM is a special case of the PCM (Masters, 1982). 

A more flexible model than (3) can be defined by inserting a positive discrimination 
parameter o~ij. The resulting model may be called the two-parameter Partial Credit Model 
(2p-PCM; Hemker et al., 1996), in which 

7fix = . (4) 

~=0 i=1 

Note that this definition of -n-ix yields a model that is identical to the Nominal Response 
Model (NRM; Bock, 1972) if nominal response categories are assumed, that is, if aij is not 
restricted to be positive (Muraki, 1992; Samejima, 1972). 

Special cases of the 2p-PCM which are generalizations of the original PCM (Masters, 
1982) can easily be defined. If the discrimination parameter is held constant across the 
item steps of the same item (aij = oti) the generalized PCM (g-PCM; Muraki, 1992) is 
obtained. Note that this model has also been referred to as Thissen and Steinberg's 
Ordinal Model (TSOM; Maydeu-Olivares, Drasgow, & Mead, 1994). Using a similar line 
of reasoning, the 2p-PCM with the same discrimination parameter for item stepj  across all 
items (aij = aj)  can be defined (Hemker, et al. 1996). To discriminate between these three 
2p-PCMs they are denoted 2p(ij)-, 2p(i)-, and 2p(j)-PCM, respectively. The term between 
brackets clarifies whether a varies across items i a n d  item steps j, or only across items i or 
item steps j,  respectively. If a is constant across both items and item steps (a/j = a),  the 
one-parameter PCM is obtained. Note that this model is a trivial generalization of the 
original PCM in which aij = a -- 1. Thus, it is not distinguished from the PCM in this 
study. 

Difference Models  

Perhaps the best known model from the class of difference models (Thissen & Stein- 
berg, 1986) is the Graded Response Model (GRM; Samejima, 1969; see also Masters, 
1982). Samejima's GRM assumes the well known logistic form 

exp [a~(O - h~j)] 
P ( X i  >-j]O) = 1 + exp [a~(O - h i j )] '  (5) 

for all j = 1 . . . . .  m, where hij is the threshold parameter, with )til ~ Ai2 ~ ' ' '  ~ )tim, 
and a i > 0,  for all i. For x = 0 and x = m, by definition P ( X  i >- 010) = 1 and 
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P ( X  i >- m + 110) = O, respectively. We shall call the conditional probability P ( X  i >-j[O) 
of responding in category j or higher, the graded response item step response function 
(graded response ISRF) for step j of item i. 

The probability of having item score x is given by the difference 

7ri~ = P(Xi  >-x[O) - P ( X i  >--x + llO). (6) 

The terminology of difference models was derived (Thissen & Steinberg, 1986) from (6) in 
which the difference between two adjacent model ISRFs is used to obtain rr/x. It is im- 
portant to note that the ISRF P(Xi  >- xlO) of a difference model is a simple parametric 
function, for example, a logistic function. Also, note that divide-by-total models, such as 
the PCM, do not have a simple parametric form for P(Xi  >- xlO). For this reason they are 
not considered to be difference models. Similarly, the probability P(X/ = j[O; Xi  = j or 
X i = j - 1) as in (2) of the PCM has a s impleparametr ie  form which is characteristic of 
divide-by-total models. Difference models do not have a simple parametric form for 
P ( X  i = j[O; Xi  = j or Xi  = j - 1) and, therefore, they are not considered to be 
divide-by-total models. 

In the following, Samejima's GRM is referred to as the 2p(i)-GRM, which is more 
parallel to our PCM naming conventions. Note that the 2p(ij)-GRM and the 2p(j)-GRM 
do not exist because a cannot vary over item steps, for otherwise the ISRFs in (5) would 
cross for different values of xi, and this is evidently impossible (Samejima, 1969, 1972; 
Thissen & Steinberg, 1986). If discrimination parameters are assumed to be the same for 
all items (a  i = a) a special case of the 2p(i)-GRM is obtained. This is the one-parameter 
GRM (lp-GRM), which is obviously also a difference model. 

Nonparametric Models 

Two nonparametric models that are based on the parametric models discussed here 
are defined in our taxonomy: the nonparametric Partial Credit Model (np-PCM), and the 
nonparametric Graded Response Model (np-GRM). Both nonparametric models are de- 
fined by three assumptions: UD, LI, and ISRFs that are nondecreasing in the latent trait 
0. The two models, however, differ in the definition of the ISRFs, analogous to the 
difference in the definition of ISRFs between the divide-by-total models and the difference 
models. Both nonparametric models serve the purpose of uniting the parametric classes of 
divide-by-total models and difference models in a more comprehensive hierarchical frame- 
work. In addition but not pursued here, both models can be seen as alternative models for 
describing the data; see for example Hemker, Sijtsma, and Molenaar (1995) who discuss 
the np-GRM as a data analysis method. The np-PCM, however, is new. 

The np-PCM is defined by assuming that the partial credit ISRFs 

P(Xi  = x[O; X / = x  orXi  = x  - 1) - 
"Tr ix 

~ix + 7ri,x-1 
(7) 

are nondecreasing in 0 for all i and allx = 1 . . . .  , m. In the 2p(ij)-PCM (see (4)) the ISRF 
is defined as 

7r~, exp [c~x(0 - 6ix)] 

Tl'ix "4- "lTi ,x-1 1 + exp [a~(O - 8~x)] " 

Because the discrimination parameter is positive, this function is nondecreasing in 0, so the 
2p(ij)-PCM is indeed a special case of the np-PCM. Because all other parametric divide- 
by-total models are special cases of the 2p(ij)-PCM, all models from this class are special 
cases of the np-PCM. 
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The np-GRM is defined by assuming that the graded response ISRFs 

m 

P(Xi>--x]O) = ~  ~ 
j=x 

are nondecreasing in 0 for all i and all x = 1 . . . . .  m. Note that the definition of the 
np-GRM is identical to the definition of the Mokken model of monotone homogeneity for 
polytomous items (Hemker, Sijtsma, & Molenaar, 1995; Molenaar, 1982, 1997). The ab- 
breviation np-GRM is used here because it better fits in the nomenclature of this study. 
The np-GRM is called "strictly unidimensionar' by Junker (1991), who uses it as the 
starting point for an investigation of essential unidimensionality (see also Stout, 1987, 
1990) for polytomous items. Ellis and Junker (1995) and Junker and Ellis (1995) give 
characterizations of an infinite item pool formulation of the np-GRM, in terms of condi- 
tional association (Holland & Rosenbaum, 1986) and a vanishing conditional dependence 
condition. The 2p(i)-GRM is a special case of the np-GRM because in the 2p(i)-GRM, 
P(Xi >- xlO), given by (5), is nondecreasing in 0. 

Less obvious than the results that the parametric divide-by-total models are special 
cases of the np-PCM, and the parametric difference models are special cases of the 
np-GRM, is that the np-PCM is a special case of the np-GRM (Theorem 2; to be discussed 
below). This relation follows directly from the MLR and SO properties of the two models 
that will be discussed in the next section. As a result, all divide-by-total models are also 
special cases of the np-GRM. It can also be shown that the difference models defined here 
(i.e., all 2p(i)-models) are special cases of the np-PCM (Theorem 3). The proof of this 
result also uses the MLR and SO properties of both models and is given after the intro- 
duction of these properties. 

Summary 

All polytomous models discussed thus far can be organized in a taxonomy that em- 
phasizes the hierarchical relations between the models. The most general model, and thus 
the least restrictive model, is the np-GRM. A special case of this model is the np-PCM. 
The models from the class of divide-by-total models as well as the models from the class 
of difference models are special cases of the np-PCM. Finally, because difference models 
are neither a special case nor a generalization of the divide-by-total models (Thissen & 
Steinberg, 1986), the taxonomy is complete. This taxonomy of relations between the var- 
ious models is displayed as a Venn-diagram in Figure 1. Note that this figure only holds for 
items with at least three answer categories; for dichotomous items the set structure is more 
simple. For example, the np-GRM and the np-PCM are identical for dichotomous items; 
that is, i fm = 1, P ( X  i ~ 1]0) = P ( X  i = I lO;X  i = 1 orXi = 0). This latter equality also 
implies that the distinction between difference and divide-by-total models no longer exists 
(Thissen & Steinberg, 1986). 

MLR, SOM, and SOL in Polytomous IRT Models 

The definition of MLR of X+ in 0 for polytomous models is almost the same as in the 
dichotomous case (see (1)). The only difference concerns the range of the total score. 
Because for polytomous items X i = O , . . . ,  m,  for the total score X+ = 0 , . . . ,  m L ,  and 
thus0 <- C < K <<- mL .  

The least restrictive model for polytomous items in our taxonomy that implies MLR 
is the PCM (Hemker et al., 1996). Thus, MLR also holds for the RSM (Andrich, 1978). 
Counterexamples were found (Hemker et al., 1996) for the models from the divide-by-total 
class in which c~ij varied over items or item steps or both, and for all models from the class 
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np-GRM 

np-PCM 

2p(~)-PCM 

PCM 

RSM 

FIGURE i. 
Venn-diagram displaying the taxonomy of relations between the different models. Note: The models in the 
taxonomy are Samejima's Graded Response Model (2p(i)-GRM), the nonparametric GRM (np-GRM), the 
one-parameter GRM (lp-GRM), the Partial Credit Model (PCM), the nonparametric PCM (np-PCM), the 
two-parameter PCMs [the 2p(ij)-PCM), the 2p(i)-PCM, and the 2p(j)-PCM], and the Rating Scale Model (RSM). 

of difference models. Obviously, the nonparametric models do not imply MLR of X+ in 0 
because they are generalizations of the parametric models that do not have this property. 

It can thus be concluded that for polytomous items the class of IRT models that have 
the MLR property is smaller and subject to more restrictions than the class of models with 
MLR for dichotomous items. However, it can not be concluded that the PCM is the only 
model for polytomous items that implies the SO properties on total score level, because 
SOM of X+, SOL by X+, or both do not imply MLR of X+ (Junker, 1993). 

The np-GRM and SO 

In the np-GRM, P(X i >- xfO ) is nondecreasing in the latent trait 0 for allx and all i. 
This assumption is identical to SOM of Xi, that is, for any two respondents a and b with 
0a < 0b, 

P(Xi >-- x[O~) <-P(Xi >-- XlOb), (8) 

for alli  = 1 , . . . , L  and allx = 0, 1 , . . . , m .  

Theorem 1. The np-GRM has the property of SOM of X+. 

Proof. Theorem 1 follows from a general result cited in Holland and Rosenbaum 
(1986; Lemma 2). Let X = (X1 . . . . .  Xt.); from this result it follows that if the np-GRM 
holds, then for any bounded function g(X) that is nondecreasing in each coordinate, the 
conditional expectation E[g(X)[0] is nondecreasing in 0. Let 
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{~ i fX+ ->x+; 

g(Xl . . . .  ,XL) = ifX+ < x + ,  

which is nondecreasing in all coordinates of X, then E[g(X 1 . . . . .  XL)]O ] equals 
P(X+ >-- x+]O). Thus, the np-GRM implies SOM of X+. An alternative, more elementary 
proof that uses (8) is sketched in the Appendix along with an illustrative example. [] 

Analogous to the SOM property for item scores Xi in (8), the SOL property can be 
defined for item scores. For any constant value s of 0, and for all 0 - c < k -< m, 

P(O > slXi = c) <-- P(O > s[Xi = k). 

The np-GRM, however, does not imply SOL by X i. This is shown next (Example 1) by 
extending the counterexample that the np-GRM does not imply MLR given by Junker 
(1993, Example 4.1). 

Example 1: The np-GRM does not imply SOL by Xi. Let 0 -< 0 -< 1 and consider an 
item i with three answer categories (Xi = 0, 1, 2) that satisfies the np-GRM, with 

P(Xi >- 11o) = 

P(X~ >- 21o)  = 

I: 1 0, if 0 ~ 0 - < ~ ;  

1 1 
[ ~ + ~ 0 ,  if ~ < 0 _ < 1 .  

1 
20, if 0 ~ 0 - < ~ ;  

1 1 1 
~ +  0, if ~ < 0 - < ~ ;  

1 1 1 
~ + ~ 0 ,  if ~ < 0 - < 1 .  

Consider for this example a three-point distribution of 0, P(O = 1/4) = P(O = 1/2) = .25 
and P(O = 1) = .5; then e(o  > 1/41Xi = 0) = .40 and P(O > 1/41xi = 1) = .25. 
Therefore, SOL by X i does not hold. 

It can also be shown that the np-GRM does not imply SOL byX+. A counterexample, 
however, will be given for a more restricted model and thus by implication a counterex- 
ample has been found for the np-GRM. For reasons of an efficient presentation, of other 
results, this counterexample is postponed to Example 2, following Theorem 3 below. 

Because the np-GRM has the property of SOM of X+, and because the np-GRM is 
the most general polytomous IRT model in our taxonomy, all models in our taxonomy 
have this property. However, the np-GRM does not have the SOL property for either X+ 
or X/, which leaves the np-PCM as the most general candidate that may have SOL by X i 
or by X+. 

The np-PCM, MLR, and SO 

We will prove the next proposition for the np-PCM. 

Proposition. The np-PCM has the property of MLR of X i. 
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Proof. The assumption that characterizes the np-PCM, in addition to UD and LI, is 
that 7r/x/(~r/x + zri,x_l) is nondecreasing in 0, for all i and x = 1 , . . . ,  m (see (7)). This 
holds if and only if 

1 

" I r i , x  - 1 
l + - -  

"/'/'/x 

is nondecreasing in 0 for all i and x, which holds if and only if "rrix/Zri, x_ 1 is nondecreasing 
in 0 for all i and x. Monotonicity of the latter ratio expresses MLR for X/ = x versus 
Xi = x - 1, and holds for any x. By multiplying similar ratios, we obtain, for all 0 -< c < 
k -< m, and all i, that 

7rik e ( x i  = klO) 

Tic  --  P ( X  i = c [ O )  ( 9 )  

is nondecreasing in 0, which is equivalent to MLR of X i ,  for all i. []  

This result is used to prove the next theorem. 

Theorem 2. The np-PCM is a proper special case of the np-GRM. 

Proof. The np-PCM and the np-GRM have the first two assumptions (UD and LI) in 
common. The third assumption of the np-PCM [Trix/(~rix + zri,x_l) nondecreasing] is 
equivalent to MLR on the item score level (Equation (9)). The third assumption of the 
np-GRM (E~=x ¢rij nondecreasing) is equivalent to SOM of X i (Equation (8)). Because 
MLR o f X i  (np-PCM) implies SOM o f X i  (np-GRM) (Lehmann, 1959, p. 74) but not vice 
versa (Junker, 1993, Example 4.1), the np-PCM is a proper special case of the np-GRM. 

[] 

Next we will show that the 2p(i)-GRM is a special case of the np-PCM. Because the 
first two assumptions of the np-PCM and the 2p(i)-GRM (UD and LI) are the same, it is 
sufficient to show that the third assumption of the 2p(i)-GRM implies MLR o f X  i (the third 
assumption of the np-PCM), but not vice versa. 

Theorem 3. The 2p(i)-GRM is a special case of the np-PCM. 

Proof. The third assumption of the 2p(i)-GRM is that P ( X  i >- x[O) = 
exp [Oti(O --  h/x)]/{1 + exp [Oti(O --  h / x ) ] }  (Equation (5)) is nondecreasing in 0 for 
all x = 1 . . . .  , m, and i = 1 . . . .  , L, with ) t i l  ~-~ ~'i2 ~-~ " " " ~-~ )tim, for all i. Note that 
P(X/-> 010) = 1 and that P(X/-> m + 1[0) = 0. Let fx = exp [ai(O - A/x)] for notational 
convenience, then in the 2p(i)-GRM 

f~ fx+, 
"7"fix 1 ..]_ f x 1 "[- fx + , 

for x = 1 , . . . ,  m, with fm + 1 = 0 (Equation (6)). Note that the first derivative of fx with 
respect to 0 is equal to air x. The first derivative of zr/r can thus be written as 

a,{fx[1 + f~+,]2 _ fx+,[1 + fx] z} 

[ i  + fx] z [1 + fx+,]= ' 

which is identical to 
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- f , +  l ] [ 1  - f ,  f x + , ]  

[1 + fx]2 [1 + f,+,]2 

This means that for all x and i, [log rr/~]' is equal to 

rr" ai[1 - f ,-  f~ + i] 

rrix [1 + f~][1 + fx + ,] 

=ozl 1 l + f x  l + f , + l  ' 

with fo/(1 + f0) = 1, by definition. As a result, it holds that for al lx and i 

~ , x  - 1 1 

7fix "t'gi,x-i : O l i  I + f~-l l + f ~ +  l + f ~  1 - - ~ + (  

= ai(¢ri,x- 1 + wi~) >>- O. 

This means that if the 2p(i)-GRM holds qr~c'rt'i,x_ 1 >~ 7r;,x_l'ri'ix , and thus rC~xrri,x_ 1 - 
rr;,x_lW/x -> 0 for allx and i; this implies that rrLr/rri,x_ 1 is nondecreasing in 0 for allx and 
i. This result is sufficient to prove that (9) is nondecreasing, which means that MLR of Xi 
in 0 holds. Therefore, the third assumption of the 2p(i)-GRM implies MLR of X i in O, 
which is the third assumption of the np-PCM. Thus, the 2p(i)-GRM implies the np-PCM. 

[]  

The reverse relation which says that the np-PCM implies the 2p(i)-GRM does not 
hold. This follows from the result that the PCM does not imply the 2p(i)-GRM, or vice 
versa (Thissen & Steinberg, 1986), and because the PCM is a special case of the np-PCM. 
Thus the np-PCM and the 2p(i)-GRM are not equivalent. 

Because we have established that the 2p(ij)-PCM and the 2p(i)-GRM are special 
cases of the np-PCM, it follows that all parametric models from our taxonomy are special 
cases of the np-PCM. Therefore, by implication all these parametric models have MLR of 
X/ in  0 and, consequently, SOM of Xi and SOL byXi. We have seen that SOM of Xi implies 
SOM of X+. However, SOL byXi does not imply SOL byX+ in general. This can be shown 
by means of a counterexample. Note that the definition of SOL by X+ is equivalent to 
Equation (SOL) with 0 <- C < K <- mL. 

Example 2: The lp-GRM does not imply SOL by 2(+. Consider two items (i = 1, 2), 
each with four answer categories (Xi = 0, 1, 2, 3). Let al  = ce2 = 1, ),11 = log 49/51, ),12 
= 0, and ),13 = log 51/49; and A21 = log 33/67, ),22 = log 33/17, and ),23 = log 99. Assume 
that the latent trait 0 has a standard normal distribution. Then one obtains by numerical 
integration P(O > Opt'+ = 2) = .536 and P(O > 0~!(+ = 3) = .464. Figure 2 and Table 
1 show P(O > siX+) for all total scores and for s = - 3 ,  - 2  . . . .  , 3 .  

This counterexample not only implies that the lp -GRM does not imply SOL by X+, 
but also that all models that are generalizations of the lp -GRM do not imply SOL by X+. 
These include the 2p(i)-GRM, the np-GRM and the np-PCM. This counterexample also 
shows that SOL by X/does  not imply SOL by X+. This leaves the 2p(ij)-PCM as possibly 
the least restrictive of the models we have considered with SOL by X+. However, for these 
models counterexamples can also be found. 

Example 3: The 2p(i)-PCM does not imply SOL by X+. Consider two items (i = 1, 2), 
each with three answer categories (X i = 0, 1, 2). Let al  = 2 and a 2 = .5. Let 811 = 612 
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P(O > siX+) for all total scores and for s = - 3 ,  - 2  . . . . .  3, in case of  two items satisfying the l p - G R M ,  each 
with four answer categories with the following parameter  vector: ~ = 1; All = log 49/51, A12 = 0, and A D = log 
51/49; and A21 = log 33/67, A22 = log 33/17, and A23 = log 99. The latent trait 0 has a s tandard normal distribution. 

= 821 = 0 ,  and 822 = - 2  log 98. Assume that the latent trait 0 has a standard normal 
distribution. Then P(O > 0IX+ = 1) = .121 and P(O > 01X + = 2) = .120. Figure 3 and 
Table 2 show P(O > siX+) for all total scores in this case and for s = -3 ,  - 2  . . . . .  3. 

Because the 2p(i)-PCM is a special case of the 2p(ij)-PCM, Example 3 also shows that 
the 2p(ij)-PCM does not imply SOL byX+. A similar counterexample can be found for the 
2p(j)-PCM. This means that the PCM is not only the least restrictive model that has MLR 
of X+ (Hemker, et al. 1996), but also the least restrictive of the models we have considered 
that has SOL by X+. 

This study thus shows that the PCM is the least restrictive model considered in this 
study that allows the ordering of subjects by means of their total score in all cases. Note, 
however, that the counterexamples that show that the less restrictive models do not imply 
SOL by X+ are based on extreme parameter vectors. It is obvious that many examples with 
less extreme and, therefore, more practical parameter vectors, can be found that show that 
the less restrictive models can have SOL by X+. Since the property of SOL by X+ depends 
on the parameter setups for these less restrictive models, it is incumbent on the user of 
polytomous IRT models to check that SOL by X+ holds in the fitted model before assert- 
ing that higher total scores correspond to higher expected 0 values, using total score cutoffs 
for mastery decisions, etcetera. 

Discussion 

Nonparametric graded response models (np-GRM) provide a natural, large nonpara- 
metric class of IRT models for polytomous items with ordered response categories. This 
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TABLE 1 

Values of P(0 > s IX+ = x+) for Example 2 

X÷ s -3 -2 -1 0 1 2 3 

0 .994 .920 .590 .165 .015 .000 .000 

1 .999 .982 .808 .342 .046 .002 .000 

2 1.000 .993 .900 .536 .131 .010 .000 

3 1.000 .989 .865 .464 .102 .008 .000 

4 1.000 .998 .953 .653 .188 .017 .000 

5 1.000 1.000 .984 .829 .397 .073 .004 

6 1.000 1.000 .993 .911 .594 .195 .026 

Note: boldface indicates where P(0 > siX+ = x+) decreases in X.. Calculations were 

accurate up to 40 decimals. 

class is characterized by the three assumptions of latent trait UD, LI, and monotonicity of 
the ISRFs, P(Xi >- xlO). It has been considered under many names, including "strictly 
unidimensional IRT models" (Stout, 1990; also Junker, 1991, 1993), the "Mokken model 
of monotone homogeneity for polytomous items" (Hemker, Sijtsma, & Molenaar, 1997; 
Molenaar, 1982, 1997), and "monotone unidimensional latent variable models" (Ellis & 
Junker, 1995; Holland & Rosenbaum, 1986; Junker & Ellis, 1995); We have shown that all 
commonly-considered parametric and nonparametric models for polytomous items with 
ordered response categories, including the RSM of Andrich (1978), one-parameter, two- 
parameter, and nonparametric PCMs (Masters, 1982; Muraki, 1992; Hemker, et al., 1996), 
as well as one- and two-parameter GRMs (Samejima, 1969; Hemker, Sijtsma, Molenaar, 
& Junker, 1996), can be organized into a hierarchical taxonomy within the class of np- 
GRMs (Figure 1). All models in our taxonomy enjoy the property of SOM of X+, that is, 
stochastic ordering of the total score X+ by the latent trait 0; this follows directly from 
monotonicity of the ISRFs (Theorem 1). 

The class of np-PCMs replaces the assumption of monotonicity of P(Xi >- xlO) with 
the assumption of monotonicity of P(X/ = xlO; Xi = x or x - 1). This is equivalent to a 
monotone likelihood ratio property for individual items (Proposition), from which it fol- 
lows that the np-PCM is a special case of the np-GRM (Theorem 2). Interestingly, all of 
the parametric models that we considered, including parametric PCMs and even paramet- 
ric GRMs, can be shown to be special cases of the np-PCM (Theorem 3). Counterexamples 
show that none of these classes are equivalent. Other relationships among these models 
can be seen in Figure 1. 

For inference on 0, a more useful stochastic ordering property is SOL by X+: sto- 
chastic ordering of 0 by the total score X+. Of the models we considered, only the PCM 
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FIGURE 3. 
P(O > siX+) for all total scores in this case and for s = -3, -2, . . . ,  3, in case of two items satisfying the 
2p(i)-PCM, each with three answer categories with the following parameter vector: cq = 2 and a2 = .5, 811 = 812 
= 821 = 0, and ~22 = -2 log 98. The latent trait 0 has a standard normal distribution. 

and models that are special cases of this model, such as the RSM, enjoy SOL by X+. 
Counterexamples show that in all the other parametric models we considered, as well as 
in the two nonparametric classes of np-PCM and np-GRM, SOL by X+ does not hold in 
all cases. However, many examples can be found that suggest that SOL by X+ holds for 
many realistic sets of parameter values in the parametric models we considered. Thus it is 
incumbent on the user of parametric polytomous IRT models to check that SOL by X+ 
holds in the fitted :model before asserting that higher total scores correspond to higher 
expected 0 values, using total score cutoffs for mastery decisions, etcetera. Two next steps 
in future research may be a general characterization of SOL models, and the search for 
methods for investigating the validity of SOL in empirical research. 

Appendix 

Another  proof of Theorem 1 can be given. This direct proof uses (8) to show that 
SOM of the total score X+ holds in the np-GRM, which is the same as showing that the 
derivative to 0 of P(X+ >- x+lO) is nonnegative (see also Equation (SOM)) if the derivative 
to 0 of P ( X  i >- xlO ) is nonnegative. The full proof is a lengthy combinatorial argument. 
However the sketch we present here is relatively simple. The idea of the full proof can be 
gained from the sketch and the example which follows. A complete proof for the general 
case can be obtained on request from the first author. 

The following is an outline of the proof: It has to be shown that the first derivative of 
the probability P(X+ >- x+[0) with respect to 0 is nonnegative for each value x+. Deriv- 
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TABLE 2 

Values of P(0 > s I X+ = x+) for Example 3 

X÷ s - 3  - 2  -1  0 1 2 3 

0 .975 .801 .357 .031 .000 .000 .000 

1 .994 .920 .595 .121 .004 .000 .000 

2 .997 .950 .647 .120 .003 .000 .000 

3 1.000 .999 .954 .509 .052 .002 .000 

4 1.000 1.000 .998 .889 .369 .056 .003 

Note: boldface indicates where P(0 > s ] X +  = x+) decreases in X+. Calculations were 

accurate up to 40 decimals. 

atives are denoted by means of a prime. The minimum and maximum values of X+ will be 
considered first. For X+ = 0, the probability P(X+ >- 0[0) = 1; therefore its derivative 
equals 0, which does not contradict nondecreasingness of P(X+ >- x+lO ) in 0. For  X+ = 
mL, the probability 

P(X+ >- mtlO) = P(X+ = mL[O) 

L 

= I~ e (x i  = m]O) 
i=1 

L 

= I~ P(X+ ~ mlO). 
i = l  

Each probability in the last product is nondecreasing in 0 by (8). 
For 0 < X+ < mL, it can be checked that the derivative of P(X+ -> x+lO ) can always 

be expressed as a sum of positive products where each product consists of one derivative 
P'(Xj >_ xj[O) which is nonnegative by (8), and L - 1 probabilities of the form W/x, i 4: j: 

L 

P'(Xj >-xlO) 1--[ ~rix. (10) 

The following line of reasoning clarifies how terms as in (10) are obtained. First, note that 

mL 

P(X+ >-x+ 10) = ~] P(X+ = tlo). (11) 
t=x+ 

Taking the first derivative means that each probability on the right has to be differentiated 
with respect to 0. Before differentiating note that each probability P(X+ = t[O) can be 
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written as the sum of products of the L probabilities of individual item scores that add up 
to X+ = t. A product that is based on  such an array is an element indexed a t from the set 
A t that contains all these products. Thus we can write 

P(X+ = t l O ) =  E I~  1rixl " (12) 
at ~--,4t i=1 J at 

Combining (11) and (12) thus yields 

P(X+ > - x + [ 0 ) =  Z Z 7rix (13) 
t=x+ ate-At i=1 al 

Taking the derivative of such a sum of products is done by means of the product rule which 
is independently applied to each of the products. Let L = 2 and m = 2, so that Xi = O, 
1, 2; and X+ = 0, 1, 2, 3, 4. Then, as an example, 

P(X+ = 310) = "/'/'1171"22 + "ff127'r21, 

with 

P'(X+ = 310) = [¢r~l'tr22 + 7rnTr~2 ] + [¢r'1zlr21 + ~rlaTr~l]. (14) 

The product rule for differentiation has to be applied to each probability on the right in 
(13). In our example, the total sequence of products that is obtained in this way can be 
rearranged and factored such that only a sum of positive products of the form 

P'(Xj -- xl0)zr/x (15) 

is obtained (see (12)) and no terms are left. It is crucial to note that all the derivatives of 
probabilities such as in (14) are used to form the derivative such as in (10) and (15). Note, 
in particular, that to do this successfully it has to be recognized that 

e ' ( s i  > ~ x [ O )  = [7rix + " ' "  + q'gim] t 

= ~.[~ + . . .  + , "Trim. 

This completes the outline of the proof. [ ]  

A full example for L = 2 and m --- 2 

For the special case that L = 2 and m = 2 we show explicitly that i f P ' ( X  i >- xlO ) >- 
0 for all i andx ,  then P'(X+ >- x+lO) >- 0 for al lx+.  Note that Xi = 0, 1, 2; a n d X +  = 
O, 1, 2, 3, 4. Let ¢ti~ = P(Xi = xlO) for notational convenience. 

P'(X+ >- 410) = P'(X+ --= 410) 
I t 

= 71"12"/1"22 "4= q'/'22"/I'12 

= P'(X1 >-- 2[O)Tr2z + P'(X2 ~ 210)7r12 

- 0  

P'(X+ >-- 310) = P'(X+ = 310) + P'(X+ >- 410) 
! t t 

= ,n-]l , / r22 + qr~2"/r/'ll + 'Tgl2"iT21 + "/T~I 7'/'12 + "71"127F22 + 7'/'22"/r12. 

Grouping the terms with the same -rr/x leads to 

P' (X ,  >- 1[o)~22 + P'(X2 >- l[O)'n'n + e t ( x  1 ~ 210)'rr2, + P'(X2 >>- 210)'n'n -> 0 
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Analogously,  

e ' (x+  >_ 21o) = 

>_ 

P ' ( X +  >- l l 0 )  = 

= 

P ' ( X +  >- o lo)  = 

P ' ( X +  = 21o) + P ' ( X +  >- 31o) 

"/T'IOTf22 -{- 71"~23T10 + "/'i'll'T/'21 + "/'/'~1"/'/'11 + "/T~2"/T20 

+ ~r~oTr,2 + P ' ( X +  >- 310) 

P ' ( X ,  >- 0]0)'rr22 + P ' ( X 2  >- 0]0)'rr,2 + P ' ( X ,  >- l10)w2, 

+ e ' (xz  >- 11o)~1, + e ' (x ,  >_ 21o)~-2o + e ' (xz  >- 21o)~io 

0 

e ' ( x +  = 110) + e ' ( x +  >_ 21o) 

"rr~o'rr21 + ~'~1Wlo + 'rrhrr2o + cr;o'n'11 +P' (X+ >-210) 

P'(X~ >- OlO)zr22 + P' (X2  >- 010)7r,2 + e ' (x ,  > OlO)*rz, 

+ P ' ( X 2  >- 010) ' rq ,  + n ' ( x l  > ll0)'rr20 + P ' ( X 2  >- l l0 ) ' r r lo  

0 

[1 ] '  = 0 
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