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7 Loglinear Modelling with
Latent Variables:
the case of mobility

tables™®
R. Luijkx

In this chapter mobility tables of Denmark and Britain will be
reanalysed. Following Clogg’s earlier work (Clogg, 1981a, 198ib), a
loglinear analysis with latent variables will be presented. The meth-
odology is embedded in the latent structure analysis, developed by
Paul F. Lazarsfeld (Lazarsfeld, 1950a, 1950b, 1954, 1959; Lazarsfeld
and Henry, 1968). Besides Lazarsfeld’s and Clogg’s work, papers by
Leo Goodman (1974a, 1974b), Jacques Hagenaars (1976, 1978),
Clifford Clogg (1980, 1981a, 1981b) and my own unpublished work
(Luijkx, 1983) are the basis of this chapter.

 The first part is an exposition of loglinear analysis with latent
variables. The latent structure analysis has a clear analogy with factor
analysis models for continuous data (Green, 1952). It is a generalisa-
tion of the elaboration methodology (Lazarsfeld, 1955; Rosenberg,
1968). I shall restrict the exposition to a two-way contingency table
with one latent variable. Because I am dealing with social mobility this
is a mobility table. In the past there were problems in estimating the
model parameters. Recently developed programs like MLLSA (Clogg,
1977) and LCAG (Hagenaars and van der Walle, 1983) make it
possible to compute maximum-likelihood estimates for latent class
models in a relatively easy way. LCAG shall be introduced to the
reader.

In the second part of this chapter quasi-latent structure models-for
mobility tables will be presented. Clogg (1981b) points out that latent
class models describe the. mobility data fairly well and that the
parameters of the model are suitable for comparing mobility data of
different countries.

The methodology presented by Clogg (1981b) will be extended.’
_ Instead of analysing both mobility tables separately, I shall analyse a
three-way table including ‘Country’” as a variable. This yields an
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structure model across countries. Six models will be presented. These
models differ in the equality constraints imposed upon the parame-

ters. The first Model assumes the same model for both countries, but
without any constraints on the parameters. There is complete hetero-
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Goodman (1974a 1974b) and Shelby Haberman (1974) who defined
algorithms to compute the maximum likelihood estimates (MLEs) of

parameters to be equal for both countries (complete homogeneity).
The other four models assume partial homogeneity. Goodness-of-fit
statistics for the models will be presented.

7.1 LOGLINEAR MODELLING WITH LATENT VARIABLES

In the elaboration technique the observed relationship among an
origin- (O) and a destination- (D) variable is controlled for a third
variable (X). Two types of elaboration can be distinguished. In the !
M(arginal)-type the association among the variables O and D is the l
same at each level of the (test) variable X (OD XX, = ODXX,), |
but unequal to the original association (ODXX # OD). If ODXX |
equals 0 it is called a ‘pure type’. In the P(artial)-type the association l

_ among the variables O and D is not the same’ at the levels of X |

' (ODXX, # ODXX,). Within the M-type one distinguishes the MA- '
type, where X is causally prior to O and D and the MI-type where X is

~ an intervening variable between O and D. In the first case X explains
the association among O and D; in the sécond case it interprets the

i association.

In the latent class analysrs the test variable is not observed: it is a

, latent variable. In the classical applications the pure MA-type is

| assumed; the latent variable accounts for the observed relationship
among the two variables. Schematically:

Fzgure 7 1 Baslc Latent Class model
[—-- i

AN

Lazarsfeld never succeeded in designing an adequatestatistical esti-
mation and testing procedure for latent structure models. He and
~ others used determinantal equations for estimation.? It was Leo

the model parameters Goodman s dlgorlthm wrll be dlscussed

The following notatron will be used:

n the model parameters
& the maximum-likelihood estimates of the model parame-
ters

the observed sample probabilities
O, D, X the superscripts for the origin- (Q), destination- (1J) and
latent-variable (X)

i jt the subscripts for, respectively, the classes of the origin-,

destination- and latent- varlable

. Conditional probabrlmes are denoted by bars above the superscripts.
' For example: &t

 denotes the conditional probability that somebody
is in class i with respect to the origin-variable, given that this person is
in class ¢ with respect to the latent variable X. The conditional

- variable is the unbarred variable. Two assumptions are central in the
* latent class analysis:

- ® homogeneity: given a class of the latent variable there is a certain

probability for an individual to belong to a class i of the manifest
variables. These probabilities are equal for all individuals in a class
of a latent-variable. (Individuals can be classified into T mutually
exclusive and exhaustive latent classes.)

® local independence: given the latent-variable the manifest vari-
ables are conditionally independent.

7.1.1 Unrestricted latent class models

In this example a single latent-variable X is assumed. The observable
proportions nY” are obtained by collapsing over the levels of latent-

variable X. X is only indirectly observed in the table OD. The model
is:

oD . E: opx
T = tnijt

(7.1)

" In Equatron (7.1) nP7X gives the probability of an individual being
. incell (i, j, t) of the ODX-table.
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The law of conditional probability states that O and D are indepen-
dent in Equation (2). It is X that explains the relationship among O
and D. The specification of the local independence assumption is:

— X DX
jT;)/'IJ;‘{ J'C i Jtjl (72)

with the (trivial) restrictions:?

3= 3 =S = o3
Substituting Equation (7. 2) into Equation (7.1) gives:

op_z,mx 2 (7.4)

R The mamfest probablhtles nyP are the sum of the product of the
probability of the latent classses and the conditional probabilities.
gives the dlbtl‘lbuthn ot the classes indirectly observed in the mobility

. table; 7" and xnf¥ describe the distributions of the origin- and

| destmatlon variables within each class.

There are several computer programs to compute MLEs of the
parameters of latent class models. The first general computer prog-
ram to my knowledge is Clogg’s program MLLSA (Maximum Likeli-
hood Latent Structure Analysis, Clogg, 1977). This program uses
. Goodman’s method of iterative proportional scaling of the estimated
! parameters (Goodman, 1974b). Haberman’s program LAT (Haber-
man, 1979) uses the scoring algorithm.* The first algorithm is also

used in LCAG (Latent Class Analysis Goodman: Hagenaars and ‘van
_der Walle, 1983).°

Haberman (1974, pp. 912-15) showed that the maximum-likeli-
hood equations apply for latent structure models in which all the
frequency counts are replaced by their estimated expected values
given the observed marginals tables.

The program LCAG can be used to estimate parameters of any
identifiable hierarchical loglinear model with latent-variables (and
also a number of non-hierarchical models). It has some extensions on
Goodman’s procedure: (1) it is possible to define a hierarchical
loglinear model for the relation among latent-variables and (2) one
can include latent-variables in models, whose parameters must be
estimated according'to Goodman’s modified-path-analysis approach

'
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(Hagernaars and van der Walle, 1983, pp. 2-3). Both features shall
be used.®
The estimation procedure of the program is based on Goodman
(1974b, p. 217, equations 9 to 13b; Hagenaars, 1976):
step 1: start values (initial trial values) for the vector & of the
parameter estimates (&, &), &7 ) are determined (for
example by a random generator) 4

step 2: given the chosen parameter values the probabilities #77%*
are computed:
ROPY = i /OF APY (7-5>

step 3: the probabllltles of the cells in the observed table are com-
puted

7= 3 79

step 4: the conditional probabilities of the observed table given each
level of X are computed:
Jt,",”," = ‘,","," I#7P )

step 5: new estlmates of the parameter values are computed. (p{?
are the observed sample probabilities!)

= oD "ODX
Z,P (7.8)
w7 = [2 PP RIVAL (7.9a)
= [2 POy AOPX /i (7.9b)

After step 5 a next cycle starts at step 2, etc.® A latent class is deleted
if the estimate tends to zero. This procedure goes on until a
convergence-point is reached. There are stop criteria: a maximum
number of iterations or a maximum difference in the test-statistics
between an iteration and the previous one. After each iteration the
parameter are rearranged according to defined retrictions (see the

next paragraph) and the sum of the probabilities is rescaled to exactly
one.®
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As test-statistics the Loglikelihood Ratio (L) and the Pearson’s
chi-square (x°) are computed with the results of step 3:"

L =2n 2 p()[) *1n (pun/*()l) ’ (710d)

¥ =n 2 (peP — REPYIRCP (7.10b)
lﬂ;(;-r—‘tlle unrestnc.tgd m(;ael with all parameté;s |dent1ﬁed “the num-
ber of degrees of freedom for the chi-square statistics is given in the
following formula:

df =l —(I+J—-1)*T (7.11)

It is possible that the obtained solution does not converge on the
global maximum, but on a terminal one."' The best guarantee to
discover which maximum is the maximum-likelihood solution is to
repeat the whole procedure with (slightly) different start values. One
recognises the maximum-likelihood solution by the lowest value of
the test-statistics. ‘2

Not every model will yield identifiable parameters. This means that
more than one set of parameters can produce the expected frequen-
cies. The estimates of the latent (conditional) probabilities are not
uniquely determined by the expected manifest probabilities. One
recognises a model with unidentifiable parameters by the fact that
different start values give solutions with different parumeter esti-
‘mates, but with an identical test-statistic. It is necessary to impose
restrictions upon the parameters to identify the model. But one has
to be careful, because some restrictions can make the model uniden-
tifiable (see Goodman, 1974b, pp. 2256, and the next paragraph). It
is better to determine the identifiability of a model beforehand.
Goodman (1974b) has presented several problems of identifiability
and suggestions to identify models. The parameters of a model are
locally identifiable if the transformation defined in Equation (7.2) is
non-singular.'? Both LCAG and MLLSA have a test on (local) identifia-
bility.

7.1.2 Restricted latent class models

I pointed out that it is sometimes necessary to assume certain latent
(conditional) probabilitics as known to make the parameter estimates

R. Luijkx 137
of the model identifiable. There may be other reasons (for examplé.
theoretical ones) 1o include restrictions.

It is possible to define restrictions of the following kind:

® Assuming known valués of the latent class probabilities ;. for

example i = 0.25 (must be greater than 0 and smalier than 1)

. Assumlng known values of the conditional probabilities n and
nPY , for example, % = 0.20

. Equdllty restrictions on the latent class probabilities, for exam-
ple, nf = m;.

. Equallty restrictions on the conditional probabllmes for exam-
ple, n2¥ = 7%, nf¥ = =¥, n¢¥ = nPY. or any other com-
bination.

To determine if the parameter estimates of the restricted latent
structure are locally identifiable, a modified form of thc¢ evaluation
described above is used."

If a restricted model is identified, then the degrees of freedom
associated with the model are equal to the number of degrees of
freedom for the unrestricted model if that is identified plus the
number of non-redundant restrictions imposed upon the model:

df=1]—(1+J—1)*T+d (71“)
where d is the number of non-redundant restrictions

As already mentioned above one can also impose restrictions which
makes parameter estimates unidentifiable. Censider the following
restrictions:

X =P i=1,...,1) (7.13a)

nr=nlr(i=1,....J) (7.13b)

If these restrictions are imposed upon the parameters of the model it
is impossible to distinguish between the latent classes / and 2. One
must collapse the latent classes / and 2, unless one imposes restric-
tions on 7§ or ny.'> Also, if one only makes the assumptions of
Equation (7.13b) the parameter estimates are not identifiable (uniess

one imposes restrictions upon xty, 3, 7/ or x5 ). 10
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7.2 THE ANALYSIS OF MOBILITY TABLES

Clogg (1981a, 1981b) presents a latent class analysis of mobility
tables. He reanalyses two classics among the mobility tables,
the British table of Glass (Glass, 1954) and the Danish table of
Svalastoga (Svalastoga. 1959). I shall use the same data here. The
raw counts are presented in Table 7.1."

Table 7.1 Intergenerational social mobility data of Denmark and of
England and Wales

Son (Denmark) Son (England and Wales)

1 2 3 4 5 1 2 3 4 3
F1]18 17 16 4 2 571 50 45 8 18 8| 129
a 2 |24 105 109 59 21 318| 28 174 84 154 55| 495
r 3123 84 289 217 95| 708 11 78 110 223 96| 518
h 4 8 49 175 348 198 | 778| 14 150 185 714 4471510
e 5 6 8 69 201 246} 530 0 42 72 320 411 845
r

79 263 658 829 562 (2391|103 489 459 1429 1017|3497

The conceptual framework of Clogg is based on the model of quasi-
independence (Goodman, 1969). Clogg points out that Goodman’s
quasi-independence model and Hauser’s level model (Hauser, 1978,
1979a, 1979b) can, in certain cases, be expressed as (quasi-)latent
structure models. I will show to express Goodman’s quasi- indepen-
dence model as latent structure model.

Clogg considers the latent variable as an intervening variable:

Figure 7.2 Latent class model with an intervening variable.
00— X ———— D

In this way he defines an Mi-type (see above) and he violates
Lazarsfeld’s rule of defining the latent structure as an MA-type,
Theoretically. this specification yields the impression that the latent-
variable is explained by the origin-variable and, in its turn, explains
the destination-variable. This shows a resemblance with models
presented by Boudon (1973). Boudon does not include latent vari-
ables in his models, but he defines the variable ‘level of education’ as
an intervening-variable.
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Clogg labels the latent variable X as a ‘class’ variable and the
origin- and destination-variable O and D as ‘status’ variables. The
values (classes) of X are to be seen as mixtures of the values
(statuses) of O and D. Certain sets of statuses serve to define these
classes in probabilistic terms. The pattern of mobility in the OD-table
can serve to define classes, within which the structure of mobility
takes on a special character, e.g. a class of persons is defined as a
group, which possesses random mobility chances with respect to the
statuses which together constitute the particular class (Clogg, 1981b,
p. 838). According to Clogg O and X can be interpreted as (partly)
coexistent, or X can be seen as consequent of O, but ny¥ and il
cannot be interpreted as simple ‘recruitment probabilities’ as is
normally the case in latent structure models. Clogg defends his view
by pointing at the isomorphism he .notifies between the latent-
variable and Max Weber’'s class concept (Clogg, 198la,
p. 243, and 1981b, p. 838). But if there is this resemblance this is not
a justification (and cannot be one) to define class as an intervening
variable.'® I think Weber’s view yields a latent class model in which
class causally preceeds both the origin and the destination as in basic
latent class model (Figure 7.1).

" For the reviewing of the technical aspects of latent class analysis, it
is usually not important whether X is defined as either Jogically
preceding or intervening with respect to the O and D variables. The
important point is that at least certain classes of O and D define
(probabilistically) the classes of X, in which O and D are mutually
independent. This is usually not the case if X is a manifest variable.
Because this chapter focuses on methodological concepts I shall skip
further discussion of Clogg’s specification of the relationship among
X, O and D and of his theoretical interpretation of the class variable.

7.3 THE TABLES CONSIDERED SEPARATELY

As a baseline model Clogg presents the independence model (perfect |
mobility), which can be written as follows:

oD ox /)X

n’P = maff a; (7.14)
The X variable has only one class and 7} is 1 so Equation (7.14)
reduces to: :

oD

nfP=n’n (7.15)
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| probabilities of the destination-variable (as in Equation 7.16b).
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In this case there is no latent structure. The mobility would be

random, only depending on the marginal distribution of O and D.
Next Clogg assumes two latent classes. The mobility is random

within each of the two latent classes, depending only on the marginal

distributions 7% and 7P~ . In this case there is a ‘class barrier’. This |
i jt !

model yields unidentifiable parameters.'” Restrictions have to be

imposed upon the parameters. Clogg proposes a priori and theoreti-

cally founded restrictions. His proposal is to-assume some conditional
probabilities to be zero. For one class of latent movers the first and
for the other class the last status of the origin-variable is assumed to
be zero. This states that one latent class of ‘movers’ cannot consist of
members of the first origin status group and another cannot consist of
the last (fifth) origin status group. These restrictions are given in
(7.16a):%°

X =gl =0 (7.16a) \
xPX = xPX0

It seems logical to impose the same restrictions ﬁpon the conditional

Clogg does not do so on trivial mathematical grounds: because if the
same restrictions are defined for both the origin- and destination-
variable this yields expected frequencies of zero.

Figure 7.3 Diagrams of the turnover tables (0 is a probability of 0 and |
1s a probability larger than 0)

00000 11110 11110
01111 117110 11111
01111 11110 11111
01111 11110 11111
01111 00000 01111
{1} (2) (3)

(1) table for the first latent class of movers
(2} table for the second latent class of movers
(3) total (sum of (1) and (2))

The diagrams in Figure 7.3 have to make this clear. In the first
diagram the lower class of ‘movers’ is displayed (restrictions n9{ =

(7.16b)

|
|

I

i
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7% = 0). In the second diagram the upper class of ‘movers’ is
displayed (restrictions n2* n%¥ = 0). The result of both restrictions is
that the expected frequencies in cells (1, 5) and (5, 1) must always
zero: a logical consequence of the combination of restrictions (Equa-
tion 7.16a) and (Equations 7.16b). This causes a zero-divide in step 4
of the algorithm.»*
“Clogg also presents a three latent class model with the same and
other restrictions, as in the two latent class model.? It turns out that
none of the three models has a satisfactory fit.

Now we turn to the quasi-latent structure models. Firstly Good-
man’s quasi-independence model will be described as a quasi-latent
structure model. In this case the latent variable has the same number

of classes as the origin- and destination- variable plus one. Each cell

on the main diagonal is one class of the latent variable. (Cf., for

example, Clogg (1980, p. 254).) These classes have the following
restrictions:

n¥=mP¥=0 ifi#t and i=1,..../ (7.17)

Because this determines the conditional distributions everybody in
classt(t=1, ..., of the latent variable is a member of the origin
and destination class i. Clogg labels these classes of the latent vari-
able deterministic status classes ‘latent stayers’. Besides these deter-
ministic status classes one latent class of ‘movers’ is defined (the last
class of the latent variable). No barriers are defined except for the
main diagonal.>® This model is called a quasi-latent structure model
because it is not latent in-a strict sense: the latent-variable is com-
pletely determined by the imposed restrictions.?* The model reads:

P =D malinlt r=1,....6 (7.18)

where al¥ gPX =1

i i

Clogg defines as a corresponding immobility index:*

L mpn a4y
Yi = - (7.19)

X ox DX
Ay N1 Ny

The next model, Clogg defines, is a quasi-latent structure model with
a latent variable of I + 2 classes. Similar to the former model, /
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classes are defined as deterministic status classes (the main diagonal
cells). The other two classes are two probabilistic classes of latent
‘movers’:

mfzzgﬂﬁnﬁnﬁ r=1...., 7 (7.20)

where  af% = al¥ =1

For these quasi-latent model with two latent classes of ‘movers’,
Clogg defines an immobility index analogous to Equation (7.19). This
mobility-ratio measures the surplus of ‘stayers’ in status i, which
cannot be accounted for by the expected immobility under a model
with two latent classes of ‘movers’ (Clogg. 1981b, p. 843). According
to Clogg (1981b, p. 860) the problem with earlier immobility ratios
was the fact that the observed frequencies in a status group were
compared with the expected frequencies given perfect mobility.
Whether Clogg’s index gives a better interpretation of immobility
depends on the fit and the meaning of his model.*

Clogg (1981a, 1981b) analyses the British and Danish mobility data
separately and compares the differences in the parameter estimates.
He does not use a formal test to compare equalities among the
parameter estimates in both countries. In the following analysis 1 will
do so by including ‘Country’ as a variable in the model.

-Clogg defines a variant of the quasi-latent structure models.”” He
does not define all deterministic status classes, but only three out of
five (the diagonal cells 1, 3 and 5). For purposes of comparison I shall
follow Clogg in distinguishing these five latent classes. The first latent
class is the upper class and ¢y is set zero; the second latent class is
the lower class with the restriction that n”* equals zero. The third
through the fifth latent classes correspond with the cells (1, 1), (3, 3)
and (5. 5) on the main diagonal. Formally the model is defined as
follows:

D OX DX -
P = E g ey =105 (7.21)
1253 _— OX — A s Y
where Ty =ady = Al = aly = afy =Y = |
oy = ¥ =0

In the notation used by Goodman model (Equation 7.21) can be
written as [XO, XD]. The notation does not take into account the
restrictions. It must be remembered that the restrictions mentioned
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in Equation (7.21) hold for all of the following models. In all the
models the latent variable ‘Class’ has five classes: two latent classes of
‘movers’ and three deterministic status classcs. Model {XO. XD] has
six degrees of freedom. The number of degrees of freedom equals the
number of observed frequencies minus one minus the total of inde-
pendently estimated parameters. The number of parameters to be
estimated is 18.%*

7.4 THE TABLES CONSIDERED SIMULTANEOUSLY

The variable ‘Country’ (C) is included in the analysis. A three-way
observed table ODC is analysed. The latent-variable consists now of
ten classes (five for each of the two countries). A latent ‘variable’ (Y)
must be considered as the joint latent variable (C, X)), where X is the
latent variable X mention in the last section and C is the latent-
variable country. The manifest variable C is an accurate indicator of
this latent-variable C because of the following restrictions:

afY=mit=1  u=1,....5 u=6,..., 10 (7.22)

The result is that the first five levels of the joint variable (C, X) are
the latent-variable X for the first country and the second five levels
are the latent-variable X for the second country. The model consid-
ered now is [CXO, CXD]. The test is whether or not the model [XO,
XD] holds simultancously for both countries. In the following the
models will be drawn schematically and only the extra restrictions
will be mentioned. ** Model [CXO, CXD]:

Figure 7.4  Latent class model [CXO. CXD].
0
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Model [CXO, CXD] is the ‘sum’ of model [XO, XD] for cach

country. No extra restrictions are defined, so the number of degrees
of freedom equals 2*6 = 12. Although the same model for both
countries is assumed, there is complete heterogeneity across coun-
tries: both the latent class probabilities and the conditional probabili-
ties are different. The results of the indices of fit are presented in
Table 7.2.%

Tuble 7.2 Fit statistics of several models

Model df L Y A R* F

[cxo, €xD] 122124 2069 L73 099 1.77
[c, x] [cxo. ¢xD] 16 5078 5074 3.02 097 3.17
{cx. €O, €D, X0, XD] 200 50.29  47.61 257 (.97 2351
[cx]. [¢x, co, €D, X0, XD| 24 94.87 9225 438 0.94 395
fcx, x0, XD} 26 21654 216.36 6.76  0.85 8.33
[C. X0, XD] 30 400.48 40490  6.57  0.72 13.55

* The baseline model of independence has L = 1465 with df = 32.

Besides y* and L the following measures of fit are reported:

¢ the dissimilarity index (percentage misclassified: A);
¢ the normed fit index (Bonett and Bentler, 1983, p. 157):

R =——— 7.24
L (7.24)

where L, is the Loglikelihood Ratio of the restricted model and
L, is the Loglikelihood Ratio of the baseline (relatively
unrestricted) model.

e the modified x> (Wonnacott and Wonnacott, 1979, p. 366):
F=Lidf (7.25)

The parameter estimates are (of course) the same as Clogg’s (see
Table 7.3) and the test-statistic is the sum_ of the test-statistics for
Denmark and Britain separately.”

In the next model no association is assumed between the variables
C and X. In other words the relative frequency distribution of the

Table 7.3 Parameter estimates for model [CXO, CXDJ*

f

K,

0.125 0.032

0.505

0.375
0.000  0.000

0.084 0.384

0.010

0.000
0.260

0.000

0.000

0.137
0.466
0.000
0.000

0.000

0.342

0.450
0.032

0.000 0.071

1.000

0.102
0.254

0.251

1,1

R. Luijkx

0.269
0.000
0.000
1.000
0.067
0.310
0.000
0.000
1.000

1.000 0.000
0.000
0.253
0.510
0.000
1.000  0.000

0.000 0.000

0.195
0.165
0.117

0.000

5

0.000  0.000

0.438

0.02
1.000  0.000
0.062
0.000
0.000
0.000  0.000

0.000 0.000

0.077
0.000
1.000

0.242

0.000

1.000  0.000
1.000  0.000

1.000

0.624

2

1.000 0.000

0.260
0.000
0.000  0.000
1.000

0.204  0.000

0.560
0.000

0.000

0.000 0.000

1.000
0.000
0.178
(.137

1.000

0.507

1.000 0.000 0.000
1.006  0.000 0.043

0.000 0.000 0.000
1.000  0.000 0.000

0.000  0.000
1.000 0.000 0.000

1.000  0.111
1.000

1.000

1.000  0.000 0.000 0.000

0.000
0.000
0.000
0.000
0.000

0.003
0.024
0.024
0.131
0.411
0.007
0.008
0.037

0.006
0.059
0.059
0.221
0.691
0.012
0.014
0.062

TV =N T
— =N ANl N

*Because of different sample-size the latent probabilities have to be recalculated to compare them with Clogg’s. so the sum of

prob. for k=1 aund for k&

2 adds to one.
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latent-variable is the same far both countries. Additional restrictions
are:

m ==, .. ..5 . (7.26)

This model [C,X][CXx0.CXD] has to be considered in the context of the
modified-path-analysis approach. Only the relative size of the classes
of the latent-variable are assumed equal for both countries. The
relative frequency distributions of the origin- and destination-
variable given the classes of the latent-variable may differ. This
model cannot be straightforwardly estimated because the prob-
abilities m;*¢ are not parameters in the latent class model. Schemati-
cally:

Figure 7.5 Latent class model [C.X] [CXO.CDX]

o

D

LCAG has, unlike MLLSA, a feature to define loglinear models for any
of the marginal tables of (in this case) CXOD. Model [C, X] [CXO,
CxD] must be considered as the model [¢, X] for the marginal table
CX (table CXOD collapsed over O and D) and [CXO. CXD] for the
marginal table CXOD. This means C and X are independent in the
table CX. As can be seen from the causal scheme in Equation (7.27),
O and D are posterior to both C and X. To determine the relation
among C and X, O and D may not be held constant if no null-
association between C and X is assumed. Given this independence of
C and X, the conditional distributions of O and™D given X for each
country can differ.

Because model [C, X] [CXO, CXD] has restrictions on the frequency
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distribution of the latent variable (the probabilities per class are
equal for each country), only four, not 2*4, parameters have to be
estimated. The number of degrecs of freedom cquals 12 + 4 = le.

The Loglikelihood Ratio is 50.78, which is not a good fit. But for
the sake of instruction the parameter estimates are presented in
Table 7.4. Both a first glance and residual analysis disclose the reason
of this lack of'fit: the different levels of inheritance in status group 3.*
" The next model considered is [CX, CO, CD, XO. XD|. It assumes no
higher-order interaction between Country (C), Class (X). Ongin (()
and Destination (D). The idea is that the distributions of the origin-
and destination-variable differ for each country and for the categories
of X, but not for the cross-classification CX (no interactions CX0 and
CXD). As easy as it is to define the model it is equally difficult to write
it as an estimable latent structure model. The strategv is the follow-
ing. A latent-variable with 250 classes is defined. This is the cross-
classification of the latent-variables C', O’, D' and X, the first three
of which are perfectly indicated by the manifest variables C. (. and
D:

Figure 7.6 Latent class model [CX, CO. €CD. XO, XD]
/ ’
c ————/—>x

D

(7.28)

Next a loglinear model is defined among the latent variables €. X, O,
D.* The chi-square statistic is 50.29 with 20 degrees of freedom
(12 + 2*4 = 20). The results are presented in Table 7.5.% It is
important to point out here that the conditional probabilitics for the
two countries differ, but that loglinear parameters (A and 1) for the
relations XO and XD are the same.

In the next model we again assume C and X to be independent [C, X]
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[cX, CO, €D, X0, XD], and again the modificd path analysis approach
is used:

Figure 7.7 Latent class model {C X] [CX.CO.CD.X0..XD]

0

c X (7.29)

D

The chi-square statistic is 94.87 with 24 degrees of freedom
(20 + 4 = 24). Again it is cell (3. 3) which causes the bad fit.

The next model is one in which the relative frequency distribution
of the latent-variable per country varies, but in which the conditional
frequency distributions given the classes of the latent-variable are
identical for each country. The following restrictions are defined:

AN = =1, Si=l LS (7.30a)

AN C=alri= 1, .., S5r=1.....,5 (7.30b)

As model [CX, X0, XD] has restrictions on the conditional fre-
quency distribution of the origin- and destination-variables. Four-
teen, not 2*14, parameters have to be estimated. The number of
degrees of freedom equal 12 + 14 = 26. The model schematically:
The fit of this model is 216.54.

A combination of the restrictions (7.26), (7.30a) and (7.30b) of the
models (7.27) and (7.31) yields a model with identical frequency
distributions of the latent-variable and identical conditional fre-
quency distributions for the latent-variable for the two countries.
Model |c, X0, XD] has both the restrictions of the models [C, X]
[cx0. cxD] and [CX. XO, XD] and thus the number of degrees of
freedom equals 12 + 4 + 14 = 30. Schematically the model is {C,
X0, XDJ: ,
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Figure 7.8 Latent class model [CX, XO, XD]
0

-
\

D

Figure 7.9 Latent class model [C. XO. XD]

-
N\

{7.32)

The fit of the model is 406.48.

Taking Clogg’s analysis as a starting-point, 1 have shown the possi-
bilities of comparing latent-class models for mobility tables of several
countries with an emphasis on loglinear models with latent-variables.

7.5 NOTES

* Direct all correspondence to: Ruud Luijkx. Institute for Sociology,
University of Utrecht, Heidelberglaan 2, 3584 CS Utrecht, The Nether-
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lands. Earlier versions of this paper were presented at the meeting of the
Research Committee on Social Stratification (International Sociological
Association) in Budapest on 10 September 1984, and at the First Inter-
national Conference on Methodological Research (ISA and the Dutch
Sociometric Society) in Amsterdam on 5 October 1984. I thank Jacques
Hagenaars (Tilburg University, The Netherlands) for his valuable help in
the completion of this chapter and Clifford C. Clogg (Pennsylvania State
University, Pa, USA) for his comments. Corrections of my English by
Kate Ascher are very much appreciated.

. In a recent article Clogg and Goodman (1984) present a latent structure

analysis of a set of contingency tables.

. This method of determinantal equations is also called the *Anderson—

Lazarsfeld-Dudman method’. It yields consistent estimates only under
some conditions, viz. if there are dichotomous variables and less latent
classes than %’(m+l): m being the dimension of the table (sce
Lazarsfeld and Henry.+1968. chap. 4). This method only give asvmp-
totically efficient parameters in a three-way contingency table with two
latent classes (Anderson. 1959). The method can give non-permissible
estimates, i.e. not in the interval [(.1] or even complex. See further
Anderson (1934}, Gibson (1955) and Madansky (1960).

. Written as a loglincar model:

log m ,%‘;X e R A VU S Vs W (7.33)

with m1 the expected frequencies and with the usal restrictions on the
paramecters.

. This scoring algorithm is a variant of the Newton-Raphson algorithm

(Haberman, 1979, p. 542). The computations resemble those in a
weighted regression analysis.

. Other procedures are (Clogg. 1981a. p. 221): Caroll's canonical de-

composition algorithm CANDECOMP (No maximum-likelihood solution),
Formann’s algorithm buased on a logit-type transformation of model
parameters, and a certain gradient method.

The output of LCAG consists of:

® the estimated expected probabilities of the classes of the latent-
variable;

® the estimated expected conditional probabilities of the classes of the
manifest variables, given the different classes of the latent-variable;

® the observed and expected frequencies of the cross-classification of
the manifest variables:

® the expected frequencies of the classes of the latent-variables;

® the chi-square statistics L and y°.

It is possible to store the expected frequencies of the cross-classification
of the manifest- and latent-variables. These frequencies are essential to
compute the loglinear effects (for example. by the use of FREQ. GLIM or
ECTA). This makes sense only if the model fits.

10.

11.

12.
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. As initial estimates the results of the determinantal method can be used,

if (0,1). Goodman (1974a, pp. 1251-5) alsc describes how 1o chose initial
trial values in a more sophisticated way.

. Haberman (1979, pp. 544-7) describes a corresponding iterative algor-

ithm (not the scoring algorithm) in which he determines initial estimates
of the frequencies in the observed table, satisfying the loglinear modc]
under study (step 1).

. The restrictions, assuming parameters to be 0 or 1. can be easily fuifilled

by taking the start values of these values as 0 or 1; if other restrictions are
assumed, these have to be fulfilled in step 5 of the algorithm at each
iteration.

It is not easy to decide which test-statistic is the best to use. L, for
instance, has nice partionality properties; ¥°, on the other hand, gives a
better estimation of the significance-level.

Goodman (1974a, p. 1245, note 95) points out that in his experience
the iterative procedure did not yield locadl maxima. Hagenaar's experi-
ence is just the opposite (personal communication). A global maximum
gives the values of the parameter vector x (¥, n*, x/*) that maximises
the likelihood over the entire range of possible parameter values, where
each parameter is strictly within the permissible range [0.1]; a local
maximum gives the value of a parameter vector that maximises the
likelihood within a neighbourhood of that parameter vector. but not
necessarily over the entire range of possible parameter values, where
each parameter is strictly within the permissible range: and a tenninal
maximum gives the value of a parameter vector that maximises the
likelihood (globally or locally), but where one or more of the parameters
are on the boundary of the permissible range (for example. where some
parameter values are either 0 or 1).

Clogg also presents a proportional-reduction-in-error measure A, ., to
assess the quality of a latent structure model in terms different front usual
criteria based on goodness-of-fit (Clogg. 1981b, p. 840).

. A short overview of the problem of identifiability is based on Goodman

(1974b). The question is whether or not the maximum-likelihood esti-
mates of the parameters in a model are locally identifiable. This depends
on how many parameters there are to be estimated. Of the #,
~parameters only T — 1 parameters have to be considered: of th
#7;'—parameters only / — 1 for every r; and of the #;~parameters. only
j — 1 for every t; sce Equation (7.3). So. in total, the number of
parameters to be estimated is: T — 1 + (I =" IV*T + (J - )*T =
+J-D*T-1

The number of expected manifest probabilities equals IJ — 1. If Equa-
tion (7.34) holds, the number of estimated latent (conditional) probabili-
ties exceeds the number of expected manifest probabilities.

—-1<{+J-D)T-1 (7.34)
This is « sufficient condition for unidentifiability. If Equation (7.34) does

not hold, one has to calculate the derivative of Equation (7.4) with
respect to the expected manifest probabilities. For example:
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a ft ’l)l) . . _
[ ~OX A DX S OXN A~ DY
3R = 3y, Wy T
bl !
mUAPY 0 =1 11 (7.35)
0D
(”J’[,, _ X ADXN :
Taov | T AL i=
i
0 otherwise

“

If the rank of the above-described matrix is equal to the number of
columns, the parameter estimates of the model are locally identifiable.
In the matrix the columns assumed to have a known value with respect to
the parameter estimates are deleted. The columns among which equality
constraints are defined with respect to parameter estimates are added.
The number of columns of the matrix is now: (/ +J — 1)*T - 1 + 4.
where d is the number of non-redundant restrictions imposed upon the
model. Now the rank can be calculated in the same way as described in
note 13, above.

One can rewrite Equation (7.4) as:

e

= _S_ LAEIE I (7.36)
=2
X A -9
where T+ T =2
8Y =
4 - .
7 r=3....T

One can rewrite (7.4) as:

on _
Ty = E

where 8" as above

T

1

8;‘ 9 {);\‘ Py (7.37)

7=

e e =2
OX __
07 =
[eAY
iy, t=3,....T

Goodman (1974b, pp. 225. 226) shows that this can be generalised to an
m-way table, where the corresponding conditional probabilities in the
latent class | and 2 are equal for each of the m. resp. /n-1 variables.

The occupational categories used for the British data are:
(1) ® professional and high administrative
(2) ® managerial and executive

18.

20.

21.

22.
23.

24.

25.

26.

R. Luijkx 15

wn

e inspectional, supervisory and other non-manual (high grade)
(3) & inspectional, supervisory and other non-manual (fow grade)
(4) ® routine grades of non-manual

® skilled manual
(5) ® scmi-skilled manual

e unskilled manual.

According to Clogg (1981b, p. 845). Svalastoga collapsed the eight into
five categories to make the British and the Danish data comparablc.

In a recent contribution to class theory. Parkin (1979) looks at (occupa-
tional) mobility as class structuring. Schematically:

(0-0) —= X

. Although the number of parameters to estimate is 17, and thus less than

24 (1J—-1). there exist no immediately visible dependencies.

Clogg (1981b, p. 848) points out that if he was not willing to assume that
the highest and the lowest status in table 7.1 were known a priori.
different sets of restrictions could have been used. 1 would rather have
imposed restrictions upon the destination-variable, because it scems
more likely that people cannot reach certain positions. given their class.
than that they cannot come from certain status groups into certain
classes. But, for the purpose of comparison. I shall follow Clogg.
LCAG does not stop by a zero-divide, but neglects the step for "/}".
The result is an expected frequency of zero for these cells. In computing
the test-statistics, the contribution of the cells with expected frequencies
of zero is set to zero. This does not contribute to the Pearson's c/ii-
square, but it does to the Loglikelihood Ratio. Therefore the best
strategy is to assume the observed frequencies in these cells also to be
zero. The same holds true for Haberman's program LAT. Observed
frequencies of zero are not a problem in LCAG (because of the arguments
just mentioned). But they were in Clogg’s case. He used an arbitrary
solution by raising the observed frequencies to 0.10 or 1.00. Clogg
mentions as another reason the comparability of degrees of freedom
among both countries.

The total of parameter estimates. without restrictions, would be 20.
Mobility across statuses is ‘prohibited’ for members of each status class
(Clogg, 1981b. p. 853).

If one of the programs LCAG or MLLSA is used, not all the estimated
expected frequencies of the quasi-latent structure model arc necessarily
identical with those of the quasi-independence model. This follows from
the fact that probabilities must be non-zero. So deterministic status
classes defined as classes of the latent-variable have a probability of at
least zero. Given the model specification it follows logically that only
inheritance. and not disinheritance, can be measured. Only a surplus
the main diagonal cells, given the independence model (omitting the
diagonal), is measured.

This immobility ratio is, as mentioned already (note 24) always greater
than 1.

There are big problems with these mobility ratios, partly due to the fact
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that they are based on truncated equations (sce, for cxample, Hope.
1981; Hauser, 1981).

. Clogg (1981b, p. 853) points out one can chose any K status classes.

where K€ I ]

The latent-variable has five classes: the number of parameters to be
estimated is 4 (because the sum of the probabilities is 1). The conditional
distributions given class 1 and class 2 have tive classes for the origin- and
destination-variable. The number of parameters to be estimated is five
for the origins and five for the destinations per class. Because there are
restrictions for the origin classes (one for each class). the number of
parameters to be estimated is 3: for the destination classes (no restric-
tions) this will be 4. The total number of parameters of conditional
parameters is 3 + 3 + 4+ 4 = 14. The total number of parameters
equals 14 + 4 = 18,

If we want to take, in addition to the accurate indicators, also the latent
classes into account, the schemata have the following form (I don't
define the relations among C'. X', O’ and D', which differ from modeti to
model):

Figure 7.10  Model Assuming no errors

o' o

c c' X (7.38)

o' 1))

C’, O’ and D’ being the latent variables and C. O and D being their
accurate indicators. But, for the sake of simplicity, we leave the latent-
variables out. It must be remembered that the loglinear models are
formally defined on the level of the latent-variables. (Cf. LISREL, where
the structural model is defined on the level of the latent-variables, even if
all are accurately indicated by observed variables.)

Clogg (1981b, p. 845) mentions rather complicated sampling arrange-
ments and the impact of the test-statistics on the levels of significance.
Therefore these are not reproduced.

The slight difference (8.2+12.9) 21.1 v. 21.2 is. in addition to rounding
errors, caused by the fact that Clogg replaced the zero entry (5.1} in the
data for England and Wales by 0.10.

. If a modified-path-analysis approach is followed. it can be (as it is in this

case) relatively easy but very time-consuming to dsfine a model where
there are equalities for all latent classes but the one corresponding with
status class 3. I shall introduce these kind of niodels in the remaining part
of this chapter.
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33. We can define all the models this way. One reason not to estimate the
models this way. if it is not necessary. is the computing time involved.
34. The table looks like 250 latent classes determined by each combination
of the cross-classification of the manifest variables C, O und D.
. Here again we can use the easier way of estimating.
. Again the bad fit is caused by cell (3.3).

(SIS
[o, &4
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