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Fitting Log-Multiplicative Association Models

J Dessens, W Jansen & R Luijkx
Department of Sociology
University of Utrecht
Heidelberglaan 2
POBox80.108

3508 TC Utrecht

The Netherlands

Abstract

This paper presents a serics of GLIM macros for the fitting of log-multiplicative models for
contingency tables. [t is both a comment on and an alternative to the routine published by Breen,
the latter being too limited.

Introduction

In a previous GLIM Newsletter, [1] presented a GLIM routine for fitting Goodman’'s log-
multiplicative models.

Atabout the same time we presented a comparable series of GLIM macros elsewhere [2].
Comparing the two procedures reveals that Breen’s routine is more advanced than ours in one

aspect, but covers a limited group of models. We developed macros to fit not only the row and
column effects model I1, as Breen did, but also macros to fit the equal row and column effects model

I
logFl.j =A+tAt >‘j + ﬁu‘.vj withu; = v, )

i

We also wrote macros to standardise the (row and column) scores (zero mean and standard
deviation of one).
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We have tried to rewrite portions of our GL.IM routine, so that they could be simply added to
Breen's. We have to conclude that a straightforward extension of his routine to the equal row and
column effects model II is not possible. There is a simple reason: in order to fit the equal row and
column effects model 11 it is necessary to define columns of the design matrix, that are the sums of
F+COLS and S«ROWS (Breen’s notation) [1]. A statement suchas $CALC HOMS = F+«COLS + S«ROWS
gives HOMS as a variate, not as a factor, and we do not see how an adequate factorisation can be
afforded. This can be illustrated by the following pieces of the design matrix fora 3 X 3table:

Row and Column Effects Equal Row and Column Effects
Model II: Model IT(U, =V, ):
v, o 0 v 00 20, 0 0

v, 0 0 0 ¥ 0 u U o0

U; 0 0 0 0 ¥ u, 0 U

0 U,0 v,0 0 u, U, 0

o u,0 0 V0 0 2U, 0

0 U;0 0 0 V 0o U, U,

0 0 U V0 0 u o0 U

0 0 U,0 V0 0o U, U

0 0 U;0 0 VW, 0 0 2U,

= F«COLS = S«ROWS # F«COLS + S«ROWS

We will present our original macros to fit log-multiplicative models in GLIM. In our macros the
columns of the design matrix are calculated one by one. So we can avoid the above mentioned
problem. Besides, our routine yields standardised category scores and the correct number of
degrees of freedom.

For the general outline of the models we refer to [1,3]. Here we merely point to some fields of
application, before the macros.

GLIM Estimation for K IxJ Tables

Clogg [4] extends Goodman’s models [5,6,7,8] to K-group analysis of I«]J tables. Clogg’s program
ANOASC [9] is designed for this purpose. We will shortly point out how to proceed using our
GLIM macros. We show for the sake of exposition how to fit the ‘homogeneous’ row and column
effects. Homogeneous means here: homogeneous (i.e. equal) over k groups. This model is called
group analysis because it assumes the same row and column category scores for each group:

ulk = ui, i= 1’2""|I; k = 1,2,...,K (2a)

ij = Vj_ _]= 1,2,...,J; k= 1,2,...,K (2b)
and the *homogeneous’ equal row and column effects with the additional restriction:

u. = v. i = 1,2,...,1; k = 1,2,...,K (2C)

1. 1.
To fit these models the only change is in the baseline model which must include conditional
independence of the variables X and Y given a group variable, say C. This can be obtained by
replacing the textstring X + YinmacroMby: X«C + Y«C,after having readinthedata forC.

Clogg [4] also presents the heterogeneous versions of the two models mentioned above. These can
be fitted by estimating the model for each group apart and summing the test statistics for a
simultaneous test.
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Models with Diagonal Effects
In the macros we show how touse GLIM in estimating the ‘pure’ Model 1. Now we turn to the case,
where we want to fit additional parameters, for example diagonal parameters. This feature is very
desirable in the analysis of mobility tables, for example with the modelling of occupational
inheritance. For this purpose the baseline model in macro M has to be changed again.
Let us look at an example of a 5%5 table where we want to include diagonal parameters. First we
define the effects for the diagonal cells in the following way:

$CAL DIA = %IF(%EQ(X,Y).X.B) : DIA = DIA + 1 $FACTOR DIA 6 (3)

andtheninclude DIA inthe macroM: X + Y + DIA.
In this model a parameter is included for each diagonal cell.

if instead only one additional density level for the diagonal is required a parameter DIAG in the
baseline model (macro M) has to be included. DIAG is defined by:

$CAL DIAG = %IF(%EQ(X.Y),1,8) (4)
which leads to the baseline model in the macroM: X + Y + DIAG.

Numerous other possibilities are left to the imagination of the reader.
Macros for Fitting Log-multiplicative Models (5+5 Table)t

Here follows a listing of our macros for fitting log-multiplicative models on the well-known British
mobility table [10]. For another analysis of the 55 version of this table see also [11].

To use the routine, the following input is necessary:
$NACRO M <CMODEL>> S$ENDMACS #IT1 or #IT2 (#ST1 or #ST2)

In <<MODEL> you have to define your baseline model; e.g. the independence model X + Y;or the
inheritance model X + Y + DIA. Use X for the row variable, Y for the column variable. Do not use
any other one-character variable names. Use #1171 and #5T1 for the RC Il model resp. #172 and
#5712 for the equal RC 11 model.

SUNITS 25!
$CAL %R = 5 : %C = 5!

$CAL X = %GL(%R.%C) : Y = XGL(%C.1)!
$FACTOR X %R Y %C!

$VARIATE %R R : %C C!

$MACRO INIT!
$CAL R(X) = X : C(Y) = V!

$OUTPUT!

SFIT #M!

$OUTPUT 5!

$PRINT : "BASELINE MODEL [ M '] WITH DEVIANCE ° %DV ' AND DF ° %DF :I
$DEL PER PEC!

$CAL %A = %PL + %R $VAR %A PER!

T Actually we wrote a Fortran(77) program that generates the series of GLIM — macros for
interactive use. This program CRM (CReate Macros) is available from the authors (in print or on
[BM cards). In CRM the only question to be answered is that of the number of rows and columns
of the table; CRM gives as output the macros INIT, COL, ROW, IT1, $T1 and H1 for non-square
tables and the same set plus HOM, 172, $T2 and H2 for square tables.
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$CAL %A = %PL + %C $VAR %A PEC!
$CAL PER = 8 : PEC = 8 : %P = %PL!
$CAL %A = 1 : %I =2 : % = .01
SENDMACS!

$YVAR FSERR P$DATA FSREAD!
50 45 8 18 8
28 174 84 154 55
11 78 118 223 86
14 150 185 714 447
B 42 72 320 4

SMACRO COL!
$CAL C1 = XIF(%EQ(Y,1),R(X).0)!
$CAL C2 = XIF(%EQ(Y,2),R(X).0)!
$CAL C3 = XIF(%EQ(Y.3).R(X).0)!
SCAL C4 = %IF(%EQ(Y.4).R(X).8)!
$CAL C5 = %IF(%EQ(Y.5).R(X).8)!

$FIT #M + C1 + C2 + C3 + C4 + C51
$EXTRACCT %PE!
$CAL C(Y) = %PE(%P+Y)!

SENOMACS !

$MACRO ROW!

$CAL R1 = %IF(%EQ(X,1).C(Y).@)!
$CAL R2 = XIF(%EQ(X.2).C(Y).8)!
$CAL R3 = %IF(XEQ(X,3).C(Y).0)!
$CAL R4 = %IF(XEQ(X.4).C(Y).0)!
$CAL R5 = XIF(XEQ(X.5).C(Y).8)!

$FIT #M + R1 + R2 + R3 + R4 + R5!
SEXTRACT %PE!
$CAL R(X) = %PE(%P+X)!

SENDMACS !
SMACRO HOM!

§CAL C1 = R(Y)s(XEQ(X, 1)) +
$CAL C2 = R(Y)»(%EQ(X.2)) +
SCAL €3 = R(Y)«(%EQ(X,3)) +
$CAL C4 = R(Y)=(%EQ(X.4)) +
$CAL C5 = R(Y)«(%EQ(X,5)) +

$FIT #M + C1 + C2 + C3 + C4 + C5!
$EXTRACT %PE!

$CAL C(Y) = XPE(%P+Y)!

$CAL R = (R+C)/2 : C = RI
SENDNACS !

SMACRO IT1!
$USE INITH
$PRINT . 'CONVERGENCE HISTORY:’

Glim Newsletter No. 11

R(X) s (XEQ(Y,1))!
R(X)s(%EQ(Y.2))!
R(X)s (XEQ(Y.3))!
R(X)»(XEQ(Y,4))!
R(X)s(%EQ(Y,5))!

"ITERATION DEVIANCE PEARSON’’S’!
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SWHILE %A H1I
$CAL R(X) = PER(X*+%P) : C(Y) = PEC(Y+XP)!

SFIT #M + R1 + R2 + R3 + R4 + RS + C1 + C2 + C3 + C4 + C5)
$PRINT ' READY' :$!

$ENDMACS!

$MACRO ST1!

$PRINT : ' NORMALISED SCALE VALUES:' !
$CAL %A = %CU(R)/%R : R = R - %Al

$CAL %A = XCU(C)/%C . C = C - %A!
$CAL %K = %SQRT(%CU(R++2)) : R = R/XK!

$PRINT ' ROW VARIABLE' : $LOOK R!

$CAL %K = XSQRT(XCU(Cx+2)) : C = C/%K!

$PRINT * COLUMN VARIABLE' . $LOOK C!

$CALC RC = R(X)sC(Y)!

$OUTPUT $FIT #M + RC $EXTRACT XPE $OUTPUT 5!

$PRINT . ' U(STAR):' $CALC %PE(%PL)$!

$PRINT ' STANDARDISED SCALE VALUES:'!

$PRINT * ROW VARIABLE' : $CAL R = R«(%SQRT(%R)) $LOOK R!
$PRINT * COLUMN VARIABLE' : $CAL C = C+(%SQRT(%C)) $LOOK C!
$CALC RC = R(X)sC(Y)!

$OUTPUT $FIT #M + RC $EXTRACT %PE $OUTPUT 5!

$PRINT : ' U(STAR):' $CALC %PE(%PL)$!

$PRINT ' READY' :$!

$ENDMACS!

$MACRO H1!

$CAL %I = %I + 11

$OUTPUT!

$USE ROW!

$CAL PER = (PER-%PE)s+2 : %B = XCU(PER) : PER = %PE!

$USE COL!
$CAL PEC = (PEC-%PE)ss2 : %A
$CAL %A = XGE((%B+%A)/%P.%K)!
$OUTPUT 51

$PRINT %I XDV XX2!

SENDKACS !

%CU(PEC) : PEC = %PE!

$MACRO 1T2!
$USE INIT!

$PRINT : 'CONVERGENCE HISTORY' . 'ITERATION DEVIANCE PEARSON''S'|
SWHILE %A H2!

$CAL R(X) = PER(X+%P)!

$PRINT . 'DEGREES OF FREEDOM' %OF :!

$PRINT ' READY' :§!

$ENDMACS!

$MACRO ST2!
$CAL %A = %CU(R)/%R : XK = XSQRT(XCU((R-%A)s+2))!
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SCAL R = R - %A : R = R/XK!
$PRINT ' NORMALISED SCALE VALUES:' $LOOK R!
$CALC RC = R(X)+R(Y)!

$OUTPUT $FIT #M + RC $EXTRACT %PE $OUTPUT 5!
$PRINT : ' U(STAR):' $CALC %PE(%PL)S$!

SPRINT ' STANDARDISED SCALE VALUES:'!

$CAL R = R«(%SQRT(%R)) $LOOK R!

$CALC RC = R(X)#R(Y)!

$OUTPUT $FIT #M + RC $EXTRACT %PE $OUTPUT 5!

$PRINT : " U(STAR):' $CALC %PE(%PL)$!
$PRINT ' READY' :$!
SENDMACS!

$MACRO H2!
SCAL %I = %I + 1

$OUTPUT!

$USE HOM!

$OUTPUT 5!

$PRINT %I %DV %X2!

$CAL PER = (PER-%PE)+s2 : %A = %CU(PER) : PER = %PE!
$CAL %A = %GE(%A/%P,%K)$!

SENDMACS !

$PRINT ' READY' :$!

$RETURN
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